1
|
Lee J, Segundo-Ortin M, Calvo P. Decision Making in Plants: A Rooted Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091799. [PMID: 37176857 PMCID: PMC10181133 DOI: 10.3390/plants12091799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
This article discusses the possibility of plant decision making. We contend that recent work on bacteria provides a pertinent perspective for thinking about whether plants make choices. Specifically, the analogy between certain patterns of plant behaviour and apparent decision making in bacteria provides principled grounds for attributing decision making to the former. Though decision making is our focus, the discussion has implications for the wider issue of whether and why plants (and non-neural organisms more generally) are appropriate targets for cognitive abilities. Moreover, decision making is especially relevant to the issue of plant intelligence as it is commonly taken to be characteristic of cognition.
Collapse
Affiliation(s)
- Jonny Lee
- Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain
- Department of Philosophy, University of Murcia, 30100 Murcia, Spain
| | - Miguel Segundo-Ortin
- Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain
- Department of Philosophy, University of Murcia, 30100 Murcia, Spain
| | - Paco Calvo
- Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain
- Department of Philosophy, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Biochemical Properties and Roles of DprA Protein in Bacterial Natural Transformation, Virulence, and Pilin Variation. J Bacteriol 2023; 205:e0046522. [PMID: 36695594 PMCID: PMC9945497 DOI: 10.1128/jb.00465-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Natural transformation enables bacteria to acquire DNA from the environment and contributes to genetic diversity, DNA repair, and nutritional requirements. DNA processing protein A (DprA) receives incoming single-stranded DNA and assists RecA loading for homology-directed natural chromosomal transformation and DNA strand annealing during plasmid transformation. The dprA gene occurs in the genomes of all known bacteria, irrespective of their natural transformation status. The DprA protein has been characterized by its molecular, cellular, biochemical, and biophysical properties in several bacteria. This review summarizes different aspects of DprA biology, collectively describing its biochemical properties, molecular interaction with DNA, and function interaction with bacterial RecA during natural transformation. Furthermore, the roles of DprA in natural transformation, bacterial virulence, and pilin variation are discussed.
Collapse
|
3
|
Anwar MZ, Lanzen A, Bang-Andreasen T, Jacobsen CS. To assemble or not to resemble-A validated Comparative Metatranscriptomics Workflow (CoMW). Gigascience 2019; 8:giz096. [PMID: 31363751 PMCID: PMC6667343 DOI: 10.1093/gigascience/giz096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Metatranscriptomics has been used widely for investigation and quantification of microbial communities' activity in response to external stimuli. By assessing the genes expressed, metatranscriptomics provides an understanding of the interactions between different major functional guilds and the environment. Here, we present a de novo assembly-based Comparative Metatranscriptomics Workflow (CoMW) implemented in a modular, reproducible structure. Metatranscriptomics typically uses short sequence reads, which can either be directly aligned to external reference databases ("assembly-free approach") or first assembled into contigs before alignment ("assembly-based approach"). We also compare CoMW (assembly-based implementation) with an assembly-free alternative workflow, using simulated and real-world metatranscriptomes from Arctic and temperate terrestrial environments. We evaluate their accuracy in precision and recall using generic and specialized hierarchical protein databases. RESULTS CoMW provided significantly fewer false-positive results, resulting in more precise identification and quantification of functional genes in metatranscriptomes. Using the comprehensive database M5nr, the assembly-based approach identified genes with only 0.6% false-positive results at thresholds ranging from inclusive to stringent compared with the assembly-free approach, which yielded up to 15% false-positive results. Using specialized databases (carbohydrate-active enzyme and nitrogen cycle), the assembly-based approach identified and quantified genes with 3-5 times fewer false-positive results. We also evaluated the impact of both approaches on real-world datasets. CONCLUSIONS We present an open source de novo assembly-based CoMW. Our benchmarking findings support assembling short reads into contigs before alignment to a reference database because this provides higher precision and minimizes false-positive results.
