1
|
Petit C, Kojak E, Webster S, Marra M, Sweeney B, Chaikin C, Jemc JC, Kanzok SM. The evolutionarily conserved PhLP3 is essential for sperm development in Drosophila melanogaster. PLoS One 2024; 19:e0306676. [PMID: 39480878 PMCID: PMC11527243 DOI: 10.1371/journal.pone.0306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Phosducin-like proteins (PhLP) are thioredoxin domain-containing proteins that are highly conserved across unicellular and multicellular organisms. PhLP family proteins are hypothesized to function as co-chaperones in the folding of cytoskeletal proteins. Here, we present the initial molecular, biochemical, and functional characterization of CG4511 as Drosophila melanogaster PhLP3. We cloned the gene into a bacterial expression vector and produced enzymatically active recombinant PhLP3, which showed similar kinetics to previously characterized orthologues. A fly strain homozygous for a P-element insertion in the 5' UTR of the PhLP3 gene exhibited significant downregulation of PhLP3 expression. We found these male flies to be sterile. Microscopic analysis revealed altered testes morphology and impairment of spermiogenesis, leading to a lack of mature sperm. Among the most significant observations was the lack of actin cones during sperm maturation. Excision of the P-element insertion in PhLP3 restored male fertility, spermiogenesis, and seminal vesicle size. Given the high level of conservation of PhLP3, our data suggests PhLP3 may be an important regulator of sperm development across species.
Collapse
Affiliation(s)
- Christopher Petit
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Elizabeth Kojak
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Samantha Webster
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michela Marra
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Brendan Sweeney
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Claire Chaikin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Jennifer C. Jemc
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
Park J, Kim H, Gestaut D, Lim S, Opoku-Nsiah KA, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. Nat Commun 2024; 15:1007. [PMID: 38307855 PMCID: PMC10837153 DOI: 10.1038/s41467-024-45242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | | | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Judith Frydman
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. Mol Cell 2023; 83:3852-3868.e6. [PMID: 37852256 PMCID: PMC10841713 DOI: 10.1016/j.molcel.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Mikaila I Sass
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Theresa M Smith
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ethan J Carter
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Nathan E Gladden
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Margot Riggi
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Janet H Iwasa
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA.
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539424. [PMID: 37205387 PMCID: PMC10187262 DOI: 10.1101/2023.05.04.539424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytosolic Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determined structures of CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryo-EM and image processing revealed an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β-sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT directs folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mikaila I. Sass
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - W. Grant Ludlam
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Theresa M. Smith
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Ethan J. Carter
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Nathan E. Gladden
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Margot Riggi
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Peter S. Shen
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Park J, Kim H, Gestaut D, Lim S, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534239. [PMID: 37016670 PMCID: PMC10071816 DOI: 10.1101/2023.03.25.534239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate the folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. In the open TRiC state, PhLP2A binds to the chamber's equator while its N-terminal H3-domain binds to the apical domains of CCT3/4, thereby displacing PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to the positively charged inner surfaces formed by CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Judith Frydman
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
- Dept of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Han W, Jin M, Liu C, Zhao Q, Wang S, Wang Y, Yin Y, Peng C, Wang Y, Cong Y. Structural basis of plp2-mediated cytoskeletal protein folding by TRiC/CCT. SCIENCE ADVANCES 2023; 9:eade1207. [PMID: 36921056 PMCID: PMC10017041 DOI: 10.1126/sciadv.ade1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The cytoskeletal proteins tubulin and actin are the obligate substrates of TCP-1 ring complex/Chaperonin containing TCP-1 (TRiC/CCT), and their folding involves co-chaperone. Through cryo-electron microscopy analysis, we present a more complete picture of TRiC-assisted tubulin/actin folding along TRiC adenosine triphosphatase cycle, under the coordination of co-chaperone plp2. In the open S1/S2 states, plp2 and tubulin/actin engaged within opposite TRiC chambers. Notably, we captured an unprecedented TRiC-plp2-tubulin complex in the closed S3 state, engaged with a folded full-length β-tubulin and loaded with a guanosine triphosphate, and a plp2 occupying opposite rings. Another closed S4 state revealed an actin in the intermediate folding state and a plp2. Accompanying TRiC ring closure, plp2 translocation could coordinate substrate translocation on the CCT6 hemisphere, facilitating substrate stabilization and folding. Our findings reveal the folding mechanism of the major cytoskeletal proteins tubulin/actin under the coordination of the biogenesis machinery TRiC and plp2 and extend our understanding of the links between cytoskeletal proteostasis and related human diseases.
Collapse
Affiliation(s)
- Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
PDCL2 is essential for spermiogenesis and male fertility in mice. Cell Death Dis 2022; 8:419. [PMID: 36253364 PMCID: PMC9576706 DOI: 10.1038/s41420-022-01210-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Patients with teratozoospermia exhibit low phosducin-like protein (Pdcl2) expression. As a member of the phosducin family, chaperonin-related Pdcl2, a germline-specific gene, may be involved in germ cell protein folding. Given that PDCL2 is highly conserved in evolution, it may be indispensable for mammalian spermiogenesis; however, the function of PDCL2 in higher mammalian species remains unknown. To determine the role of PDCL2 in male fertility, we generated Pdcl2 knockout mice using CRISPR/Cas9. Our results revealed that Pdcl2 heterozygous (Pdcl2+/−) male mice were normal, but male Pdcl2-null (Pdcl2−/−) mice were infertile. Accordingly, Pdcl2−/− male mice exhibited lower testis weight, epididymis weight, and sperm number than Pdcl2+/+ mice. Moreover, Pdcl2−/− mice displayed malformed and immotile sperm. Apoptotic cells were significantly enhanced in Pdcl2−/− testes and epididymis when compared with those in wild-type mice. Mechanistically, PDCL2 can interact with the CCT complex, and dysfunction in this complex might lead to infertility in Pdcl2−/− male mice. Collectively, these findings confirm that Pdcl2 knockout leads to male infertility in mice and that PDCL2 may function as a chaperone to promote protein folding during spermiogenesis.
