1
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Szekeres L, Maldivi P, Lebrun C, Gateau C, Mesterházy E, Delangle P, Jancsó A. Tristhiolato Pseudopeptides Bind Arsenic(III) in an AsS 3 Coordination Environment Imitating Metalloid Binding Sites in Proteins. Inorg Chem 2023; 62:6817-6824. [PMID: 37071818 PMCID: PMC10155180 DOI: 10.1021/acs.inorgchem.3c00563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 04/20/2023]
Abstract
The AsIII binding of two NTA-based tripodal pseudopeptides, possessing three cysteine (ligand L1) or d-penicillamine residues (ligand L2) as potential coordinating groups for soft semimetals or metal ions, was studied by experimental (UV, CD, NMR, and ESI-MS) and theoretical (DFT) methods. All of the experimental data, obtained with the variation of the AsIII:ligand concentration ratios or pH values in some instances, evidence the exclusive formation of species with an AsS3-type coordination mode. The UV-monitored titration of the ligands with arsenous acid at pH = 7.0 provided an absorbance data set that allowed for the determination of apparent stability constants of the forming species. The obtained stabilities (logK' = 5.26 (AsL1) and logK' = 3.04 (AsL2)) reflect high affinities, especially for the sterically less restricted cysteine derivative. DFT calculated structures correlate well with the spectroscopic results and, in line with the 1H NMR data, indicate a preference for the all-endo conformers resembling the AsIII environment at the semimetal binding sites in various metalloproteins.
Collapse
Affiliation(s)
- Levente
I. Szekeres
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Pascale Maldivi
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Colette Lebrun
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Christelle Gateau
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Edit Mesterházy
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm tér 7, Szeged H-6720, Hungary
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Pascale Delangle
- CEA,
CNRS, Grenoble INP, IRIG, SyMMES, Universite
Grenoble Alpes, Grenoble 38000, France
| | - Attila Jancsó
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| |
Collapse
|
3
|
Lee J, Dalton RA, Baslé A, Vita N, Dennison C. Important Structural Features of Thiolate-Rich Four-Helix Bundles for Cu(I) Uptake and Removal. Inorg Chem 2023; 62:6617-6628. [PMID: 37057906 PMCID: PMC10155185 DOI: 10.1021/acs.inorgchem.2c04490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 04/15/2023]
Abstract
A family of bacterial copper storage proteins (the Csps) possess thiolate-lined four-helix bundles whose cores can be filled with Cu(I) ions. The majority of Csps are cytosolic (Csp3s), and in vitro studies carried out to date indicate that the Csp3s from Methylosinus trichosporium OB3b (MtCsp3), Bacillus subtilis (BsCsp3), and Streptomyces lividans (SlCsp3) are alike. Bioinformatics have highlighted homologues with potentially different Cu(I)-binding properties from these characterized "classical" Csp3s. Determination herein of the crystal structure of the protein (RkCsp3) from the methanotroph Methylocystis sp. strain Rockwell with Cu(I) bound identifies this as the first studied example of a new subgroup of Csp3s. The most significant structural difference from classical Csp3s is the presence of only two Cu(I) sites at the mouth of the bundle via which Cu(I) ions enter and leave. This is due to the absence of three Cys residues and a His-containing motif, which allow classical Csp3s to bind five to six Cu(I) ions in this region. Regardless, RkCsp3 exhibits rapid Cu(I) binding and the fastest measured Cu(I) removal rate for a Csp3 when using high-affinity ligands as surrogate partners. New experiments on classical Csp3s demonstrate that their His-containing motif is not essential for fast Cu(I) uptake and removal. Other structural features that could be important for these functionally relevant in vitro properties are discussed.
Collapse
Affiliation(s)
- Jaeick Lee
- Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, U.K.
| | - Rosemary A. Dalton
- Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, U.K.
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, U.K.
| | - Nicolas Vita
- Biosciences Institute, Newcastle University, Newcastle
upon Tyne NE2 4HH, U.K.
| | | |
Collapse
|
4
|
Fan L, Russell DH. An ion mobility-mass spectrometry study of copper-metallothionein-2A: binding sites and stabilities of Cu-MT and mixed metal Cu-Ag and Cu-Cd complexes. Analyst 2023; 148:546-555. [PMID: 36545796 PMCID: PMC9904198 DOI: 10.1039/d2an01556k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The presence of Cu, a highly redox active metal, is known to damage DNA as well as other cellular components, but the adverse effects of cellular Cu can be mitigated by metallothioneins (MT), small cysteine rich proteins that are known to bind to a broad range of metal ions. While metal ion binding has been shown to involve the cysteine thiol groups, the specific ion binding sites are controversial as are the overall structure and stability of the Cu-MT complexes. Here, we report results obtained using nano-electrospray ionization mass spectrometry and ion mobility-mass spectrometry for several Cu-MT complexes and compare our results with those previously reported for Ag-MT complexes. The data include determination of the stoichiometries of the complex (Cui-MT, i = 1-19), and Cu+ ion binding sites for complexes where i = 4, 6, and 10 using bottom-up and top-down proteomics. The results show that Cu+ ions first bind to the β-domain to form Cu4MT then Cu6MT, followed by addition of four Cu+ ions to the α-domain to form a Cu10-MT complex. Stabilities of the Cui-MT (i = 4, 6 and 10) obtained using collision-induced unfolding (CIU) are reported and compared with previously reported CIU data for Ag-MT complexes. We also compare CIU data for mixed metal complexes (CuiAgj-MT, where i + j = 4 and 6 and CuiCdj, where i + j = 4 and 7). Lastly, higher order Cui-MT complexes, where i = 11-19, were also detected at higher concentrations of Cu+ ions, and the metalated product distributions observed are compared to previously reported results for Cu-MT-1A (Scheller et al., Metallomics, 2017, 9, 447-462).
