de Bivort B, Huang S, Bar-Yam Y. Empirical multiscale networks of cellular regulation.
PLoS Comput Biol 2007;
3:1968-78. [PMID:
17953478 PMCID:
PMC2041980 DOI:
10.1371/journal.pcbi.0030207]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 09/07/2007] [Indexed: 11/25/2022] Open
Abstract
Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS) murine B-lymphocyte database which tracks the response of ∼15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1) Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2) Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules) reveal principles of assembly of high-level behaviors from smaller components. (3) Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4) Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an “extracellular interaction” division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure) that activate and repress other divisions in specific ways consistent with cell cycle control.
In a eukaryotic organism such as the mouse, the complete transcriptional network contains ∼15,000 genes and up to 225 million regulatory relationships between pairs of genes. Determining all of these relationships is currently intractable using traditional experimental techniques, and, thus, a comprehensive description of the entire mouse transcriptional network is elusive. Alternatively, one can apply the limited amount of experimental data to determine the entire transcriptional network at a less detailed, higher level. This is analogous to considering a map of the world resolved to the kilometer rather than to the millimeter. Here, we derive from mouse microarray data several high-scale transcriptional networks by determining the mutual effective regulatory influences of large modules of genes. In particular, global transcriptional networks containing 12 to 72 modules are derived, and analysis of these multiscale networks reveals properties of the transcriptional network that are universal at all scales (e.g., maintenance of homeostasis) and properties that vary as a function of scale (e.g., the fractions of module pairs that exert mutual regulation). In addition, we describe how cellular functions associated with large modules (those containing many genes) are composed of more specific functions associated with smaller modules.
Collapse