Collapse
|
8
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
9
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:21-40. [PMID: 32297209 DOI: 10.1007/978-3-030-40204-4_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cell cycle is a sophisticated space-time regulated mechanism where a wide variety of protein modules and complexes associate functioning in a concerted manner to regulate and transfer the genetic material to daughter cells. CCT (chaperonin containing TCP-1, also known as TRiC) is a molecular machine that forms a high molecular weight complex (1000 KDa). CCT is emerging as a key molecule during mitosis due to its essential role in the folding of many important proteins involved in cell division (Cdh1, Plk1, p27, Cdc20, PP2a regulatory subunits, tubulin or actin) suggesting its involvement in uncontrolled proliferation. The assembly is formed by eight different subunits called CCTα, β, γ, δ, ε, ζ, η and θ in mammals corresponding to CCT1-8 in yeast. CCT/TRiC is organized in a unique intra- and inter-ring arrangement. The chaperonin monomers share a common domain structure including an equatorial domain, which contains all the inter-ring contacts, most of the intra-ring contacts and the ATP binding site, whose binding and hydrolysis triggers the conformational changes that take place during the functional cycle. All chaperonins display an open substrate-receptive conformation, where the unfolded protein is recognized and trapped, and a closed conformation where the substrate is isolated from the bulk of the intracellular environment. In this chapter we discuss the complex set of intra- and inter-ring allosteric signals during chaperonin function.
Collapse
|
11
|
Kooistra RL, David R, Ruiz AC, Powers SW, Haselton KJ, Kiernan K, Blagborough AM, Solamen L, Olsen KW, Putonti C, Kanzok SM. Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity. PLoS One 2019; 13:e0209699. [PMID: 30596727 PMCID: PMC6312279 DOI: 10.1371/journal.pone.0209699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/09/2018] [Indexed: 11/18/2022] Open
Abstract
We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein of a protozoan organism, Plasmodium berghei. Initial transcription analysis revealed continuous low-level expression of pbphlp-3 throughout the complex Plasmodium life cycle. Attempts to knockout pbphlp-3 in P. berghei did not yield live parasites, suggesting an essential role for the gene in Plasmodium. We cloned, expressed and purified PbPhLP-3 and determined that the recombinant protein is redox active in vitro in a thioredoxin-coupled redox assay. It also has the capacity to reduce the organic compound tert-Butyl hydroperoxide (TBHP) in vitro, albeit at low efficiency. Sequence analysis, structural modeling, and site-directed mutagenesis revealed a conserved cysteine in the thioredoxin domain to be the redox active residue. Lastly, we provide evidence that recombinant human PhLP-3 exhibits redox activity similar to that of PbPhLP-3 and suggest that redox activity may be conserved in PhLP-3 homologs of other species. Our data provide new insight into the function of PhLP-3, which is hypothesized to act as co-chaperones in the folding and regulation of cytoskeletal proteins. We discuss the potential implications of PhLP-3 as a thioredoxin-target protein and possible links between the cellular redox network and the eukaryotic protein folding machinery.
Collapse
Affiliation(s)
- Rachel L. Kooistra
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Robin David
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ana C. Ruiz
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Sean W. Powers
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Kyle J. Haselton
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Kaitlyn Kiernan
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Andrew M. Blagborough
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ligin Solamen
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States of America
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
12
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
13
|
Krzemień-Ojak Ł, Góral A, Joachimiak E, Filipek A, Fabczak H. Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90. J Cell Biochem 2016; 118:420-429. [PMID: 27496612 DOI: 10.1002/jcb.25669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
Abstract
PhLP2 is a small cytosolic protein that belongs to the highly conserved phosducin-like family of proteins. In amniote genomes there are two PhLP2 homologs, PhLP2A and PhLP2B. It has been shown that mammalian PhLP2A modulates the CCT/TRiC chaperonin activity during folding of cytoskeletal proteins. In order to better understand the function of PhLP2A in cellular protein quality control system, in the present study we have searched for its protein targets. Applying immunoprecipitation followed by mass spectrometry analysis we have identified Hsp90 as a partner of PhLP2A. With pull down experiments, we have confirmed this interaction in protein lysate and using purified proteins we have shown that PhLP2A interacts directly with Hsp90. Furthermore, the proximity ligation assay (PLA) performed on mIMCD-3 cells has shown that PhLP2A forms complexes with Hsp90 which are mainly localized in the cytoplasm of these cells. Further analysis has indicated that the level of PhLP2A increases after heat shock or radicicol treatment, similarly as the level of Hsp90, and that expression of PhLP2A after heat shock is regulated at the transcriptional level. Moreover, using recombinant luciferase we have shown that PhLP2A stabilizes this enzyme in a folding competent state and prevents its denaturation and aggregation. In addition, overexpression of PhLP2A in HEK-293 cells leads to increased heat stress resistance. Altogether, our results have shown that PhLP2A interacts with Hsp90 and exhibits molecular chaperone activity toward denatured proteins. J. Cell. Biochem. 118: 420-429, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Łucja Krzemień-Ojak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Agnieszka Góral
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| |
Collapse
|
14
|
Skjærven L, Cuellar J, Martinez A, Valpuesta JM. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 2015; 589:2522-32. [PMID: 26140986 DOI: 10.1016/j.febslet.2015.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Collapse
Affiliation(s)
- Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Jorge Cuellar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
15
|
The Mechanism and Function of Group II Chaperonins. J Mol Biol 2015; 427:2919-30. [PMID: 25936650 DOI: 10.1016/j.jmb.2015.04.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022]
Abstract
Protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.
Collapse
|
16
|
Kullman SW. In response: conservation versus functional diversification of nuclear receptors: an academic perspective. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:463-465. [PMID: 25711443 DOI: 10.1002/etc.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Seth W Kullman
- North Carolina State University Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Structures of the Gβ-CCT and PhLP1-Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Proc Natl Acad Sci U S A 2015; 112:2413-8. [PMID: 25675501 DOI: 10.1073/pnas.1419595112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-protein signaling depends on the ability of the individual subunits of the G-protein heterotrimer to assemble into a functional complex. Formation of the G-protein βγ (Gβγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings Gβ and Gγ together. This system includes cytosolic chaperonin containing TCP-1 (CCT; also called TRiC) and its cochaperone phosducin-like protein 1 (PhLP1). Two key intermediates in the Gβγ assembly process, the Gβ-CCT and the PhLP1-Gβ-CCT complexes, were isolated and analyzed by a hybrid structural approach using cryo-electron microscopy, chemical cross-linking coupled with mass spectrometry, and unnatural amino acid cross-linking. The structures show that Gβ interacts with CCT in a near-native state through interactions of the Gγ-binding region of Gβ with the CCTγ subunit. PhLP1 binding stabilizes the Gβ fold, disrupting interactions with CCT and releasing a PhLP1-Gβ dimer for assembly with Gγ. This view provides unique insight into the interplay between CCT and a cochaperone to orchestrate the folding of a protein substrate.
