1
|
Pezzotti S, Chen W, Novelli F, Yu X, Hoberg C, Havenith M. Terahertz calorimetry spotlights the role of water in biological processes. Nat Rev Chem 2025:10.1038/s41570-025-00712-8. [PMID: 40346278 DOI: 10.1038/s41570-025-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
Terahertz (THz) calorimetry is a framework that allows for the deduction and quantification of changes in solvation entropy and enthalpy associated with biological processes in real-time. Fundamental biological processes are inherently non-equilibrium, and a small imbalance in free energy can trigger protein condensation or folding. Although biophysical techniques typically focus mainly on structural characterization, water is often ignored. Being a generic solvent, the intermolecular protein-water interactions act as a strong competitor for intramolecular protein-protein interactions, leading to a delicate balance between functional structure formation and complete solvation. Characteristics for biological processes are large, but competing enthalpic and entropic solvation contributions to the total Gibbs free energy lead to subtle energy differences of only a few kJ mol-1 that are capable of dictating biological functions. THz calorimetry spotlights these intermolecular coupled protein-water interactions. With experimental advances in THz technology, a new frequency window has opened, which is ideally suited to probe these low-frequency intermolecular interactions. The future impact of these studies is based on the belief that the observed changes in solvation entropy and enthalpy are not secondary effects but dictate biological function.
Collapse
Affiliation(s)
- Simone Pezzotti
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Wanlin Chen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Fabio Novelli
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Xiaoqing Yu
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Claudius Hoberg
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Martina Havenith
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Li Q, Li D, Zhuang B, Zhang W, Feng RR, Gai F. Photophysics of a Nucleoside Analogue: 4-Cyanoindole-2'-deoxyribonucleoside. J Phys Chem B 2025; 129:2978-2985. [PMID: 40047380 DOI: 10.1021/acs.jpcb.5c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
It has been shown that 4-cyanoindole-2'-deoxyribonucleoside (4CNI-NS) is a versatile spectroscopic probe of DNA structure and dynamics, as it can pair with all four natural DNA bases. However, its photophysics have not been examined in detail. Herein, we employed multiple techniques, including static fluorescence spectroscopy, time-resolved fluorescence spectroscopy, transient infrared spectroscopy, and theoretical calculations, to assess the photophysical properties of this nucleoside analogue in a series of solvents. We found that (1) its fluorescence has a large quantum yield (0.85 ± 0.10) and a relatively long decay lifetime (10.3 ± 1.0 ns) in H2O, both of which become smaller in other solvents examined, (2) its maximum fluorescence emission frequency exhibits a linear dependence on the relative polarity index of the solvent, (3) the oscillator strength of its C≡N stretching vibration is increased by a factor of >10 upon transition to its excited electronic state (S1), (4) besides solvent relaxation, a rotational motion around the single bond connecting the pentose group and the indole ring is also present in the S1 state, and (5) in aprotic solvents both processes lead the C≡N stretching frequency (νESA) to shift toward higher frequencies, whereas in protic solvents the effects of these processes are more complex. Taken together, these findings provide a molecular basis for interpreting the spectroscopic signals of this nucleoside analogue in practical applications.
Collapse
Affiliation(s)
- Qingxue Li
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Danqi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Zhuang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Hazra S, Jana B. Evaluating long-range orientational ordering of water around proteins: signature of a tug-of-war scenario. Phys Chem Chem Phys 2025; 27:3930-3940. [PMID: 39902481 DOI: 10.1039/d4cp04451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Long-range perturbations of water structure and dynamics by biomolecules are of great interest owing to their potential role in biomolecular recognition. In this article, we examined the local and long-range orientational structure of water molecules surrounding proteins with different total charges (+8, 0 and -8), both with and without the presence of a physiological salt environment. A prominent population of in-oriented water molecules was observed in the first hydration shell of the proteins, irrespective of their total charges. Starting from the third hydration layer, water molecules primarily reflected the total charge of the respective protein. This long-range ordering persisted up to the ninth hydration layer without a physiological salt environment and vanished beyond the fifth hydration shell in the presence of a physiological salt environment. Long-range orientational ordering around different types of surface atoms of a protein showed a particularly rich and heterogeneous behaviour. When the surface atom's charge and the protein's total charge were opposite, a clear signature of a tug-of-war was demonstrated in the long-range orientational ordering of water molecules. While water molecules reported the surface atom's charge at shorter distances, at longer distances, water molecules reported the total charge of the protein, with a crossover occurring around 10 Å. This phenomenon persisted even in the presence of a physiological salt environment. Evidence of destructive/constructive superposition of water-mediated orientation waves originating from two individual proteins with similar/opposite total charges was also demonstrated. These results are important for understanding long-range water-mediated recognition phenomena among biomolecules (e.g., protein-protein, protein-ligand, and protein-DNA interactions).
Collapse
Affiliation(s)
- Subhabrata Hazra
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Biman Jana
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
4
|
More SR, Jha SK. Multi-Site Red-Edge Excitation Shift Reveals the Residue-Specific Solvation Dynamics during the Native to Amyloid-like Transition of an Amyloidogenic Protein. J Phys Chem B 2025; 129:176-193. [PMID: 39682034 DOI: 10.1021/acs.jpcb.4c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Changes in water-protein interactions are crucial for proteins to achieve functional and nonfunctional conformations during structural transitions by modulating local stability. Amyloid-like protein aggregates in deteriorating neurons are hallmarks of neurodegenerative disorders. These aggregates form through significant structural changes, transitioning from functional native conformations to supramolecular cross-β-sheet structures via misfolded and oligomeric intermediates in a multistep process. However, the site-specific dynamics of water molecules from the native to misfolded conformations and further to oligomeric and compact amyloid structures remain poorly understood. In this study, we used the fluorescence method known as red-edge excitation shift (REES) to investigate the solvation dynamics at specific sites in various equilibrium conformations en route to the misfolding and aggregation of the functional domain of the TDP-43 protein (TDP-43tRRM). We generated three single tryptophan-single cysteine mutants of TDP-43tRRM, with the cysteines at different positions and tryptophan at a fixed position. Each sole cysteine was fluorescently labeled and used as a site-specific fluorophore along with the single tryptophan, creating four monitorable sites for REES studies. By investigating the site-specific extent of REES, we developed a residue-specific solvation dynamics map of TDP-43tRRM during its misfolding and aggregation. Our observations revealed that solvation dynamics progressively became more rigid and heterogeneous to varying extents at different sites during the transition from native to amyloid-like conformations.
Collapse
Affiliation(s)
- Sonal R More
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Khan T, Das N, Bhowmik S, Negi KS, Sen P. Critical Role of Water beyond the Media to Maintain Protein Stability and Activity in Hydrated Deep Eutectic Solvent. J Phys Chem B 2025; 129:162-175. [PMID: 39688336 DOI: 10.1021/acs.jpcb.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hydrated deep eutectic solvents (DESs) are recognized for their potential in biocatalysis due to their tunability, biocompatibility, greenness, and ability to keep protein stable and active. However, the mechanisms governing enzyme stability and activity in DES remain poorly understood. Herein, using bromelain as the model enzyme and acetamide (0.5)/urea(0.3)/sorbitol(0.2) as the model DES, we provide experimental evidence that modulation of associated water plays a key role in dictating protein stability and activity in hydrated DES. Specifically, rigid associated water at higher DES concentrations (beyond 40% v/v) stabilizes bromelain through entropy but destabilizes it through enthalpy. On the other hand, flexible associated water dynamics at lower DES concentrations result in an opposite thermodynamic outcome. Importantly, the bulk water dynamics cannot explain the stability trend, which emphasizes the critical role of water near the protein surface. Strikingly, associated water dynamics also correlates strongly with bromelain's proteolytic activity. An increasing flexibility of the associated water dynamics leads to the enhancement of the activity. This is the first study to experimentally link associated water dynamics to enzyme behavior in hydrated DES, offering insights that could guide future developments in solvent engineering for enzyme catalysis.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
6
|
Penkov NV. Peculiarities of the Dynamical Hydration Shell of Native Conformation Protein Using a Bovine Serum Albumin Example. APPLIED SPECTROSCOPY 2024; 78:1051-1061. [PMID: 38881287 DOI: 10.1177/00037028241261097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This paper describes an approach based on the method of terahertz time-domain spectroscopy, which allows the analysis of dynamical hydration shells of proteins with a thickness of 1-2 nm. Using the example of bovine serum albumin in three conformations, it is shown that the hydration shells of the protein are characterized by increased binding of water molecules in the primary hydration layers, and in more distant areas of hydration, on the contrary, the water structure is somewhat destroyed. The fraction of free or weakly bound molecules, usually observed in the structure of liquid water in hydration shells, become more numerous but its average binding is greater than in undisturbed water. The energy distribution of hydrogen bonds in hydration shells is narrowed compared to undisturbed water. All these manifestations of hydration are most pronounced for the native conformation of the protein. Also, the hydration shells of the native protein are characterized by a smaller number of hydrogen bonds and a tendency to decrease their average energy compared to non-native conformations. The fact of a pronounced peculiarity of the hydration shells of the protein in the native conformation has been noted for different proteins before. However, the methodological approach used in this work for the first time allowed this peculiarity to be described by specific parameters of the intermolecular structure and dynamics of water.
