1
|
Geist JL, Lee CY, Strom JM, de Jesús Naveja J, Luck K. Generation of a high confidence set of domain-domain interface types to guide protein complex structure predictions by AlphaFold. Bioinformatics 2024; 40:btae482. [PMID: 39171834 PMCID: PMC11361816 DOI: 10.1093/bioinformatics/btae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
MOTIVATION While the release of AlphaFold (AF) represented a breakthrough for the prediction of protein complex structures, its sensitivity, especially when using full length protein sequences, still remains limited. Modeling success rates might increase if AF predictions were guided by likely interacting protein fragments. This approach requires available sets of highly confident protein-protein interface types. Computational resources, such as 3did, infer interacting globular domain types from observed contacts in protein structures. Assessing the accuracy of these predicted interface types is difficult because we lack hand-curated reference sets of verified domain-domain interface (DDI) types. RESULTS To improve protein complex modeling of DDIs by AF, we manually inspected 80 randomly selected DDI types from the 3did resource to generate a first reference set of DDI types. Identified cases of DDI type nonapproval (40%) primarily resulted from inaccurate Pfam domain matches, crystal contacts, and synthetic protein constructs. Using logistic regression, we predicted a subset of 2411 out of 5724 considered DDI types in 3did to be of high confidence, which we subsequently applied to 53 000 human-protein interactions to predict DDIs followed by AF modeling. We obtained highly confident AF models for 604 out of 1129 predicted DDIs. Of note, for 47% of them no confident AF structural model could be obtained using full length protein sequences. AVAILABILITY AND IMPLEMENTATION Code is available at https://github.com/KatjaLuckLab/DDI_manuscript.
Collapse
Affiliation(s)
| | - Chop Yan Lee
- Institute of Molecular Biology (IMB) gGmbH, Mainz 55128, Germany
| | | | - José de Jesús Naveja
- Institute of Molecular Biology (IMB) gGmbH, Mainz 55128, Germany
- 3rd Medical Department, University Medical Center, Johannes Gutenberg University Mainz, Mainz 55131, Germany
- University Cancer Center, University Medical Center, Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, Mainz 55128, Germany
| |
Collapse
|
2
|
Wang H, Xiao H, Feng B, Lan Y, Fung CW, Zhang H, Yan G, Lian C, Zhong Z, Li J, Wang M, Wu AR, Li C, Qian PY. Single-cell RNA-seq reveals distinct metabolic "microniches" and close host-symbiont interactions in deep-sea chemosynthetic tubeworm. SCIENCE ADVANCES 2024; 10:eadn3053. [PMID: 39047091 PMCID: PMC11268408 DOI: 10.1126/sciadv.adn3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, Paraescarpia echinospica. Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao, China
| | - Hongxiu Xiao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Buhan Feng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Cheuk Wang Fung
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huan Zhang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chao Lian
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Zhaoshan Zhong
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Jing Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Minxiao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Angela Ruohao Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chaolun Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Science, Guanzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
3
|
Klier KM, Martin C, Langwig MV, Anantharaman K. Evolutionary history and origins of Dsr-mediated sulfur oxidation. THE ISME JOURNAL 2024; 18:wrae167. [PMID: 39206688 PMCID: PMC11406059 DOI: 10.1093/ismejo/wrae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms play vital roles in sulfur cycling through the oxidation of elemental sulfur and reduction of sulfite. These metabolisms are catalyzed by dissimilatory sulfite reductases (Dsr) functioning in either the reductive or reverse, oxidative direction. Dsr-mediated sulfite reduction is an ancient metabolism proposed to have fueled energy metabolism in some of Earth's earliest microorganisms, whereas sulfur oxidation is believed to have evolved later in association with the widespread availability of oxygen on Earth. Organisms are generally believed to carry out either the reductive or oxidative pathway, yet organisms from diverse phyla have been discovered with gene combinations that implicate them in both pathways. A comprehensive investigation into the metabolisms of these phyla regarding Dsr is currently lacking. Here, we selected one of these phyla, the metabolically versatile candidate phylum SAR324, to study the ecology and evolution of Dsr-mediated metabolism. We confirmed that diverse SAR324 encode genes associated with reductive Dsr, oxidative Dsr, or both. Comparative analyses with other Dsr-encoding bacterial and archaeal phyla revealed that organisms encoding both reductive and oxidative Dsr proteins are constrained to a few phyla. Further, DsrAB sequences from genomes belonging to these phyla are phylogenetically positioned at the interface between well-defined oxidative and reductive bacterial clades. The phylogenetic context and dsr gene content in these organisms points to an evolutionary transition event that ultimately gave way to oxidative Dsr-mediated metabolism. Together, this research suggests that SAR324 and other phyla with mixed dsr gene content are associated with the evolution and origins of Dsr-mediated sulfur oxidation.
Collapse
Affiliation(s)
- Katherine M Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Marguerite V Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME COMMUNICATIONS 2024; 4:ycad017. [PMID: 38317822 PMCID: PMC10839748 DOI: 10.1093/ismeco/ycad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
5
|
Jespersen M, Wagner T. Assimilatory sulfate reduction in the marine methanogen Methanothermococcus thermolithotrophicus. Nat Microbiol 2023:10.1038/s41564-023-01398-8. [PMID: 37277534 DOI: 10.1038/s41564-023-01398-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F420-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role.
