1
|
Abu-Nada L, Liu Y, Saleh Al-Hamed F, Ouliass B, Millecamps M, Tran SD, Ferland G, Soleimani VD, Marino FT, Murshed M. Young bone marrow transplantation delays bone aging in old mice. Exp Gerontol 2025; 202:112704. [PMID: 39914580 DOI: 10.1016/j.exger.2025.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Recent discoveries have shown that systemic manipulations, such as parabiosis, blood exchange, and young plasma transfer, can counteract many hallmarks of aging. This rejuvenation effect has been attributed to circulatory factors produced by cells from both hematopoietic and non-hematopoietic lineages. However, the specific involvement of bone marrow (BM) or hematopoietic cells in producing such factors and their effects on aging is still unclear. We developed a model of aged mice with transplanted young or old BM cells and assessed the impact on the aging process, specifically on energy metabolism and bone remodeling parameters. The donor BM cell engraftment in the aged mice was confirmed by flow cytometry using a transplanted cell-specific marker (green fluorescent protein). Energy metabolism was assessed using Oxymax indirect calorimetry system after 3 months of transplantation. Tibiae and L3-L4 vertebrae were analyzed using micro-CT, a three-point bending test and bone histomorphometry. Moreover, bone marrow proteome was assessed using proteomics, and blood serum/plasma was collected and analyzed using the Luminex assay. Our results showed that while the effect on energy metabolism was insignificant, rejuvenating the BM through young bone marrow transplantation reversed age-associated low bone mass traits in old mice. Specifically, young bone marrow transplantation improved bone trabecular microarchitecture both in tibiae and vertebrae of old mice and increased the number of osteoblasts and osteoclasts compared to old bone marrow transplantation. In conclusion, young bone marrow cells may represent a future therapeutic strategy for age-related diseases such as osteoporosis. The findings of this study provide important insights into our understanding of aging.
Collapse
Affiliation(s)
- Lina Abu-Nada
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Younan Liu
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Bouchra Ouliass
- Montreal Heart Institute Research Centre, Montreal, QC, Canada
| | - Magali Millecamps
- ABC-Platform (Animal Behavioral Characterization) at Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Shriners hospital for children, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Khadembashiri MA, Mohseni S, Aghakhani A, Khalagi K, Mansourzadeh MJ, Pejman Sani M, Mohajeri-Tehrani M, Farzadfar F, Fahimfar N, Ostovar A. Association between serum hemoglobin level and bone mineral density in adults: Iranian multi-center osteoporosis study (IMOS). Arch Osteoporos 2025; 20:18. [PMID: 39907827 DOI: 10.1007/s11657-025-01507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
The associations between serum hemoglobin (Hb) levels and bone mineral density (BMD) were investigated in population of the 4th Iranian Multicenter Osteoporosis Study (IMOS). A positive relationship between Hb levels and BMD at hip and femoral neck were detected only in men. PURPOSE Previous studies have investigated the relationship between hemoglobin (Hb) levels and bone mineral density (BMD) with controversial findings. This study aimed to evaluate this association using data from the 4th Iranian Multicenter Osteoporosis Study (IMOS), a population-based national survey, including a population sample aged 50 years and older. METHODS The present study was conducted as a cross-sectional data analysis derived from the fourth round of the IMOS. Demographic information, Hb levels, and BMD measurements were collected. BMD was measured with dual-energy X-ray absorptiometry (DXA). Low BMD (osteopenia/osteoporosis) and osteoporosis were defined as a T-score less than -1 and less than -2.5 at each site including hip, femoral neck, or lumbar spine, respectively. Multiple linear regression analysis was used to assess the relationship between Hb levels and BMD. RESULTS This study included 1,426 participants (54.2% female) with the mean age of 62.6 ± 8.0 years. The mean Hb levels among patients with or without osteoporosis were 12.9 ± 2.0 mg/dl and 13.1 ± 1.9 mg/dl, respectively (p-value = 0.08). It was demonstrated a positive relationship between Hb levels and BMD at hip (β = 0.0079, 95% CI: 0.002- 0.0135, p-value = 0.006) and femoral neck (β = 0.0064, 95% CI: 0.0015- 0.0113, p-value = 0.01) in only men. However, there was no significant correlation between Hb levels with low BMD and osteoporosis in either gender. CONCLUSION Our findings showed a favorable relationship between Hb levels and BMD at the hip and femoral neck, particularly in men. This highlights gender and site-specific distinctions between hematological and skeletal health..Future studies should unravel these possible associations and investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Khadembashiri
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Aghakhani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Khalagi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mansourzadeh
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Pejman Sani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kuroda R, Niikura T, Matsumoto T, Fukui T, Oe K, Mifune Y, Minami H, Matsuoka H, Yakushijin K, Miyata Y, Kawamoto S, Kagimura T, Fujita Y, Kawamoto A. Phase III clinical trial of autologous CD34 + cell transplantation to accelerate fracture nonunion repair. BMC Med 2023; 21:386. [PMID: 37798633 PMCID: PMC10557317 DOI: 10.1186/s12916-023-03088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND We previously demonstrated that CD34 + cell transplantation in animals healed intractable fractures via osteogenesis and vasculogenesis; we also demonstrated the safety and efficacy of this cell therapy in an earlier phase I/II clinical trial conducted on seven patients with fracture nonunion. Herein, we present the results of a phase III clinical trial conducted to confirm the results of the previous phase studies using a larger cohort of patients. METHODS CD34 + cells were mobilized via administration of granulocyte colony-stimulating factor, harvested using leukapheresis, and isolated using magnetic cell sorting. Autologous CD34 + cells were transplanted in 15 patients with tibia nonunion and 10 patients with femur nonunion, who were followed up for 52 weeks post transplantation. The main outcome was a reduction in time to heal the tibia in nonunion patients compared with that in historical control patients. We calculated the required number of patients as 15 based on the results of the phase I/II study. An independent data monitoring committee performed the radiographic assessments. Adverse events and medical device failures were recorded. RESULTS All fractures healed during the study period. The time to radiological fracture healing was 2.8 times shorter in patients with CD34 + cell transplantation than in the historical control group (hazard ratio: 2.81 and 95% confidence interval 1.16-6.85); moreover, no safety concerns were observed. CONCLUSIONS Our findings strongly suggest that autologous CD34 + cell transplantation is a novel treatment option for fracture nonunion. TRIAL REGISTRATION UMIN-CTR, UMIN000022814. Registered on 22 June 2016.
Collapse
Affiliation(s)
- Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Chuo-Ku, Kobe, 650-0017, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Chuo-Ku, Kobe, 650-0017, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Chuo-Ku, Kobe, 650-0017, Japan
| | - Yoshiharu Miyata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Chuo-Ku, Kobe, 650-0017, Japan
| | - Shinichiro Kawamoto
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, Chuo-Ku, Kobe, 650-0017, Japan
| | - Tatsuo Kagimura
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Chuo-Ku, Kobe, 650-0047, Japan
| | - Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Chuo-Ku, Kobe, 650-0047, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Chuo-Ku, Kobe, 650-0047, Japan
| |
Collapse
|
4
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Moein S, Ahmadbeigi N, Adibi R, Kamali S, Moradzadeh K, Nematollahi P, Nardi NB, Gheisari Y. Regenerative potential of multinucleated cells: bone marrow adiponectin-positive multinucleated cells take the lead. Stem Cell Res Ther 2023; 14:173. [PMID: 37403181 DOI: 10.1186/s13287-023-03400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Polyploid cells can be found in a wide evolutionary spectrum of organisms. These cells are assumed to be involved in tissue regeneration and resistance to stressors. Although the appearance of large multinucleated cells (LMCs) in long-term culture of bone marrow (BM) mesenchymal cells has been reported, the presence and characteristics of such cells in native BM and their putative role in BM reconstitution following injury have not been fully investigated. METHODS BM-derived LMCs were explored by time-lapse microscopy from the first hours post-isolation to assess their colony formation and plasticity. In addition, sub-lethally irradiated mice were killed every other day for four weeks to investigate the histopathological processes during BM regeneration. Moreover, LMCs from GFP transgenic mice were transplanted to BM-ablated recipients to evaluate their contribution to tissue reconstruction. RESULTS BM-isolated LMCs produced mononucleated cells with characteristics of mesenchymal stromal cells. Time-series inspections of BM sections following irradiation revealed that LMCs are highly resistant to injury and originate mononucleated cells which reconstitute the tissue. The regeneration process was synchronized with a transient augmentation of adipocytes suggesting their contribution to tissue repair. Additionally, LMCs were found to be adiponectin positive linking the observations on multinucleation and adipogenesis to BM regeneration. Notably, transplantation of LMCs to myeloablated recipients could reconstitute both the hematopoietic system and BM stroma. CONCLUSIONS A population of resistant multinucleated cells reside in the BM that serves as the common origin of stromal and hematopoietic lineages with a key role in tissue regeneration. Furthermore, this study underscores the contribution of adipocytes in BM reconstruction.
