1
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
2
|
Walder B, Berk C, Liao WC, Rossini AJ, Schwarzwälder M, Pradere U, Hall J, Lesage A, Copéret C, Emsley L. One- and Two-Dimensional High-Resolution NMR from Flat Surfaces. ACS CENTRAL SCIENCE 2019; 5:515-523. [PMID: 30937379 PMCID: PMC6439530 DOI: 10.1021/acscentsci.8b00916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Determining atomic-level characteristics of molecules on two-dimensional surfaces is one of the fundamental challenges in chemistry. High-resolution nuclear magnetic resonance (NMR) could deliver rich structural information, but its application to two-dimensional materials has been prevented by intrinsically low sensitivity. Here we obtain high-resolution one- and two-dimensional 31P NMR spectra from as little as 160 picomoles of oligonucleotide functionalities deposited onto silicate glass and sapphire wafers. This is enabled by a factor >105 improvement in sensitivity compared to typical NMR approaches from combining dynamic nuclear polarization methods, multiple-echo acquisition, and optimized sample formulation. We demonstrate that, with this ultrahigh NMR sensitivity, 31P NMR can be used to observe DNA bound to miRNA, to sense conformational changes due to ion binding, and to follow photochemical degradation reactions.
Collapse
Affiliation(s)
- Brennan
J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Berk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Aaron J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Martin Schwarzwälder
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Ugo Pradere
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Jonathan Hall
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Anne Lesage
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS
Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- E-mail:
| |
Collapse
|
3
|
Flower C, Freeman MS, Plue M, Driehuys B. Electron microscopic observations of Rb particles and pitting in 129Xe spin-exchange optical pumping cells. JOURNAL OF APPLIED PHYSICS 2017; 122:024902. [PMID: 28804157 PMCID: PMC5505777 DOI: 10.1063/1.4991642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/07/2017] [Indexed: 05/13/2023]
Abstract
High-volume production of hyperpolarized 129Xe by spin-exchange optical pumping (SEOP) has historically fallen short of theoretical predictions. Recently, this shortfall was proposed to be caused by the formation of alkali metal clusters during optical pumping. However, this hypothesis has yet to be verified experimentally. Here, we seek to detect the presence of alkali particles using a combination of both transmission (TEM) and scanning (SEM) electron microscopy. From TEM studies, we observe the presence of particles exhibiting sizes ranging from approximately 0.2 to 1 μm and present at densities of order 10 s of particles per 100 square microns. Particle formation was more closely associated with extensive cell usage history than short-term ([Formula: see text]1 h) SEOP exposure. From the SEM studies, we observe pits on the cell surface. These pits are remarkably smooth, were frequently found adjacent to Rb particles, and located predominantly on the front face of the cells; they range in size from 1 to 5 μm. Together, these findings suggest that Rb particles do form during the SEOP process and at times can impart sufficient energy to locally alter the Pyrex surface.
Collapse
Affiliation(s)
- C Flower
- Center for In Vivo Microscopy, Department of Radiology, Duke University, 311 Research Dr, Durham, North Carolina 27710, USA
| | | | - M Plue
- Shared Materials Instrumentation Facility, Duke University, 101 Science Dr., Durham, North Carolina 27710, USA
| | - B Driehuys
- Center for In Vivo Microscopy, Department of Radiology, Duke University, 311 Research Dr, Durham, North Carolina 27710, USA
| |
Collapse
|
4
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
5
|
Schön JC, Oligschleger C, Cortes J. Prediction and clarification of structures of (bio)molecules on surfaces. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/znb-2015-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The design of future materials for biotechnological applications via deposition of molecules on surfaces will require not only exquisite control of the deposition procedure, but of equal importance will be our ability to predict the shapes and stability of individual molecules on various surfaces. Furthermore, one will need to be able to predict the structure patterns generated during the self-organization of whole layers of (bio)molecules on the surface. In this review, we present an overview over the current state of the art regarding the prediction and clarification of structures of biomolecules on surfaces using theoretical and computational methods.
Collapse
Affiliation(s)
- J. Christian Schön
- Max-Planck-Institute for Solid State Research , Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Christina Oligschleger
- University of Applied Sciences Bonn-Rhein-Sieg , Von-Liebigstr. 20, D-53359 Rheinbach, Germany
| | | |
Collapse
|
6
|
MacFarlane WA. Implanted-ion βNMR: A new probe for nanoscience. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 68-69:1-12. [PMID: 25863576 DOI: 10.1016/j.ssnmr.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
NMR detected by radioactive beta decay, β-NMR, is undergoing a renaissance largely due to the availability of high intensity low energy beams of the most common probe ion, Li+8, and dedicated facilities for materials research. The radioactive detection scheme, combined with the low energy ion beam, enable depth resolved NMR measurements in crystals, thin films and multilayers on depth scales of 2-200 nm. After a brief historical introduction, technical aspects of implanted-ion β-NMR are presented, followed by a review of recent applications to a wide range of solids.