Collapse
|
18
|
Bregier C, Krzemień-Ojak L, Włoga D, Jerka-Dziadosz M, Joachimiak E, Batko K, Filipiuk I, Smietanka U, Gaertig J, Fabczak S, Fabczak H. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila. J Cell Physiol 2013; 228:2175-89. [PMID: 23588994 DOI: 10.1002/jcp.24384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/04/2013] [Indexed: 01/23/2023]
Abstract
Recent studies have implicated the phosducin-like protein-2 (PHLP2) in regulation of CCT, a chaperonin whose activity is essential for folding of tubulin and actin. However, the exact molecular function of PHLP2 is unclear. Here we investigate the significance of PHLP2 in a ciliated unicellular model, Tetrahymena thermophila, by deleting its single homolog, Phlp2p. Cells lacking Phlp2p became larger and died within 96 h. Overexpressed Phlp2p-HA localized to cilia, basal bodies, and cytosol without an obvious change in the phenotype. Despite similar localization, overexpressed GFP-Phlp2p caused a dominant-negative effect. Cells overproducing GFP-Phlp2p had decreased rates of proliferation, motility and phagocytosis, as compared to wild type cells or cells overproducing a non-tagged Phlp2p. Growing GFP-Phlp2p-overexpressing cells had fewer cilia and, when deciliated, failed to regenerate cilia, indicating defects in cilia assembly. Paclitaxel-treated GFP-Phlp2p cells failed to elongate cilia, indicating a change in the microtubules dynamics. The pattern of ciliary and cytosolic tubulin isoforms on 2D gels differed between wild type and GFP-Phlp2p-overexpressing cells. Thus, in Tetrahymena, PhLP2 is essential and under specific experimental conditions its activity affects tubulin and microtubule-dependent functions including cilia assembly.
Collapse
Affiliation(s)
- Cezary Bregier
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao X, Sinha S, Belcastro M, Woodard C, Ramamurthy V, Stoilov P, Sokolov M. Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins. J Biol Chem 2013; 288:25760-25768. [PMID: 23888055 DOI: 10.1074/jbc.m113.486258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins play an essential role in cellular signaling; however, the mechanism regulating their synthesis and assembly remains poorly understood. A line of evidence indicates that the posttranslational processing of G protein β subunits begins inside the protein-folding chamber of the chaperonin containing t-complex protein 1. This process is facilitated by the ubiquitously expressed phosducin-like protein (PhLP), which is thought to act as a CCT co-factor. Here we demonstrate that alternative splicing of the PhLP gene gives rise to a transcript encoding a truncated, short protein (PhLPs) that is broadly expressed in human tissues but absent in mice. Seeking to elucidate the function of PhLPs, we expressed this protein in the rod photoreceptors of mice and found that this manipulation caused a dramatic translational and posttranslational suppression of rod heterotrimeric G proteins. The investigation of the underlying mechanism revealed that PhLPs disrupts the folding of Gβ and the assembly of Gβ and Gγ subunits, events normally assisted by PhLP, by forming a stable and apparently inactive tertiary complex with CCT preloaded with nascent Gβ. As a result, the cellular levels of Gβ and Gγ, which depends on Gβ for stability, decline. In addition, PhLPs evokes a profound and rather specific down-regulation of the Gα transcript, leading to a complete disappearance of the protein. This study provides the first evidence of a generic mechanism, whereby the splicing of the PhLP gene could potentially and efficiently regulate the cellular levels of heterotrimeric G proteins.
Collapse
Affiliation(s)
- Xueli Gao
- From the Departments of Ophthalmology and
| | | | | | - Catherine Woodard
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Visvanathan Ramamurthy
- From the Departments of Ophthalmology and; Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Peter Stoilov
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Maxim Sokolov
- From the Departments of Ophthalmology and; Biochemistry, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|
20
|
Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W, King JA. Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. J Biol Chem 2013; 288:17734-44. [PMID: 23612981 DOI: 10.1074/jbc.m112.443929] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are a family of chaperones that encapsulate their substrates and assist their folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP-1 ring complex (TRiC), is a hetero-oligomeric complex composed of two rings, each formed from eight different CCT (chaperonin containing TCP-1) subunits. Each CCT subunit may have distinct substrate recognition and ATP hydrolysis properties. We have expressed each human CCT subunit individually in Escherichia coli to investigate whether they form chaperonin-like double ring complexes. CCT4 and CCT5, but not the other six CCT subunits, formed high molecular weight complexes within the E. coli cells that sedimented about 20S in sucrose gradients. When CCT4 and CCT5 were purified, they were both organized as two back-to-back rings of eight subunits each, as seen by negative stain and cryo-electron microscopy. This morphology is consistent with that of the hetero-oligomeric double-ring TRiC purified from bovine testes and HeLa cells. Both CCT4 and CCT5 homo-oligomers hydrolyzed ATP at a rate similar to human TRiC and were active as assayed by luciferase refolding and human γD-crystallin aggregation suppression and refolding. Thus, both CCT4 and CCT5 homo-oligomers have the property of forming 8-fold double rings absent the other subunits, and these complexes carry out chaperonin reactions without other partner subunits.
Collapse
Affiliation(s)
- Oksana A Sergeeva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
21
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kalisman N, Schröder GF, Levitt M. The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure 2013; 21:540-9. [PMID: 23478063 DOI: 10.1016/j.str.2013.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
In eukaryotes, CCT is essential for the correct and efficient folding of many cytosolic proteins, most notably actin and tubulin. Structural studies of CCT have been hindered by the failure of standard crystallographic analysis to resolve its eight different subunit types at low resolutions. Here, we exhaustively assess the R value fit of all possible CCT models to available crystallographic data of the closed and open forms with resolutions of 3.8 Å and 5.5 Å, respectively. This unbiased analysis finds the native subunit arrangements with overwhelming significance. The resulting structures provide independent crystallographic proof of the subunit arrangement of CCT and map major asymmetrical features of the particle onto specific subunits. The actin and tubulin substrates both bind around subunit CCT6, which shows other structural anomalies. CCT is thus clearly partitioned, both functionally and evolutionary, into a substrate-binding side that is opposite to the ATP-hydrolyzing side.
Collapse
Affiliation(s)
- Nir Kalisman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
23
|
Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Ludtke S, Chiu W, Hartl FU, Aebersold R, Frydman J. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 2012; 20:814-25. [PMID: 22503819 PMCID: PMC3350567 DOI: 10.1016/j.str.2012.03.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 01/27/2023]
Abstract
TRiC/CCT is a highly conserved and essential chaperonin that uses ATP cycling to facilitate folding of approximately 10% of the eukaryotic proteome. This 1 MDa hetero-oligomeric complex consists of two stacked rings of eight paralogous subunits each. Previously proposed TRiC models differ substantially in their subunit arrangements and ring register. Here, we integrate chemical crosslinking, mass spectrometry, and combinatorial modeling to reveal the definitive subunit arrangement of TRiC. In vivo disulfide mapping provided additional validation for the crosslinking-derived arrangement as the definitive TRiC topology. This subunit arrangement allowed the refinement of a structural model using existing X-ray diffraction data. The structure described here explains all available crosslink experiments, provides a rationale for previously unexplained structural features, and reveals a surprising asymmetry of charges within the chaperonin folding chamber.