Collapse
Affiliation(s)
- Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Adibi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Kamali
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Kobra Moradzadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Nematollahi
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, Porto Alegre, RS, 90620-001, Brazil
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Cong B, Sun T, Zhao Y, Chen M. Current and Novel Therapeutics for Articular Cartilage Repair and Regeneration. Ther Clin Risk Manag 2023; 19:485-502. [PMID: 37360195 PMCID: PMC10290456 DOI: 10.2147/tcrm.s410277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Articular cartilage repair is a sophisticated process that has is being recently investigated. There are several different approaches that are currently reported to promote cartilage repair, like cell-based therapies, biologics, and physical therapy. Cell-based therapies involve the using stem cells or chondrocytes, which make up cartilage, to promote the growth of new cartilage. Biologics, like growth factors, are also being applied to enhance cartilage repair. Physical therapy, like exercise and weight-bearing activities, can also be used to promote cartilage repair by inducing new cartilage growth and improving joint function. Additionally, surgical options like osteochondral autograft, autologous chondrocyte implantation, microfracture, and others are also reported for cartilage regeneration. In the current literature review, we aim to provide an up-to-date discussion about these approaches and discuss the current research status.
Collapse
Affiliation(s)
- Bo Cong
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Tao Sun
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Yuchi Zhao
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Mingqi Chen
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
| |
Collapse
|
7
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
8
|
Roseti L, Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J Exp Orthop 2022; 9:61. [PMID: 35776217 PMCID: PMC9249961 DOI: 10.1186/s40634-022-00498-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage injuries are common in the population. The increment in the elderly people and active life results in an increasing demand for new technologies and good outcomes to satisfy longer and healthier life expectancies. However, because of cartilage's low regenerative capacity, finding an efficacious treatment is still challenging for orthopedics. Since the pioneering studies based on autologous cell transplantation, regenerative medicine has opened new approaches for cartilage lesion treatment. Tissue engineering combines cells, biomaterials, and biological factors to regenerate damaged tissues, overcoming conventional therapeutic strategies. Cells synthesize matrix structural components, maintain tissue homeostasis by modulating metabolic, inflammatory, and immunologic pathways. Scaffolds are well acknowledged by clinicians in regenerative applications since they provide the appropriate environment for cells, can be easily implanted, reduce surgical morbidity, allow enhanced cell proliferation, maturation, and an efficient and complete integration with surrounding articular cartilage. Growth factors are molecules that facilitate tissue healing and regeneration by stimulating cell signal pathways. To date, different cell sources and a wide range of natural and synthetic scaffolds have been used both in pre-clinical and clinical studies with the aim to find the suitable solution for recapitulating cartilage microenvironment and inducing the formation of a new tissue with the biochemical and mechanical properties of the native one. Here, we describe the current concepts for articular cartilage regeneration, highlighting the key actors of this process trying to identify the best perspectives.
Collapse
Affiliation(s)
- Livia Roseti
- IRCCS Istituto Ortopedico Rizzoli Bologna, Bologna, Italy
| | | |
Collapse
|
9
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
10
|
Kang IH, Baliga UK, Wu Y, Mehrotra S, Yao H, LaRue AC, Mehrotra M. Hematopoietic stem cell-derived functional osteoblasts exhibit therapeutic efficacy in a murine model of osteogenesis imperfecta. Stem Cells 2021; 39:1457-1477. [PMID: 34224636 DOI: 10.1002/stem.3432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Uday K Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Oliveira CS, Carreira M, Correia CR, Mano JF. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:379-392. [PMID: 33683146 DOI: 10.1089/ten.teb.2021.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The repair process of bone fractures is a complex biological mechanism requiring the recruitment and in situ functionality of stem/stromal cells from the bone marrow (BM). BM mesenchymal stem/stromal cells have been widely explored in multiple bone tissue engineering applications, whereas the use of hematopoietic stem cells (HSCs) has been poorly investigated in this context. A reasonable explanation is the fact that the role of HSCs and their combined effect with other elements of the hematopoietic niches in the bone-healing process is still elusive. Therefore, in this review we intend to highlight the influence of HSCs in the bone repair process, mainly through the promotion of osteogenesis and angiogenesis at the bone injury site. For that, we briefly describe the main biological characteristics of HSCs, as well as their hematopoietic niches, while reviewing the biomimetic engineered BM niche models. Moreover, we also highlighted the role of HSCs in translational in vivo transplantation or implantation as promoters of bone tissue repair.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana Carreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
12
|
Olson B, Zhu X, Norgard MA, Levasseur PR, Butler JT, Buenafe A, Burfeind KG, Michaelis KA, Pelz KR, Mendez H, Edwards J, Krasnow SM, Grossberg AJ, Marks DL. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat Commun 2021; 12:2057. [PMID: 33824339 PMCID: PMC8024334 DOI: 10.1038/s41467-021-22361-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Lipocalin 2 (LCN2) was recently identified as an endogenous ligand of the type 4 melanocortin receptor (MC4R), a critical regulator of appetite. However, it remains unknown if this molecule influences appetite during cancer cachexia, a devastating clinical entity characterized by decreased nutrition and progressive wasting. We demonstrate that LCN2 is robustly upregulated in murine models of pancreatic cancer, its expression is associated with reduced food consumption, and Lcn2 deletion is protective from cachexia-anorexia. Consistent with LCN2's proposed MC4R-dependent role in cancer-induced anorexia, pharmacologic MC4R antagonism mitigates cachexia-anorexia, while restoration of Lcn2 expression in the bone marrow is sufficient in restoring the anorexia feature of cachexia. Finally, we observe that LCN2 levels correlate with fat and lean mass wasting and is associated with increased mortality in patients with pancreatic cancer. Taken together, these findings implicate LCN2 as a pathologic mediator of appetite suppression during pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - John T Butler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Abigail Buenafe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine R Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
| | - Heike Mendez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
| | - Jared Edwards
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron J Grossberg
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
13
|
Samuelson C, Radtke S, Cui M, Perez A, Kiem HP, Humbert O. AMD3100 redosing fails to repeatedly mobilize hematopoietic stem cells in the nonhuman primate and humanized mouse. Exp Hematol 2020; 93:52-60.e1. [PMID: 33276046 DOI: 10.1016/j.exphem.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
AMD3100 (plerixafor) is a vital component of many clinical and preclinical transplant protocols, facilitating harvest of hematopoietic stem and progenitor cells through mobilization into the peripheral blood circulation. Repeat mobilization with AMD3100 is also necessary for many patients with suboptimal first stem cell collection or those requiring repeat transplantation. In this study we investigated the mobilization efficacy of repeated AMD3100 dosages in the nonhuman primate and humanized mouse models. In nonhuman primates, we observed effective mobilization after the first AMD3100 administration but a significantly poorer response in CD34+ and hematopoietic stem cell-enriched CD90+ cells with subsequent doses of the drug. A similar loss of efficacy with repeated administration was noted in immunodeficient mice engrafted with human CD34+ cells, in whom the total human white cell population, and particularly human hematopoietic stem and progenitor cells, mobilized significantly less effectively following a second AMD3100 administration when compared with the first dose. Together, our results are expected to inform future mobilization protocols for the purposes of peripheral blood hematopoietic stem cell extraction or for applications in which hematopoietic stem cells must be made accessible for in vivo-delivered gene targeting agents.