Collapse
Affiliation(s)
- Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University RISØ Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Anders Lanzen
- AZTI, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Toke Bang-Andreasen
- Department of Environmental Science, Aarhus University RISØ Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University RISØ Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
4
|
Hendrickson HL, Barbeau D, Ceschin R, Lawrence JG. Chromosome architecture constrains horizontal gene transfer in bacteria. PLoS Genet 2018; 14:e1007421. [PMID: 29813058 PMCID: PMC5993296 DOI: 10.1371/journal.pgen.1007421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/08/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Despite significant frequencies of lateral gene transfer between species, higher taxonomic groups of bacteria show ecological and phenotypic cohesion. This suggests that barriers prevent panmictic dissemination of genes via lateral gene transfer. We have proposed that most bacterial genomes have a functional architecture imposed by Architecture IMparting Sequences (AIMS). AIMS are defined as 8 base pair sequences preferentially abundant on leading strands, whose abundance and strand-bias are positively correlated with proximity to the replication terminus. We determined that inversions whose endpoints lie within a single chromosome arm, which would reverse the polarity of AIMS in the inverted region, are both shorter and less frequent near the replication terminus. This distribution is consistent with the increased selection on AIMS function in this region, thus constraining DNA rearrangement. To test the hypothesis that AIMS also constrain DNA transfer between genomes, AIMS were identified in genomes while ignoring atypical, potentially laterally-transferred genes. The strand-bias of AIMS within recently acquired genes was negatively correlated with the distance of those genes from their genome’s replication terminus. This suggests that selection for AIMS function prevents the acquisition of genes whose AIMS are not found predominantly in the permissive orientation. This constraint has led to the loss of at least 18% of genes acquired by transfer in the terminus-proximal region. We used completely sequenced genomes to produce a predictive road map of paths of expected horizontal gene transfer between species based on AIMS compatibility between donor and recipient genomes. These results support a model whereby organisms retain introgressed genes only if the benefits conferred by their encoded functions outweigh the detriments incurred by the presence of foreign DNA lacking genome-wide architectural information. The potential success of horizontal gene transfer events is historically equated to the benefits conferred by encoded products. Here we show that gene transfer events are observed less frequently if the introduced genes disrupt important patterns of genomic information, suggesting that this disruption would confer an unacceptable cost. As a result, gene transfer events are less likely to be successful if the potential donor genomes have incompatible genome architecture. Because more distantly-related genes are less compatible, chromosome architecture serves as a mechanism to bias gene transfer events to those involving closer relatives, thereby providing a mechanism for the genotypic and phenotypic cohesion of higher taxonomic groups.
Collapse
Affiliation(s)
- Heather L. Hendrickson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Dominique Barbeau
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robin Ceschin
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey G. Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Barbieri M. What is code biology? Biosystems 2018; 164:1-10. [DOI: 10.1016/j.biosystems.2017.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/29/2023]
|
6
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
7
|
|
8
|
Abstract
The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques.
Collapse
Affiliation(s)
- James A Lake
- MCDB Biology and Human Genetics, University of California, 232 Boyer Hall, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Trung NT, Hien TTT, Huyen TTT, Quyen DT, Van Son T, Hoan PQ, Phuong NTK, Lien TT, Binh MT, Van Tong H, Meyer CG, Velavan TP, Song LH. Enrichment of bacterial DNA for the diagnosis of blood stream infections. BMC Infect Dis 2016; 16:235. [PMID: 27246723 PMCID: PMC4888298 DOI: 10.1186/s12879-016-1568-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
Background Blood cultures are commonly employed to identify bacterial pathogens causing sepsis. PCR assays to diagnose septicemia require extraction of bacterial DNA from blood samples and thus, delay the initiation of appropriate antimicrobial treatment. The presence of abundant human DNA may hamper the sensitivity of PCR in the detection of bacteria. Methods We used serial dilutions of E. Coli spiked pseudo-blood-sepsis samples to develop a simple method that combines the use of a polar detergent solvent and adjustment of the basic pH to remove human DNA. A 16S rRNA gene-based screening algorithm was established to differentiate Gram-positive and Gram-negative groups of bacteria and the family of Enterobacteriaceae. A stringent validation with appropriate controls was implemented. The method of human DNA removal was then applied on 194 sepsis blood samples and 44 cerebrospinal fluid (CSF) samples by real-time PCR. Results This uncomplicated and straightforward approach allows to remove up to 98 % of human DNA from peripheral blood of septic patients. The inhibitory effect of human DNA is efficiently prevented and the detection limit of real-time PCR is increased to 10 E. Coli CFUs/ml. This sensitivity is 10 times higher compared to conventional real-time PCR assays. The classical blood culture detected 58/194 (30 %) of sepsis and 9/44 (21 %) of CSF samples. Out of the 194 blood samples tested, the conventional real-time PCR targeting 13 common sepsis causing pathogens correctly detected the bacterial DNA in 16/194 (8 %) only and 14/44 (32 %) in cerebrospinal fluid samples. Our newly established approach was able to provide correct diagnoses in 78 (40 %) of the 194 blood samples and in 14 (32 %) of the CSF samples. The combination of both blood cultures and our technique raised the rate of sepsis diagnoses to 112/194 (58 %). Of the total group tested positive, 46 (24 %) cases showed overlap with the classical methodology. Conclusion We report a simple optimized in-house protocol for removal of human DNA from blood sepsis samples as a pre-analytical tool to prepare DNA for subsequent PCR assays. With the detection increase of our in-house DNA removal approach, subsequent PCR assays can reach detection limits of 10 E. coli CFUs/ml and significantly improve the diagnostic rate in blood sepsis cases. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1568-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ngo Tat Trung
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Tran Thi Thu Hien
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | | | - Dao Thanh Quyen
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Trinh Van Son
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Phan Quoc Hoan
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | | | - Tran Thi Lien
- Faculty of Infectious Diseases, Hai Phong Medical University, Hai Phong, Vietnam
| | - Mai Thanh Binh
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany. .,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam.