Collapse
Affiliation(s)
- Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Leonie Mönkemeyer
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Thomas Walzthoeni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich 8057 Zurich, Switzerland
| | - Bryan Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Yao Cong
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - Boxue Ma
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - Steve Ludtke
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging; Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine, Houston, TX 77030, USA
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Abstract
G protein signaling depends on the ability of the individual subunits of the G protein heterotrimer to assemble into functional complexes. Formation of the G protein βγ (Gβγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings the Gβ and Gγ subunits together. This system includes the cytosolic chaperonin containing TCP-1 (CCT) and its co-chaperone phosducin-like protein 1 (PhLP1). CCT assists Gβ in achieving its β-propeller structure, while PhLP1 releases Gβ from CCT and facilitates its interaction with Gγ. Once Gβγ is formed, PhLP1 remains bound until it is displaced by the Gα subunit and the G protein heterotrimer is brought together. Another obligate dimer is the complex between the G protein β(5) subunit and a regulator of G protein signaling protein (Gβ(5)-RGS). Gβ(5)-RGS also requires CCT for Gβ(5) folding, but PhLP1 plays a different role. It stabilizes the interaction between Gβ(5) and CCT, perhaps to increase folding efficiency. After Gβ(5) folding PhLP1 must subsequently release, allowing the RGS protein to bind and form the Gβ(5)-RGS dimer directly on CCT. Gβ(5)-RGS is then freed from CCT to interact with its membrane anchoring protein and form a stable complex that turns off the G protein signal by catalyzing GTP hydrolysis on Gα.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA,
| | | |
Collapse
|
25
|
Dingus J, Hildebrandt JD. Synthesis and assembly of G protein βγ dimers: comparison of in vitro and in vivo studies. Subcell Biochem 2012; 63:155-80. [PMID: 23161138 DOI: 10.1007/978-94-007-4765-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The heterotrimeric GTP-binding proteins (G proteins) are the canonical cellular machinery used with the approximately 700 G protein-coupled receptors (GPCRs) in the human genome to transduce extracellular signals across the plasma membrane. The synthesis of the constituent G protein subunits, and their assembly into Gβγ dimers and G protein heterotrimers, determines the signaling repertoire for G-protein/GPCR signaling in cells. These synthesis/assembly -processes are intimately related to two other overlapping events in the intricate pathway leading to formation of G protein signaling complexes, posttranslational modification and intracellular trafficking of G proteins. The assembly of the Gβγ dimer is a complex process involving multiple accessory proteins and organelles. The mechanisms involved are becoming increasingly appreciated, but are still incompletely understood. In vitro and in vivo (cellular) studies provide different perspectives of these processes, and a comparison of them can provide insight into both our current level of understanding and directions to be taken in future investigations.
Collapse
Affiliation(s)
- Jane Dingus
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
26
|
Hayes NVL, Jossé L, Smales CM, Carden MJ. Modulation of phosducin-like protein 3 (PhLP3) levels promotes cytoskeletal remodelling in a MAPK and RhoA-dependent manner. PLoS One 2011; 6:e28271. [PMID: 22174782 PMCID: PMC3235111 DOI: 10.1371/journal.pone.0028271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background Phosducin-like protein 3 (PhLP3) forms a ternary complex with the ATP-dependent molecular chaperone CCT and its folding client tubulin. In vitro studies suggest PhLP3 plays an inhibitory role in β-tubulin folding while conversely in vivo genetic studies suggest PhLP3 is required for the correct folding of β-tubulin. We have a particular interest in the cytoskeleton, its chaperones and their role in determining cellular phenotypes associated with high level recombinant protein expression from mammalian cell expression systems. Methodology/Principal Findings As studies into PhLP3 function have been largely carried out in non mammalian systems, we examined the effect of human PhLP3 over-expression and siRNA silencing using a single murine siRNA on both tubulin and actin systems in mammalian Chinese hamster ovary (CHO) cell lines. We show that over-expression of PhLP3 promotes an imbalance of α and β tubulin subunits, microtubule disassembly and cell death. In contrast, β-actin levels are not obviously perturbed. On-the-other-hand, RNA silencing of PhLP3 increases RhoA-dependent actin filament formation and focal adhesion formation and promotes a dramatic elongated fibroblast-like change in morphology. This was accompanied by an increase in phosphorylated MAPK which has been associated with promoting focal adhesion assembly and maturation. Transient overexpression of PhLP3 in knockdown experiments rescues cells from the morphological change observed during PhLP3 silencing but mitosis is perturbed, probably reflecting a tipping back of the balance of PhLP3 levels towards the overexpression state. Conclusions Our results support the hypothesis that PhLP3 is important for the maintenance of β-tubulin levels in mammalian cells but also that its modulation can promote actin-based cytoskeletal remodelling by a mechanism linked with MAPK phosphorylation and RhoA-dependent changes. PhLP3 levels in mammalian cells are thus finely poised and represents a novel target for engineering industrially relevant cell lines to evolve lines more suited to suspension or adherent cell growth.
Collapse
Affiliation(s)
- Nandini V. L. Hayes
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Lyne Jossé
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - C. Mark Smales
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (CMS); (MJC)
| | - Martin J. Carden
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (CMS); (MJC)
| |
Collapse
|
27
|
Kabir MA, Uddin W, Narayanan A, Reddy PK, Jairajpuri MA, Sherman F, Ahmad Z. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. JOURNAL OF AMINO ACIDS 2011; 2011:843206. [PMID: 22312474 PMCID: PMC3268035 DOI: 10.4061/2011/843206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
Abstract
Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM. Chaperonins: two rings for folding. Trends Biochem Sci 2011; 36:424-32. [PMID: 21723731 DOI: 10.1016/j.tibs.2011.05.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 01/08/2023]
Abstract
Chaperonins are ubiquitous chaperones found in Eubacteria, eukaryotic organelles (group I), Archaea and the eukaryotic cytosol (group II). They all share a common structure and a basic functional mechanism. Although a large amount of information has been gathered for the simpler group I, much less is known about group II chaperonins. Recent crystallographic and electron microscopy structures have provided new insights into the mechanism of these chaperonins and revealed important differences between group I and II chaperonins, mainly in the molecular rearrangements that take place during the functional cycle. These differences are evident for the most complex chaperonin, the eukaryotic cytosolic CCT, which highlights the uniqueness of this important molecular machine.