Collapse
Affiliation(s)
- Marion Jespersen
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tristan Wagner
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
6
|
Hu L, Wang Y, Ci M, Long Y. Unravelling microbial drivers of the sulfate-reduction process inside landfill using metagenomics. CHEMOSPHERE 2023; 313:137537. [PMID: 36521740 DOI: 10.1016/j.chemosphere.2022.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is one of the common landfill odor. This research demonstrates that the sulfate transformation behavior is significantly enhanced during the landfill process, accompanied by a shift in microbial structure. The relative abundance of dissimilatory sulfate reduction (DSR) and thiosulfate oxidation by SOX (sulfur-oxidation) complex gradually decreases through the landfill processes while the assimilatory sulfate reduction (ASR) demonstrates the opposite behavior. The major module for landfill sulfate reduction is ASR, accounting for 31.72% ± 2.84% of sulfate metabolism. Based on the functional genes for the sulfate pathway, the drivers for sulfate biotransformation in landfills were determined and further identified their contribution in the sulfate metabolism during landfill processes. Pseudomonas, Methylocaldum, Bacillus, Methylocystis and Hyphomicrobium were the top 5 contributors for ASR pathway, and only one genus Pseudomonas was found for DSR pathway. Among the 26 high-quality metagenome-assembled genomes of sulfate functional species, 24 were considered novel species for sulfuric metabolism. Overall, this study provides unique insight into the sulfate transformation process related to the H2S odor control in landfill management.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
7
|
Nguyen PM, Do PT, Pham YB, Doan TO, Nguyen XC, Lee WK, Nguyen DD, Vadiveloo A, Um MJ, Ngo HH. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158203. [PMID: 36044953 DOI: 10.1016/j.scitotenv.2022.158203] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Sulfur (S) is a crucial component in the environment and living organisms. This work is the first attempt to provide an overview and critical discussion on the roles, mechanisms, and environmental applications of sulfur-oxidizing bacteria (SOB). The findings reveal that key enzymes of SOB embarked on oxidation of sulfide, sulfite, thiosulfate, and elemental S. Conversion of reduced S compounds was oxidatively catalyzed by various enzymes (e.g. sulfide: quinone oxidoreductase, flavocytochrome c-sulfide dehydrogenase, dissimilatory sulfite reductase, heterodisulfide reductase-like proteins). Environmental applications of SOB discussed include detoxifying hydrogen sulfide, soil bioremediation, and wastewater treatment. SOB producing S0 engaged in biological S soil amendments (e.g. saline-alkali soil remediation, the oxidation of sulfide-bearing minerals). Biotreatment of H2S using SOB occurred under both aerobic and anaerobic conditions. Sulfide, nitrate, and sulfamethoxazole were removed through SOB suspension cultures and S0-based carriers. Finally, this work presented future perspectives on SOB development, including S0 recovery, SOB enrichment, field measurement and identification of sulfur compounds, and the development of mathematical simulation.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Phuc Thi Do
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Key Laboratory of Enzyme and Protein Technology (KLEPT), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Yen Bao Pham
- Key Laboratory of Enzyme and Protein Technology (KLEPT), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Thi Oanh Doan
- Faculty of Environment, Ha Noi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Ha Noi, Vietnam
| | - Xuan Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.
| | - Woo Kul Lee
- Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City, 755414, Vietnam; Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education, 90 South Street, Murdoch, WA 6150, Australia
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
8
|
da Silva TU, Pougy KDC, Albuquerque MG, Lima CHDS, Machado SDP. Molecular dynamics simulations of aqueous systems of inhibitor candidates for adenosine-5’-phosphosufate reductase. J Biomol Struct Dyn 2022; 41:2466-2477. [PMID: 35100944 DOI: 10.1080/07391102.2022.2033137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Molecular dynamics (MD) simulations were used to evaluate some chelating agents as potential candidates to inhibitors for dissimilatory adenosine-5'-phosphosulfate reductase (APSrAB). Molecular docking methods were used to evaluate the best binding modes of these molecules to the enzyme at two binding sites: of the substrate (enzyme active site) by mean the redocking protocol of substrate; and of one of the [Fe4S4]2+ groups by mean of the clusterization protocol. The best docking poses were selected by criteria such as low energy and RMSD (redocking) and the cluster with the higher number of similar poses (clusterization), which were submitted to MD simulations. RMSD, RDF, and hydrogen bonds results revelated that all ligands left the cube site, while in the active site, some ligands remained in their docking region, pointing to the enzyme active site as the best target for the selected ligands. The binding energy results of ligands hydroxamic acid (HXA) and catechol (CAT) showed that they bonded favorably to the enzyme and key residues of the active site contributed significantly to the protein-ligand bind, indicating HAX and CAT may compete with the substrate for interactions with these residues and displaying potential as candidates for experimental studies about APSrAB inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
|
9
|
Iyer A, Reis RAG, Agniswamy J, Weber IT, Gadda G. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Arch Biochem Biophys 2022; 715:109100. [PMID: 34864048 DOI: 10.1016/j.abb.2021.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) catalyzes the flavin-dependent oxidation of d-arginine and other d-amino acids. Here, we report the crystal structure at 1.29 Å resolution for PaDADH-Y249F expressed and co-crystallized with d-arginine. The overall structure of PaDADH-Y249F resembled PaDADH-WT, but the electron density for the flavin cofactor was ambiguous, suggesting the presence of modified flavins. Electron density maps and mass spectrometric analysis confirmed the presence of both N5-(4-guanidino-oxobutyl)-FAD and 6-OH-FAD in a single crystal of PaDADH-Y249F and helped with the further refinement of the X-ray crystal structure. The versatility of the reduced flavin is apparent in the PaDADH-Y249F structure and is evidenced by the multiple functions it can perform in the same active site.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
10
|
Kolata P, Efremov RG. Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. eLife 2021; 10:e68710. [PMID: 34308841 PMCID: PMC8357420 DOI: 10.7554/elife.68710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Respiratory complex I is a multi-subunit membrane protein complex that reversibly couples NADH oxidation and ubiquinone reduction with proton translocation against transmembrane potential. Complex I from Escherichia coli is among the best functionally characterized complexes, but its structure remains unknown, hindering further studies to understand the enzyme coupling mechanism. Here, we describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs. The structure of this mesophilic bacterial complex I displays highly dynamic connection between the peripheral and membrane domains. The peripheral domain assembly is stabilized by unique terminal extensions and an insertion loop. The membrane domain structure reveals novel dynamic features. Unusual conformation of the conserved interface between the peripheral and membrane domains suggests an uncoupled conformation of the complex. Considering constraints imposed by the structural data, we suggest a new simple hypothetical coupling mechanism for the molecular machine.