Collapse
Affiliation(s)
- Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Brennan HM, Bunde SG, Kuang Q, Palomino TV, Sacks JS, Berry SM, Butcher RJ, Poutsma JC, Pike RD, Bebout DC. Homo- and Heteronuclear Group 12 Metallothionein Type B Cluster Analogs: Synthesis, Structure, 1H NMR and ESI-MS. Inorg Chem 2022; 61:19857-19869. [PMID: 36454194 DOI: 10.1021/acs.inorgchem.2c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Metallothioneins (MTs) are a ubiquitous class of small cysteine-rich metal-binding proteins involved in metal homeostasis and detoxification with highly versatile metal binding properties. Despite the long-standing association of MT with M3S3 and M4S5 metal clusters, synthetic complexes with these core architectures are exceptionally rare. Here, we demonstrate an approach to synthesizing and characterizing aggregates of group 12 metal ions with monocyclic M3S3 cores in acetonitrile solution without the protection of a protein. Multidentate monothiol ligand N,N-bis(2-pyridylmethyl)-2-aminoethanethiol (L1H) provided [Cd3(L1)3](ClO4)3 (1), the first structurally characterized nonproteinaceous aggregate with a metallothionein-like monocyclic Cd3S3 core. In addition, [Zn3(L1)3](ClO4)3·4CH3CN (2·4CH3CN) was characterized by X-ray crystallography. The complex cations of 1 and 2 had comparable structures despite being nonisomorphic. Variable temperature and concentration 1H NMR were used to investigate aggregation equilibria of 1, 2, and a precipitate with composition "Hg(L1)(ClO4)" (3). Cryogenic 1H NMR studies of 3 revealed a J(199Hg1H) coupling constant pattern consistent with an aggregate possessing a cyclic core. ESI-MS was used for gas-phase characterization of 1-3, as well as mixed-metal [M2M'(L1)3(ClO4)2]+ ions prepared in situ by pairwise acetonitrile solution combinations of the group 12 complexes of L1. Access to synthetic variants of metallothionein-like group 12 aggregates provides an additional approach to understanding their behavior.
Collapse
Affiliation(s)
- Haley M Brennan
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Sophia G Bunde
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Qiaoyue Kuang
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Tana V Palomino
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Joshua S Sacks
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Steven M Berry
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Ray John Butcher
- Department of Chemistry, Howard University, Washington, D.C.20059, United States
| | - John C Poutsma
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Robert D Pike
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| | - Deborah C Bebout
- Department of Chemistry, William & Mary, Williamsburg, Virginia23187, United States
| |
Collapse
|
6
|
Wang L, Yang HZ, Ma WL, Chen CM, Wang L. Study on metal binding capacity of the freshwater crab Sinopotamon henanense's recombinant copper specific binding metallothionein expressed in Escherichia coli. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:149-160. [PMID: 34751855 DOI: 10.1007/s10646-021-02470-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The copper specific binding metallothionein (CuMT) is a type of cysteine-rich, metal-binding, small protein which plays an important role in Cu2+ metabolism in vertebrates. In this study, we investigated the metal tolerance and removing ability of recombinant strains harboring CuMT obtained in vivo from the freshwater crab Sinopotamon henanense (ShCuMT) in order to study its physiological functions and metal binding capacity. We performed a 3D modeling of ShCuMT and created its structural and functional models using the I-TASSER program. The shCumt gene was inserted into a pGEX-4t-1 vector and recombinant soluble ShCuMT was expressed in Escherichia coli. In addition, in order to characterize the tolerance and removing ability of heavy metals in E. coli with ShCuMT expression, the recombinant strains harboring ShCuMT were exposed to various concentrations of Cd2+, Cu2+ and Zn2+, respectively. The results showed that ShCuMT contains transition metal binding sites. In addition, E. coli cells expressing ShCuMT exhibited enhanced metal tolerance and higher removing ability of metal ions than control cells. However, compared with Cd2+ and Zn2+, E. coli cells expressing ShCuMT have stronger tolerance and higher removing ability of Cu2+. In general, ShCuMT contains multiple transition metal binding sites, and it could enhance tolerance and removing ability of metal ions. Therefore, ShCuMT can provide potential candidates for heavy metal bioremediation. This research on the metal binding properties of ShCuMT provides a scientific basis for bioremediation of heavy metal pollution by the recombinant strains.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Hui Zhen Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province, 030600, China
| | - Wen Li Ma
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Chien Min Chen
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, 030006, China.