Collapse
Affiliation(s)
- Hugo Yébenes
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 2011; 30:3078-90. [PMID: 21701561 DOI: 10.1038/emboj.2011.208] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 05/11/2011] [Indexed: 01/17/2023] Open
Abstract
The cytosolic chaperonin CCT is a 1-MDa protein-folding machine essential for eukaryotic life. The CCT interactome shows involvement in folding and assembly of a small range of proteins linked to essential cellular processes such as cytoskeleton assembly and cell-cycle regulation. CCT has a classic chaperonin architecture, with two heterogeneous 8-membered rings stacked back-to-back, enclosing a folding cavity. However, the mechanism by which CCT assists folding is distinct from other chaperonins, with no hydrophobic wall lining a potential Anfinsen cage, and a sequential rather than concerted ATP hydrolysis mechanism. We have solved the crystal structure of yeast CCT in complex with actin at 3.8 Å resolution, revealing the subunit organisation and the location of discrete patches of co-evolving 'signature residues' that mediate specific interactions between CCT and its substrates. The intrinsic asymmetry is revealed by the structural individuality of the CCT subunits, which display unique configurations, substrate binding properties, ATP-binding heterogeneity and subunit-subunit interactions. The location of the evolutionarily conserved N-terminus of Cct5 on the outside of the barrel, confirmed by mutational studies, is unique to eukaryotic cytosolic chaperonins.
Collapse
|
30
|
Dekker C, Willison KR, Taylor WR. On the evolutionary origin of the chaperonins. Proteins 2011; 79:1172-92. [DOI: 10.1002/prot.22952] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/06/2010] [Accepted: 10/29/2010] [Indexed: 11/09/2022]
|
31
|
Posokhova E, Song H, Belcastro M, Higgins L, Bigley LR, Michaud NA, Martemyanov KA, Sokolov M. Disruption of the chaperonin containing TCP-1 function affects protein networks essential for rod outer segment morphogenesis and survival. Mol Cell Proteomics 2010; 10:M110.000570. [PMID: 20852191 DOI: 10.1074/mcp.m110.000570] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type II Chaperonin Containing TCP-1 (CCT, also known as TCP-1 Ring Complex, TRiC) is a multi-subunit molecular machine thought to assist in the folding of ∼ 10% of newly translated cytosolic proteins in eukaryotes. A number of proteins folded by CCT have been identified in yeast and cultured mammalian cells, however, the function of this chaperonin in vivo has never been addressed. Here we demonstrate that suppressing the CCT activity in mouse photoreceptors by transgenic expression of a dominant-negative mutant of the CCT cofactor, phosducin-like protein (PhLP), results in the malformation of the outer segment, a cellular compartment responsible for light detection, and triggers rapid retinal degeneration. Investigation of the underlying causes by quantitative proteomics identified distinct protein networks, encompassing ∼ 200 proteins, which were significantly affected by the chaperonin deficiency. Notably among those were several essential proteins crucially engaged in structural support and visual signaling of the outer segment such as peripherin 2, Rom1, rhodopsin, transducin, and PDE6. These data for the first time demonstrate that normal CCT function is ultimately required for the morphogenesis and survival of sensory neurons of the retina, and suggest the chaperonin CCT deficiency as a potential, yet unexplored, cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina Posokhova
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 2010; 35:288-97. [PMID: 20116259 DOI: 10.1016/j.tibs.2009.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/25/2022]
Abstract
Actins and tubulins are abundant cytoskeletal proteins that support diverse cellular processes. Owing to the unique properties of these filament-forming proteins, an intricate cellular machinery consisting minimally of the chaperonin CCT, prefoldin, phosducin-like proteins, and tubulin cofactors has evolved to facilitate their biogenesis. More recent evidence also suggests that regulated degradation pathways exist for actin (via TRIM32) and tubulin (via parkin or cofactor E-like). Collectively, these pathways maintain the quality control of cytoskeletal proteins ('proteostasis'), ensuring the appropriate function of microfilaments and microtubules. Here, we focus on the molecular mechanisms of the quality control of actin and tubulin, and discuss emerging links between cytoskeletal proteostasis and human diseases.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
33
|
McCormack EA, Altschuler GM, Dekker C, Filmore H, Willison KR. Yeast phosducin-like protein 2 acts as a stimulatory co-factor for the folding of actin by the chaperonin CCT via a ternary complex. J Mol Biol 2009; 391:192-206. [PMID: 19501098 DOI: 10.1016/j.jmb.2009.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/18/2022]
Abstract
The eukaryotic chaperonin-containing TCP-1 (CCT) folds the cytoskeletal protein actin. The folding mechanism of this 16-subunit, 1-MDa machine is poorly characterised due to the absence of quantitative in vitro assays. We identified phosducin-like protein 2, Plp2p (=PLP2), as an ATP-elutable binding partner of yeast CCT while establishing the CCT interactome. In a novel in vitro CCT-ACT1 folding assay that is functional under physiological conditions, PLP2 is a stimulatory co-factor. In a single ATP-driven cycle, PLP2-CCT-ACT1 complexes yield 30-fold more native actin than CCT-ACT1 complexes. PLP2 interacts directly with ACT1 through the C-terminus of its thioredoxin fold and the CCT-binding subdomain 4 of actin. The in vitro CCT-ACT1-PLP2 folding cycle of the preassembled complex takes 90 s at 30 degrees C, several times slower than the canonical chaperonin GroEL. The specific interactions between PLP2, CCT and ACT1 in the yeast-component in vitro system and the pronounced stimulatory effect of PLP2 on actin folding are consistent with in vivo genetic approaches demonstrating an essential and positive role for PLP2 in cellular processes involving actin in Saccharomyces cerevisiae. In mammalian systems, however, several members of the PLP family, including human PDCL3, the orthologue of PLP2, have been shown to be inhibitory toward CCT-mediated folding of actin in vivo and in vitro. Here, using a rabbit-reticulocyte-derived in vitro translation system, we found that inhibition of beta-actin folding by PDCL3 can be relieved by exchanging its acidic C-terminal extension for that of PLP2. It seems that additional levels of regulatory control of CCT activity by this PLP have emerged in higher eukaryotes.