Collapse
Affiliation(s)
- Piotr Kolata
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
11
|
Neukirchen S, Sousa FL. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb Genom 2021; 7. [PMID: 34241589 PMCID: PMC8477390 DOI: 10.1099/mgen.0.000603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current methods in comparative genomic analyses for metabolic potential prediction of proteins involved in, or associated with the Dsr (dissimilatory sulphite reductase)-dependent dissimilatory sulphur metabolism are both time-intensive and computationally challenging, especially when considering metagenomic data. We developed DiSCo, a Dsr-dependent dissimilatory sulphur metabolism classification tool, which automatically identifies and classifies the protein type from sequence data. It takes user-supplied protein sequences and lists the identified proteins and their classification in terms of protein family and predicted type. It can also extract the sequence data from user-input to serve as basis for additional downstream analyses. DiSCo provides the metabolic functional prediction of proteins involved in Dsr-dependent dissimilatory sulphur metabolism with high levels of accuracy in a fast manner. We ran DiSCo against a dataset composed of over 190 thousand (meta)genomic records and efficiently mapped Dsr-dependent dissimilatory sulphur proteins in 1798 lineages across both prokaryotic domains. This allowed the identification of new micro-organisms belonging to Thaumarchaeota and Spirochaetes lineages with the metabolic potential to use the Dsr-pathway for energy conservation. DiSCo is implemented in Perl 5 and freely available under the GNU GPLv3 at https://github.com/Genome-Evolution-and-Ecology-Group-GEEG/DiSCo.
Collapse
Affiliation(s)
- Sinje Neukirchen
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
12
|
Vanoni MA. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol 2021; 11:210010. [PMID: 33947244 PMCID: PMC8097209 DOI: 10.1098/rsob.210010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Iron-sulfur (Fe-S) flavoproteins form a broad and growing class of complex, multi-domain and often multi-subunit proteins coupling the most ancient cofactors (the Fe-S clusters) and the most versatile coenzymes (the flavin coenzymes, FMN and FAD). These enzymes catalyse oxidoreduction reactions usually acting as switches between donors of electron pairs and acceptors of single electrons, and vice versa. Through selected examples, the enzymes' structure−function relationships with respect to rate and directionality of the electron transfer steps, the role of the apoprotein and its dynamics in modulating the electron transfer process will be discussed.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
13
|
da Silva TU, Pougy KDC, Albuquerque MG, da Silva Lima CH, Machado SDP. Development of parameters compatible with the CHARMM36 force field for [Fe 4S 4] 2+ clusters and molecular dynamics simulations of adenosine-5'-phosphosulfate reductase in GROMACS 2019. J Biomol Struct Dyn 2020; 40:3481-3491. [PMID: 33183173 DOI: 10.1080/07391102.2020.1847687] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DFT calculations were used to obtain parameters compatible with the CHARMM36 force field for iron-sulfur clusters (Fe-S) of the type [Fe4S4]2+ that are coordinated to dissimilatory adenosine-5'-phosphosulfate reductase (APSrAB). Classical molecular dynamics (MD) simulations were performed on two APSrAB systems to validate the parameters and verify the stability of the studied systems. The time analysis of the parameters inserted into the force field was in reasonable agreement with the experimental X-ray diffraction data. The analysis of the time evolution of the studied systems indicated that these systems and, in particular, the clusters in their respective cavities had a good stability and were in agreement with what was observed in previous works. The parameters obtained provide the basis for the study of APSrAB as well as other systems that contain [Fe4S4]2+ through the CHARMM36 force field.
Collapse
|
14
|
Wójcik-Augustyn A, Johansson AJ, Borowski T. Reaction mechanism catalyzed by the dissimilatory adenosine 5'-phosphosulfate reductase. Adenosine 5'-monophosphate inhibitor and key role of arginine 317 in switching the course of catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148333. [PMID: 33130026 DOI: 10.1016/j.bbabio.2020.148333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
The present research is a continuation of our work on dissimilatory reduction pathway of sulfate - involved in biogeochemical sulfur turnover. Adenosine 5'-phosphosulfate reductase (APSR) is the second enzyme in the dissimilatory pathway of the sulfate to sulfide reduction. It reversibly catalyzes formation of the sulfite anion (HSO3-) from adenosine 5'-phosphosulfate (APS) - the activated form of sulfate provided by ATP sulfurylase (ATPS). Two electrons required for this redox reaction derive from reduced FAD cofactor, which is suggested to be involved directly in the catalysis by formation of FADH-SO3- intermediate. The present work covers quantum-mechanical (QM) studies on APSR reaction performed for eight models of APSR active site. The cluster models were constructed based on two crystal structures (PDB codes: 2FJA and 2FJB), differing in conformation of Arg317 active site residue. The described results indicated the most feasible mechanism of APSR forward reaction, including formation of FADHN-SO3- adduct (with proton on N5 atom of isoalloxazine), tautomerization of FADHN-SO3- to FADHO-SO3- (with proton on CO moiety of isoalloxazine), and its reductive cleavage to oxidized FAD and sulfite anion. The reverse reaction proceeds in the backward direction. It is suggested that it requires two AMP molecules, one acting as a substrate and another as an inhibitor of forward reaction, which forces change of Arg317 conformation from "arginine in" (2FJA) to "arginine out" (2FJB). Important role of Arg317 in switching the course of the APSR catalytic reaction is revealed by changing the direction of thermodynamic driving force. The presented research also shows the importance of the protonation pattern of the reduced FAD cofactor and protein residues within the active site.
Collapse
Affiliation(s)
- Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University ul. Gronostajowa 7, 30-387 Cracow, Poland.
| | - A Johannes Johansson
- Swedish Nuclear Fuel and Waste Management Co (SKB), Box 3091, 169 03 Solna, Sweden.