| |
Collapse
|
7
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
8
|
Mishra S, Bhandari A, Singh D, Gupta R, Olmstead MM, Patra AK. Bis(μ-thiolato)-dicopper Containing Fully Spin Delocalized Mixed Valence Copper-Sulfur Clusters and Their Electronic Structural Properties with Relevance to the Cu A Site. Inorg Chem 2021; 60:5779-5790. [PMID: 33829770 DOI: 10.1021/acs.inorgchem.1c00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With aromatic and aliphatic thiol-S donor Schiff base ligands, the copper-sulfur clusters, [(L1)8CuI6CuII2](ClO4)2·DMF·0.5CH3OH (1) and [(L2)12CuI5CuII11(μ4-S)(μ4-O)6](ClO4)·4H2O, respectively, have been reported ( Chem. Commun. 2017, 53, 3334); HL1/HL2 are 2-(((3-methylthiophen-2-yl)methylene)amino)benzene/ethanethiol). Complex 1 comprises a wheel shaped Cu8S8 framework, made up of interlinked Cu2{μ-S(R)}2 units. To understand the properties with relevance to the CuA site and to check whether self-assembly generates similar type clusters to 1, three complexes, [(L3)8CuI6CuII2](ClO4)2·(C2H5)2O·2.5H2O (2), [(L3Cl)8CuI6CuII2](ClO4)2·1.25(C2H5)2O·1.25CH3OH·2H2O (3), and [(L3CF3)8CuI6CuII2](ClO4)2·2(C2H5)2O·H2O (4) have been synthesized with supporting ligands HL3X (HL3 = 2-((furan-2-ylmethylene)amino)benzenethiol when X = -H; X = -Cl or -CF3 para to thiol-S are HL3Cl and HL3CF3 ligands, respectively). The X-ray structures of 3 and 4 feature a similar Cu8S8 architecture to 1. The spectroscopic properties and the X-ray structures revealed that 2-4 are fully spin delocalized mixed valence (MV) of class-III type clusters. The structural parameters of the N2Cu2{μ-S(R)}2 units of 3 and 4 closely resemble those of the MV binuclear CuA site. With the aid of UV-vis-NIR, EPR, and spectroelectrochemical studies, the electronic properties of these complexes have been described in comparison with the MV model complexes and CuA site.
Collapse
Affiliation(s)
- Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | - Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | - Devender Singh
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Marilyn M Olmstead
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| |
Collapse
|
9
|
Copper metabolism in Saccharomyces cerevisiae: an update. Biometals 2020; 34:3-14. [PMID: 33128172 DOI: 10.1007/s10534-020-00264-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Copper is an essential element in all forms of life. It acts as a cofactor of some enzymes and is involved in forming proper protein conformations. However, excess copper ions in cells are detrimental as they can generate free radicals or disrupt protein structures. Therefore, all life forms have evolved conserved and exquisite copper metabolic systems to maintain copper homeostasis. The yeast Saccharomyces cerevisiae has been widely used to investigate copper metabolism as it is convenient for this purpose. In this review, we summarize the mechanism of copper metabolism in Saccharomyces cerevisiae according to the latest literature. In brief, bioavailable copper ions are incorporated into yeast cells mainly via the high-affinity transporters Ctr1 and Ctr3. Then, intracellular Cu+ ions are delivered to different organelles or cuproproteins by different chaperones, including Ccs1, Atx1, and Cox17. Excess copper ions bind to glutathione (GSH), metallothioneins, and copper complexes are sequestered into vacuoles to avoid toxicity. Copper-sensing transcription factors Ace1 and Mac1 regulate the expression of genes involved in copper detoxification and uptake/mobilization in response to changes in intracellular copper levels. Though numerous recent breakthroughs in understanding yeast's copper metabolism have been achieved, some issues remain unresolved. Completely elucidating the mechanism of copper metabolism in yeast helps decode the corresponding system in humans and understand how copper-related diseases develop.
Collapse
|
10
|
Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH. Ag + Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 2020; 92:8923-8932. [PMID: 32515580 PMCID: PMC8114364 DOI: 10.1021/acs.analchem.0c00829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the β-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the β-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the β-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Melenbacher A, Korkola NC, Stillman MJ. The pathways and domain specificity of Cu(i) binding to human metallothionein 1A. Metallomics 2020; 12:1951-1964. [DOI: 10.1039/d0mt00215a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the sequential formation of 3 key Cu(i)–thiolate clusters in human metallothionein 1A using a combination of ESI-MS and phosphorescence lifetime methods.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | | | | |
Collapse
|
12
|
Hecel A, Kolkowska P, Krzywoszynska K, Szebesczyk A, Rowinska-Zyrek M, Kozlowski H. Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Curr Med Chem 2019; 26:624-647. [DOI: 10.2174/0929867324666170920125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
Abstract
Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Paulina Kolkowska
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Karolina Krzywoszynska
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | - Agnieszka Szebesczyk
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | | | - Henryk Kozlowski
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|
13
|
Dennison C. The Coordination Chemistry of Copper Uptake and Storage for Methane Oxidation. Chemistry 2018; 25:74-86. [PMID: 30281847 DOI: 10.1002/chem.201803444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Methanotrophs are remarkable bacteria that utilise large quantities of copper (Cu) to oxidize the potent greenhouse gas methane. To assist in providing the Cu they require for this process some methanotrophs can secrete the Cu-sequestering modified peptide methanobactin. These small molecules bind CuI with very high affinity and crystal structures have given insight into why this is the case, and also how the metal ion may be released within the cell. A much greater proportion of methanotrophs, genomes of which have been sequenced, possess a member of a newly discovered bacterial family of copper storage proteins (the Csps). These are tetramers of four-helix bundles whose cores are lined with Cys residues enabling the binding of large numbers of CuI ions. In methanotrophs, a Csp exported from the cytosol stores CuI for the active site of the ubiquitous enzyme that catalyses the oxidation of methane. The presence of cytosolic Csps, not only in methanotrophs but in a wide range of bacteria, challenges the dogma that these organisms have no requirement for Cu in this location. The properties of the Csps, with an emphasis on CuI binding and the structures of the sites formed, are the primary focus of this review.