Collapse
Affiliation(s)
- Nikita V Penkov
- Institute of Cell Biophysics, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
7
|
Johny M, Schouder CA, Al-Refaie A, He L, Wiese J, Stapelfeldt H, Trippel S, Küpper J. Water is a radiation protection agent for ionised pyrrole. Phys Chem Chem Phys 2024; 26:13118-13130. [PMID: 38629233 DOI: 10.1039/d3cp03471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.
Collapse
Affiliation(s)
- Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- LIDYL, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ahmed Al-Refaie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
8
|
Zhao J, Yu P, Dong T, Wu Y, Yang F, Wang J. Chasing weakly-bound biological water in aqueous environment near the peptide backbone by ultrafast 2D infrared spectroscopy. Commun Chem 2024; 7:82. [PMID: 38605209 PMCID: PMC11009226 DOI: 10.1038/s42004-024-01170-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
There has been a long-standing debate as to how many hydrogen bonds a peptide backbone amide can form in aqueous solution. Hydrogen-bonding structural dynamics of N-ethylpropionamide (a β-peptide model) in water was examined using infrared (IR) spectroscopy. Two amide-I sub bands arise mainly from amide C=O group that forms strong H-bonds with solvent water molecules (SHB state), and minorly from that involving one weak H-bond with water (WHB state). This picture is supported by molecular dynamics simulations and ab-initio calculations. Further, thermodynamics and kinetics of the SHB and WHB species were examined mainly by chemical-exchange two-dimensional IR spectroscopy, yielding an activation energy for the SHB-to-WHB exchange of 13.25 ± 0.52 kJ mol‒1, which occurs in half picosecond at room temperature. Our results provided experimental evidence of an unstable water molecule near peptide backbone, allowing us to gain more insights into the dynamics of the protein backbone hydration.
Collapse
Affiliation(s)
- Juan Zhao
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Dong
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhou Wu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Cellini A, Shankar MK, Nimmrich A, Hunt LA, Monrroy L, Mutisya J, Furrer A, Beale EV, Carrillo M, Malla TN, Maj P, Vrhovac L, Dworkowski F, Cirelli C, Johnson PJM, Ozerov D, Stojković EA, Hammarström L, Bacellar C, Standfuss J, Maj M, Schmidt M, Weinert T, Ihalainen JA, Wahlgren WY, Westenhoff S. Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography. Nat Chem 2024; 16:624-632. [PMID: 38225270 PMCID: PMC10997514 DOI: 10.1038/s41557-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Madan Kumar Shankar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Leigh Anna Hunt
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Janne A Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Zhu Z, Zhu J, Chang C, Qi C, Zhu Z, Zhao H, Zhang D, Zeng XC, Wang C. Tunable Surface Wettability via Terahertz Electrowave Controlled Vicinal Subnanoscale Water Layer. NANO LETTERS 2024; 24:3243-3248. [PMID: 38427592 DOI: 10.1021/acs.nanolett.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Achieving timely, reversible, and long-range remote tunability over surface wettability is highly demanded across diverse fields, including nanofluidic systems, drug delivery, and heterogeneous catalysis. Herein, using molecular dynamic simulations, we show, for the first time, a theoretical design of electrowetting to achieve remotely controllable surface wettability via using a terahertz wave. The key idea driving the design is the unique terahertz collective vibration identified in the vicinal subnanoscale water layer, which is absent in bulk water, enabling efficient energy transfer from the terahertz wave to the rotational motion of the vicinal subnanoscale water layer. Consequently, a frequency-specific alternating terahertz electric field near the critical strength can significantly affect the local hydrogen-bonding network of the contact water layer on the solid surface, thereby achieving tunable surface wettability.
Collapse
Affiliation(s)
- Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junquan Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Chonghai Qi
- School of Physical and Intelligent Engineering, Jining University, Qufu 273155, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Li H, Zheng YH, Gates WP, Villacorta FJ, Ohira-Kawamura S, Kawakita Y, Ikeda K, Bordallo HN. Role of Exchange Cations and Layer Charge on the Dynamics of Confined Water. J Phys Chem A 2024; 128:261-270. [PMID: 38135662 DOI: 10.1021/acs.jpca.3c05649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Describing the dynamic behavior of water confined in clay minerals is a fascinating challenge and crucial in many research areas, ranging from materials science and geotechnical engineering to environmental sustainability. Water is the most abundant resource on Earth, and the high reactivity of naturally occurring hydrous clay minerals used since prehistoric times for a variety of applications means that water-clay interaction is a ubiquitous phenomenon in nature. We have attempted to experimentally distinguish the rotational dynamics and translational diffusion of two distinct populations of interlayer water, confined and ultraconfined, in the sodium (Na) forms of two smectite clay minerals, montmorillonite (Mt) and hectorite (Ht). Samples hydrated at a pseudo one-layer hydration (1LH) state under ambient conditions were studied with quasi-elastic neutron scattering (QENS) between 150 and 300 K. Using a simplified revised jump-diffusion and rotation-diffusion model (srJRM), we observed that while interlayer water near the ditrigonal cavity in Ht forms strong H-bonds to both adjacent surface O and structural OH, H-bonding of other more prevalent interlayer water with the surface O is weaker compared to Mt, inducing a higher temperature for dynamical changes of confined water. Given the lower layer charge and faster dynamics observed for Ht compared to Mt, we consider this strong evidence confirming the influence of the interlayer cation and surfaces on confined water dynamics.
Collapse
Affiliation(s)
- Hua Li
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Yin-Hao Zheng
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Will P Gates
- Institute for Frontier Materials, Deakin University, Melbourne-Burwood, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - F J Villacorta
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | | | - Yukinobu Kawakita
- Neutron Science Section, MLF Division, J-PARC Center, Tokai 319-1106, Japan
| | - Kazutaka Ikeda
- Neutron Science Section, MLF Division, J-PARC Center, Tokai 319-1106, Japan
- Neutron Industrial Application Promotion Center, CROSS, 203-1 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Heloisa N Bordallo
- The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Khan T, Das N, Negi KS, Bhowmik S, Sen P. Understanding the intricacy of protein in hydrated deep eutectic solvent: Solvation dynamics, conformational fluctuation dynamics, and stability. Int J Biol Macromol 2023; 253:127100. [PMID: 37778586 DOI: 10.1016/j.ijbiomac.2023.127100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Deep eutectic solvents (DESs) are potential biocatalytic media due to their easy preparation, fine-tuneability, biocompatibility, and most importantly, due to their ability to keep protein stable and active. However, there are many unanswered questions and gaps in our knowledge about how proteins behave in these alternate media. Herein, we investigated solvation dynamics, conformational fluctuation dynamics, and stability of human serum albumin (HSA) in 0.5 Acetamide/0.3 Urea/0.2 Sorbitol (0.5Ac/0.3Ur/0.2Sor) DES of varying concentrations to understand the intricacy of protein behaviour in DES. Our result revealed a gradual decrease in the side-chain flexibility and thermal stability of HSA beyond 30 % DES. On the other hand, the associated water dynamics around domain-I of HSA decelerate only marginally with increasing DES content, although viscosity rises considerably. We propose that even though macroscopic solvent properties are altered, a protein feels only an aqueous type of environment in the presence of DES. This is probably the first experimental study to delineate the role of the associated water structure of the enzyme for maintaining its stability inside DES. Although considerable effort is necessary to generalize such claims, it might serve as the basis for understanding why proteins remain stable and active in DES.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
13
|
Negi KS, Das N, Khan T, Sen P. Osmolyte induced protein stabilization: modulation of associated water dynamics might be a key factor. Phys Chem Chem Phys 2023; 25:32602-32612. [PMID: 38009208 DOI: 10.1039/d3cp03357k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The mechanism of protein stabilization by osmolytes remains one of the most important and long-standing puzzles. The traditional explanation of osmolyte-induced stability through the preferential exclusion of osmolytes from the protein surface has been seriously challenged by the observations like the concentration-dependent reversal of osmolyte-induced stabilization/destabilization. The more modern explanation of protein stabilization/destabilization by osmolytes considers an indirect effect due to osmolyte-induced distortion of the water structure. It provides a general mechanism, but there are numerous examples of protein-specific effects, i.e., a particular osmolyte might stabilize one protein, but destabilize the other, that could not be rationalized through such an explanation. Herein, we hypothesized that osmolyte-induced modulation of associated water might be a critical factor in controlling protein stability in such a medium. Taking different osmolytes and papain as a protein, we proved that our proposal could explain protein stability in osmolyte media. Stabilizing osmolytes rigidify associated water structures around the protein, whereas destabilizing osmolytes make them flexible. The strong correlation between the stability and the associated water dynamics, and the fact that such dynamics are very much protein specific, established the importance of considering the modulation of associated water structures in explaining the osmolyte-induced stabilization/destabilization of proteins. More interestingly, we took another protein, bromelain, for which a traditionally stabilizing osmolyte, sucrose, acts as a stabilizer at higher concentrations but as a destabilizer at lower concentrations. Our proposal successfully explains such observations, which is probably impossible by any known mechanisms. We believe this report will trigger much research in this area.