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek, 8, 30-239 Cracow, Poland.
| |
Collapse
|
15
|
Beaupre BA, Moran GR. N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position. Front Mol Biosci 2020; 7:598912. [PMID: 33195440 PMCID: PMC7662398 DOI: 10.3389/fmolb.2020.598912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
For three decades the C4a-position of reduced flavins was the known site for covalency within flavoenzymes. The reactivity of this position of the reduced isoalloxazine ring with the dioxygen ground-state triplet established the C4a as a site capable of one-electron chemistry. Within the last two decades new types of reduced flavin reactivity have been documented. These studies reveal that the N5 position is also a protean site of reactivity, that is capable of nucleophilic attack to form covalent bonds with substrates. In addition, though the precise mechanism of dioxygen reactivity is yet to be definitively demonstrated, it is clear that the N5 position is directly involved in substrate oxygenation in some enzymes. In this review we document the lineage of discoveries that identified five unique modes of N5 reactivity that collectively illustrate the versatility of this position of the reduced isoalloxazine ring.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Watanabe T, Kojima H, Umezawa K, Hori C, Takasuka TE, Kato Y, Fukui M. Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera. Front Microbiol 2019; 10:316. [PMID: 30858836 PMCID: PMC6397845 DOI: 10.3389/fmicb.2019.00316] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Even in the current era of metagenomics, the interpretation of nucleotide sequence data is primarily dependent on knowledge obtained from a limited number of microbes isolated in pure culture. Thus, it is of fundamental importance to expand the variety of strains available in pure culture, to make reliable connections between physiological characteristics and genomic information. In this study, two sulfur oxidizers that potentially represent two novel species were isolated and characterized. They were subjected to whole-genome sequencing together with 7 neutrophilic and chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in the obtained genomes were identified and compared with those of isolated sulfur oxidizers in the classes Betaproteobacteria and Gammaproteobacteria. Although the combinations of these genes in the respective genomes are diverse, typical combinations corresponding to three types of core sulfur oxidation pathways were identified. Each pathway involves one of three specific sets of proteins, SoxCD, DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by soeABC is a conserved component in the core pathways lacking SoxCD. Phylogenetically close organisms share same core sulfur oxidation pathway, but a notable exception was observed in the family ‘Sulfuricellaceae’. In this family, some strains have either core pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both pathways. A proteomics analysis showed that proteins constituting the core pathways were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is similar to that of Dsr system, both sets of proteins were detected with high relative abundances in the proteome of a strain possessing genes for these proteins. In addition to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the sequenced genomes. As a result, two strains belonging to the families Thiobacillaceae and Sterolibacteriaceae were observed to harbor genes encoding ArxAB, a type of arsenite oxidase that has been identified in a limited number of bacteria. These findings were made with the newly obtained genomes, including those from 6 genera from which no genome sequence of an isolated organism was previously available. These genomes will serve as valuable references to interpret nucleotide sequences.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Muras V, Toulouse C, Fritz G, Steuber J. Respiratory Membrane Protein Complexes Convert Chemical Energy. Subcell Biochem 2019; 92:301-335. [PMID: 31214991 DOI: 10.1007/978-3-030-18768-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.
Collapse
Affiliation(s)
- Valentin Muras
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Charlotte Toulouse
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
18
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Duarte AG, Santos AA, Pereira IAC. Electron transfer between the QmoABC membrane complex and adenosine 5'-phosphosulfate reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:380-6. [PMID: 26768116 DOI: 10.1016/j.bbabio.2016.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The dissimilatory adenosine 5'-phosphosulfate reductase (AprAB) is a key enzyme in the sulfate reduction pathway that catalyzes the reversible two electron reduction of adenosine 5'-phosphosulfate (APS) to sulfite and adenosine monophosphate (AMP). The physiological electron donor for AprAB is proposed to be the QmoABC membrane complex, coupling the quinone-pool to sulfate reduction. However, direct electron transfer between these two proteins has never been observed. In this work we demonstrate for the first time direct electron transfer between the Desulfovibrio desulfuricans ATCC 27774 QmoABC complex and AprAB. Cyclic voltammetry conducted with the modified Qmo electrode and AprAB in the electrolyte solution presented the Qmo electrochemical signature with two additional well-defined one electron redox processes, attributed to the AprAB FAD redox behavior. Moreover, experiments performed under catalytic conditions using the QmoABC modified electrode, with AprAB and APS in solution, show a catalytic current peak develop in the cathodic wave, attributed to substrate reduction, and which is not observed in the absence of QmoABC. Substrate dependence conducted with different electrode preparations (with and without immobilized Qmo) demonstrated that the QmoABC complex is essential for efficient electron delivery to AprAB, in order to sustain catalysis. These results confirm the role of Qmo in electron transfer to AprAB.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal.
| | - André A Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal.
| |
Collapse
|
20
|
Leavitt WD, Bradley AS, Santos AA, Pereira IAC, Johnston DT. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase. Front Microbiol 2015; 6:1392. [PMID: 26733949 PMCID: PMC4690157 DOI: 10.3389/fmicb.2015.01392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/23/2015] [Indexed: 12/01/2022] Open
Abstract
The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S = 17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S = 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments.