Collapse
Affiliation(s)
- Christopher Dennison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
14
|
Maji RC, Das PP, Bhandari A, Mishra S, Maji M, Ghiassi KB, Olmstead MM, Patra AK. Mixed valence copper-sulfur clusters of highest nuclearity: a Cu 8 wheel and a Cu 16 nanoball. Chem Commun (Camb) 2018; 53:3334-3337. [PMID: 27966706 DOI: 10.1039/c6cc08301c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fully spin delocalized mixed valence copper-sulfur clusters, 1 and 2, supported by μ4-sulfido and NSthiol donor ligands are synthesized and characterized. Wheel shaped 1 consists of Cu2S2 units. The unprecedented nanoball 2 can be described as S@Cu4(tetrahedron)@O6(octahedron)@Cu12S12(cage) consisting of both Cu2S2 and (μ4-S)Cu4 units. The Cu2S2 and (μ4-S)Cu4 units resemble biological CuA and CuZ sites respectively.
Collapse
Affiliation(s)
- Ram Chandra Maji
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Partha Pratim Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Milan Maji
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| | - Kamran B Ghiassi
- Department of Chemistry, University of California Davis, CA 95616, USA
| | | | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713 209, West Bengal, India.
| |
Collapse
|
15
|
Abstract
Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review.
Collapse
Affiliation(s)
- Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Sholto David
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jaeick Lee
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
16
|
Zhang SQ, Chino M, Liu L, Tang Y, Hu X, DeGrado WF, Lombardi A. De Novo Design of Tetranuclear Transition Metal Clusters Stabilized by Hydrogen-Bonded Networks in Helical Bundles. J Am Chem Soc 2018; 140:1294-1304. [PMID: 29249157 PMCID: PMC5860638 DOI: 10.1021/jacs.7b08261] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
De novo design provides an attractive approach to test the mechanism by which metalloproteins define the geometry and reactivity of their metal ion cofactors. While there has been considerable progress in designing proteins that bind transition metal ions including iron-sulfur clusters, the design of tetranuclear clusters with oxygen-rich environments has not been accomplished. Here, we describe the design of tetranuclear clusters, consisting of four Zn2+ and four carboxylate oxygens situated at the vertices of a distorted cube-like structure. The tetra-Zn2+ clusters are bound at a buried site within a four-helix bundle, with each helix donating a single carboxylate (Glu or Asp) and imidazole (His) ligand, as well as second- and third-shell ligands. Overall, the designed site consists of four Zn2+ and 16 polar side chains in a fully connected hydrogen-bonded network. The designed proteins have apolar cores at the top and bottom of the bundle, which drive the assembly of the liganding residues near the center of the bundle. The steric bulk of the apolar residues surrounding the binding site was varied to determine how subtle changes in helix-helix packing affect the binding site. The crystal structures of two of four proteins synthesized were in good agreement with the overall design; both formed a distorted cuboidal site stabilized by flanking second- and third-shell interactions that stabilize the primary ligands. A third structure bound a single Zn2+ in an unanticipated geometry, and the fourth bound multiple Zn2+ at multiple sites at partial occupancy. The metal-binding and conformational properties of the helical bundles in solution, probed by circular dichroism spectroscopy, analytical ultracentrifugation, and NMR, were consistent with the crystal structures.
Collapse
Affiliation(s)
- Shao-Qing Zhang
- Department of Chemistry, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396, United States
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, I-80126 Napoli, Italy
| | - Lijun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
- DLX Scientific, Lawrence, KS 66049, United States
| | - Youzhi Tang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
- College of Veterinary Medicine, South China Agricultural University, Guangdong 510642, China
| | - Xiaozhen Hu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, I-80126 Napoli, Italy
| |
Collapse
|
17
|
Mesterházy E, Lebrun C, Crouzy S, Jancsó A, Delangle P. Short oligopeptides with three cysteine residues as models of sulphur-rich Cu(i)- and Hg(ii)-binding sites in proteins. Metallomics 2018; 10:1232-1244. [DOI: 10.1039/c8mt00113h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides mimicking sulphur-rich fragments found in metallothioneins display unexpectedly different behaviours with the two metal ions Hg(ii) and Cu(i).
Collapse
Affiliation(s)
- Edit Mesterházy
- INAC/SYMMES/Université Grenoble Alpes
- CEA
- CNRS
- 38000 Grenoble
- France
| | - Colette Lebrun
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Serge Crouzy
- BIG/LCBM/Université Grenoble Alpes
- CEA
- CNRS
- (UMR 5249)
- 38000 Grenoble
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Pascale Delangle
- INAC/SYMMES/Université Grenoble Alpes
- CEA
- CNRS
- 38000 Grenoble
- France
| |
Collapse
|
18
|
Cabral ACS, Jakovleska J, Deb A, Penner-Hahn JE, Pecoraro VL, Freisinger E. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata. J Biol Inorg Chem 2018; 23:91-107. [PMID: 29218632 PMCID: PMC5756683 DOI: 10.1007/s00775-017-1513-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d 10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding.