Collapse
Affiliation(s)
- Clare Samuelson
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margaret Cui
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Anai Perez
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
14
|
Circulating osteogenic precursor cells: Building bone from blood. EBioMedicine 2018; 39:603-611. [PMID: 30522933 PMCID: PMC6354620 DOI: 10.1016/j.ebiom.2018.11.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells constitute a recently discovered population of circulating progenitor cells with the capacity to form not only bone but other mesenchymal tissues. There is a small, but growing body of literature exploring these cells, but with a great deal of disagreement and contradiction within it. This review explores the origins and biological characterization of these cells, including the identification strategies used to isolate these cells from the peripheral blood. It also examines the available knowledge on the in vitro and in vivo behaviour of these cells, in the areas of plastic adherence, differentiation capacity, proliferation, and cellular homing. We also review the implications for future use of COP cells in clinical practice, particularly in the area of regenerative medicine and the treatment and assessment of musculoskeletal disease. Circulating Osteogenic Precursors are circulating cells with characteristics of bone marrow mesenchymal stem cells. They are able to differentiate into bone, fat, cartilage and muscle, but many other characteristics remain unknown. They are heterogenous, with at least two specific populations present, with displaying different markers and behaviors.
Collapse
|
15
|
Ciliotherapy Treatments to Enhance Biochemically- and Biophysically-Induced Mesenchymal Stem Cell Osteogenesis: A Comparison Study. Cell Mol Bioeng 2018; 12:53-67. [PMID: 31719899 DOI: 10.1007/s12195-018-00561-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023] Open
Abstract
Introduction New approaches to treat osteoporosis have focused on promoting bone formation through the targeting of osteoblasts and their progenitors, mesenchymal stem cells (MSCs). The primary cilium is a singular cellular extension known to play an important role in biochemical and biophysical osteogenic induction of MSCs. Defects in ciliary structure have been associated with a plethora of diseases. Therefore targeting the cilium therapeutically (ciliotherapies) has emerged as a potential new treatment modality. Therefore, this study performed a comparison analysis on known ciliotherapies and their potential effects in mediating MSC osteogenic differentiation. Methods MSCs were treated with forskolin, lithium chloride (LiCl) or fenoldopam to investigate the effect on ciliogenesis and cilia-associated signalling. Moreover, both early and long term biochemical and biophysical (fluid shear) induced osteogenic differentiation was examined in terms of osteogenic gene expression and bone matrix deposition following each treatment. Results LiCl and fenoldopam were found to enhance MSC ciliogenesis to a similar degree. LiCl significantly altered hedgehog (HH) and Wnt signalling which was associated with inhibited osteogenic gene expression, while fenoldopam demonstrated enhanced early osteogenesis. Long term treatment with both ciliotherapies did not enhance osteogenesis, however LiCl had detrimental effects on cell viability. Intriguingly both ciliotherapies enhanced MSC mechanosensitivity as demonstrated by augmented osteogenic gene expression in response to fluid shear, which over longer durations resulted in enhanced matrix deposition per cell. Conclusions Therefore, ciliotherapies can be utilised to enhance MSC ciliogenesis resulting in enhanced mechanosensitivity, however, only fenoldopam is a viable ciliotherapeutic option to enhance MSC osteogenesis.
Collapse
|
16
|
A useful combination for the treatment of patellofemoral chondral lesions: realignment procedure plus mesenchymal stem cell—retrospective analysis and clinical results at 48 months of follow-up. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2018; 29:461-470. [DOI: 10.1007/s00590-018-2310-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/28/2018] [Indexed: 11/25/2022]
|
17
|
el Demellawy D, Davila J, Shaw A, Nasr Y. Brief Review on Metabolic Bone Disease. Acad Forensic Pathol 2018; 8:611-640. [PMID: 31240061 PMCID: PMC6490580 DOI: 10.1177/1925362118797737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/21/2018] [Indexed: 01/17/2023]
Abstract
Metabolic bone disease (MBD) is a broad term that describes a clinically heterogeneous group of diseases that are only united by a common denominator of an aberrant bone chemical milieu leading to a defective skeleton and bone abnormalities. From a forensic pathologist's perspective, MBDs create a challenging diagnostic dilemma in differentiating them from child abuse, particularly when the victim is an infant. Through this brief narrative review on MBD, bone pathophysiology and two relatively challenging pediatric MBDs will be discussed.
Collapse
Affiliation(s)
- Dina el Demellawy
- Dina el Demellawy MD PhD FRCPC, 401 Smyth Rd, Pathology Department, Ottawa ON K1H 8L1,
| | | | | | | |
Collapse
|
18
|
Guess AJ, Daneault B, Wang R, Bradbury H, La Perle KMD, Fitch J, Hedrick SL, Hamelberg E, Astbury C, White P, Overolt K, Rangarajan H, Abu-Arja R, Devine SM, Otsuru S, Dominici M, O'Donnell L, Horwitz EM. Safety Profile of Good Manufacturing Practice Manufactured Interferon γ-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials. Stem Cells Transl Med 2017; 6:1868-1879. [PMID: 28887912 PMCID: PMC6430053 DOI: 10.1002/sctm.16-0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/01/2017] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice‐compliant two‐step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post‐mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two‐step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine2017;6:1868–1879
Collapse
Affiliation(s)
- Adam J Guess
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Beth Daneault
- Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rongzhang Wang
- Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Krista M D La Perle
- Comparative Pathology & Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, USA
| | - James Fitch
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Sheri L Hedrick
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Hamelberg
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Caroline Astbury
- Departments of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland Ohio, USA
| | - Peter White
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Medical and Surgical Sciences for Children & Adults, Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kathleen Overolt
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Medical and Surgical Sciences for Children & Adults, Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hemalatha Rangarajan
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Medical and Surgical Sciences for Children & Adults, Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Rolla Abu-Arja
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Medical and Surgical Sciences for Children & Adults, Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Satoru Otsuru
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Massimo Dominici
- Laboratory of Cellular Therapy, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Lynn O'Donnell
- Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Edwin M Horwitz
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Medicine, The Ohio State University, Columbus, Ohio, USA.,Department of Medical and Surgical Sciences for Children & Adults, Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Otsuru S, Overholt KM, Olson TS, Hofmann TJ, Guess AJ, Velazquez VM, Kaito T, Dominici M, Horwitz EM. Hematopoietic derived cells do not contribute to osteogenesis as osteoblasts. Bone 2017; 94:1-9. [PMID: 27725318 DOI: 10.1016/j.bone.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 01/15/2023]
Abstract
Despite years of extensive investigation, the cellular origin of heterotopic ossification (HO) has not been fully elucidated. We have previously shown that circulating bone marrow-derived osteoblast progenitor cells, characterized by the immunophenotype CD45-/CD44+/CXCR4+, contributed to the formation of heterotopic bone induced by bone morphogenetic protein (BMP)-2. In contrast, other reports have demonstrated the contribution of CD45+ hematopoietic derived cells to HO. Therefore, in this study, we developed a novel triple transgenic mouse strain that allows us to visualize CD45+ cells with red fluorescence and mature osteoblasts with green fluorescence. These mice were generated by crossing CD45-Cre mice with Z/RED mice that express DsRed, a variant of red fluorescent protein, after Cre-mediated recombination, and then crossing with Col2.3GFP mice that express green fluorescent protein (GFP) in mature osteoblasts. Utilizing this model, we were able to investigate if hematopoietic derived cells have the potential to give rise to mature osteoblasts. Analyses of this triple transgenic mouse model demonstrated that DsRed and GFP did not co-localize in either normal skeletogenesis, bone regeneration after fracture, or HO. This indicates that in these conditions hematopoietic derived cells do not differentiate into mature osteoblasts. Interestingly, we observed the presence of previously unidentified DsRed positive bone lining cells (red BLCs) which are derived from hematopoietic cells but lack CD45 expression. These red BLCs fail to produce GFP even under in vitro osteogenic conditions. These findings indicate that, even though both osteoblasts and hematopoietic cells are developmentally derived from mesoderm, hematopoietic derived cells do not contribute to osteogenesis in fracture healing or HO.