Collapse
Affiliation(s)
- W A MacFarlane
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, Canada V6T 1Z1.
| |
Collapse
|
7
|
Shi F, Coffey A, Waddell KW, Chekmenev EY, Goodson BM. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:7525-7533. [PMID: 26185545 PMCID: PMC4501382 DOI: 10.1021/acs.jpcc.5b02036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/11/2015] [Indexed: 05/24/2023]
Abstract
Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of "nano-SABRE" catalyst particles, a target substrate, and ethanol, up to ~(-)40-fold and ~(-)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging.
Collapse
Affiliation(s)
- Fan Shi
- Department
of Chemistry and Biochemistry, Southern
Illinois University, Carbondale, Illinois 62901, United States
| | - Aaron
M. Coffey
- Institute of Imaging
Science, Department of Radiology, Department of Physics, Department of Biomedical
Engineering, Vanderbilt-Ingram Cancer Center (VICC), and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Kevin W. Waddell
- Institute of Imaging
Science, Department of Radiology, Department of Physics, Department of Biomedical
Engineering, Vanderbilt-Ingram Cancer Center (VICC), and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Eduard Y. Chekmenev
- Institute of Imaging
Science, Department of Radiology, Department of Physics, Department of Biomedical
Engineering, Vanderbilt-Ingram Cancer Center (VICC), and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Boyd M. Goodson
- Department
of Chemistry and Biochemistry, Southern
Illinois University, Carbondale, Illinois 62901, United States
- Materials
Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
8
|
Nikolaou P, Coffey AM, Ranta K, Walkup LL, Gust BM, Barlow MJ, Rosen MS, Goodson BM, Chekmenev EY. Multidimensional mapping of spin-exchange optical pumping in clinical-scale batch-mode 129Xe hyperpolarizers. J Phys Chem B 2014; 118:4809-16. [PMID: 24731261 PMCID: PMC4055050 DOI: 10.1021/jp501493k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
We present a systematic, multiparameter
study of Rb/129Xe spin-exchange optical pumping (SEOP)
in the regimes of high xenon
pressure and photon flux using a 3D-printed, clinical-scale stopped-flow
hyperpolarizer. In situ NMR detection was used to study the dynamics
of 129Xe polarization as a function of SEOP-cell operating
temperature, photon flux, and xenon partial pressure to maximize 129Xe polarization (PXe). PXe values of 95 ± 9%, 73 ± 4%, 60
± 2%, 41 ± 1%, and 31 ± 1% at 275, 515, 1000, 1500,
and 2000 Torr Xe partial pressure were achieved. These PXe polarization values were separately validated by ejecting
the hyperpolarized 129Xe gas and performing low-field MRI
at 47.5 mT. It is shown that PXe in this
high-pressure regime can be increased beyond already record levels
with higher photon flux and better SEOP thermal management, as well
as optimization of the polarization dynamics, pointing the way to
further improvements in hyperpolarized 129Xe production
efficiency.
Collapse
Affiliation(s)
- Panayiotis Nikolaou
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS) , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nikolaou P, Coffey AM, Walkup LL, Gust BM, Whiting N, Newton H, Muradyan I, Dabaghyan M, Ranta K, Moroz GD, Rosen MS, Patz S, Barlow MJ, Chekmenev EY, Goodson BM. XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use. Magn Reson Imaging 2014; 32:541-50. [PMID: 24631715 DOI: 10.1016/j.mri.2014.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
Abstract
Here we provide a full report on the construction, components, and capabilities of our consortium's "open-source" large-scale (~1L/h) (129)Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The 'hyperpolarizer' is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800Torr Xe in 0.5L) in either stopped-flow or single-batch mode-making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell (129)Xe nuclear spin polarization values of ~30%-90% have been measured for Xe loadings of ~300-1600Torr. Typical (129)Xe polarization build-up and T1 relaxation time constants were ~8.5min and ~1.9h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long (129)Xe relaxation times (up to nearly 6h) were observed in Tedlar bags following transport to a clinical 3T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine.
Collapse
Affiliation(s)
- Panayiotis Nikolaou
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL.