Collapse
Affiliation(s)
- Augusto C S Cabral
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jovana Jakovleska
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Eva Freisinger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
19
|
Witte M, Rohrmüller M, Gerstmann U, Henkel G, Schmidt WG, Herres-Pawlis S. [Cu 6 (NGuaS) 6 ] 2+ and its oxidized and reduced derivatives: Confining electrons on a torus. J Comput Chem 2017; 38:1752-1761. [PMID: 28394037 DOI: 10.1002/jcc.24798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/04/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
The hexanuclear thioguanidine mixed-valent copper complex cation [Cu6 (NGuaS)6 ]+2 (NGuaS = o-SC6 H4 NC(NMe2 )2 ) and its oxidized/reduced states are theoretically analyzed by means of density functional theory (DFT) (TPSSh + D3BJ/def2-TZV (p)). A detailed bonding analysis using overlap populations is performed. We find that a delocalized Cu-based ring orbital serves as an acceptor for donated S p electrons. The formed fully delocalized orbitals give rise to a confined electron cloud within the Cu6 S6 cage which becomes larger on reduction. The resulting strong electrostatic repulsion might prevent the fully reduced state. Experimental UV/Vis spectra are explained using time-dependent density functional theory (TD-DFT) and analyzed with a natural transition orbital analysis. The spectra are dominated by MLCTs within the Cu6 S6 core over a wide range but LMCTs are also found. The experimental redshift of the reduced low energy absorption band can be explained by the clustering of the frontier orbitals. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthias Witte
- Lehrstuhl für Bioanorganische Chemie, Fachgruppe Chemie, RWTH Aachen University, Landoltweg 1, Aachen, 52074, Germany
| | - Martin Rohrmüller
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Uwe Gerstmann
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Gerald Henkel
- Lehrstuhl für Anorganische Chemie, Universität Paderborn, Warburger Str.100, Paderborn, 33098, Germany
| | - Wolf Gero Schmidt
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Sonja Herres-Pawlis
- Lehrstuhl für Bioanorganische Chemie, Fachgruppe Chemie, RWTH Aachen University, Landoltweg 1, Aachen, 52074, Germany
| |
Collapse
|
20
|
Baslé A, Platsaki S, Dennison C. Visualizing Biological Copper Storage: The Importance of Thiolate-Coordinated Tetranuclear Clusters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Medical School; Newcastle University; Newcastle upon Tyne NE2 4HH UK
| | - Semeli Platsaki
- Institute for Cell and Molecular Biosciences, Medical School; Newcastle University; Newcastle upon Tyne NE2 4HH UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School; Newcastle University; Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
21
|
Baslé A, Platsaki S, Dennison C. Visualizing Biological Copper Storage: The Importance of Thiolate-Coordinated Tetranuclear Clusters. Angew Chem Int Ed Engl 2017; 56:8697-8700. [PMID: 28504850 PMCID: PMC5519932 DOI: 10.1002/anie.201703107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Indexed: 11/09/2022]
Abstract
Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic-level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4 (S-Cys)4 ] intermediates leading to [Cu4 (S-Cys)5 ]- , [Cu4 (S-Cys)6 ]2- , and [Cu4 (S-Cys)5 (O-Asn)]- clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.
Collapse
Affiliation(s)
- Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Semeli Platsaki
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
22
|
Irvine GW, Stillman MJ. Residue Modification and Mass Spectrometry for the Investigation of Structural and Metalation Properties of Metallothionein and Cysteine-Rich Proteins. Int J Mol Sci 2017; 18:ijms18050913. [PMID: 28445428 PMCID: PMC5454826 DOI: 10.3390/ijms18050913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Structural information regarding metallothioneins (MTs) has been hard to come by due to its highly dynamic nature in the absence of metal-thiolate cluster formation and crystallization difficulties. Thus, typical spectroscopic methods for structural determination are limited in their usefulness when applied to MTs. Mass spectrometric methods have revolutionized our understanding of protein dynamics, structure, and folding. Recently, advances have been made in residue modification mass spectrometry in order to probe the hard-to-characterize structure of apo- and partially metalated MTs. By using different cysteine specific alkylation reagents, time dependent electrospray ionization mass spectrometry (ESI-MS), and step-wise “snapshot” ESI-MS, we are beginning to understand the dynamics of the conformers of apo-MT and related species. In this review we highlight recent papers that use these and similar techniques for structure elucidation and attempt to explain in a concise manner the data interpretations of these complex methods. We expect increasing resolution in our picture of the structural conformations of metal-free MTs as these techniques are more widely adopted and combined with other promising tools for structural elucidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| |
Collapse
|
23
|
Calvo J, Jung H, Meloni G. Copper metallothioneins. IUBMB Life 2017; 69:236-245. [PMID: 28296007 DOI: 10.1002/iub.1618] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/16/2017] [Indexed: 11/10/2022]
Abstract
Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017.
Collapse
Affiliation(s)
- Jenifer Calvo
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Hunmin Jung
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
24
|
Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Metallomics 2017; 9:447-462. [DOI: 10.1039/c7mt00041c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Vita N, Landolfi G, Baslé A, Platsaki S, Lee J, Waldron KJ, Dennison C. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Sci Rep 2016; 6:39065. [PMID: 27991525 PMCID: PMC5171941 DOI: 10.1038/srep39065] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 1017 M−1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.