Collapse
Affiliation(s)
- Satoru Otsuru
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Kathleen M Overholt
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Timothy S Olson
- Division of Oncology/Blood and Marrow Transplantation, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted J Hofmann
- Division of Oncology/Blood and Marrow Transplantation, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adam J Guess
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Victoria M Velazquez
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Massimo Dominici
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Edwin M Horwitz
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH 43205, USA.
| |
Collapse
|
20
|
Harrell DB, Caradonna E, Mazzucco L, Gudenus R, Amann B, Prochazka V, Giannoudis PV, Hendrich C, Jäger M, Krauspe R, Hernigou P. Non-Hematopoietic Essential Functions of Bone Marrow Cells: A Review of Scientific and Clinical Literature and Rationale for Treating Bone Defects. Orthop Rev (Pavia) 2015; 7:5691. [PMID: 26793290 PMCID: PMC4703908 DOI: 10.4081/or.2015.5691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/20/2015] [Indexed: 01/13/2023] Open
Abstract
Hematopoiesis as the only essential function of bone marrow cells has been challenged for several decades through basic science (in vitro and in vivo) and clinical data. Such work has shed light on two other essential functions of bone marrow cells: osteopoiesis and angio-genesis/vasculogenesis. Clinical utility of autologous concentrated bone marrow aspirate (CBMA) has demonstrated both safety and efficacy in treating bone defects. Moreover, CBMA has been shown to be comparable to the gold standard of iliac crest bone graft (ICBG), or autograft, with regard to being osteogenic and osteoinductive. ICBG is not considered an advanced therapy medicinal product (ATMP), but CBMA may become regulated as an ATMP. The European Medicines Agency Committee for Advanced Therapies (EMA:CAT) has issued a reflection paper (20 June 2014) in which reversal of the 2013 ruling that CBMA is a non-ATMP has been proposed. We review bone marrow cell involvement in osteopoiesis and angiogenesis/vasculogenesis to examine EMA:CAT 2013 decision to use CBMA for treatment of osteonecrosis (e.g, of the femoral head) should be considered a non-ATMP. This paper is intended to provide discussion on the 20 June 2014 reflection paper by reviewing two non-hematopoietic essential functions of bone marrow cells. Additionally, we provide clinical and scientific rationale for treating osteonecrosis with CBMA.
Collapse
Affiliation(s)
| | - Eugenio Caradonna
- Department of Cardiovascular Disease, Fondazione de Ricerca e Cura Giovanni e Paolo II, Campbasso, Italy
| | - Laura Mazzucco
- Blood Component and Regenerative Medicine Laboratory, Alessandria Hospital, Italy
| | | | | | - Vaclav Prochazka
- Interventional Neuroradiology and Angiology, University of Ostrava, Czech Republic
| | | | | | | | | | | |
Collapse
|
21
|
Herberg S, Kondrikova G, Hussein KA, Periyasamy-Thandavan S, Johnson MH, Elsalanty ME, Shi X, Hamrick MW, Isales CM, Hill WD. Total body irradiation is permissive for mesenchymal stem cell-mediated new bone formation following local transplantation. Tissue Eng Part A 2015; 20:3212-27. [PMID: 24914464 DOI: 10.1089/ten.tea.2013.0663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal injury is a major clinical challenge accentuated by the decrease of bone marrow-derived mesenchymal stem/stromal cells (BMSCs) with age or disease. Numerous experimental and clinical studies have revealed that BMSCs hold great promise for regenerative therapies due to their direct osteogenic potential and indirect trophic/paracrine actions. Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1) is involved in modulating the host response to the injury. Common problems with BMSC therapy include poor cell engraftment, which can be addressed by total body irradiation (TBI) prior to transplantation. In this study, we tested the hypothesis that direct tibial transplantation of BMSCs drives endogenous bone formation in a dose-dependent manner, which is enhanced by TBI, and investigated the potential role of SDF-1 in facilitating these events. We found that TBI is permissive for transplanted BMSCs to engraft and contribute to new bone formation. Bone marrow (BM) interstitial fluid analysis revealed no differences of SDF-1 splice variants in irradiated animals compared to controls, despite the increased mRNA and protein levels expressed in whole BM cells. This correlated with increased dipeptidyl peptidase IV activity and the failure to induce chemotaxis of BMSCs in vitro. We found increased mRNA expression levels of the major SDF-1-cleaving proteases in whole BM cells from irradiated animals suggesting distinct spatial differences within the BM in which SDF-1 may play different autocrine and paracrine signaling roles beyond the immediate cell surface microenvironment.
Collapse
Affiliation(s)
- Samuel Herberg
- 1 Charlie Norwood VA Medical Center, Georgia Regents University , Augusta, Georgia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baker N, Boyette LB, Tuan RS. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 2015; 70:37-47. [PMID: 25445445 DOI: 10.1016/j.bone.2014.10.014] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022]
Abstract
Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Natasha Baker
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lisa B Boyette
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Mise-Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, Obata Y, Doi T. NF-κB RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol 2014; 26:607-18. [DOI: 10.1093/intimm/dxu062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Prockop DJ. Further proof for an unpopular concept: a single cell from bone marrow can serve as a stem cell for both hematopoiesis and osteogenesis. Mol Ther 2014; 21:1116-7. [PMID: 23728255 DOI: 10.1038/mt.2013.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine at Scott & White, Temple, Texas 76502, USA.
| |
Collapse
|
25
|
Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. ScientificWorldJournal 2014; 2014:859817. [PMID: 24563632 PMCID: PMC3916026 DOI: 10.1155/2014/859817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022] Open
Abstract
Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.
Collapse
|
26
|
Singh L, Brennan TA, Kim JH, Egan KP, McMillan EA, Chen Q, Hankenson KD, Zhang Y, Emerson SG, Johnson FB, Pignolo RJ. Long-term functional engraftment of mesenchymal progenitor cells in a mouse model of accelerated aging. Stem Cells 2014. [PMID: 23193076 DOI: 10.1002/stem.1294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related osteoporosis is characterized by a decrease in bone-forming capacity mediated by defects in the number and function of osteoblasts. An important cellular mechanism that may in part explain osteoblast dysfunction that occurs with aging is senescence of mesenchymal progenitor cells (MPCs). In the telomere-based Wrn(-/-) Terc(-/-) model of accelerated aging, the osteoporotic phenotype of these mice is also associated with a major decline in MPC differentiation into osteoblasts. To investigate the role of MPC aging as a cell-autonomous mechanism in senile bone loss, transplantation of young wild-type whole bone marrow into Wrn(-/-) Terc(-/-) mutants was performed and the ability of engrafted cells to differentiate into cells of the osteoblast lineage was assessed. We found that whole bone marrow transplantation in Wrn(-/-) Terc(-/-) mice resulted in functional engraftment of MPCs up to 42 weeks, which was accompanied by a survival advantage as well as delays in microarchitectural features of skeletal aging.