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, United States
| | - Laura L Walkup
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL
| | - Brogan M Gust
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL
| | - Nicholas Whiting
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Hayley Newton
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Iga Muradyan
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Mikayel Dabaghyan
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Kaili Ranta
- Department of Physics, Southern Illinois University, Carbondale, IL
| | - Gregory D Moroz
- Graduate School Central Research Shop, Southern Illinois University, Carbondale, IL
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA; Department of Physics, Harvard University, Cambridge, MA
| | - Samuel Patz
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Michael J Barlow
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, United States
| | - Boyd M Goodson
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL.
| |
Collapse
|
10
|
Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci U S A 2013; 110:14150-5. [PMID: 23946420 DOI: 10.1073/pnas.1306586110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP(129)Xe) make it attractive for a number of magnetic resonance applications; moreover, HP(129)Xe embodies an alternative to rare and nonrenewable (3)He. However, the ability to reliably and inexpensively produce large quantities of HP(129)Xe with sufficiently high (129)Xe nuclear spin polarization (P(Xe)) remains a significant challenge--particularly at high Xe densities. We present results from our "open-source" large-scale (∼1 L/h) (129)Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this "hyperpolarizer" is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell P(Xe) values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. P(Xe) values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long "in-bag" (129)Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)--more than sufficient for a variety of applications.
Collapse
|
11
|
Cleveland ZI, Möller HE, Hedlund LW, Driehuys B. Continuously infusing hyperpolarized 129Xe into flowing aqueous solutions using hydrophobic gas exchange membranes. J Phys Chem B 2009; 113:12489-99. [PMID: 19702286 PMCID: PMC2747043 DOI: 10.1021/jp9049582] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperpolarized (HP) (129)Xe yields high signal intensities in nuclear magnetic resonance (NMR) and, through its large chemical shift range of approximately 300 ppm, provides detailed information about the local chemical environment. To exploit these properties in aqueous solutions and living tissues requires the development of methods for efficiently dissolving HP (129)Xe over an extended time period. To this end, we have used commercially available gas exchange modules to continuously infuse concentrated HP (129)Xe into flowing liquids, including rat whole blood, for periods as long as one hour and have demonstrated the feasibility of dissolved-phase MR imaging with submillimeter resolution within minutes. These modules, which exchange gases using hydrophobic microporous polymer membranes, are compatible with a variety of liquids and are suitable for infusing HP (129)Xe into the bloodstream in vivo. Additionally, we have developed a detailed mathematical model of the infused HP (129)Xe signal dynamics that should be useful in designing improved infusion systems that yield even higher dissolved HP (129)Xe signal intensities.
Collapse
|
12
|
Cleveland ZI, Pavlovskaya GE, Stupic KF, LeNoir CF, Meersmann T. Exploring hyperpolarized 83Kr by remotely detected NMR relaxometry. J Chem Phys 2007; 124:044312. [PMID: 16460167 DOI: 10.1063/1.2159493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
For the first time, a hyperpolarized (hp) noble gas with a nuclear electric quadrupole moment is available for high-field nuclear-magnetic-resonance (NMR) spectroscopy and magnetic-resonance imaging. Hp (83)Kr (I=92) is generated by spin-exchange optical pumping and separated from the rubidium vapor used in the pumping process. Optical pumping occurs under the previously unstudied condition of high krypton gas densities. Signal enhancements of more than three orders of magnitude compared to the thermal equilibrium (83)Kr signal at 9.4 T magnetic-field strength are obtained. The spin-lattice relaxation of (83)Kr is caused primarily by quadrupolar couplings during the brief adsorption periods of the krypton atoms on the surrounding container walls and significantly limits the currently obtained spin polarization. Measurements in macroscopic glass containers and in desiccated canine lung tissue at field strengths between 0.05 and 3 T using remotely detected hp (83)Kr NMR spectroscopy reveal that the longitudinal relaxation dramatically accelerates as the magnetic-field strength decreases.
Collapse
Affiliation(s)
- Zackary I Cleveland
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
13
|
Solimannejad M, Amlashi LM, Alkorta I, Elguero J. XeH2 as a proton-accepting molecule for dihydrogen bonded systems: A theoretical study. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.02.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Pavlovskaya GE, Cleveland ZI, Stupic KF, Basaraba RJ, Meersmann T. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc Natl Acad Sci U S A 2005; 102:18275-9. [PMID: 16344474 PMCID: PMC1317982 DOI: 10.1073/pnas.0509419102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Indexed: 11/18/2022] Open
Abstract
For the first time, magnetic resonance imaging (MRI) with hyperpolarized (hp) krypton-83 (83Kr) has become available. The relaxation of the nuclear spin of 83Kr atoms (I = 9/2) is driven by quadrupolar interactions during brief adsorption periods on surrounding material interfaces. Experiments in model systems reveal that the longitudinal relaxation of hp 83Kr gas strongly depends on the chemical composition of the materials. The relaxation-weighted contrast in hp 83Kr MRI allows for the distinction between hydrophobic and hydrophilic surfaces. The feasibility of hp 83Kr MRI of airways is tested in canine lung tissue by using krypton gas with natural abundance isotopic distribution. Additionally, the influence of magnetic field strength and the presence of a breathable concentration of molecular oxygen on longitudinal relaxation are investigated.
Collapse
|