Collapse
Affiliation(s)
- Nicolas Vita
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gianpiero Landolfi
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Semeli Platsaki
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jaeick Lee
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Oppermann A, Dick R, Wehrhahn C, Flörke U, Herres-Pawlis S, Henkel G. Copper(I) Thiolate Heteroadamantane Cage Structures with Relevance to Metalloproteins. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Oppermann
- Fachgruppe Chemie; RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Regina Dick
- Department of Chemistry; Universität Paderborn; Warburger Str. 100 33098 Paderborn Germany
| | - Christoph Wehrhahn
- Department of Chemistry; Universität Paderborn; Warburger Str. 100 33098 Paderborn Germany
| | - Ulrich Flörke
- Department of Chemistry; Universität Paderborn; Warburger Str. 100 33098 Paderborn Germany
| | - Sonja Herres-Pawlis
- Fachgruppe Chemie; RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Gerald Henkel
- Department of Chemistry; Universität Paderborn; Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
27
|
Wezynfeld NE, Stefaniak E, Stachucy K, Drozd A, Płonka D, Drew SC, Krężel A, Bal W. Resistance of Cu(Aβ4-16) to Copper Capture by Metallothionein-3 Supports a Function for the Aβ4-42 Peptide as a Synaptic Cu(II) Scavenger. Angew Chem Int Ed Engl 2016; 55:8235-8. [PMID: 27238224 DOI: 10.1002/anie.201511968] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/23/2015] [Indexed: 01/16/2023]
Abstract
Aβ4-42 is a major species of Aβ peptide in the brains of both healthy individuals and those affected by Alzheimer's disease. It has recently been demonstrated to bind Cu(II) with an affinity approximately 3000 times higher than the commonly studied Aβ1-42 and Aβ1-40 peptides, which are implicated in the pathogenesis of Alzheimer's disease. Metallothionein-3, a protein considered to orchestrate copper and zinc metabolism in the brain and provide antioxidant protection, was shown to extract Cu(II) from Aβ1-40 when acting in its native Zn7 MT-3 form. This reaction is assumed to underlie the neuroprotective effect of Zn7 MT-3 against Aβ toxicity. In this work, we used the truncated model peptides Aβ1-16 and Aβ4-16 to demonstrate that the high-affinity Cu(II) complex of Aβ4-16 is resistant to Zn7 MT-3 reactivity. This indicates that the analogous complex of the full-length peptide Cu(Aβ4-42) will not yield copper to MT-3 in the brain, thus supporting the concept of a physiological role for Aβ4-42 as a Cu(II) scavenger in the synaptic cleft.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Kinga Stachucy
- Laboratory of Chemical Biology, University of Wrocław, Poland
| | - Agnieszka Drozd
- Laboratory of Chemical Biology, University of Wrocław, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Simon C Drew
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
28
|
Wezynfeld NE, Stefaniak E, Stachucy K, Drozd A, Płonka D, Drew SC, Krężel A, Bal W. Resistance of Cu(Aβ4
–
16) to Copper Capture by Metallothionein‐3 Supports a Function for the Aβ4
–
42 Peptide as a Synaptic Cu
II
Scavenger. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina E. Wezynfeld
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Kinga Stachucy
- Laboratory of Chemical Biology University of Wrocław Poland
| | | | - Dawid Płonka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Simon C. Drew
- Florey Department of Neuroscience and Mental Health The University of Melbourne Australia
| | - Artur Krężel
- Laboratory of Chemical Biology University of Wrocław Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| |
Collapse
|
29
|
Tarasava K, Loebus J, Freisinger E. Localization and Spectroscopic Analysis of the Cu(I) Binding Site in Wheat Metallothionein Ec-1. Int J Mol Sci 2016; 17:371. [PMID: 26978358 PMCID: PMC4813231 DOI: 10.3390/ijms17030371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 11/16/2022] Open
Abstract
The early cysteine-labeled metallothionein (MT) from Triticum aestivum (common wheat), denoted Ec-1, features two structurally well-defined domains, γ and βE, coordinating two and four Zn(II) ions, respectively. While the protein is currently assumed to function mainly in zinc homeostasis, a low amount of copper ions was also recently detected in a native Ec-1 sample. To evaluate the observed copper binding in more detail, the recombinant Zn₆Ec-1 form was exposed to different amounts of Cu(I) ions and the resulting species characterized with spectroscopic methods. Data reveal that the first Cu(I) equivalent coordinates exclusively to the N-terminal γ-domain of the protein and replaces one Zn(II) ion. To analyze the ability of the γ-domain for coordination of monovalent metal ions in more detail, the γ-Ec-1 peptide fragment was incubated with increasing amounts of Cu(I) and the process monitored with UV-VIS, circular dichroism, and luminescence spectroscopy. Closely similar spectra are observed regardless if the apo- or the metal ion-loaded and, hence, pre-folded forms, were used for the titration experiments with Cu(I). The results indicate that low amounts of Cu(I) ions displace the two metal ions subsequently and stoichiometrically, despite the different coordination geometry requirements of Cu(I) and Zn(II).
Collapse
Affiliation(s)
| | - Jens Loebus
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Espart A, Gil-Moreno S, Palacios Ò, Capdevila M, Atrian S. Understanding the 7-Cys module amplification of C. neoformans metallothioneins: how high capacity Cu-binding polypeptides are built to neutralize host nutritional immunity. Mol Microbiol 2015; 98:977-92. [PMID: 26287377 DOI: 10.1111/mmi.13171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/27/2022]
Abstract
Cryptococcus neoformans metallothioneins (MTs), CnMT1 and CnMT2, have been identified as essential infectivity and virulence factors of this pathogen. Both MTs are unusually long Cu-thioneins, exhibiting protein architecture and metal-binding abilities compatible with the hypothesis of resulting from three and five tandem repetitions of 7-Cys motives, respectively, each of them folding into Cu5-clusters. Through the study of the Zn(II)- and Cu(I)-binding capabilities of several CnMT1 truncated mutants, we show that a 7-Cys segment of CnMT1 folds into Cu5-species, of additive capacity when joined in tandem. All the obtained Cu-complexes share practically similar architectural features, if judging by their almost equivalent CD fingerprints, and they also share their capacity to restore copper tolerance in MT-devoid yeast cells. Besides the analysis of the modular composition of these long fungal MTs, we evaluate the features of the Cys-rich stretch spacer and flanking sequences that allow the construction of stable metal clusters by adjacent union of binding modules. Overall, our data support a mechanism by which some microbial MTs may have evolved to enlarge their original metal co-ordination capacity under the specific selective pressure of counteracting the Cu-based immunity mechanisms evolved by the infected hosts.