| | - Le Huu Song
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam. .,Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam. .,Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
10
|
|
11
|
Zhu Q, Kosoy M, Dittmar K. HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers. BMC Genomics 2014; 15:717. [PMID: 25159222 PMCID: PMC4155097 DOI: 10.1186/1471-2164-15-717] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/20/2014] [Indexed: 11/23/2022] Open
Abstract
Background First pass methods based on BLAST match are commonly used as an initial step to separate the different phylogenetic histories of genes in microbial genomes, and target putative horizontal gene transfer (HGT) events. This will continue to be necessary given the rapid growth of genomic data and the technical difficulties in conducting large-scale explicit phylogenetic analyses. However, these methods often produce misleading results due to their inability to resolve indirect phylogenetic links and their vulnerability to stochastic events. Results A new computational method of rapid, exhaustive and genome-wide detection of HGT was developed, featuring the systematic analysis of BLAST hit distribution patterns in the context of a priori defined hierarchical evolutionary categories. Genes that fall beyond a series of statistically determined thresholds are identified as not adhering to the typical vertical history of the organisms in question, but instead having a putative horizontal origin. Tests on simulated genomic data suggest that this approach effectively targets atypically distributed genes that are highly likely to be HGT-derived, and exhibits robust performance compared to conventional BLAST-based approaches. This method was further tested on real genomic datasets, including Rickettsia genomes, and was compared to previous studies. Results show consistency with currently employed categories of HGT prediction methods. In-depth analysis of both simulated and real genomic data suggests that the method is notably insensitive to stochastic events such as gene loss, rate variation and database error, which are common challenges to the current methodology. An automated pipeline was created to implement this approach and was made publicly available at: https://github.com/DittmarLab/HGTector. The program is versatile, easily deployed, has a low requirement for computational resources. Conclusions HGTector is an effective tool for initial or standalone large-scale discovery of candidate HGT-derived genes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-717) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiyun Zhu
- Department of Biological Sciences, University at Buffalo, State University of New York, 109 Cooke Hall, Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
12
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Meinel T, Krause A. Meta-analysis of general bacterial subclades in whole-genome phylogenies using tree topology profiling. Evol Bioinform Online 2012; 8:489-525. [PMID: 22915837 PMCID: PMC3422217 DOI: 10.4137/ebo.s9642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the last two decades, a large number of whole-genome phylogenies have been inferred to reconstruct the Tree of Life (ToL). Underlying data models range from gene or functionality content in species to phylogenetic gene family trees and multiple sequence alignments of concatenated protein sequences. Diversity in data models together with the use of different tree reconstruction techniques, disruptive biological effects and the steadily increasing number of genomes have led to a huge diversity in published phylogenies. Comparison of those and, moreover, identification of the impact of inference properties (underlying data model, inference technique) on particular reconstructions is almost impossible. In this work, we introduce tree topology profiling as a method to compare already published whole-genome phylogenies. This method requires visual determination of the particular topology in a drawn whole-genome phylogeny for a set of particular bacterial clans. For each clan, neighborhoods to other bacteria are collected into a catalogue of generalized alternative topologies. Particular topology alternatives found for an ordered list of bacterial clans reveal a topology profile that represents the analyzed phylogeny. To simulate the inhomogeneity of published gene content phylogenies we generate a set of seven phylogenies using different inference techniques and the SYSTERS-PhyloMatrix data model. After tree topology profiling on in total 54 selected published and newly inferred phylogenies, we separate artefactual from biologically meaningful phylogenies and associate particular inference results (phylogenies) with inference background (inference techniques as well as data models). Topological relationships of particular bacterial species groups are presented. With this work we introduce tree topology profiling into the scientific field of comparative phylogenomics.