Collapse
Affiliation(s)
- Lakshman Singh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kuroda R, Matsumoto T, Niikura T, Kawakami Y, Fukui T, Lee SY, Mifune Y, Kawamata S, Fukushima M, Asahara T, Kawamoto A, Kurosaka M. Local transplantation of granulocyte colony stimulating factor-mobilized CD34+ cells for patients with femoral and tibial nonunion: pilot clinical trial. Stem Cells Transl Med 2014; 3:128-34. [PMID: 24307697 PMCID: PMC3902290 DOI: 10.5966/sctm.2013-0106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most bone fractures typically heal, although a significant proportion (5%-10%) of fractures fail to heal, resulting in delayed union or persistent nonunion. Some preclinical evidence shows the therapeutic potential of peripheral blood CD34(+) cells, a hematopoietic/endothelial progenitor cell-enriched population, for bone fracture healing; however, clinical outcome following transplantation of CD34(+) cells in patients with fracture has never been reported. We report a phase I/IIa clinical trial regarding transplantation of autologous, granulocyte colony stimulating factor-mobilized CD34(+) cells with atelocollagen scaffold for patients with femoral or tibial fracture nonunion (n = 7). The primary endpoint of this study is radiological fracture healing (union) by evaluating anteroposterior and lateral views at week 12 following cell therapy. For the safety evaluation, incidence, severity, and outcome of all adverse events were recorded. Radiological fracture healing at week 12 was achieved in five of seven cases (71.4%), which was greater than the threshold (18.1%) predefined by the historical outcome of the standard of care. The interval between cell transplantation and union, the secondary endpoint, was 12.6 ± 5.4 weeks (range, 8-24 weeks) for clinical healing and 16.1 ± 10.2 weeks (range, 8-36 weeks) for radiological healing. Neither deaths nor life-threatening adverse events were observed during the 1-year follow-up after the cell therapy. These results suggest feasibility, safety, and potential effectiveness of CD34(+) cell therapy in patients with nonunion.
Collapse
|
28
|
Kawakami Y, Ii M, Matsumoto T, Kawamoto A, Kuroda R, Akimaru H, Mifune Y, Shoji T, Fukui T, Asahi M, Kurosaka M, Asahara T. A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization. J Transl Med 2013; 93:1036-53. [PMID: 23897412 DOI: 10.1038/labinvest.2013.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022] Open
Abstract
Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions.
Collapse
Affiliation(s)
- Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marino R, Otsuru S, Hofmann TJ, Olson TS, Rasini V, Veronesi E, Boyd K, Gaber MW, Martinez C, Paolucci P, Dominici M, Horwitz EM. Delayed marrow infusion in mice enhances hematopoietic and osteopoietic engraftment by facilitating transient expansion of the osteoblastic niche. Biol Blood Marrow Transplant 2013; 19:1566-73. [PMID: 23916672 DOI: 10.1016/j.bbmt.2013.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/26/2013] [Indexed: 01/15/2023]
Abstract
Transplantation of bone marrow cells leads to engraftment of osteopoietic and hematopoietic progenitors. We sought to determine whether the recently described transient expansion of the host osteoblastic niche after marrow radioablation promotes engraftment of both osteopoietic and hematopoietic progenitor cells. Mice infused with marrow cells 24 hours after total body irradiation (TBI) demonstrated significantly greater osteopoietic and hematopoietic progenitor chimerism than did mice infused at 30 minutes or 6 hours. Irradiated mice with a lead shield over 1 hind limb showed greater hematopoietic chimerism in the irradiated limb than in the shielded limb at both the 6- and 24-hour intervals. By contrast, the osteopoietic chimerism was essentially equal in the 2 limbs at each of these intervals, although it significantly increased when cells were infused 24 hours compared with 6 hours after TBI. Similarly, the number of donor phenotypic long-term hematopoietic stem cells was equivalent in the irradiated and shielded limbs after each irradiation-to-infusion interval but was significantly increased at the 24-hour interval. Our findings indicate that a 24-hour delay in marrow cell infusion after TBI facilitates expansion of the endosteal osteoblastic niche, leading to enhanced osteopoietic and hematopoietic engraftment.
Collapse
Affiliation(s)
- Roberta Marino
- Division of Oncology/Blood and Marrow Transplantation, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg 2013; 97:145-151. [PMID: 23420394 DOI: 10.1007/s12306-013-0242-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Osteochondral lesions of the knee (OLK) are a common cause of knee pain and associated diseases. A new bone-marrow-derived mesenchymal stem cells technique has been developed for the treatment of OLK. 30 patients with OLK underwent arthroscopic one-step procedure. The bone marrow was harvested from the patients' posterior iliac crest and arthroscopically implanted with a scaffold into the lesion site. Clinical inspection and MRI were performed. Mean International Knee Documentation Committee (IKDC) score before surgery was 29.9 ± 13.2 and 85.4 ± 4.2 at 29 ± 4.1 months (p < 0.0005), while Knee injury and Osteoarthritis Outcome Score (KOOS) before surgery was 35.1 ± 11.9 and 87.3 ± 7.3 at 29 ± 4.1 months (p < 0.0005). Control MRI and bioptic samples showed an osteochondral regeneration of the lesion site. The one-step technique appears to be a good and reliable option for treatment of OLK at three years of follow-up. Level of evidence Case series, Level IV.
Collapse
Affiliation(s)
- Roberto Buda
- Clinical Orthopaedic and Traumatology Unit I, Rizzoli Orthopaedic Institute, via G.C. Pupilli n.1, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Buda R, Vannini F, Cavallo M, Baldassarri M, Natali S, Castagnini F, Giannini S. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results. JOINTS 2013; 1:102-7. [PMID: 25606518 DOI: pmid/25606518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE to verify the capability of scaffold-supported bone marrow-derived cells to be used in the repair of osteochondral lesions of the talus. METHODS using a device to concentrate bone marrow-derived cells, a scaffold (collagen powder or hyaluronic acid membrane) for cell support and platelet gel, a one-step arthroscopic technique was developed for cartilage repair. In a prospective clinical study, we investigated the ability of this technique to repair talar osteochondral lesions in 64 patients. The mean follow-up was 53 months. Clinical results were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) scale score. We also considered the influence of scaffold type, lesion area, previous surgery, and lesion depth. RESULTS the mean preoperative AOFAS scale score was 65.2 ± 13.9. The clinical results peaked at 24 months, before declining gradually to settle at a score of around 80 at the maximum follow-up of 72 months. CONCLUSIONS the use of bone marrow-derived cells supported by scaffolds to repair osteochondral lesions of the talus resulted in significant clinical improvement, which was maintained over time. LEVEL OF EVIDENCE level IV, therapeutic case series.