Collapse
Affiliation(s)
- Anna Espart
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Selene Gil-Moreno
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola de Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola de Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola de Vallès, Spain
| | - Sílvia Atrian
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
31
|
Vita N, Platsaki S, Baslé A, Allen SJ, Paterson NG, Crombie AT, Murrell JC, Waldron KJ, Dennison C. A four-helix bundle stores copper for methane oxidation. Nature 2015; 525:140-3. [PMID: 26308900 PMCID: PMC4561512 DOI: 10.1038/nature14854] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/23/2015] [Indexed: 11/09/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase. Certain methanotrophs are also able to switch to using the iron-containing soluble methane monooxygenase to catalyse methane oxidation, with this switchover regulated by copper. Methane monooxygenases are nature's primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and methane monooxygenases have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. Here we discover and characterize a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for particulate methane monooxygenase. Csp1 is a tetramer of four-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realized. Cytosolic homologues of Csp1 are present in diverse bacteria, thus challenging the dogma that such organisms do not use copper in this location.
Collapse
Affiliation(s)
- Nicolas Vita
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Semeli Platsaki
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Stephen J Allen
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Neil G Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
32
|
Jullien AS, Gateau C, Lebrun C, Delangle P. Mercury Complexes with Tripodal Pseudopeptides Derived fromD-Penicillamine Favour a HgS3Coordination. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Elius Hossain M, Mahmudul Hasan M, Halim ME, Ehsan MQ, Halim MA. Interaction between transition metals and phenylalanine: a combined experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:499-508. [PMID: 25528509 DOI: 10.1016/j.saa.2014.11.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/30/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic.
Collapse
Affiliation(s)
- Md Elius Hossain
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Mahmudul Hasan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M E Halim
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Q Ehsan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammad A Halim
- Bangladesh Institute of Computational Chemistry and Biochemistry, 38 Green Road West, Dhaka 1205, Bangladesh.
| |
Collapse
|
34
|
Ahmad S, Espinosa A, Ahmad T, Sohail M, Isab AA, Saleem M, Hameed A, Monim-ul-Mehboob M, Heras ÉDL. Synthesis, theoretical calculations and antimicrobial studies of copper(I) complexes of cysteamine, cysteine and 2-mercaptonicotinic acid. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Palacios Ò, Espart A, Espín J, Ding C, Thiele DJ, Atrian S, Capdevila M. Full characterization of the Cu-, Zn-, and Cd-binding properties of CnMT1 and CnMT2, two metallothioneins of the pathogenic fungus Cryptococcus neoformans acting as virulence factors. Metallomics 2014; 6:279-91. [PMID: 24317230 DOI: 10.1039/c3mt00266g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the full characterization of the metal binding abilities of CnMT1 and CnMT2, two Cryptococcus neoformans proteins recently identified as metallothioneins (MTs), which have been shown to play a crucial role in the virulence and pathogenicity of this human-infecting fungus. In this work, we first performed a thorough in silico study of the CnMT1 and CnMT2 genes, cDNAs and corresponding encoded products. Subsequently, the Zn(II)-, Cd(II)- and Cu(I) binding abilities of both proteins were fully determined through the analysis of the metal-to-protein stoichiometries and the structural features (determined by ESI-MS, CD, ICP-AES and UV-vis spectroscopies) of the corresponding recombinant Zn-, Cd- and Cu-MT preparations synthesized in metal-enriched media. Finally, the analysis of the Zn/Cd and Zn/Cu replacement processes of the respective Zn-MT complexes when allowed to react with Cd(II) or Cu(I) aqueous solutions was performed. Comprehensive consideration of all gathered results allows us to consider both isoforms as genuine copper-thioneins, and led to the identification of unprecedented Cu5-core clusters in MTs. CnMT1 and CnMT2 polypeptides appear to be evolutionarily related to the small fungal MTs, probably by ancient tandem-duplication events responding to a highly selective pressure to chelate copper, and far from the properties of Zn- and Cd-thioneins. Finally, we propose a modular structure of the Cu-CnMT1 and Cu-CnMT2 complexes on the basis of Cu5 clusters, concordantly with the modular structure of the sequence of CnMT1 and CnMT2, constituted by three and five Cys-rich units, respectively.
Collapse
Affiliation(s)
- Òscar Palacios
- Dept. de Química, Fac. de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Tomas M, Pagani MA, Andreo CS, Capdevila M, Bofill R, Atrian S. His-containing plant metallothioneins: comparative study of divalent metal-ion binding by plant MT3 and MT4 isoforms. J Biol Inorg Chem 2014; 19:1149-64. [PMID: 24951240 DOI: 10.1007/s00775-014-1170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/31/2014] [Indexed: 11/30/2022]
Abstract
Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.
Collapse
Affiliation(s)
- Mireia Tomas
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08093, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Jullien AS, Gateau C, Lebrun C, Kieffer I, Testemale D, Delangle P. d-Penicillamine Tripodal Derivatives as Efficient Copper(I) Chelators. Inorg Chem 2014; 53:5229-39. [DOI: 10.1021/ic5004319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne-Solène Jullien
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| | - Christelle Gateau
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| | - Colette Lebrun
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| | - Isabelle Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers
de Grenoble, UMS 832 CNRS Université Joseph Fourier, F-38041 Grenoble cedex 9, France
| | - Denis Testemale
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Université Grenoble Alpes, Institut
NEEL, F-38042 Grenoble, France
- CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Pascale Delangle
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| |
Collapse
|
38
|
Gateau C, Delangle P. Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson's disease. Ann N Y Acad Sci 2014; 1315:30-6. [DOI: 10.1111/nyas.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christelle Gateau
- Laboratoire Reconnaissance Ionique et Chimie de Coordination; Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB; Grenoble France
| | - Pascale Delangle
- Laboratoire Reconnaissance Ionique et Chimie de Coordination; Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB; Grenoble France
| |
Collapse
|
39
|
|
40
|
Sutherland DEK, Stillman MJ. Challenging conventional wisdom: single domain metallothioneins. Metallomics 2014; 6:702-28. [DOI: 10.1039/c3mt00216k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metallation studies of human metallothioneins support the role of single metal-binding-domains as commonplace with the typical two-domain-cluster structure as exceptional.