Collapse
Affiliation(s)
- Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
14
|
Vural D, Shrestha UR, Petridis L, Smith JC. Water molecule ordering on the surface of an intrinsically disordered protein. Biophys J 2023; 122:4326-4335. [PMID: 37838830 PMCID: PMC10722392 DOI: 10.1016/j.bpj.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The dynamics and local structure of the hydration water on surfaces of folded proteins have been extensively investigated. However, our knowledge of the hydration of intrinsically disordered proteins (IDPs) is more limited. Here, we compare the local structure of water molecules hydrating a globular protein, lysozyme, and the intrinsically disordered N-terminal of c-Src kinase (SH4UD) using molecular dynamics simulation. The radial distributions from the protein surface of the first and the second hydration shells are similar for the folded protein and the IDP. However, water molecules in the first hydration shell of both the folded protein and the IDP are perturbed from the bulk. This perturbation involves a loss of tetrahedrality, which is, however, significantly more marked for the folded protein than the IDP. This difference arises from an increase in the first hydration shell of the IDP of the fraction of hydration water molecules interacting with oxygen. The water ordering is independent of the compactness of the IDP. In contrast, the lifetimes of water molecules in the first hydration shell increase with IDP compactness, indicating a significant impact of IDP configuration on water surface pocket kinetics, which here is linked to differential pocket volumes and polarities.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics, Marmara University, Istanbul, Türkiye; Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee.
| | - Utsab R Shrestha
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Loukas Petridis
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
15
|
Reza MM, Durán-Hernández J, González-Cano B, Jara-Cortés J, López-Arteaga R, Cadena-Caicedo A, Muñoz-Rugeles L, Hernández-Trujillo J, Peon J. Primary Photophysics of Nicotinamide Chromophores in Their Oxidized and Reduced Forms. J Phys Chem B 2023; 127:8432-8445. [PMID: 37733881 DOI: 10.1021/acs.jpcb.3c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.
Collapse
Affiliation(s)
- Mariana M Reza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Durán-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Beatriz González-Cano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Rafael López-Arteaga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Andrea Cadena-Caicedo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Leonardo Muñoz-Rugeles
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peon
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
16
|
Penkov NV. Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules. Biophys Rev 2023; 15:833-849. [PMID: 37974994 PMCID: PMC10643733 DOI: 10.1007/s12551-023-01131-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
The hydration of biomolecules is one of the fundamental processes underlying the construction of living matter. The formation of the native conformation of most biomolecules is possible only in an aqueous environment. At the same time, not only water affects the structure of biomolecules, but also biomolecules affect the structure of water, forming hydration shells. However, the study of the structure of biomolecules is given much more attention than their hydration shells. A real breakthrough in the study of hydration occurred with the development of the THz spectroscopy method, which showed that the hydration shell of biomolecules is not limited to 1-2 layers of strongly bound water, but also includes more distant areas of hydration with altered molecular dynamics. This review examines the fundamental features of the THz frequency range as a source of information about the structural and dynamic characteristics of water that change during hydration. The applied approaches to the study of hydration shells of biomolecules based on THz spectroscopy are described. The data on the hydration of biomolecules of all main types obtained from the beginning of the application of THz spectroscopy to the present are summarized. The emphasis is placed on the possible participation of extended hydration shells in the realization of the biological functions of biomolecules and at the same time on the insufficient knowledge of their structural and dynamic characteristics.
Collapse
Affiliation(s)
- Nikita V. Penkov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics RAS, 142290 Pushchino, Russia
| |
Collapse
|
17
|
Zhou Y, Bie C, van Zijl PC, Yadav NN. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4778. [PMID: 35642102 PMCID: PMC9708952 DOI: 10.1002/nbm.4778] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 05/23/2023]
Abstract
Magnetic resonance (MR) is a powerful technique for noninvasively probing molecular species in vivo but suffers from low signal sensitivity. Saturation transfer (ST) MRI approaches, including chemical exchange saturation transfer (CEST) and conventional magnetization transfer contrast (MTC), allow imaging of low-concentration molecular components with enhanced sensitivity using indirect detection via the abundant water proton pool. Several recent studies have shown the utility of chemical exchange relayed nuclear Overhauser effect (rNOE) contrast originating from nonexchangeable carbon-bound protons in mobile macromolecules in solution. In this review, we describe the mechanisms leading to the occurrence of rNOE-based signals in the water saturation spectrum (Z-spectrum), including those from mobile and immobile molecular sources and from molecular binding. While it is becoming clear that MTC is mainly an rNOE-based signal, we continue to use the classical MTC nomenclature to separate it from the rNOE signals of mobile macromolecules, which we will refer to as rNOEs. Some emerging applications of the use of rNOEs for probing macromolecular solution components such as proteins and carbohydrates in vivo or studying the binding of small substrates are discussed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong 518055 (China)
| | - Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shanxi 710127 (China)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
18
|
Bacellar C, Rouxel JR, Ingle RA, Mancini GF, Kinschel D, Cannelli O, Zhao Y, Cirelli C, Knopp G, Szlachetko J, Lima FA, Menzi S, Ozerov D, Pamfilidis G, Kubicek K, Khakhulin D, Gawelda W, Rodriguez-Fernandez A, Biednov M, Bressler C, Arrell CA, Johnson PJM, Milne CJ, Chergui M. Ultrafast Energy Transfer from Photoexcited Tryptophan to the Haem in Cytochrome c. J Phys Chem Lett 2023; 14:2425-2432. [PMID: 36862109 DOI: 10.1021/acs.jpclett.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report femtosecond Fe K-edge absorption (XAS) and nonresonant X-ray emission (XES) spectra of ferric cytochrome C (Cyt c) upon excitation of the haem (>300 nm) or mixed excitation of the haem and tryptophan (<300 nm). The XAS and XES transients obtained in both excitation energy ranges show no evidence for electron transfer processes between photoexcited tryptophan (Trp) and the haem, but rather an ultrafast energy transfer, in agreement with previous ultrafast optical fluorescence and transient absorption studies. The reported (J. Phys. Chem. B 2011, 115 (46), 13723-13730) decay times of Trp fluorescence in ferrous (∼350 fs) and ferric (∼700 fs) Cyt c are among the shortest ever reported for Trp in a protein. The observed time scales cannot be rationalized in terms of Förster or Dexter energy transfer mechanisms and call for a more thorough theoretical investigation.