Collapse
Affiliation(s)
- Thomas Meinel
- Charité-University Medicine Berlin, Institute for Physiology, Structural Bioinformatics Group, Thielallee 71, 14195 Berlin, Germany
| | | |
Collapse
|
14
|
Abstract
Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260).
Collapse
Affiliation(s)
- Janet S. Sinsheimer
- Human Genetics Department, University of California, Los Angeles
- Biomathematics Department, University of California, Los Angeles
- Biostatistics Department, University of California, Los Angeles
| | | | - James A. Lake
- Human Genetics Department, University of California, Los Angeles
- Molecular, Cell and Developmental Biology, University of California, Los Angeles
- *Corresponding author: E-mail:
| |
Collapse
|
15
|
Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes. PLoS One 2012; 7:e29468. [PMID: 22247777 PMCID: PMC3256160 DOI: 10.1371/journal.pone.0029468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been documented. Through comparing 507 taxa of 16S-18S rDNA and 347 taxa of 23S-28S rDNA, we found that archaea and eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase centre (PTC) of the 23S-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug resistance of ribosomes.
Collapse
|
16
|
|
17
|
Williams D, Fournier GP, Lapierre P, Swithers KS, Green AG, Andam CP, Gogarten JP. A rooted net of life. Biol Direct 2011; 6:45. [PMID: 21936906 PMCID: PMC3189188 DOI: 10.1186/1745-6150-6-45] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/21/2011] [Indexed: 01/29/2023] Open
Abstract
Abstract Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages. Reviewers W. Ford Doolittle, Eric Bapteste and Robert Beiko.
Collapse
Affiliation(s)
- David Williams
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
O'Malley MA, Koonin EV. How stands the Tree of Life a century and a half after The Origin? Biol Direct 2011; 6:32. [PMID: 21714936 PMCID: PMC3158114 DOI: 10.1186/1745-6150-6-32] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/30/2011] [Indexed: 12/21/2022] Open
Abstract
We examine the Tree of Life (TOL) as an evolutionary hypothesis and a heuristic. The original TOL hypothesis has failed but a new "statistical TOL hypothesis" is promising. The TOL heuristic usefully organizes data without positing fundamental evolutionary truth.
Collapse
Affiliation(s)
- Maureen A O'Malley
- Department of Philosophy, Quadrangle A14, University of Sydney, NSW 2006, Australia
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD20894, USA
| |
Collapse
|
19
|
Kelly S, Wickstead B, Gull K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc Biol Sci 2011; 278:1009-18. [PMID: 20880885 PMCID: PMC3049024 DOI: 10.1098/rspb.2010.1427] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/06/2010] [Indexed: 11/12/2022] Open
Abstract
We have developed a machine-learning approach to identify 3537 discrete orthologue protein sequence groups distributed across all available archaeal genomes. We show that treating these orthologue groups as binary detection/non-detection data is sufficient to capture the majority of archaeal phylogeny. We subsequently use the sequence data from these groups to infer a method and substitution-model-independent phylogeny. By holding this phylogeny constrained and interrogating the intersection of this large dataset with both the Eukarya and the Bacteria using Bayesian and maximum-likelihood approaches, we propose and provide evidence for a methanogenic origin of the Archaea. By the same criteria, we also provide evidence in support of an origin for Eukarya either within or as sisters to the Thaumarchaea.