Collapse
Affiliation(s)
- Elizabeth A McCormack
- Protein Folding and Assembly Team, Section of Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, UK
| | | | | | | | | |
Collapse
|
34
|
Howlett AC, Gray AJ, Hunter JM, Willardson BM. Role of molecular chaperones in G protein beta5/regulator of G protein signaling dimer assembly and G protein betagamma dimer specificity. J Biol Chem 2009; 284:16386-16399. [PMID: 19376773 DOI: 10.1074/jbc.m900800200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein betagamma subunit dimer (Gbetagamma) and the Gbeta5/regulator of G protein signaling (RGS) dimer play fundamental roles in propagating and regulating G protein pathways, respectively. How these complexes form dimers when the individual subunits are unstable is a question that has remained unaddressed for many years. In the case of Gbetagamma, recent studies have shown that phosducin-like protein 1 (PhLP1) works as a co-chaperone with the cytosolic chaperonin complex (CCT) to fold Gbeta and mediate its interaction with Ggamma. However, it is not known what fraction of the many Gbetagamma combinations is assembled this way or whether chaperones influence the specificity of Gbetagamma dimer formation. Moreover, the mechanism of Gbeta5-RGS assembly has yet to be assessed experimentally. The current study was undertaken to directly address these issues. The data show that PhLP1 plays a vital role in the assembly of Ggamma2 with all four Gbeta1-4 subunits and in the assembly of Gbeta2 with all twelve Ggamma subunits, without affecting the specificity of the Gbetagamma interactions. The results also show that Gbeta5-RGS7 assembly is dependent on CCT and PhLP1, but the apparent mechanism is different from that of Gbetagamma. PhLP1 seems to stabilize the interaction of Gbeta5 with CCT until Gbeta5 is folded, after which it is released to allow Gbeta5 to interact with RGS7. These findings point to a general role for PhLP1 in the assembly of all Gbetagamma combinations and suggest a CCT-dependent mechanism for Gbeta5-RGS7 assembly that utilizes the co-chaperone activity of PhLP1 in a unique way.
Collapse
Affiliation(s)
- Alyson C Howlett
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Amy J Gray
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jesse M Hunter
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Barry M Willardson
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602.
| |
Collapse
|
35
|
Lou X, Bao R, Zhou CZ, Chen Y. Structure of the thioredoxin-fold domain of human phosducin-like protein 2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:67-70. [PMID: 19193988 PMCID: PMC2635858 DOI: 10.1107/s1744309108037342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/11/2008] [Indexed: 11/10/2022]
Abstract
Human phosducin-like protein 2 (hPDCL2) has been identified as belonging to subgroup II of the phosducin (Pdc) family. The members of this family share an N-terminal helix domain and a C-terminal thioredoxin-fold (Trx-fold) domain. The X-ray crystal structure of the Trx-fold domain of hPDCL2 was solved at 2.70 A resolution and resembled the Trx-fold domain of rat phosducin. Comparative structural analysis revealed the structural basis of their putative functional divergence.
Collapse
Affiliation(s)
- Xiaochu Lou
- Institute of Protein Research, Tongji University, Shanghai 200092, People’s Republic of China
| | - Rui Bao
- Institute of Protein Research, Tongji University, Shanghai 200092, People’s Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yuxing Chen
- Institute of Protein Research, Tongji University, Shanghai 200092, People’s Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
36
|
Brackley KI, Grantham J. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones 2009; 14:23-31. [PMID: 18595008 PMCID: PMC2673901 DOI: 10.1007/s12192-008-0057-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 05/29/2008] [Indexed: 11/30/2022] Open
Abstract
The chaperonin containing TCP-1 (CCT) is required for the production of native actin and tubulin and numerous other proteins, several of which are involved in cell cycle progression. The mechanistic details of how CCT acts upon its folding substrates are intriguing: whilst actin and tubulin bind in a sequence-specific manner, it is possible that some proteins could use CCT as a more general binding interface. Therefore, how CCT accommodates the folding requirements of its substrates, some of which are produced in a cell cycle-specific manner, is of great interest. The reliance of folding substrates upon CCT for the adoption of their native structures results in CCT activity having far-reaching implications for a vast array of cellular processes. For example, the dependency of the major cytoskeletal proteins actin and tubulin upon CCT results in CCT activity being linked to any cellular process that depends on the integrity of the microfilament and microtubule-based cytoskeletal systems.
Collapse
Affiliation(s)
- Karen I. Brackley
- Department of Cell and Molecular Biology, Göteborgs Universitet, Medicinaregatan 9C, 40530 Göteborg, Sweden
| | - Julie Grantham
- Department of Cell and Molecular Biology, Göteborgs Universitet, Medicinaregatan 9C, 40530 Göteborg, Sweden
| |
Collapse
|
37
|
Favre N, Camps M, Arod C, Chabert C, Rommel C, Pasquali C. Chemokine receptor CCR2 undergoes transportin1-dependent nuclear translocation. Proteomics 2008; 8:4560-76. [PMID: 18846510 DOI: 10.1002/pmic.200800211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemokines (CCs) are small chemoattractant cytokines involved in a wide variety of biological and pathological processes. Released by cells in the milieu, and extracellular matrix and activating signalling cascades upon binding to specific G protein-coupled receptors (GPCRs), they trigger many cellular events. In various pathologies, CCs are directly responsible for excessive recruitment of leukocytes to inflammatory sites and recent studies using chemokine receptor (CCR) antagonists permitted these molecules to reach the market for medical use. While interaction of CCs with their receptors has been extensively documented, downstream GPCR signalling cascades triggered by CC are less well understood. Given the pivotal role of chemokine receptor 2 (CCR2) in monocyte recruitment, activation and differentiation and its implication in several autoimmune-inflammatory pathologies, we searched for potential new CCR2-interacting proteins by engineering a modified CCR2 that we used as bait. Herein, we show the direct interaction of CCR2 with transportin1 (TRN1), which we demonstrate is followed by CCR2 receptor internalization. Further characterization of this novel interaction revealed that TRN1-binding to CCR2 increased upon time in agonist treated cells and promotes its nuclear translocation in a TRN1-dependent manner. Finally, we provide evidence that following translocation, the receptor localizes at the outer edge of the nuclear envelope where it is finally released from TRN1.
Collapse
|
38
|
The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 2008; 15:858-64. [PMID: 18660820 DOI: 10.1038/nsmb.1464] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 06/19/2008] [Indexed: 11/08/2022]
Abstract
Chaperones, a group of proteins that assist the folding of other proteins, seem to work in a coordinated manner. Two major chaperone families are heat-shock protein families Hsp60 and Hsp70. Here we show for the first time the formation of a stable complex between chaperonin-containing TCP-1 (CCT) and Hsc70, two eukaryotic representatives of these chaperone families. This interaction takes place between the apical domain of the CCT beta subunit and the nucleotide binding domain of Hsc70, and may serve to deliver the unfolded substrate from Hsc70 to the substrate binding region of CCT. We also show that a similar interaction does not occur between their prokaryotic counterparts GroEL and DnaK, suggesting that in eukarya the two types of chaperones have evolved to a concerted action that makes the folding task more efficient.