Collapse
Affiliation(s)
- Camila Bacellar
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jérémy R Rouxel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- Univ Lyon, UJM-Saint-Etienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien, UMR 5516, Saint-Etienne F-42023, France
| | - Rebecca A Ingle
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Giulia F Mancini
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
- 2Laboratory for Ultrafast X-ray and Electron Microscopy, Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100 Pavia PV, Italy
| | - Dominik Kinschel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| | - Oliviero Cannelli
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| | - Yang Zhao
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| | - Claudio Cirelli
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | | | - Samuel Menzi
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | | | | | | | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | | | - Mykola Biednov
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
| | | | | | | | - Christopher J Milne
- SwissFEL, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide (LSU), ISIC and Lausanne Centre for Ultrafast Science (LACUS), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Li H, Cao S, Zhang S, Chen J, Xu J, Knutson JR. Ultrafast Förster resonance energy transfer from tyrosine to tryptophan in monellin: potential intrinsic spectroscopic ruler. Phys Chem Chem Phys 2023; 25:7239-7250. [PMID: 36853740 DOI: 10.1039/d2cp05842a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Ultrafast Förster Resonance Energy Transfer (FRET) between tyrosine (Tyr) and tryptophan (Trp) residues in the protein monellin has been investigated using picosecond and femtosecond time-resolved fluorescence spectroscopy. Decay associated spectra (DAS) and time-resolved emission spectra (TRES) taken with the different excitation wavelengths of 275, 290 and 295 nm were constructed via global analysis. At two of those three excitation loci (275 and 290 nm), earmarks of energy transfer from Tyr to Trp in monellin are seen, and particularly when the excitation is 275 nm, the energy transfer between Tyr and Trp clearly changes the signature emission DAS shape to that indicating excited state reaction (especially on the red side of fluorescence emission, near 380 nm). Those FRET signatures may overlap with the conventional signatory DAS in heterogeneous systems. When overlap and addition occur between FRET type DAS and "full positive" QSSQ (quasi-static self-quenching), mixed DAS shapes will emerge that still show "positive blue side and negative red sides", just with zero crossing shifted. In addition, excitation decay associated spectra (EDAS) taken with the different emission wavelengths of 330, 350 and 370 nm were constructed. In the study of protein dynamics, ultrafast FRET between Tyr and Trp could provide a basis for an intrinsic (non-perturbing) "spectroscopic ruler", potentially a powerful tool to detect even slight changes in protein structures.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Simin Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jay R Knutson
- Laboratory of Advanced Microscopy & Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
20
|
Strofaldi A, Quinn MK, Seddon AM, McManus JJ. Polymorphic protein phase transitions driven by surface anisotropy. J Chem Phys 2023; 158:014905. [PMID: 36610968 DOI: 10.1063/5.0125452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phase transitions of proteins are strongly influenced by surface chemical modifications or mutations. Human γD-crystallin (HGD) single-mutants have been extensively studied because they are associated with the onset of juvenile cataract. However, they have also provided a rich library of molecules to examine how specific inter-protein interactions direct protein assembly, providing new insights and valuable experimental data for coarse-grained patchy-particle models. Here, we demonstrate that the addition of new inter-protein interactions by mutagenesis is additive and increases the number and variety of condensed phases formed by proteins. When double mutations incorporating two specific single point mutations are made, the properties of both single mutations are retained in addition to the formation of a new condensed phase. We find that the HGD double-mutant P23VC110M self-assembles into spherical particles with retrograde solubility, orthorhombic crystals, and needle/plate shape crystals, while retaining the ability to undergo liquid-liquid phase separation. This rich polymorphism is only partially predicted by the experimental data on the constituent single mutants. We also report a previously un-characterized amorphous protein particle, with unique properties that differ from those of protein spherulites, protein particulates previously described. The particles we observe are amorphous, reversible with temperature, tens of microns in size, and perfectly spherical. When they are grown on pristine surfaces, they appear to form by homogeneous nucleation, making them unique, and we believe a new form of protein condensate. This work highlights the challenges in predicting protein behavior, which has frustrated rational assembly and crystallization but also provides rich data to develop new coarse-grained models to explain the observed polymorphism.
Collapse
Affiliation(s)
| | - Michelle K Quinn
- Department of Chemistry Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Annela M Seddon
- HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Jennifer J McManus
- HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
21
|
Walhout PK, He Z, Dutagaci B, Nawrocki G, Feig M. Molecular Dynamics Simulations of Rhodamine B Zwitterion Diffusion in Polyelectrolyte Solutions. J Phys Chem B 2022; 126:10256-10272. [PMID: 36440862 PMCID: PMC9813770 DOI: 10.1021/acs.jpcb.2c06281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyelectrolytes continue to find wide interest and application in science and engineering, including areas such as water purification, drug delivery, and multilayer thin films. We have been interested in the dynamics of small molecules in a variety of polyelectrolyte (PE) environments; in this paper, we report simulations and analysis of the small dye molecule rhodamine B (RB) in several very simple polyelectrolyte solutions. Translational diffusion of the RB zwitterion has been measured in fully atomistic, 2 μs long molecular dynamics simulations in four different polyelectrolyte solutions. Two solutions contain the common polyanion sodium poly(styrene sulfonate) (PSS), one with a 30-mer chain and the other with 10 trimers. The other two solutions contain the common polycation poly(allyldimethylammonium) chloride (PDDA), one with two 15-mers and the other with 10 trimers. RB diffusion was also simulated in several polymer-free solutions to verify its known experimental value for the translational diffusion coefficient, DRB, of 4.7 × 10-6 cm2/s at 300 K. RB diffusion was slowed in all four simulated PE solutions, but to varying degrees. DRB values of 3.07 × 10-6 and 3.22 × 10-6 cm2/s were found in PSS 30-mer and PSS trimer solutions, respectively, whereas PDDA 15-mer and trimer solutions yielded values of 2.19 × 10-6 and 3.34 × 10-6 cm2/s. Significant associations between RB and the PEs were analyzed and interpreted via a two-state diffusion model (bound and free diffusion) that describes the data well. Crowder size effects and anomalous diffusion were also analyzed. Finally, RB translation along the polyelectrolytes during association was characterized.
Collapse
Affiliation(s)
| | - Zhe He
- Wheaton College, Chemistry Department, 501 College Ave, Wheaton, IL 60187
| | - Bercem Dutagaci
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| | - Grzegorz Nawrocki
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| | - Michael Feig
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| |
Collapse
|
22
|
Onvlee J, Trippel S, Küpper J. Ultrafast light-induced dynamics in the microsolvated biomolecular indole chromophore with water. Nat Commun 2022; 13:7462. [PMID: 36460654 PMCID: PMC9718776 DOI: 10.1038/s41467-022-33901-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions between proteins and their solvent environment can be studied in a bottom-up approach using hydrogen-bonded chromophore-solvent clusters. The ultrafast dynamics following UV-light-induced electronic excitation of the chromophores, potential radiation damage, and their dependence on solvation are important open questions. The microsolvation effect is challenging to study due to the inherent mix of the produced gas-phase aggregates. We use the electrostatic deflector to spatially separate different molecular species in combination with pump-probe velocity-map-imaging experiments. We demonstrate that this powerful experimental approach reveals intimate details of the UV-induced dynamics in the near-UV-absorbing prototypical biomolecular indole-water system. We determine the time-dependent appearance of the different reaction products and disentangle the occurring ultrafast processes. This approach ensures that the reactants are well-known and that detailed characteristics of the specific reaction products are accessible - paving the way for the complete chemical-reactivity experiment.
Collapse
Affiliation(s)
- Jolijn Onvlee
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
23
|
Morzan UN, Díaz Mirón G, Grisanti L, González Lebrero MC, Kaminski Schierle GS, Hassanali A. Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule? J Phys Chem B 2022; 126:7203-7211. [PMID: 36128666 DOI: 10.1021/acs.jpcb.2c04280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While in the vast majority of cases fluorescence in biological matter has been attributed to aromatic or conjugated groups, peptides associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, or Huntington's, have been recently shown to display an intrinsic visible fluorescence even in the absence of aromatic residues. This has called the attention of researchers from many different fields, trying to understand the origin of this peculiar behavior and, at the same time, motivating the search for novel strategies to control the optical properties of new biophotonic materials. Today, after nearly 15 years of its discovery, there is a growing consensus about the mechanism underlying this phenomenon, namely, that electronic interactions between non-optically active molecules can result in supramolecular assemblies that are fluorescent. Despite this progress, many aspects of this phenomenon remain uncharted territory. In this Perspective, we lay down the state-of-the-art in the field highlighting the open questions from both experimental and theoretical fronts in this fascinating emerging area of non-aromatic fluorescence.