Collapse
Affiliation(s)
- William D Leavitt
- Department of Earth and Planetary Sciences, Harvard UniversityCambridge, MA, USA; Department of Earth and Planetary Sciences, Washington University in St. LouisSt. Louis, MO, USA
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - André A Santos
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal
| | - Inês A C Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| |
Collapse
|
21
|
He Y, Feng X, Fang J, Zhang Y, Xiao X. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin. Front Microbiol 2015; 6:1236. [PMID: 26617579 PMCID: PMC4639633 DOI: 10.3389/fmicb.2015.01236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jing Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China ; Institute of Oceanology, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China ; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai, China ; Institute of Oceanology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
22
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
23
|
Golden E, Karton A, Vrielink A. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. ACTA ACUST UNITED AC 2014; 70:3155-66. [PMID: 25478834 DOI: 10.1107/s139900471402286x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023]
Abstract
Cholesterol oxidase (CO) is a flavoenzyme that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The reductive half reaction occurs via a hydride transfer from the substrate to the FAD cofactor. The structures of CO reduced with dithionite under aerobic conditions and in the presence of the substrate 2-propanol under both aerobic and anaerobic conditions are presented. The 1.32 Å resolution structure of the dithionite-reduced enzyme reveals a sulfite molecule covalently bound to the FAD cofactor. The isoalloxazine ring system displays a bent structure relative to that of the oxidized enzyme, and alternate conformations of a triad of aromatic residues near to the cofactor are evident. A 1.12 Å resolution anaerobically trapped reduced enzyme structure in the presence of 2-propanol does not show a similar bending of the flavin ring system, but does show alternate conformations of the aromatic triad. Additionally, a significant difference electron-density peak is observed within a covalent-bond distance of N5 of the flavin moiety, suggesting that a hydride-transfer event has occurred as a result of substrate oxidation trapping the flavin in the electron-rich reduced state. The hydride transfer generates a tetrahedral geometry about the flavin N5 atom. High-level density-functional theory calculations were performed to correlate the crystallographic findings with the energetics of this unusual arrangement of the flavin moiety. These calculations suggest that strong hydrogen-bond interactions between Gly120 and the flavin N5 centre may play an important role in these structural features.
Collapse
Affiliation(s)
- Emily Golden
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
24
|
Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH. J Bacteriol 2014; 197:29-39. [PMID: 25313388 DOI: 10.1128/jb.02083-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the enzymes for dissimilatory sulfate reduction by microbes have been studied, the mechanisms for transcriptional regulation of the encoding genes remain unknown. In a number of bacteria the transcriptional regulator Rex has been shown to play a key role as a repressor of genes producing proteins involved in energy conversion. In the model sulfate-reducing microbe Desulfovibrio vulgaris Hildenborough, the gene DVU_0916 was observed to resemble other known Rex proteins. Therefore, the DVU_0916 protein has been predicted to be a transcriptional repressor of genes encoding proteins that function in the process of sulfate reduction in D. vulgaris Hildenborough. Examination of the deduced DVU_0916 protein identified two domains, one a winged helix DNA-binding domain common for transcription factors, and the other a Rossman fold that could potentially interact with pyridine nucleotides. A deletion of the putative rex gene was made in D. vulgaris Hildenborough, and transcript expression studies of sat, encoding sulfate adenylyl transferase, showed increased levels in the D. vulgaris Hildenborough Rex (RexDvH) mutant relative to the parental strain. The RexDvH-binding site upstream of sat was identified, confirming RexDvH to be a repressor of sat. We established in vitro that the presence of elevated NADH disrupted the interaction between RexDvH and DNA. Examination of the 5' transcriptional start site for the sat mRNA revealed two unique start sites, one for respiring cells that correlated with the RexDvH-binding site and a second for fermenting cells. Collectively, these data support the role of RexDvH as a transcription repressor for sat that senses the redox status of the cell.
Collapse
|
25
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
The ha72 core gene of baculovirus is essential for budded virus production and occlusion-derived virus embedding, and amino acid K22 plays an important role in its function. J Virol 2013; 88:705-9. [PMID: 24089571 DOI: 10.1128/jvi.02281-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ha72 of Helicoverpa armigera nucleopolyhedrovirus (a homologue of ac78) was identified as a conserved late baculovirus gene and characterized. HA72 localizes in the intranuclear ring zone. By generating mutants, we showed that HA72 is essential for budded virus (BD) production and occlusion-derived virus (ODV) embedding. HA72 also interacted with P33, a baculoviral sulfhydryl oxidase. A point mutation of amino acid 22 from lysine to glutamic acid curtailed BV production and precluded ODV occlusion as well as interaction with P33.
Collapse
|
27
|
Krumholz LR, Wang L, Beck DAC, Wang T, Hackett M, Mooney B, Juba TR, McInerney MJ, Meyer B, Wall JD, Stahl DA. Membrane protein complex of APS reductase and Qmo is present in Desulfovibrio vulgaris and Desulfovibrio alaskensis. Microbiology (Reading) 2013; 159:2162-2168. [DOI: 10.1099/mic.0.063818-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lee R. Krumholz
- Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Luyao Wang
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Tiansong Wang
- Center for Microbial Proteomics, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Murray Hackett
- Center for Microbial Proteomics, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Brian Mooney
- Department of Biochemistry, University of Missouri, USA
| | | | - Michael J. McInerney
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Birte Meyer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Parey K, Fritz G, Ermler U, Kroneck PMH. Conserving energy with sulfate around 100 °C – structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Metallomics 2013; 5:302-17. [DOI: 10.1039/c2mt20225e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Smith KW, Stroupe ME. Mutational Analysis of Sulfite Reductase Hemoprotein Reveals the Mechanism for Coordinated Electron and Proton Transfer. Biochemistry 2012; 51:9857-68. [DOI: 10.1021/bi300947a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyle W. Smith