Collapse
Affiliation(s)
- Roberto Buda
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| | - Francesca Vannini
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| | - Marco Cavallo
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| | - Matteo Baldassarri
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| | - Simone Natali
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| | - Francesco Castagnini
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| | - Sandro Giannini
- 1 Orthopaedics and Traumatology Clinic, Rizzoli Orthopaedics Institute, Bologna, Italy
| |
Collapse
|
32
|
Hofmann TJ, Otsuru S, Marino R, Rasini V, Veronesi E, Murgia A, Lahti J, Boyd K, Dominici M, Horwitz EM. Transplanted murine long-term repopulating hematopoietic cells can differentiate to osteoblasts in the marrow stem cell niche. Mol Ther 2013; 21:1224-31. [PMID: 23587920 DOI: 10.1038/mt.2013.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone marrow transplantation (BMT) can give rise to donor-derived osteopoiesis in mice and humans; however, the source of this activity, whether a primitive osteoprogenitor or a transplantable marrow cell with dual hematopoietic and osteogenic potential, has eluded detection. To address this issue, we fractionated whole BM from mice according to cell surface immunophenotype and assayed the hematopoietic and osteopoietic potentials of the transplanted cells. Here, we show that a donor marrow cell capable of robust osteopoiesis possesses a surface phenotype of c-Kit(+) Lin(-) Sca-1(+) CD34(-/lo), identical to that of the long-term repopulating hematopoietic stem cell (LTR-HSC). Secondary BMT studies demonstrated that a single marrow cell able to contribute to hematopoietic reconstitution in primary recipients also drives robust osteopoiesis and LT hematopoiesis in secondary recipients. These findings indicate that LTR-HSC can give rise to progeny that differentiate to osteoblasts after BMT, suggesting a mechanism for prompt restoration of the osteoblastic HSC niche following BM injury, such as that induced by clinical BMT preparative regimens. An understanding of the mechanisms that regulate this differentiation potential may lead to novel treatments for disorders of bone as well as methods for preserving the integrity of endosteal hematopoietic niches.
Collapse
Affiliation(s)
- Ted J Hofmann
- Division of Oncology/Blood and Marrow Transplantation, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD. Stromal cell-derived factor-1β mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One 2013; 8:e58207. [PMID: 23472159 PMCID: PMC3589360 DOI: 10.1371/journal.pone.0058207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/31/2013] [Indexed: 12/19/2022] Open
Abstract
Bone marrow-derived mesenchymal stem/stromal cells (BMSCs) hold great potential for cell-based therapy, yet the therapeutic efficacy remains uncertain. Transplanted BMSCs often fail to engraft within the bone marrow (BM), in part due to the poor survival of donor cells in response to inflammatory reactions, hypoxia, oxidative stress, or nutrient starvation. Two basic cell processes, apoptosis and autophagy, could potentially be responsible for the impaired survival of transplanted BMSCs. However, the functional relationship between apoptosis and autophagy in BMSC homeostasis is complex and not well understood. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signaling axis appears to be critical in maintaining proliferation and survival of BM stem cell populations through improving cell proliferation and survival in response to stress; however, the exact mechanisms remain unclear. We recently described novel genetically engineered Tet-Off-SDF-1β BMSCs, which over-express SDF-1β under tight doxycycline-control, thus providing an ideal model system to investigate the isolated effects of SDF-1β. In this study we tested the hypothesis that SDF-1β can mediate cell survival of BMSCs in vitro through increasing autophagy. We found that SDF-1β had no effect on BMSC proliferation; however, SDF-1β significantly protected genetically engineered BMSCs from H2O2-induced cell death through increasing autophagy and decreasing caspase-3-dependent apoptosis. Taken together, we provide novel evidence that the SDF-1/CXCR4 axis, specifically activated by the SDF-1β isoform, plays a critical role in regulating BMSC survival under oxidative stress through increasing autophagy.
Collapse
Affiliation(s)
- Samuel Herberg
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xingming Shi
- Department of Pathology, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Maribeth H. Johnson
- Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Carlos M. Isales
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - William D. Hill
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
- Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Nahar NN, Tague SE, Wang J, Danley M, Garimella R, Anderson HC. Histological characterization of bone marrow in ectopic bone, induced by devitalized Saos-2 human osteosarcoma cells. Int J Clin Exp Med 2013; 6:119-125. [PMID: 23386915 PMCID: PMC3560492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/14/2013] [Indexed: 06/01/2023]
Abstract
UNLABELLED Devitalized Saos-2, cultured human osteosarcoma cells, or guanidinium-hydrochloride (GuHCl) extracts of these cells, induce ectopic bone and marrow formation when implanted subcutaneously in Nu/Nu mice. The aim of the present study was to characterize the bone marrow induced by Saos-2 cell extracts, specifically to determine which of the four major hematopoietic cell lineages: erythropoietic, granulopoietic, lymphopoietic and megakaryocytic, are induced by Saos-2 cell derivatives. METHODS Immunohistochemical localization of specific antigens was used to determine the presence of each major cell type (glycophorin A for erythropoietic, neutrophil elastase for granulopoietic, factor-VIII related antigen for megakaryocytes, and CD79a for B lymphocytes). RESULTS Standard H & E stains confirmed the presence of normally organized apparently complete bone marrow within all newly induced bone at 3 weeks post-implantation of devitalized Saos-2 cells. Immunohistochemistry confirmed the presence of erythropoietic cells, granulopoietic cells, megakaryocytes and B lymphocytes in the ectopic marrow. CONCLUSION Saos-2 cells (freeze-dried) or their extracts, implanted subcutaneously into Nu/Nu mice, can induce normal marrow that is host-derived, and contains all major hematopoietic cell lineages. CLINICAL SIGNIFICANCE Saos-2 induced marrow could potentially restore deficient marrow and promote bone repair.
Collapse
Affiliation(s)
- Niru N Nahar
- Departments of Pathology and Laboratory Medicine, The University of Kansas Medical CenterKansas City, KS, USA
| | - Sarah E Tague
- Molecular and Integrative Physiology, The University of Kansas Medical CenterKansas City, KS, USA
| | - Jinxi Wang
- Orthopedic Surgery, The University of Kansas Medical CenterKansas City, KS, USA
| | - Marsha Danley
- Departments of Pathology and Laboratory Medicine, The University of Kansas Medical CenterKansas City, KS, USA
| | - Rama Garimella
- Orthopedic Surgery, The University of Kansas Medical CenterKansas City, KS, USA
- Internal Medicine, The University of Kansas Medical CenterKansas City, KS, USA
- Dietetics and Nutrition, The University of Kansas Medical CenterKansas City, KS, USA
| | - H Clarke Anderson
- Departments of Pathology and Laboratory Medicine, The University of Kansas Medical CenterKansas City, KS, USA
| |
Collapse
|
35
|
Zhou J, Chen H, Li S, Xie Y, He W, Nan X, Yue W, Liu B, Pei X. Fibroblastic Potential of CD41+Cells in the Mouse Aorta-Gonad-Mesonephros Region and Yolk Sac. Stem Cells Dev 2012; 21:2592-605. [DOI: 10.1089/scd.2011.0572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Haixu Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Siting Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yifan Xie
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
- Department of Histology and Embryology, Inner Mongolia Medical College, Inner Mongolia, China
| | - Wenyan He
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Bing Liu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|
36
|
Mehrotra M, Williams CR, Ogawa M, LaRue AC. Hematopoietic stem cells give rise to osteo-chondrogenic cells. Blood Cells Mol Dis 2012; 50:41-9. [PMID: 22954476 DOI: 10.1016/j.bcmd.2012.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/15/2022]
Abstract
Repair of bone fracture requires recruitment and proliferation of stem cells with the capacity to differentiate to functional osteoblasts. Given the close association of bone and bone marrow (BM), it has been suggested that BM may serve as a source of these progenitors. To test the ability of hematopoietic stem cells (HSCs) to give rise to osteo-chondrogenic cells, we used a single HSC transplantation paradigm in uninjured bone and in conjunction with a tibial fracture model. Mice were lethally irradiated and transplanted with a clonal population of cells derived from a single enhanced green fluorescent protein positive (eGFP+) HSC. Analysis of paraffin sections from these animals showed the presence of eGFP+ osteocytes and hypertrophic chondrocytes. To determine the contribution of HSC-derived cells to fracture repair, non-stabilized tibial fracture was created. Paraffin sections were examined at 7 days, 2 weeks and 2 months after fracture and eGFP+ hypertrophic chondrocytes, osteoblasts and osteocytes were identified at the callus site. These cells stained positive for Runx-2 or osteocalcin and also stained for eGFP demonstrating their origin from the HSC. Together, these findings strongly support the concept that HSCs generate bone cells and suggest therapeutic potentials of HSCs in fracture repair.