Collapse
Affiliation(s)
- Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gonzalo Díaz Mirón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Luca Grisanti
- Division of Theoretical Physics, Ruđer Bos̆cković Institute, Bijenic̆ka cesta 54, 10000 Zagreb, Croatia
| | - Mariano C González Lebrero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ali Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
24
|
Li H, Jiang G, Jia M, Cao S, Zhang S, Chen J, Sun H, Xu J, Knutson JR. Ultrafast Förster resonance energy transfer between tyrosine and tryptophan: potential contributions to protein-water dynamics measurements. Phys Chem Chem Phys 2022; 24:18055-18066. [PMID: 35861343 DOI: 10.1039/d2cp02139k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ultrafast Förster Resonance Energy Transfer (FRET) between Tyrosine (Tyr, Y) and Tryptophan (Trp, W) in the model peptides Trp-(Pro)n-Tyr (WPnY) has been investigated using a femtosecond up-conversion spectrophotofluorometer. The ultrafast energy transfer process (<100 ps) in short peptides (WY, WPY and WP2Y) has been resolved. In fact, this FRET rate is found to be mixed with the rates of solvent relaxation (SR), ultrafast population decay (QSSQ) and other lifetime components. To further dissect and analyze the FRET, a spectral working model is constructed, and the contribution of a FRET lifetime is separated by reconciling the shapes of decay associated spectra (DAS). Surprisingly, FRET efficiency did not decrease monotonically with the growth of the peptide chain (as expected) but increased first and then decreased. The highest FRET efficiency occurred in peptide WPY. The kinetic results have been accompanied with molecular dynamics simulations that reconcile and explain this strange phenomenon: due to the strong interaction between amino acids, the distance between the donor and receptor in peptide WPY is actually closest, resulting in the fastest FRET. In addition, the FRET lifetimes (τcal) were estimated within the molecular dynamics simulations, and they were consistent with the lifetimes (τexp) separated out by the experimental measurements and the DAS working model. This benchmark study has implications for both previous and future studies of protein ultrafast dynamics. The approach taken can be generalized for the study of proximate tyrosine and tryptophan in proteins and it suggests spectral strategies for extracting mixed rates in other complex FRET problems.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Guanyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jay R Knutson
- Laboratory of Advanced Microscopy & Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
25
|
Fluorescence dynamics of thiophene-based copolymer/fullerene-derivative system as solution and blend film. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Hu K, Matsuura H, Shirakashi R. Stochastic Analysis of Molecular Dynamics Reveals the Rotation Dynamics Distribution of Water around Lysozyme. J Phys Chem B 2022; 126:4520-4530. [PMID: 35675630 DOI: 10.1021/acs.jpcb.2c00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water dynamics is essential to biochemical processes by mediating all such reactions, including biomolecular degeneration in solutions. To disentangle the molecular-scale distribution of water dynamics around a solute biomolecule, we investigated here the rotational dynamics of water around lysozyme by combining molecular dynamics (MD) simulations and broadband dielectric spectroscopy (BDS). A statistical analysis using the relaxation times and trajectories of every single water molecule was proposed, and the two-dimensional probability distribution of water at a distance from the lysozyme surface with a rotational relaxation time was given. For the observed lysozyme solutions of 34-284 mg/mL, we discovered that the dielectric relaxation time obtained from this distribution agrees well with the measured γ relaxation time, which suggests that rotational self-correlation of water molecules underlies the gigahertz domain of the dielectric spectra. Regardless of protein concentration, water rotational relaxation time versus the distance from the lysozyme surface revealed that the water rotation is severely retarded within 3 Å from the lysozyme surface and is nearly comparable to pure water when farther than 10 Å. The dimension of the first hydration layer was subsequently identified in terms of the relationship between the acceleration of water rotation and the distance from the protein surface.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
27
|
Kistwal T, Mukhopadhyay A, Dasgupta S, Sharma KP, Datta A. Ultraslow Biological Water-Like Dynamics in Waterless Liquid Protein. J Phys Chem Lett 2022; 13:4389-4393. [PMID: 35548934 DOI: 10.1021/acs.jpclett.2c00702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescence correlation spectroscopy and time-dependent fluorescence Stokes shift have been employed to elucidate dynamics in different time scales, ranging from picoseconds to nanoseconds, for human serum albumin, in its native and cationized forms as well as in the self-assembled complex of the cationized protein with the polymer surfactant (PS) glycolic acid ethoxylate lauryl ether. The effect of crowding in this complex, especially in the waterless condition, is of prime importance in this context. Excellent correlation of the dynamics with the structures, obtained by circular dichroism and Fourier transform infrared spectroscopy, has been observed. Slow solvation, associated classically with biological water, has been observed in these systems, even in the waterless condition. This apparently intriguing observation has been rationalized by the relaxation of segments of the protein and the PS in the microenvironment of the fluorescent probe.
Collapse
Affiliation(s)
- Tanuja Kistwal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anasua Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
28
|
Nho HW, Adhikari A, Kwon OH. Ultrafast Excited-State Proton Transfer of a Cationic Superphotoacid in a Nanoscopic Water Pool. J Phys Chem B 2022; 126:1275-1283. [PMID: 35119852 DOI: 10.1021/acs.jpcb.1c09070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excited-state proton transfer (ESPT) of a cationic superphotoacid, N-methyl-7-hydroxyquinolium, was studied within the water pool of an anionic aerosol-OT (AOT), bis(2-ethylhexyl) sulfosuccinate, reverse micelle (RM). Previously, we had found that the cationic photoacid residing at the anionic AOT interface was conducive to ESPT to the bound water having concentric heterogeneity on the time scale of hundreds of picoseconds to nanoseconds. In our present study, on the time scale of hundreds of femtoseconds to a few tens of picoseconds, the photoacid underwent an ultrafast ESPT influenced by mobile water constituting the core of the RM. The two subpopulations of the core water molecules that determine the ultrafast biphasic deprotonation of the photoacid on time scales differing by an order of magnitude were identified. The core water molecules solvating the counteranion of the photoacid showed a higher basicity than typical water clusters in bulk resulting in ESPT on a subpicosecond time scale. Bare water clusters sensed by the photoacid showed a slower ESPT, over several picoseconds, as typically limited by the rotational motion of water molecules for similar types of the photoacid.
Collapse
Affiliation(s)
- Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Aniruddha Adhikari
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
29
|
Dogra P, Arya S, Singh AK, Datta A, Mukhopadhyay S. Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. J Phys Chem B 2022; 126:443-452. [PMID: 34986640 DOI: 10.1021/acs.jpcb.1c09304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The conformational plasticity of intrinsically disordered proteins (IDPs) allows them to adopt a range of conformational states that can be important for their biological functions. The driving force for the conformational preference of an IDP emanates from an intricate interplay between chain-chain and chain-solvent interactions. Using ultrafast femtosecond and picosecond time-resolved fluorescence measurements, we characterized the conformational and solvation dynamics around the N- and C-terminal segments of a disordered repeat domain of a melanosomal protein Pmel17 that forms functional amyloid responsible for melanin biosynthesis. Our time-resolved fluorescence anisotropy results revealed slight compaction and slower rotational dynamics around the amyloidogenic C-terminal segment when compared to the proline-rich N-terminal segment of the repeat domain. The compaction of the C-terminal region was also associated with the restrained mobility of hydration water as indicated by our solvation dynamics measurements. Our findings indicate that sequence-dependent chain-solvent interactions govern both the conformational and solvation dynamics that are crucial in directing the conversion of a highly dynamic IDP into an ordered amyloid assembly. Such an interplay of amino acid composition-dependent conformational and solvation dynamics might have important physicochemical consequences in specific water-protein, ion-protein, and protein-protein interactions involved in amyloid formation and phase transitions.