- Department of Biological Science and Institute of Molecular
Biophysics, Florida State University, Tallahassee, Florida 32306-4380,
United States
| | - M. Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular
Biophysics, Florida State University, Tallahassee, Florida 32306-4380,
United States
| |
Collapse
|
30
|
Grein F, Ramos AR, Venceslau SS, Pereira IAC. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:145-60. [PMID: 22982583 DOI: 10.1016/j.bbabio.2012.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Fabian Grein
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
31
|
Abstract
Studies on sulfur metabolism in archaea have revealed many novel enzymes and pathways and have advanced our understanding on metabolic processes, not only of the archaea, but of biology in general. A variety of dissimilatory sulfur metabolisms, i.e. reactions used for energy conservation, are found in archaea from both the Crenarchaeota and Euryarchaeota phyla. Although not yet fully characterized, major processes include aerobic elemental sulfur (S(0)) oxidation, anaerobic S(0) reduction, anaerobic sulfate/sulfite reduction and anaerobic respiration of organic sulfur. Assimilatory sulfur metabolism, i.e. reactions used for biosynthesis of sulfur-containing compounds, also possesses some novel features. Cysteine biosynthesis in some archaea uses a unique tRNA-dependent pathway. Fe-S cluster biogenesis in many archaea differs from that in bacteria and eukaryotes and requires unidentified components. The eukaryotic ubiquitin system is conserved in archaea and involved in both protein degradation and biosynthesis of sulfur-containing cofactors. Lastly, specific pathways are utilized for the biosynthesis of coenzyme M and coenzyme B, the sulfur-containing cofactors required for methanogenesis.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
32
|
Ramos AR, Keller KL, Wall JD, Pereira IAC. The Membrane QmoABC Complex Interacts Directly with the Dissimilatory Adenosine 5'-Phosphosulfate Reductase in Sulfate Reducing Bacteria. Front Microbiol 2012; 3:137. [PMID: 22536198 PMCID: PMC3333476 DOI: 10.3389/fmicb.2012.00137] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/22/2012] [Indexed: 01/20/2023] Open
Abstract
The adenosine 5′-phosphosulfate reductase (AprAB) is the enzyme responsible for the reduction of adenosine 5′-phosphosulfate (APS) to sulfite in the biological process of dissimilatory sulfate reduction, which is carried out by a ubiquitous group of sulfate reducing prokaryotes. The electron donor for AprAB has not been clearly identified, but was proposed to be the QmoABC membrane complex, since an aprBA–qmoABC gene cluster is found in many sulfate reducing and sulfur-oxidizing bacteria. The QmoABC complex is essential for sulfate reduction, but electron transfer between QmoABC and AprAB has not been reported. In this work we provide the first direct evidence that QmoABC and AprAB interact in Desulfovibrio spp., using co-immunoprecipitation, cross-linking Far-Western blot, tag-affinity purification, and surface plasmon resonance studies. This showed that the QmoABC–AprAB complex has a strong steady-state affinity (KD = 90 ± 3 nM), but has a transient character due to a fast dissociation rate. Far-Western blot identified QmoA as the Qmo subunit most involved in the interaction. Nevertheless, electron transfer from menaquinol analogs to APS through anaerobically purified QmoABC and AprAB could not be detected. We propose that this reaction requires the involvement of a third partner to allow electron flow driven by a reverse electron bifurcation process, i.e., electron confurcation. This process is deemed essential to allow coupling of APS reduction to chemiosmotic energy conservation.
Collapse
Affiliation(s)
- Ana Raquel Ramos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | | | | | | |
Collapse
|
33
|
Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 2012; 14:1333-46. [DOI: 10.1111/j.1462-2920.2012.02716.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Tomii K, Sawada Y, Honda S. Convergent evolution in structural elements of proteins investigated using cross profile analysis. BMC Bioinformatics 2012; 13:11. [PMID: 22244085 PMCID: PMC3398312 DOI: 10.1186/1471-2105-13-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary relations of similar segments shared by different protein folds remain controversial, even though many examples of such segments have been found. To date, several methods such as those based on the results of structure comparisons, sequence-based classifications, and sequence-based profile-profile comparisons have been applied to identify such protein segments that possess local similarities in both sequence and structure across protein folds. However, to capture more precise sequence-structure relations, no method reported to date combines structure-based profiles, and sequence-based profiles based on evolutionary information. The former are generally regarded as representing the amino acid preferences at each position of a specific conformation of protein segment. They might reflect the nature of ancient short peptide ancestors, using the results of structural classifications of protein segments. Results This report describes the development and use of "Cross Profile Analysis" to compare sequence-based profiles and structure-based profiles based on amino acid occurrences at each position within a protein segment cluster. Using systematic cross profile analysis, we found structural clusters of 9-residue and 15-residue segments showing remarkably strong correlation with particular sequence profiles. These correlations reflect structural similarities among constituent segments of both sequence-based and structure-based profiles. We also report previously undetectable sequence-structure patterns that transcend protein family and fold boundaries, and present results of the conformational analysis of the deduced peptide of a segment cluster. These results suggest the existence of ancient short-peptide ancestors. Conclusions Cross profile analysis reveals the polyphyletic and convergent evolution of β-hairpin-like structures, which were verified both experimentally and computationally. The results presented here give us new insights into the evolution of short protein segments.
Collapse
|
35
|
The sulfate-rich and extreme saline sediment of the ephemeral tirez lagoon: a biotope for acetoclastic sulfate-reducing bacteria and hydrogenotrophic methanogenic archaea. Int J Microbiol 2011; 2011:753758. [PMID: 21915180 PMCID: PMC3170894 DOI: 10.1155/2011/753758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.
Collapse
|
36
|
Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough. PLoS One 2011; 6:e21470. [PMID: 21738675 PMCID: PMC3125180 DOI: 10.1371/journal.pone.0021470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/01/2011] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.