Collapse
|
39
|
Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal 2007; 19:2417-27. [PMID: 17658730 PMCID: PMC2095786 DOI: 10.1016/j.cellsig.2007.06.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 01/08/2023]
Abstract
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein betagamma dimers (Gbetagamma) and inhibiting their ability to interact with G protein alpha subunits (Galpha) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gbetagamma dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gbetagamma subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University Provo, Utah 84602, USA.
| | | |
Collapse
|
40
|
Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 2007; 46:7665-77. [PMID: 17559193 PMCID: PMC2527407 DOI: 10.1021/bi700338m] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To be activated by cell surface G protein-coupled receptors, heterotrimeric G proteins must localize at the cytoplasmic surface of plasma membranes. Moreover, some G protein subunits are able to traffic reversibly from the plasma membrane to intracellular locations upon activation. This current topic will highlight new insights into how nascent G protein subunits are assembled and how they arrive at plasma membranes. In addition, recent reports have increased our knowledge of activation-induced trafficking of G proteins. Understanding G protein assembly and trafficking will lead to a greater understanding of novel ways that cells regulate G protein signaling.
Collapse
Affiliation(s)
- Yannick Marrari
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Marykate Crouthamel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Roshanak Irannejad
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Philip B. Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
41
|
Stirling PC, Srayko M, Takhar KS, Pozniakovsky A, Hyman AA, Leroux MR. Functional interaction between phosducin-like protein 2 and cytosolic chaperonin is essential for cytoskeletal protein function and cell cycle progression. Mol Biol Cell 2007; 18:2336-45. [PMID: 17429077 PMCID: PMC1877119 DOI: 10.1091/mbc.e07-01-0069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Chaperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2.
Collapse
Affiliation(s)
- Peter C. Stirling
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| | - Martin Srayko
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Karam S. Takhar
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| | - Andrei Pozniakovsky
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Anthony A. Hyman
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Michel R. Leroux
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| |
Collapse
|
42
|
Pucciarelli S, Parker SK, Detrich HW, Melki R. Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Notothenia coriiceps. Extremophiles 2006; 10:537-49. [PMID: 16770691 DOI: 10.1007/s00792-006-0528-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
The cytoplasmic chaperonin containing TCP-1 (CCT) plays a critically important role in the folding and biogenesis of many cytoskeletal proteins, including tubulin and actin. For marine ectotherms, the chronically cold Southern Ocean (-2 to +2 degrees C) poses energetic challenges to protein folding, both at the level of substrate proteins and with respect to the chaperonin/chaperone folding system. Here we report the partial functional and structural characterization of CCT from an Antarctic notothenioid fish, Notothenia coriiceps. We find that the mechanism of folding by the Antarctic fish CCT differed from that of mammalian CCT: (1) the former complex was able to bind denatured beta-tubulin but (2) when reconstituted with rabbit Cofactor A, failed to release the protein to yield the tubulin/cofactor intermediate. Moreover, the amino acid sequences of the N. coriiceps CCT beta and theta chains contained residue substitutions in the equatorial, apical, and intermediate domains that would be expected to increase the flexibility of the subunits, thus facilitating function of the chaperonin in an energy poor environment. Our work contributes to the growing realization that protein function in cold-adapted organisms reflects a delicate balance between the necessity of structural flexibility for catalytic activity and the concomitant hazard of cold-induced denaturation.
Collapse
Affiliation(s)
- Sandra Pucciarelli
- Dipartimento di Biologia, Molecolare, Cellulare, ed Animale, Università di Camerino, 62032 Camerino, Italy.
| | | | | | | |
Collapse
|
43
|
Lacoste C, Barthaux V, Iborra C, Seagar M, Erard-Garcia M. MAU-8 is a Phosducin-like Protein required for G protein signaling in C. elegans. Dev Biol 2006; 294:181-91. [PMID: 16580661 DOI: 10.1016/j.ydbio.2006.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/01/2006] [Accepted: 02/22/2006] [Indexed: 11/28/2022]
Abstract
The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network.
Collapse
Affiliation(s)
- Caroline Lacoste
- INSERM UMR 641, Université de la Méditerranée, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
44
|
Lukov GL, Baker CM, Ludtke PJ, Hu T, Carter MD, Hackett RA, Thulin CD, Willardson BM. Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex. J Biol Chem 2006; 281:22261-22274. [PMID: 16717095 DOI: 10.1074/jbc.m601590200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosducin-like protein (PhLP) is a widely expressed binding partner of the G protein betagamma subunit complex (Gbetagamma) that has been recently shown to catalyze the formation of the Gbetagamma dimer from its nascent polypeptides. Phosphorylation of PhLP at one or more of three consecutive serines (Ser-18, Ser-19, and Ser-20) is necessary for Gbetagamma dimer formation and is believed to be mediated by the protein kinase CK2. Moreover, several lines of evidence suggest that the cytosolic chaperonin complex (CCT) may work in concert with PhLP in the Gbetagamma-assembly process. The results reported here delineate a mechanism for Gbetagamma assembly in which a stable ternary complex is formed between PhLP, the nascent Gbeta subunit, and CCT that does not include Ggamma. PhLP phosphorylation permits the release of a PhLP x Gbeta intermediate from CCT, allowing Ggamma to associate with Gbeta in this intermediate complex. Subsequent interaction of Gbetagamma with membranes releases PhLP for another round of assembly.
Collapse
Affiliation(s)
- Georgi L Lukov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Christine M Baker
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Paul J Ludtke
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Ting Hu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Michael D Carter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Ryan A Hackett
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Craig D Thulin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602.
| |
Collapse
|
45
|
Wells CA, Dingus J, Hildebrandt JD. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J Biol Chem 2006; 281:20221-32. [PMID: 16702223 DOI: 10.1074/jbc.m602409200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gbetagamma dimer formation occurs early in the assembly of heterotrimeric G proteins. On nondenaturing (native) gels, in vitro translated, (35)S-labeled Ggamma subunits traveled primarily according to their pI and apparently were not associated with other proteins. In contrast, in vitro translated, (35)S-labeled Gbeta subunits traveled at a high apparent molecular mass (approximately 700 kDa) and co-migrated with the chaperonin CCT complex (also called TRiC). Different FLAG-Gbeta isoforms coprecipitated CCT/TRiC to a variable extent, and this correlated with the ability of the different Gbeta subunits to efficiently form dimers with Ggamma. When translated Ggamma was added to translated Gbeta, a new band of low apparent molecular mass (approximately 50 kDa) was observed, which was labeled by either (35)S-labeled Gbeta or Ggamma, indicating that it is a dimer. Formation of the Gbetagamma dimer was ATP-dependent and inhibited by either adenosine 5'-O-(thiotriphosphate) or aluminum fluoride in the presence of Mg(2+). This inhibition led to increased association of Gbeta with CCT/TRiC. Although Ggamma did not bind CCT/TRiC, addition of Ggamma to previously synthesized Gbeta caused its release from the CCT/TRiC complex. We conclude that the chaperonin CCT/TRiC complex binds to and folds Gbeta subunits and that CCT/TRiC mediates Gbetagamma dimer formation by an ATP-dependent reaction.