Collapse
Affiliation(s)
| | | | - Avinash K Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | | |
Collapse
|
30
|
Hamzi H, Rajabpour A, Roldán É, Hassanali A. Learning the Hydrophobic, Hydrophilic, and Aromatic Character of Amino Acids from Thermal Relaxation and Interfacial Thermal Conductance. J Phys Chem B 2022; 126:670-678. [PMID: 35015542 DOI: 10.1021/acs.jpcb.1c07628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the thermal relaxation of the 20 naturally occurring amino acids in water and in the protein lysozyme is investigated using transient nonequilibrium molecular dynamics simulations. By modeling the thermal relaxation process, the relaxation times of the amino acids in water occurs over a time scale covering 2-5 ps. For the hydrophobic amino acids, the relaxation time is controlled by the size of the hydrocarbon side chain, while for hydrophilic amino acids, the number of hydrogen bonds does not significantly affect the time scales of the heat dissipation. Our results show that the interfacial thermal conductance at the amino acid-water interface is in the range of 40-80 MW m-2 K-1. Hydrophobic and aromatic amino acids tend to have a lower interfacial thermal conductance. Notably, we show that amino acids can be correlated with their thermal relaxation times and molar masses, into simply connected phases with the same hydrophilicity, hydrophobicity, and aromaticity. The thermal relaxation slows down by a factor of up to five in the protein relative to that in water. In the case of the hydrophobic amino acids in the protein lysozyme, the slow down in the thermal relaxation relative to that in water appears to be controlled primarily by the size of the side chain.
Collapse
Affiliation(s)
- Heydar Hamzi
- Advanced Simulation and Computing Laboratory (ASCL), Mechanical Engineering Department, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Ali Rajabpour
- Advanced Simulation and Computing Laboratory (ASCL), Mechanical Engineering Department, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Édgar Roldán
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ali Hassanali
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
31
|
Das S, Singha PK, Singh AK, Datta A. The Role of Hydrogen Bonding in the Preferential Solvation of 5-Aminoquinoline in Binary Solvent Mixtures. J Phys Chem B 2021; 125:12763-12773. [PMID: 34709811 DOI: 10.1021/acs.jpcb.1c06208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
5-Aminoquinoline (5AQ) has been used as a fluorescent probe of preferential solvation (PS) in binary solvent mixtures in which the nonpolar component is diethyl ether and the polar component is protic (methanol) or aprotic (acetonitrile). Hence, the roles of solvent polarity and solute-solvent hydrogen bonding have been delineated. Positive deviations of spectral shifts from a linear dependence on the concentration of the polar component, signifying PS, are markedly more pronounced in case of the protic solvent. Solvation dynamics on a nanosecond time scale mark the formation of the solvation shell around the fluorescent probe. Time-resolved area-normalized emission spectra indicate the occurrence of the continuous solvation of the excited state when the polar component is acetonitrile. In contrast, two distinct states were observed when the polar component was methanol, the second state being the hydrogen bonded one. Translational diffusion is the rate-determining step for formation of the solvation shell. The time constant associated with it has been estimated from rise times observed in fluorescence transients monitored at the red end of the fluorescence spectra and also from the time evolution of the spectral width of time-resolved emission spectra.
Collapse
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avinash Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
32
|
Scollo F, Evci H, Amaro M, Jurkiewicz P, Sykora J, Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on? Front Chem 2021; 9:738350. [PMID: 34778202 PMCID: PMC8586494 DOI: 10.3389/fchem.2021.738350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The organization of biomolecules and bioassemblies is highly governed by the nature and extent of their interactions with water. These interactions are of high intricacy and a broad range of methods based on various principles have been introduced to characterize them. As these methods view the hydration phenomena differently (e.g., in terms of time and length scales), a detailed insight in each particular technique is to promote the overall understanding of the stunning “hydration world.” In this prospective mini-review we therefore critically examine time-dependent fluorescence shift (TDFS)—an experimental method with a high potential for studying the hydration in the biological systems. We demonstrate that TDFS is very useful especially for phospholipid bilayers for mapping the interfacial region formed by the hydrated lipid headgroups. TDFS, when properly applied, reports on the degree of hydration and mobility of the hydrated phospholipid segments in the close vicinity of the fluorophore embedded in the bilayer. Here, the interpretation of the recorded TDFS parameters are thoroughly discussed, also in the context of the findings obtained by other experimental techniques addressing the hydration phenomena (e.g., molecular dynamics simulations, NMR spectroscopy, scattering techniques, etc.). The differences in the interpretations of TDFS outputs between phospholipid biomembranes and proteins are also addressed. Additionally, prerequisites for the successful TDFS application are presented (i.e., the proper choice of fluorescence dye for TDFS studies, and TDFS instrumentation). Finally, the effects of ions and oxidized phospholipids on the bilayer organization and headgroup packing viewed from TDFS perspective are presented as application examples.
Collapse
Affiliation(s)
- Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Hüseyin Evci
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Jan Sykora
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| |
Collapse
|
33
|
Mukherjee S, Acharya S, Mondal S, Banerjee P, Bagchi B. Structural Stability of Insulin Oligomers and Protein Association-Dissociation Processes: Free Energy Landscape and Universal Role of Water. J Phys Chem B 2021; 125:11793-11811. [PMID: 34674526 DOI: 10.1021/acs.jpcb.1c05811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Association and dissociation of proteins are important biochemical events. In this Feature Article, we analyze the available studies of these processes for insulin oligomers in aqueous solution. We focus on the solvation of the insulin monomer in water, stability and dissociation of its dimer, and structural integrity of the hexamer. The intricate role of water in solvation of the dimer- and hexamer-forming surfaces, in long-range interactions between the monomers and the stability of the oligomers, is discussed. Ten water molecules inside the central cavity stabilize the structure of the insulin hexamer. We discuss how different order parameters can be used to understand the dissociation of the insulin dimer. The calculation of the rate using a recently computed multidimensional free energy provides considerable insight into the interplay between protein and water dynamics.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Puja Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
34
|
Meuwly M, Karplus M. The functional role of the hemoglobin-water interface. Mol Aspects Med 2021; 84:101042. [PMID: 34756740 DOI: 10.1016/j.mam.2021.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
The interface between hemoglobin (Hb) and its environment, in particular water, is of great physiological relevance. Here, results from in vitro, in vivo, and computational experiments (molecular dynamics simulations) are summarized and put into perspective. One of the main findings from the computations is that the stability of the deoxy, ligand-free T-state (T0) can be stabilized relative to the deoxy R-state (R0) only in sufficiently large simulation boxes for the hydrophobic effect to manifest itself. This effect directly influences protein stability and is operative also under physiological conditions. Furthermore, molecular simulations provide a dynamical interpretation of the Perutz model for Hb function. Results from experiments using higher protein concentrations and realistic cellular environments are also discussed. One of the next great challenges for computational studies, which as we show is likely to be taken up in the near future, is to provide a molecular-level understanding of the dynamics of proteins in such crowded environments.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland; Department of Chemistry, Brown University, Providence RI, USA.
| | - Martin Karplus
- Department of Chemistry, Harvard University, USA; Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
35
|
Zimányi L, Sipos Á, Sarlós F, Nagypál R, Groma GI. Machine-learning model selection and parameter estimation from kinetic data of complex first-order reaction systems. PLoS One 2021; 16:e0255675. [PMID: 34370771 PMCID: PMC8352076 DOI: 10.1371/journal.pone.0255675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Dealing with a system of first-order reactions is a recurrent issue in chemometrics, especially in the analysis of data obtained by spectroscopic methods applied on complex biological systems. We argue that global multiexponential fitting, the still common way to solve such problems, has serious weaknesses compared to contemporary methods of sparse modeling. Combining the advantages of group lasso and elastic net-the statistical methods proven to be very powerful in other areas-we created an optimization problem tunable from very sparse to very dense distribution over a large pre-defined grid of time constants, fitting both simulated and experimental multiwavelength spectroscopic data with high computational efficiency. We found that the optimal values of the tuning hyperparameters can be selected by a machine-learning algorithm based on a Bayesian optimization procedure, utilizing widely used or novel versions of cross-validation. The derived algorithm accurately recovered the true sparse kinetic parameters of an extremely complex simulated model of the bacteriorhodopsin photocycle, as well as the wide peak of hypothetical distributed kinetics in the presence of different noise levels. It also performed well in the analysis of the ultrafast experimental fluorescence kinetics data detected on the coenzyme FAD in a very wide logarithmic time window. We conclude that the primary application of the presented algorithms-implemented in available software-covers a wide area of studies on light-induced physical, chemical, and biological processes carried out with different spectroscopic methods. The demand for this kind of analysis is expected to soar due to the emerging ultrafast multidimensional infrared and electronic spectroscopic techniques that provide very large and complex datasets. In addition, simulations based on our methods could help in designing the technical parameters of future experiments for the verification of particular hypothetical models.