Collapse
|
37
|
Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, Meyerdierks A, Widdel F, Shima S. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ Microbiol 2011; 13:1370-9. [DOI: 10.1111/j.1462-2920.2011.02443.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
On the catalytic role of the active site residue E121 of E. coli l-aspartate oxidase. Biochimie 2010; 92:1335-42. [DOI: 10.1016/j.biochi.2010.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022]
|
39
|
Itzhaki Z, Akiva E, Margalit H. Preferential use of protein domain pairs as interaction mediators: order and transitivity. Bioinformatics 2010; 26:2564-70. [DOI: 10.1093/bioinformatics/btq495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Moriguchi T, Ida K, Hikima T, Ueno G, Yamamoto M, Suzuki H. Channeling and conformational changes in the heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96. ACTA ACUST UNITED AC 2010; 148:491-505. [DOI: 10.1093/jb/mvq083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
dos Santos ES, Gritta DS, Taft CA, Almeida PF, Ramos-de-Souza E. Molecular dynamics simulation of the adenylylsulphate reductase from hyperthermophilicArchaeoglobus fulgidus. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927020903177658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Crystal structure of Adenylylsulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechanism involving the C terminus of the beta-subunit. J Bacteriol 2009; 191:7597-608. [PMID: 19820092 DOI: 10.1128/jb.00583-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylylsulfate reductase (adenosine 5'-phosphosulfate [APS] reductase [APSR]) plays a key role in catalyzing APS to sulfite in dissimilatory sulfate reduction. Here, we report the crystal structure of APSR from Desulfovibrio gigas at 3.1-A resolution. Different from the alpha(2)beta(2)-heterotetramer of the Archaeoglobus fulgidus, the overall structure of APSR from D. gigas comprises six alphabeta-heterodimers that form a hexameric structure. The flavin adenine dinucleotide is noncovalently attached to the alpha-subunit, and two [4Fe-4S] clusters are enveloped by cluster-binding motifs. The substrate-binding channel in D. gigas is wider than that in A. fulgidus because of shifts in the loop (amino acid 326 to 332) and the alpha-helix (amino acid 289 to 299) in the alpha-subunit. The positively charged residue Arg160 in the structure of D. gigas likely replaces the role of Arg83 in that of A. fulgidus for the recognition of substrates. The C-terminal segment of the beta-subunit wraps around the alpha-subunit to form a functional unit, with the C-terminal loop inserted into the active-site channel of the alpha-subunit from another alphabeta-heterodimer. Electrostatic interactions between the substrate-binding residue Arg282 in the alpha-subunit and Asp159 in the C terminus of the beta-subunit affect the binding of the substrate. Alignment of APSR sequences from D. gigas and A. fulgidus shows the largest differences toward the C termini of the beta-subunits, and structural comparison reveals notable differences at the C termini, activity sites, and other regions. The disulfide comprising Cys156 to Cys162 stabilizes the C-terminal loop of the beta-subunit and is crucial for oligomerization. Dynamic light scattering and ultracentrifugation measurements reveal multiple forms of APSR upon the addition of AMP, indicating that AMP binding dissociates the inactive hexamer into functional dimers, presumably by switching the C terminus of the beta-subunit away from the active site. The crystal structure of APSR, together with its oligomerization properties, suggests that APSR from sulfate-reducing bacteria might self-regulate its activity through the C terminus of the beta-subunit.
Collapse
|
43
|
Ogata H, Goenka Agrawal A, Kaur AP, Goddard R, Gärtner W, Lubitz W. Purification, crystallization and preliminary X-ray analysis of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki F. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1010-2. [PMID: 18997328 PMCID: PMC2581697 DOI: 10.1107/s1744309108029588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022]
Abstract
Sulfur in its various oxidation states is used for energy conservation in many microorganisms. Adenylylsulfate reductase is a key enzyme in the sulfur-reduction pathway of sulfate-reducing bacteria. The adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki F has been purified and crystallized at 277 K using the vapour-diffusion method with ammonium sulfate as the precipitating agent. A data set was collected to 1.7 A resolution from a single crystal at 100 K using synchrotron radiation. The crystal belonged to space group P3(1), with unit-cell parameters a = b = 125.93, c = 164.24 A. The crystal contained two molecules per asymmetric unit, with a Matthews coefficient (V(M)) of 4.02 A(3) Da(-1); the solvent content was estimated to be 69.4%.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Aruna Goenka Agrawal
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Amrit Pal Kaur
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
44
|
Structure of the Dissimilatory Sulfite Reductase from the Hyperthermophilic Archaeon Archaeoglobus fulgidus. J Mol Biol 2008; 379:1063-74. [DOI: 10.1016/j.jmb.2008.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/03/2008] [Accepted: 04/10/2008] [Indexed: 11/21/2022]
|
45
|
Meyer B, Kuever J. Homology modeling of dissimilatory APS reductases (AprBA) of sulfur-oxidizing and sulfate-reducing prokaryotes. PLoS One 2008; 3:e1514. [PMID: 18231600 PMCID: PMC2211403 DOI: 10.1371/journal.pone.0001514] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/17/2007] [Indexed: 11/22/2022] Open
Abstract
Background The dissimilatory adenosine-5′-phosphosulfate (APS) reductase (cofactors flavin adenine dinucleotide, FAD, and two [4Fe-4S] centers) catalyzes the transformation of APS to sulfite and AMP in sulfate-reducing prokaryotes (SRP); in sulfur-oxidizing bacteria (SOB) it has been suggested to operate in the reverse direction. Recently, the three-dimensional structure of the Archaeoglobus fulgidus enzyme has been determined in different catalytically relevant states providing insights into its reaction cycle. Methodology/Principal Findings Full-length AprBA sequences from 20 phylogenetically distinct SRP and SOB species were used for homology modeling. In general, the average accuracy of the calculated models was sufficiently good to allow a structural and functional comparison between the beta- and alpha-subunit structures (78.8–99.3% and 89.5–96.8% of the AprB and AprA main chain atoms, respectively, had root mean square deviations below 1 Å with respect to the template structures). Besides their overall conformity, the SRP- and SOB-derived models revealed the existence of individual adaptations at the electron-transferring AprB protein surface presumably resulting from docking to different electron donor/acceptor proteins. These structural alterations correlated with the protein phylogeny (three major phylogenetic lineages: (1) SRP including LGT-affected Archaeoglobi and SOB of Apr lineage II, (2) crenarchaeal SRP Caldivirga and Pyrobaculum, and (3) SOB of the distinct Apr lineage I) and the presence of potential APS reductase-interacting redox complexes. The almost identical protein matrices surrounding both [4Fe-4S] clusters, the FAD cofactor, the active site channel and center within the AprB/A models of SRP and SOB point to a highly similar catalytic process of APS reduction/sulfite oxidation independent of the metabolism type the APS reductase is involved in and the species it has been originated from. Conclusions Based on the comparative models, there are no significant structural differences between dissimilatory APS reductases from SRP and SOB; this might be indicative for a similar catalytic process of APS reduction/sulfite oxidation.