Collapse
Affiliation(s)
- Meenal Mehrotra
- Department of Veterans Affairs Medical Center, Ralph H. Johnson VAMC, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
37
|
Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97:3240-50. [PMID: 22740707 PMCID: PMC3431571 DOI: 10.1210/jc.2012-1546] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Type 2 diabetes mellitus (T2D) is associated with an increased risk of fractures and low bone formation. However, the mechanism for the low bone formation is not well understood. Recently, circulating osteogenic precursor (COP) cells, which contribute to bone formation, have been characterized in the peripheral circulation. OBJECTIVE Our objective was to characterize the number and maturity of COP cells in T2D. PATIENTS, DESIGN, AND SETTING Eighteen postmenopausal women with T2D and 27 controls participated in this cross-sectional study at a clinical research center. MAIN OUTCOME MEASURES COP cells were characterized using flow cytometry and antibodies against osteocalcin (OCN) and early stem cell markers. Histomorphometric (n = 9) and molecular (n=14) indices of bone turnover and oxidative stress were also measured. RESULTS The percentage of OCN(+) cells in peripheral blood mononuclear cells was lower in T2D (0.8 ± 0.2 vs. 1.6 ± 0.4%; P < 0.0001), whereas the percentage of OCN(+) cells coexpressing the early marker CD146 was increased (OCN(+)/CD146(+): 33.3 ± 7 vs. 12.0 ± 4%; P < 0.0001). Reduced histomorphometric indices of bone formation were observed in T2D subjects, including mineralizing surface (2.65 ± 1.9 vs. 7.58 ± 2.4%, P = 0.02), bone formation rate (0.01 ± 0.1 vs. 0.05 ±0.2 μm(3)/um(2) · d, P = 0.02), and osteoblast surface (1.23 ±0.9 vs. 4.60 ± 2.5%, P = 0.03). T2D subjects also had reduced molecular expression of the osteoblast regulator gene Runx2 but increased expression of the oxidative stress markers p66(Shc) and SOD2. CONCLUSIONS Circulating OCN(+) cells were decreased in T2D, whereas OCN(+)/CD146(+) cells were increased. Histomorphometric indices of bone formation were decreased in T2D, as was molecular expression of osteoblastic activity. Stimulation of bone formation may have beneficial therapeutic skeletal consequences in T2D.
Collapse
Affiliation(s)
- J S Manavalan
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hematopoietic stem cell development, niches, and signaling pathways. BONE MARROW RESEARCH 2012; 2012:270425. [PMID: 22900188 PMCID: PMC3413998 DOI: 10.1155/2012/270425] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.
Collapse
|
39
|
Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 2012; 120:1933-41. [PMID: 22829629 DOI: 10.1182/blood-2011-12-400085] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.
Collapse
|
40
|
Vannini F, Battaglia M, Buda R, Cavallo M, Giannini S. "One step" treatment of juvenile osteochondritis dissecans in the knee: clinical results and T2 mapping characterization. Orthop Clin North Am 2012; 43:237-44, vi. [PMID: 22480472 DOI: 10.1016/j.ocl.2012.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Osteochondritis dissecans (OCD) is an increasingly common cause of knee pain and dysfunction among skeletally immature and young adult patients. An ideal treatment strategy with an optimal surgical technique to repair the osteochondral lesions in these patients is still controversial. The goal of this study is to evaluate and report the clinical and MRI findings for the treatment of OCD in the pediatric knee with bone marrow-derived cell transplantation by using a one-step surgical technique.
Collapse
Affiliation(s)
- Francesca Vannini
- II Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via G.C. Pupilli 1, Bologna 40136, Italy.
| | | | | | | | | |
Collapse
|
41
|
Progenitor Cells: Role and Usage in Bone Tissue Engineering Approaches for Spinal Fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:188-210. [DOI: 10.1007/978-1-4614-4090-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Lawal RA, Calvi LM. The niche as a target for hematopoietic manipulation and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:415-22. [PMID: 21902610 DOI: 10.1089/ten.teb.2011.0197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs), rare primitive cells capable of reconstituting all blood cell lineages, are the only stem cells currently routinely used for therapeutic purposes. Clinical experience has shown that HSC number is an important limiting factor in treatment success. Strategies to expand HSCs are of great clinical appeal, as they would improve therapeutic use of these cells in stem cell transplantation and in conditions of bone marrow failure. The microenvironment in which HSCs reside, known as the niche, has long been considered a critical regulator of HSCs. Data accumulated over the past decade strongly confirm the importance of the niche in HSC behavior. A number of niche components as well as signaling pathways, such as Notch, have been implicated in the interaction of the microenvironment with HSCs and continue to be genetically evaluated in the hope of defining the critical elements that are required and which, if modified, can initiate HSC behaviors. In this review, we highlight the known characteristics of HSCs, challenges in their expansion, the niche phenomenon, and explain why niche stimulated HSC expansion is of utmost interest in the field, while beginning to bring to the fore potential caveats of niche manipulation. Lastly, the potential pitfalls of avoiding malignancy and controlling self-renewal versus differentiation will be briefly reviewed.
Collapse
|
43
|
Abstract
Transplantation of whole bone marrow (BMT) leads to engraftment of both osteoprogenitor cells and hematopoietic cells; however, the robust osteopoietic chimerism seen early after BMT decreases with time. Using our established murine model, we demonstrate that a post-BMT regimen of either granulocyte-colony stimulating factor, growth hormone, parathyroid hormone, or stem cell factor each stimulates greater donor osteoblast chimerism at 4 months posttransplantation than saline-treated controls and approximates the robust osteopoietic chimerism seen early after BMT; however, only growth hormone led to significantly more donor-derived osteocytes than controls. Importantly, there were no adverse hematologic consequences of the different treatments. Our data demonstrate that these cytokines can stimulate the differentiation of transplanted donor marrow cells into the osteopoietic lineage after BMT. Post-BMT cytokine therapy may generate durable osteopoietic engraftment, which should lead to sustained clinical benefit and render BMT more applicable to bone disorders.
Collapse
|
44
|
Pignolo RJ, Kassem M. Circulating osteogenic cells: implications for injury, repair, and regeneration. J Bone Miner Res 2011; 26:1685-93. [PMID: 21538513 DOI: 10.1002/jbmr.370] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/28/2011] [Accepted: 02/09/2011] [Indexed: 12/11/2022]
Abstract
The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells. We present evidence for their existence, methods used for their isolation and identification, possible physiological and pathophysiological roles, cellular origins, and possible mechanisms for their migration to target tissues.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine and Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6081, USA.