Collapse
|
41
|
Leitenmaier B, Küpper H. Compartmentation and complexation of metals in hyperaccumulator plants. FRONTIERS IN PLANT SCIENCE 2013; 4:374. [PMID: 24065978 PMCID: PMC3778397 DOI: 10.3389/fpls.2013.00374] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs.
Collapse
Affiliation(s)
| | - Hendrik Küpper
- Fachbereich Biologie, Universität KonstanzKonstanz, Germany
| |
Collapse
|
42
|
Kloss F, Pidot S, Goerls H, Friedrich T, Hertweck C. Formation of a Dinuclear Copper(I) Complex from theClostridium-Derived Antibiotic Closthioamide. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Kloss F, Pidot S, Goerls H, Friedrich T, Hertweck C. Formation of a dinuclear copper(I) complex from the Clostridium-derived antibiotic closthioamide. Angew Chem Int Ed Engl 2013; 52:10745-8. [PMID: 24039060 DOI: 10.1002/anie.201304714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Kloss
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena (Germany)
| | | | | | | | | |
Collapse
|
44
|
Jullien AS, Gateau C, Kieffer I, Testemale D, Delangle P. X-ray Absorption Spectroscopy Proves the Trigonal-Planar Sulfur-Only Coordination of Copper(I) with High-Affinity Tripodal Pseudopeptides. Inorg Chem 2013; 52:9954-61. [DOI: 10.1021/ic401206u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anne-Solène Jullien
- Service de Chimie Inorganique et Biologique (UMR_E 3 CEA UJF), Commissariat
à l′Energie Atomique et aux Energies Alternatives, INAC, 17 rue des martyrs, 38054 Grenoble Cedex 9, France
| | - Christelle Gateau
- Service de Chimie Inorganique et Biologique (UMR_E 3 CEA UJF), Commissariat
à l′Energie Atomique et aux Energies Alternatives, INAC, 17 rue des martyrs, 38054 Grenoble Cedex 9, France
| | - Isabelle Kieffer
- BM30B/FAME beamline, European Synchotron Radiation Facility (ESRF), F-38043
Grenoble Cedex 9, France
- Observatoire des Sciences de l′Université de Grenoble, UMS 832 CNRS Université Joseph Fourier, F-38041
Grenoble Cedex 9, France
| | - Denis Testemale
- BM30B/FAME beamline, European Synchotron Radiation Facility (ESRF), F-38043
Grenoble Cedex 9, France
- Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France
| | - Pascale Delangle
- Service de Chimie Inorganique et Biologique (UMR_E 3 CEA UJF), Commissariat
à l′Energie Atomique et aux Energies Alternatives, INAC, 17 rue des martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
45
|
Palumaa P. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett 2013; 587:1902-10. [PMID: 23684646 DOI: 10.1016/j.febslet.2013.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Copper chaperones compose a specific class of proteins assuring safe handling and specific delivery of potentially harmful copper ions to a variety of essential copper proteins. Copper chaperones are structurally heterogeneous and can exist in multiple metal-loaded as well as oligomeric forms. Moreover, many copper chaperones can exist in various oxidative states and participate in redox catalysis, connected with their functioning. This review is focused on the analysis of the structural and functional properties of copper chaperones and their partners, which allowed us to define specific regulatory principles in copper metabolism connected with copper-induced conformational control of copper proteins.
Collapse
Affiliation(s)
- Peep Palumaa
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
46
|
Wan X, Schicht O, Freisinger E. Copper(I) Coordination by Two Plant Metallothioneins. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Pérez-Rafael S, Pagani A, Palacios Ò, Dallinger R, Capdevila M, Atrian S. The Role of Histidine in a Copper-Specific Metallothionein. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Blindauer CA. Lessons on the critical interplay between zinc binding and protein structure and dynamics. J Inorg Biochem 2013; 121:145-55. [PMID: 23376625 DOI: 10.1016/j.jinorgbio.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 02/05/2023]
Abstract
Zinc is one of the most important micronutrients for virtually all living organisms, and hence, it is important to understand the molecular mechanisms for its homeostasis. Besides proteins involved in transmembrane transport, both extra- and intracellular zinc-binding proteins play important roles in the respective metabolic networks. Important examples for extracellular zinc transporters are mammalian serum albumins, and for intracellular zinc handling, certain metallothioneins are of relevance. The availability of protein structures including relevant metal binding sites is a fundamental prerequisite to decipher the mechanisms that govern zinc binding dynamics in these proteins, but their determination can prove to be surprisingly challenging. Due to the spectroscopic silence of Zn(2+), combinations of biophysical techniques including electrospray ionisation mass spectrometry (ESI-MS) and multinuclear NMR, isothermal titration calorimetry (ITC) and extended X-ray absorption fine structure (EXAFS) spectroscopy, coupled with site-directed mutagenesis and molecular modelling have proven to be valuable approaches to understand not only the zinc-binding properties of metallothioneins and albumins, but also the influence of other physiologically relevant competing agents. These studies have demonstrated why the bacterial metallothionein SmtA contains a site inert towards exchange with Cd(2+), why the plant metallothionein EC from wheat is partially unfolded in the presence of Cd(2+), and how fatty acids impact on the zinc-binding ability of mammalian serum albumins.
Collapse
|
49
|
|
50
|
Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 2013; 5:1146-69. [DOI: 10.1039/c3mt00072a] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|