Collapse
Affiliation(s)
- Christopher A Wells
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
46
|
Stirling PC, Cuéllar J, Alfaro GA, El Khadali F, Beh CT, Valpuesta JM, Melki R, Leroux MR. PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates. J Biol Chem 2006; 281:7012-21. [PMID: 16415341 DOI: 10.1074/jbc.m513235200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many ATP-dependent molecular chaperones, including Hsp70, Hsp90, and the chaperonins GroEL/Hsp60, require cofactor proteins to regulate their ATPase activities and thus folding functions in vivo. One conspicuous exception has been the eukaryotic chaperonin CCT, for which no regulator of its ATPase activity, other than non-native substrate proteins, is known. We identify the evolutionarily conserved PhLP3 (phosducin-like protein 3) as a modulator of CCT function in vitro and in vivo. PhLP3 binds CCT, spanning the cylindrical chaperonin cavity and contacting at least two subunits. When present in a ternary complex with CCT and an actin or tubulin substrate, PhLP3 significantly diminishes the chaperonin ATPase activity, and accordingly, excess PhLP3 perturbs actin or tubulin folding in vitro. Most interestingly, however, the Saccharomyces cerevisiae PhLP3 homologue is required for proper actin and tubulin function. This cellular role of PhLP3 is most apparent in a strain that also lacks prefoldin, a chaperone that facilitates CCT-mediated actin and tubulin folding. We propose that the antagonistic actions of PhLP3 and prefoldin serve to modulate CCT activity and play a key role in establishing a functional cytoskeleton in vivo.
Collapse
Affiliation(s)
- Peter C Stirling
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Knol JC, Engel R, Blaauw M, Visser AJWG, van Haastert PJM. The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum. Mol Cell Biol 2005; 25:8393-400. [PMID: 16135826 PMCID: PMC1234308 DOI: 10.1128/mcb.25.18.8393-8400.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosducin proteins are known to inhibit G protein-mediated signaling by sequestering Gbetagamma subunits. However, Dictyostelium discoideum cells lacking the phosducin-like protein PhLP1 display defective rather than enhanced G protein signaling. Here we show that green fluorescent protein (GFP)-tagged Gbeta (GFP-Gbeta) and GFP-Ggamma subunits exhibit drastically reduced steady-state levels and are absent from the plasma membrane in phlp1(-) cells. Triton X-114 partitioning suggests that lipid attachment to GFP-Ggamma occurs in wild-type cells but not in phlp1(-) and gbeta(-) cells. Moreover, Gbetagamma dimers could not be detected in vitro in coimmunoprecipitation assays with phlp1(-) cell lysates. Accordingly, in vivo diffusion measurements using fluorescence correlation spectroscopy showed that while GFP-Ggamma proteins are present in a complex in wild-type cells, they are free in phlp1(-) and gbeta(-) cells. Collectively, our data strongly suggest the absence of Gbetagamma dimer formation in Dictyostelium cells lacking PhLP1. We propose that PhLP1 serves as a cochaperone assisting the assembly of Gbeta and Ggamma into a functional Gbetagamma complex. Thus, phosducin family proteins may fulfill hitherto unsuspected biosynthetic functions.
Collapse
Affiliation(s)
- Jaco C Knol
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Topf M, Sali A. Combining electron microscopy and comparative protein structure modeling. Curr Opin Struct Biol 2005; 15:578-85. [PMID: 16118050 DOI: 10.1016/j.sbi.2005.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/01/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Recently, advances have been made in methods and applications that integrate electron microscopy density maps and comparative modeling to produce atomic structures of macromolecular assemblies. Electron microscopy can benefit from comparative modeling through the fitting of comparative models into electron microscopy density maps. Also, comparative modeling can benefit from electron microscopy through the use of intermediate-resolution density maps in fold recognition, template selection and sequence-structure alignment.
Collapse
Affiliation(s)
- Maya Topf
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
49
|
Abstract
Single-particle electron microscopy has now reached maturity, becoming a commonly used method in the examination of macromolecular structure. Using a small amount of purified protein, isolated molecules are observed under the electron microscope and the data collected can be averaged into a 3D reconstruction. Single-particle electron microscopy is an appropriate tool for the analysis of proteins that can only be obtained in modest quantities, like many of the large complexes currently of interest in biomedicine. Whilst the use of electron microscopy expands, new methods are being developed and improved to deal with further challenges, such as reaching higher resolutions and the combination of information at different levels of structural detail. More importantly, present methodology is still not robust enough when studying certain tricky proteins like those displaying extensive conformational flexibility and a great deal of user expertise is required, posing a threat to the consistency of the final structure. This mini review describes a brief outline of the methods currently used in the 3D analysis of macromolecules using single-particle electron microscopy, intended for those first approaching this field. A summary of methods, techniques, software, and some recent work is presented. The spectacular improvements to the technique in recent years, its advantages and limitations compared to other structural methods, and its future developments are discussed.
Collapse
Affiliation(s)
- Oscar Llorca
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu, 9 Campus Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
50
|
Srayko M, Kaya A, Stamford J, Hyman AA. Identification and Characterization of Factors Required for Microtubule Growth and Nucleation in the Early C. elegans Embryo. Dev Cell 2005; 9:223-36. [PMID: 16054029 DOI: 10.1016/j.devcel.2005.07.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/10/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) are dynamic polymers that undergo cell cycle and position-sensitive regulation of polymerization and depolymerization. Although many different factors that regulate MT dynamics have been described, to date there has been no systematic analysis of genes required for MT dynamics in a single system. Here, we use a transgenic EB1::GFP strain, which labels the growing plus ends of MTs, to analyze the growth rate, nucleation rate, and distribution of growing MTs in the Caenorhabditis elegans embryo. We also present the results from an RNAi screen of 40 genes previously implicated in MT-based processes. Our findings suggest that fast microtubule growth is dependent on the amount of free tubulin and the ZYG-9-TAC-1 complex. Robust MT nucleation by centrosomes requires AIR-1, SPD-2, SPD-5, and gamma-tubulin. However, we found that centrosomes do not nucleate MTs to saturation; rather, the depolymerizing kinesin-13 subfamily member KLP-7 is required to limit microtubule outgrowth from centrosomes.
Collapse
Affiliation(s)
- Martin Srayko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|