Collapse
Affiliation(s)
- László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Áron Sipos
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ferenc Sarlós
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Rita Nagypál
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Physics, University of Szeged, Szeged, Hungary
| | - Géza I. Groma
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
36
|
Sauza-de la Vega A, Rocha-Rinza T, Guevara-Vela JM. Cooperativity and Anticooperativity in Ion-Water Interactions: Implications for the Aqueous Solvation of Ions. Chemphyschem 2021; 22:1269-1285. [PMID: 33635563 DOI: 10.1002/cphc.202000981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Indexed: 01/03/2023]
Abstract
Non-additive effects in hydrogen bonds (HB) take place as a consequence of electronic charge transfers. Therefore, it is natural to expect cooperativity and anticooperativity in ion-water interactions. Nevertheless, investigations on this matter are scarce. This paper addresses the interactions of (i) the cations Li+ , Na+ , K+ , Be2+ , Mg2+ , and Ca2+ together with (ii) the anions F- , Cl- , Br- , NO3 - and SO4 2- with water clusters (H2 O)n , n=1-8, and the effects of these ions on the HBs within the complete molecular adducts. We used quantum chemical topology tools, specifically the quantum theory of atoms in molecules and the interacting quantum atoms energy partition to investigate non-additive effects among the interactions studied herein. Our results show a decrease on the interaction energy between ions and the first neighbouring water molecules with an increment of the coordination number. We also found strong cooperative effects in the interplay between HBs and ion-dipole interactions within the studied systems. Such cooperativity affects considerably the interactions among ions with their first and second solvation shells in aqueous environments. Overall, we believe this article provides valuable information about how ion-dipole contacts interact with each other and how they relate to other interactions, such as HBs, in the framework of non-additive effects in aqueous media.
Collapse
Affiliation(s)
- Arturo Sauza-de la Vega
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., 04510, CDMX, México
| | - Tomás Rocha-Rinza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., 04510, CDMX, México
| | - José Manuel Guevara-Vela
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán C.P., 04510, CDMX, México
| |
Collapse
|
37
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
38
|
Nho HW, Park JH, Adhikari A, Kwon OH. Acid–base reaction of a cationic hydration probe in vicinity of anionic interface of AOT reverse micelles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Kundu S, Malik S, Ghosh M, Nandi S, Pyne A, Debnath A, Sarkar N. A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2065-2078. [PMID: 33529530 DOI: 10.1021/acs.langmuir.0c03037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulating the structures and properties of biomembranes via permeation of small amphiphilic molecules is immensely important, having diverse applications in cell biology, biotechnology, and pharmaceuticals, because their physiochemical and biological interactions lead to new pathways for transdermal drug delivery and administration. In this work, we have elucidated the role of dimethyl sulfoxide (DMSO), broadly used as a penetration-enhancing agent and cryoprotective agent on model lipid membranes, using a combination of fluorescence microscopy and time-resolved fluorescence spectroscopy. Spatially resolved fluorescence lifetime imaging microscopy (FLIM) has been employed to unravel how the fluidity of the DMSO-induced bilayer regulates the structural alteration of the vesicles. Moreover, we have also shown that the dehydration effect of DMSO leads to weakening of the hydrogen bond between lipid headgroups and water molecules and results in faster solvation dynamics as demonstrated by femtosecond time-resolved fluorescence spectroscopy. It has been gleaned that the water dynamics becomes faster because bilayer rigidity decreases in the presence of DMSO, which is also supported by time-resolved rotational anisotropy measurements. The enhanced diffusivity and increased membrane fluidity in the presence of DMSO are further ratified at the single-molecule level through fluorescence correlation spectroscopy (FCS) measurements. Our results indicate that while the presence of DMSO significantly affects the 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphatidylcholine (DPPC) bilayers, it has a weak effect on 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) vesicles, which might explain the preferential interaction of DMSO with the positively charged choline group present in DMPC and DPPC vesicles. The experimental findings have also been further verified with molecular dynamics simulation studies. Moreover, it has been observed that DMSO is likely to have a differential effect on heterogeneous bilayer membranes depending on the structure and composition of their headgroups. Our results illuminate the importance of probing the lipid structure and composition of cellular membranes in determining the effects of cryoprotective agents.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
40
|
Kudisch B, Oblinsky DG, Black MJ, Zieleniewska A, Emmanuel MA, Rumbles G, Hyster TK, Scholes GD. Active-Site Environmental Factors Customize the Photophysics of Photoenzymatic Old Yellow Enzymes. J Phys Chem B 2020; 124:11236-11249. [PMID: 33231450 DOI: 10.1021/acs.jpcb.0c09523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of non-natural photoenzymatic systems has reinvigorated the study of photoinduced electron transfer (ET) within protein active sites, providing new and unique platforms for understanding how biological environments affect photochemical processes. In this work, we use ultrafast spectroscopy to compare the photoinduced electron transfer in known photoenzymes. 12-Oxophytodienoate reductase 1 (OPR1) is compared to Old Yellow Enzyme 1 (OYE1) and morphinone reductase (MR). The latter enzymes are structurally homologous to OPR1. We find that slight differences in the amino acid composition of the active sites of these proteins determine their distinct electron-transfer dynamics. Our work suggests that the inside of a protein active site is a complex/heterogeneous dielectric network where genetically programmed heterogeneity near the site of biological ET can significantly affect the presence and lifetime of various intermediate states. Our work motivates additional tunability of Old Yellow Enzyme active-site reorganization energy and electron-transfer energetics that could be leveraged for photoenzymatic redox approaches.
Collapse
Affiliation(s)
- Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael J Black
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Anna Zieleniewska
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Garry Rumbles
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States.,Department of Chemistry and RASEI, University of Colorado Boulder, Colorado 80309, United States
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
41
|
Tenuzzo L, Camisasca G, Gallo P. Protein-Water and Water-Water Long-Time Relaxations in Protein Hydration Water upon Cooling-A Close Look through Density Correlation Functions. Molecules 2020; 25:molecules25194570. [PMID: 33036320 PMCID: PMC7583983 DOI: 10.3390/molecules25194570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
We report results on the translational dynamics of the hydration water of the lysozyme protein upon cooling obtained by means of molecular dynamics simulations. The self van Hove functions and the mean square displacements of hydration water show two different temperature activated relaxation mechanisms, determining two dynamic regimes where transient trapping of the molecules is followed by hopping phenomena to allow to the structural relaxations. The two caging and hopping regimes are different in their nature. The low-temperature hopping regime has a time scale of tenths of nanoseconds and a length scale on the order of 2–3 water shells. This is connected to the nearest-neighbours cage effect and restricted to the supercooling, it is absent at high temperature and it is the mechanism to escape from the cage also present in bulk water. The second hopping regime is active at high temperatures, on the nanoseconds time scale and over distances of nanometers. This regime is connected to water displacements driven by the protein motion and it is observed very clearly at high temperatures and for temperatures higher than the protein dynamical transition. Below this temperature, the suppression of protein fluctuations largely increases the time-scale of the protein-related hopping phenomena at least over 100 ns. These protein-related hopping phenomena permit the detection of translational motions of hydration water molecules longly persistent in the hydration shell of the protein.
Collapse
|
42
|
|
43
|
Wei L, Shirakashi R. Effect of Relaxation Times in a Preservative Solution on Protein Deterioration Rate. J Phys Chem B 2020; 124:8741-8749. [PMID: 32902981 DOI: 10.1021/acs.jpcb.0c05245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, the relationship between the deterioration of the enzymatic activity of the protein in a preservative solution and the molecular mobility of the preservative solution was experimentally investigated by dielectric spectroscopy and a protein deterioration test. Dielectric spectroscopy was used to observe the molecular mobilities in the preservative solutions including various ratios of two protective agents, trehalose and ε-poly-l-lysine, at 40 °C. We also examined the enzymatic activity of l-lactate dehydrogenase (LDH) at 40 °C for 40 days to obtain the deterioration rate of LDH in the same preservative solutions. Our experimental results reveal that (1) three relaxation times of water molecular motion are detected by dielectric spectroscopy that we categorize into bulky water (relaxation time of 10 ps), weakly hydration water (relaxation time of tens to hundreds of picoseconds), and strongly hydration water (relaxation time of hundreds of picoseconds to tens of microseconds) and (2) the deterioration rate of LDH has a power-law relationship with the relaxation times of bulky and hydration water with specific power indices. The results also support the protein stabilization theory of high viscosity and the practical advantage of predicting the shelf life of proteins in the preservative solution by the relaxation time of water measured by dielectric spectroscopy.