Collapse
Affiliation(s)
- Birte Meyer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jan Kuever
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
47
|
Karcher A, Schele A, Hopfner KP. X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi. J Biol Chem 2007; 283:7962-71. [PMID: 18160405 DOI: 10.1074/jbc.m707347200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP binding cassette enzyme ABCE1 (also known as RNase-L (ribonuclease L) inhibitor, Pixie, and HP68), one of the evolutionary most sequence-conserved enzymes, functions in translation initiation, ribosome biogenesis, and human immunodeficiency virus capsid assembly. However, its structural mechanism and biochemical role in these processes have not been revealed. We determined the crystal structure of Pyrococcus abyssi ABCE1 in complex with Mg(2+) and ADP to 2.8A resolution. ABCE1 consists of four structural domains. Two nucleotide binding domains are arranged in a head-to-tail orientation by a hinge domain, suggesting that these domains undergo the characteristic tweezers-like powerstroke of ABC enzymes. In contrast to all other known ABC enzymes, ABCE1 has a N-terminal iron-sulfur-cluster (FeS) domain. The FeS domain contains two [4Fe-4S] clusters and is structurally highly related to bacterial-type ferredoxins. However, one cluster is coordinated by an unusual CX(4)CX(3/4)C triad. Surprisingly, intimate interactions of the FeS domain with the adenine and ribose binding Y-loop on nucleotide binding domain 1 suggest a linkage between FeS domain function and ATP-induced conformational control of the ABC tandem cassette. The structure substantially expands the functional architecture of ABC enzymes and raises the possibility that ABCE1 is a chemomechanical engine linked to a redox process.
Collapse
Affiliation(s)
- Annette Karcher
- Center for Integrated Protein Science and Center for Advanced Photonics at the Gene Center, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany
| | | | | |
Collapse
|
48
|
Meyer B, Kuever J. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. MICROBIOLOGY-SGM 2007; 153:3478-3498. [PMID: 17906146 DOI: 10.1099/mic.0.2007/008250-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92-93 % (2.1-2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent 'authentic' and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.
Collapse
Affiliation(s)
- Birte Meyer
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Jan Kuever
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| |
Collapse
|
49
|
Shibata H, Suzuki K, Kobayashi S. Menaquinone reduction by an HMT2-like sulfide dehydrogenase from Bacillus stearothermophilus. Can J Microbiol 2007; 53:1091-100. [DOI: 10.1139/w07-077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene-encoding HMT2-like sulfide dehydrogenase from Bacillus stearothermophilus JCM2501 was amplified and expressed in Escherichia coli and the enzymatic features were examined. The enzyme was detected mainly in the membrane fraction. It catalyzed the sulfide-dependent menaquinone (MK) reduction showing special enzymatic features distinct from other sulfide–quinone oxidoreductases (SQRs) from autotrophic bacteria. The purified protein from E. coli brought about the sulfide-dependent 2,3-dimethyl-1,4-naphthoquinone (DMN) reduction in vitro. The reduction was accelerated in the presence of either cyanide or 2-mercaptoethanol and phospholipids. The high reduction was followed by a change in Kmvalues for sulfide and DMN. The purified enzyme utilized MK as an electron acceptor in the membrane fraction from E. coli. Under anaerobic conditions, sulfide was oxidized with reduction of fumarate or nitrate via the MK pool. The dehydrogenase was different from SQR in autotrophic bacteria in terms of the low affinity for sulfide and the activity enhancement in the presence of cyanide or 2-mercaptoethanol. The sulfide oxidation via MK in the cellular membrane of Gram-positive bacteria was certified.
Collapse
Affiliation(s)
- Hiroomi Shibata
- School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, 214-8571 Japan
| | - Kuniyuki Suzuki
- School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, 214-8571 Japan
| | - Shigeki Kobayashi
- School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, 214-8571 Japan
| |
Collapse
|
50
|
Shibata H, Kobayashi S. Characterization of a HMT2-like enzyme for sulfide oxidation fromPseudomonas putida. Can J Microbiol 2006; 52:724-30. [PMID: 16917530 DOI: 10.1139/w06-022] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The open reading frame pp0053, which has a high homology with the sequence of mitochondrial sulfide dehydrogenase (HMT2) conferring cadmium tolerance in fission yeast, was amplified from Pseudomonas putida KT2440 and expressed in Escherichia coli JM109(DE3). The isolated and purified PP0053-Hisshowed absorption spectra typical of a flavin adenine dinucleotide (FAD)–binding protein. The PP0053-Hiscatalyzed a transfer of sulfide-sulfur to the thiophilic acceptor, cyanide, which decreased the Kmvalue of the enzyme for sulfide oxidation and elevated the sulfide-dependent quinone reduction. Reaction of the enzyme with cyanide elicited a dose-dependent formation of a charge transfer band, and the FAD-cyanide adduct was supposed to work for a sulfur transfer. The pp0053 deletion from P. putida KT2440 led to activity declines of the intracellular catalase and ubiquinone-H2oxidase. The sulfide-quinone oxidoreductase activity in P. putida KT2440 was attributable to the presence of pp0053, and the activity showed a close relevance to enzymatic activities related to sulfur assimilation.Key words: HMT2-like enzyme, pp0053, Pseudomonas putida, sulfide oxidation.
Collapse
Affiliation(s)
- Hiroomi Shibata
- School of Agriculture, Meiji University, Higahimita 1-1-1, Kawasaki, 214-8571, Japan
| | | |
Collapse
|