| | | |
Collapse
|
45
|
Hall SL, Chen ST, Wergedal JE, Gridley DS, Mohan S, Lau KHW. Stem cell antigen-1 positive cell-based systemic human growth hormone gene transfer strategy increases endosteal bone resorption and bone loss in mice. J Gene Med 2011; 13:77-88. [PMID: 21322098 DOI: 10.1002/jgm.1542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The present study assesses the effect of the stem cell antigen-1 positive (Sca-1(+) ) cell-based human growth hormone (hGH) ex vivo gene transfer strategy on endosteal bone mass in the mouse. METHODS Sublethally irradiated recipient mice were transplanted with Sca-1(+) cells transduced with lentiviral vectors expressing hGH or β-galactosidase control genes. Bone parameters were assessed by micro-computed tomography and histomorphometry. RESULTS This hGH strategy drastically increased hGH mRNA levels in bone marrow cells and serum insulin-like growth factor-I (IGF-I) (by nearly 50%, p < 0.002) in hGH recipient mice. Femoral trabecular bone volume of the hGH mice was significantly reduced by 35% (p < 0.002). The hGH mice also had decreased trabecular number (by 26%; p < 0.0001), increased trabecular separation (by 38%; p < 0.0002) and reduced trabecular connectivity density (by 64%; p < 0.001), as well as significantly more osteoclasts (2.5-fold; p < 0.05) and greater osteoclastic surface per bone surface (2.6-fold; p < 0.01). CONCLUSIONS Targeted expression of hGH in cells of marrow cavity through the Sca-1(+) cell-based gene transfer strategy increased circulating IGF-I and decreased endosteal bone mass through an increase in resorption in recipient mice. These results indicate that high local levels of hGH or IGF-I in the bone marrow microenvironment enhanced resorption, which is consistent with previous findings in transgenic mice with targeted bone IGF-I expression showing that high local IGF-I expression increased bone remodeling, favoring a net bone loss. Thus, GH and/or IGF-I would not be an appropriate transgene for use in this Sca-1(+) cell-based gene transfer strategy to promote endosteal bone formation. Published 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Susan L Hall
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called "hematopoietic niches," through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin(-)Sca1(+)c-Kit(+) (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin(-)c-Kit(+) cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn(-/-)). Agrin-deficient mice displayed in vivo apoptosis of CD34(+)CD135(-) LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.
Collapse
|
47
|
Jones E, Yang X. Mesenchymal stem cells and bone regeneration: current status. Injury 2011; 42:562-8. [PMID: 21489533 DOI: 10.1016/j.injury.2011.03.030] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/17/2011] [Indexed: 02/02/2023]
Abstract
The enhancement of bone regeneration with biological agents including osteogenic growth factors and mesenchymal stem cells (MSCs) is becoming a clinical reality. Many exciting findings have been obtained following MSC implantation in animal models, and the data demonstrating their clinical efficacy in humans are promising. The overwhelming majority of experimental work has been performed with MSCs "amplified"in vitro. The nature of native MSCs in skeletal tissues however, remains poorly understood. This review summarizes recent findings pertaining to the definition and characterisation of MSCs in skeletal tissues and discusses the mechanisms of their actions in regenerating of bone in vivo. In respect to traditional tissue engineering paradigm, we bring together literature showing that the ways MSCs are extracted, expanded and implanted can considerably affect bone formation outcomes. Additionally, we discuss current animal models used in MSC research and highlight recent experiments showing important contribution of the host, and not only donor MSCs, in bone tissue formation. This knowledge provides a platform for novel therapy development for bone regeneration based on pharmacologically manipulated endogenous MSCs.
Collapse
Affiliation(s)
- Elena Jones
- Rheumatology, Mesenchymal Stem Cell Biology Group, Academic Unit of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, United Kingdom.
| | | |
Collapse
|
48
|
Abstract
Circulating osteogenic precursor (COP) cells are blood-borne cells that express a variety of osteoblastic markers and are able to form bone in vivo. Strong evidence suggests that COP cells are derived from bone marrow and are of hematopoietic origin. The study of COP cells has been limited by several factors, including the difficulty in establishing long-term cultures and lack of a standardized protocol for their isolation and identification. However, experimental evidence supports that COP cells seed sites of injury and inflammation in response to homing signals and are involved in processes of pubertal growth, fracture, and diverse conditions of heterotopic bone formation. The role of COP cells in physiologic and pathophysiologic conditions of de novo bone formation suggests that they may serve as future targets for diagnostic measurements and therapeutic interventions.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6081, USA.
| | | |
Collapse
|
49
|
Itinteang T, Vishvanath A, Day DJ, Tan ST. Mesenchymal stem cells in infantile haemangioma. J Clin Pathol 2011; 64:232-6. [DOI: 10.1136/jcp.2010.085209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BackgroundFibro-fatty deposition commonly occurs during involution of infantile haemangioma (IH). Mesenchymal stem cells have been identified in this tumour and have been proposed to be recruited from the bone marrow and/or adjacent niches, and then give rise to the fibro-fatty tissue. The authors have recently demonstrated that the capillary endothelium of proliferating IH co-expresses primitive mesodermal, mesenchymal and neural crest markers and proposed that this same endothelium has the ability to give rise to cells of mesenchymal lineage that constitute the fibro-fatty deposition.MethodsImmunohistochemistry and real-time RT-PCR were used to further characterise proliferating IHs and haemangioma explant-derived cells (HaemEDCs).ResultsThe authors have further confirmed expression of the mesenchymal-associated proteins including preadipocyte factor-1, a mesenchymal differentiation inhibition-associated cytokine. The HaemEDCs could be differentiated into osteoblasts and adipocytes, indicating their functional potential for terminal differentiation.DiscussionThe collective expression of neural crest, mesenchymal and mesenchymal differentiation inhibition-associated proteins on the endothelium of proliferating IH suggests that the cells in the capillary endothelium within the lesion possess the ability to undergo terminal mesenchymal differentiation during the proliferating phase, but are inhibited from doing so.
Collapse
|
50
|
Rubin MR, Manavalan JS, Dempster DW, Shah J, Cremers S, Kousteni S, Zhou H, McMahon DJ, Kode A, Sliney J, Shane E, Silverberg SJ, Bilezikian JP. Parathyroid hormone stimulates circulating osteogenic cells in hypoparathyroidism. J Clin Endocrinol Metab 2011; 96:176-86. [PMID: 20881259 PMCID: PMC3038485 DOI: 10.1210/jc.2009-2682] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The osteoanabolic properties of PTH may be due to increases in the number and maturity of circulating osteogenic cells. Hypoparathyroidism is a useful clinical model because this hypothesis can be tested by administering PTH. OBJECTIVE The objective of the study was to characterize circulating osteogenic cells in hypoparathyroid subjects during 12 months of PTH (1-84) administration. DESIGN Osteogenic cells were characterized using flow cytometry and antibodies against osteocalcin, an osteoblast-specific protein product, and stem cell markers CD34 and CD146. Changes in bone formation from biochemical markers and quadruple-labeled transiliac crest bone biopsies (0 and 3 month time points) were correlated with measurements of circulating osteogenic cells. SETTING The study was conducted at a clinical research center. PATIENTS Nineteen control and 19 hypoparathyroid patients were included in the study. INTERVENTION Intervention included the administration of PTH (1-84). RESULTS Osteocalcin-positive cells were lower in hypoparathyroid subjects than controls (0.7 ± 0.1 vs. 2.0 ± 0.1%; P < 0.0001), with greater coexpression of the early cell markers CD34 and CD146 among the osteocalcin-positive cells in the hypoparathyroid subjects (11.0 ± 1.0 vs. 5.6 ± 0.7%; P < 0.001). With PTH (1-84) administration, the number of osteogenic cells increased 3-fold (P < 0.0001), whereas the coexpression of the early cell markers CD34 and CD146 decreased. Increases in osteogenic cells correlated with circulating and histomorphometric indices of osteoblast function: N-terminal propeptide of type I procollagen (R(2) = 0.4, P ≤ 0.001), bone-specific alkaline phosphatase (R(2) = 0.3, P < 0.001), osteocalcin (R(2) = 0.4, P < 0.001), mineralized perimeter (R(2) = 0.5, P < 0.001), mineral apposition rate (R(2) = 0.4, P = 0.003), and bone formation rate (R(2) = 0.5, P < 0.001). CONCLUSIONS It is likely that PTH stimulates bone formation by stimulating osteoblast development and maturation. Correlations between circulating osteogenic cells and histomorphometric indices of bone formation establish that osteoblast activity is being identified by this methodology.
Collapse
Affiliation(s)
- M R Rubin
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|