Collapse
Affiliation(s)
- Lin Wei
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
44
|
Rey R, Hynes JT. Solvation Dynamics in Water. 4. On the Initial Regime of Solvation Relaxation. J Phys Chem B 2020; 124:7668-7681. [PMID: 32790403 DOI: 10.1021/acs.jpcb.0c05706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is shown, by means of numerical and analytic work, that initial molecular momenta play little significant role in the initial fast solvation relaxation that follows electronic excitation of, and charge creation for, a standard model system of a solute in water. Instead, the nonequilibrium dynamics are predominantly described by noninertial "steering" by the torques directly generated by the newly created charge distribution. It is this process that largely overcomes inertia and drives the relaxation dynamics on a time scale of a few tens of femtoseconds in the key initial regime of the dynamics. These results are discussed in the context of commonly employed descriptions such as inertial, Gaussian, and underdamped dynamical behavior.
Collapse
Affiliation(s)
- Rossend Rey
- Departament de Fı́sica, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona 08034, Spain
| | - James T Hynes
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
45
|
Marefat Khah A, Reinholdt P, Nuernberger P, Kongsted J, Hättig C. Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation. J Chem Theory Comput 2020; 16:5203-5211. [DOI: 10.1021/acs.jctc.0c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Christof Hättig
- Quantum Chemistry Group, Ruhr University of Bochum, D-44780 Bochum, Germany
| |
Collapse
|
46
|
Latypova L, Puzenko A, Levy E, Feldman Y. Dielectric spectra broadening as a signature for dipole–matrix interactions. V. Water in protein solutions. J Chem Phys 2020; 153:045102. [DOI: 10.1063/5.0016437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
- Department of Physics, Kazan Federal University, 18 Kremlewskaya St., 420008 Kazan, Russia
| | - Alexander Puzenko
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Evgeniya Levy
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
47
|
Biswas AD, Barone V, Amadei A, Daidone I. Length-scale dependence of protein hydration-shell density. Phys Chem Chem Phys 2020; 22:7340-7347. [PMID: 32211621 DOI: 10.1039/c9cp06214a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we present a computational approach based on molecular dynamics (MD) simulation to study the dependence of the protein hydration-shell density on the size of the protein molecule. The hydration-shell density of eighteen different proteins, differing in size, shape and function (eight of them are antifreeze proteins), is calculated. The results obtained show that an increase in the hydration-shell density, relative to that of the bulk, is observed (in the range of 4-14%) for all studied proteins and that this increment strongly correlates with the protein size. In particular, a decrease in the density increment is observed for decreasing protein size. A simple model is proposed in which the basic idea is to approximate the protein molecule as an effective ellipsoid and to partition the relevant parameters, i.e. the solvent-accessible volume and the corresponding solvent density, into two regions: inside and outside the effective protein ellipsoid. It is found that, within the model developed here, almost all of the hydration-density increase is located inside the protein ellipsoid, basically corresponding to pockets within, or at the surface of the protein molecule. The observed decrease in the density increment is caused by the protein size only and no difference is found between antifreeze and non-antifreeze proteins.
Collapse
Affiliation(s)
- Akash Deep Biswas
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy.
| | | | | | | |
Collapse
|
48
|
Schmidt-Engler JM, Zangl R, Guldan P, Morgner N, Bredenbeck J. Exploring the 2D-IR repertoire of the -SCN label to study site-resolved dynamics and solvation in the calcium sensor protein calmodulin. Phys Chem Chem Phys 2020; 22:5463-5475. [PMID: 32096510 DOI: 10.1039/c9cp06808b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The calcium sensor protein calmodulin is ubiquitous among eukaryotes. It translates intracellular Ca2+ influx (by a decrease of conformational flexibility) into increased target recognition affinity. Here we demonstrate that by using the IR reporter -SCN in combination with 2D-IR spectroscopy, global structure changes and local dynamics, degree of solvent exposure and protein-ligand interaction can be characterised in great detail. The long vibrational lifetime of the -SCN label allows for centerline slope analysis of the 2D-IR line shape up to 120 ps to deduce the frequency-frequency correlation function (FFCF) of the -SCN label in various states and label positions in the protein. Based on that we show clear differences between a solvent exposed site, the environment close to the Ca2+ binding motif and three highly conserved positions for ligand binding. Furthermore, we demonstrate how these dynamics are affected by conformational change induced by the addition of Ca2+ ions and by interaction with a short helical peptide mimicking protein binding. We show that the binding mode is strongly heterogeneous among the probed key binding methionine residues. SCN's vibrational relaxation is dominated by intermolecular contributions. Changes in the vibrational lifetime upon changing between H2O and D2O buffer therefore provide a robust measure for water accessibility of the label. Characterising -SCN's extinction coefficient, vibrational lifetime in light and heavy water and its FFCF we demonstrate the vast potential it has as a label especially for nonlinear spectroscopies, such as 2D-IR spectroscopy.
Collapse
Affiliation(s)
- Julian M Schmidt-Engler
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | - Rene Zangl
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Patrick Guldan
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | - Nina Morgner
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Mondal S, Agam Y, Nandi R, Amdursky N. Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers. Chem Sci 2020; 11:3547-3556. [PMID: 34109027 PMCID: PMC8152808 DOI: 10.1039/c9sc04392f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 06/04/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Proteins are the main proton mediators in various biological proton circuits. Using proteins for the formation of long-range proton conductors is offering a bioinspired approach for proton conductive polymers. One of the main challenges in the field of proton conductors is to explore the local environment within the polymers, along with deciphering the conduction mechanism. Here, we show that the protonic conductivity across a protein-based biopolymer can be hindered using straightforward chemical modifications, targeting carboxylate- or amine-terminated residues of the protein, as well as exploring the effect of surface hydrophobicity on proton conduction. We further use the natural tryptophan residue as a local fluorescent probe for the inner local hydration state of the protein surface and its tendency to form hydrogen bonds with nearby water molecules, along with the dynamicity of the process. Our electrical and spectroscopic measurements of the different chemically-modified protein materials as well as the material at different water-aprotic solvent mixtures result in our fundamental understanding of the proton mediators within the material and gaining important insights on the proton conduction mechanism. Our biopolymer can be used as an attractive platform for the study of bio-related protonic circuits as well as a proton conducting biopolymer for various applications, such as protonic transistors, ionic transducers and fuel cells.
Collapse
Affiliation(s)
- Somen Mondal
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
50
|
Yu J, Zhou Y, Engelhard M, Zhang Y, Son J, Liu S, Zhu Z, Yu XY. In situ molecular imaging of adsorbed protein films in water indicating hydrophobicity and hydrophilicity. Sci Rep 2020; 10:3695. [PMID: 32111945 PMCID: PMC7048838 DOI: 10.1038/s41598-020-60428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/03/2020] [Indexed: 01/21/2023] Open
Abstract
In situ molecular imaging of protein films adsorbed on a solid surface in water was realized by using a vacuum compatible microfluidic interface and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Amino acid fragments from such hydrated protein films are observed and identified in the positive ion mode and the results are in agreement with reported works on dry protein films. Moreover, water clusters from the hydrated protein films have been observed and identified in both the positive and negative ion mode for a series protein films. Thus, the detailed composition of amino acids and water molecules in the hydrated protein films can be characterized, and the protein water microstructures can be revealed by the distinct three-dimensional spatial distribution reconstructed from in situ liquid ToF-SIMS molecular imaging. Furthermore, spectral principal component analysis of amino acid fragment peaks and water cluster peaks provides unique insights into the water cluster distribution, hydrophilicity, and hydrophobicity of hydrated adsorbed protein films in water.
Collapse
Affiliation(s)
- Jiachao Yu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yufan Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yuchen Zhang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|