Collapse
Affiliation(s)
- S Kelly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
20
|
|
21
|
Tria F, Caglioti E, Loreto V, Pagnani A. A stochastic local search algorithm for distance-based phylogeny reconstruction. Mol Biol Evol 2010; 27:2587-95. [PMID: 20562341 DOI: 10.1093/molbev/msq154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In many interesting cases, the reconstruction of a correct phylogeny is blurred by high mutation rates and/or horizontal transfer events. As a consequence, a divergence arises between the true evolutionary distances and the differences between pairs of taxa as inferred from available data, making the phylogenetic reconstruction a challenging problem. Mathematically, this divergence translates in a loss of additivity of the actual distances between taxa. In distance-based reconstruction methods, two properties of additive distances have been extensively exploited as antagonist criteria to drive phylogeny reconstruction: On the one hand, a local property of quartets, that is, sets of four taxa in a tree, the four-points condition; on the other hand, a recently proposed formula that allows to write the tree length as a function of the distances between taxa, Pauplin's formula. Here, we introduce a new reconstruction scheme that exploits in a unified framework both the four-points condition and the Pauplin's formula. We propose, in particular, a new general class of distance-based Stochastic Local Search algorithms, which reduces in a limit case to the minimization of Pauplin's length. When tested on artificially generated phylogenies, our Stochastic Big-Quartet Swapping algorithmic scheme significantly outperforms state-of-art distance-based algorithms in cases of deviation from additivity due to high rate of back mutations. A significant improvement is also observed with respect to the state-of-art algorithms in the case of high rate of horizontal transfer.
Collapse
|
22
|
McGuinness ET. Some Molecular Moments of the Hadean and Archaean Aeons: A Retrospective Overview from the Interfacing Years of the Second to Third Millennia. Chem Rev 2010; 110:5191-215. [DOI: 10.1021/cr050061l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene T. McGuinness
- Department of Chemistry & Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2690
| |
Collapse
|
23
|
Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS One 2010; 5:e9181. [PMID: 20169193 PMCID: PMC2820539 DOI: 10.1371/journal.pone.0009181] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 01/04/2010] [Indexed: 01/09/2023] Open
Abstract
Interspecies DNA transfer is a major biological process leading to the accumulation of mutations inherited by sexual reproduction among eukaryotes. Lateral DNA transfer events and their inheritance has been challenging to document. In this study we modified a thermal asymmetric interlaced PCR by using additional targeted primers, along with Southern blots, fluorescence techniques, and bioinformatics, to identify lateral DNA transfer events from parasite to host. Instances of naturally occurring human infections by Trypanosoma cruzi are documented, where mitochondrial minicircles integrated mainly into retrotransposable LINE-1 of various chromosomes. The founders of five families show minicircle integrations that were transferred vertically to their progeny. Microhomology end-joining of 6 to 22 AC-rich nucleotide repeats in the minicircles and host DNA mediates foreign DNA integration. Heterogeneous minicircle sequences were distributed randomly among families, with diversity increasing due to subsequent rearrangement of inserted fragments. Mosaic recombination and hitchhiking on retrotransposition events to different loci were more prevalent in germ line as compared to somatic cells. Potential new genes, pseudogenes, and knockouts were identified. A pathway of minicircle integration and maintenance in the host genome is suggested. Thus, infection by T. cruzi has the unexpected consequence of increasing human genetic diversity, and Chagas disease may be a fortuitous share of negative selection. This demonstration of contemporary transfer of eukaryotic DNA to the human genome and its subsequent inheritance by descendants introduces a significant change in the scientific concept of evolutionary biology and medicine.
Collapse
|
24
|
Zhao JS, Deng Y, Manno D, Hawari J. Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 2010; 5:e9109. [PMID: 20174598 PMCID: PMC2824531 DOI: 10.1371/journal.pone.0009109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022] Open
Abstract
Shewanella halifaxensis and Shewanella sediminis were among a few aquatic gamma-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and gamma-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other gamma-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and gamma-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biodegradation, Environmental
- Chromosome Mapping
- Cold Temperature
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- Evolution, Molecular
- Gammaproteobacteria/classification
- Gammaproteobacteria/genetics
- Genome, Bacterial/genetics
- Genomics
- Marine Biology
- Molecular Structure
- Phylogeny
- Proteomics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Shewanella/classification
- Shewanella/genetics
- Shewanella/metabolism
- Species Specificity
- Triazines/chemistry
- Triazines/metabolism
Collapse
Affiliation(s)
- Jian-Shen Zhao
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| | - Yinghai Deng
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Dominic Manno
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Jalal Hawari
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| |
Collapse
|
25
|
New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 2009; 16:47-53. [PMID: 19463963 DOI: 10.1016/j.anaerobe.2009.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 04/20/2009] [Accepted: 04/30/2009] [Indexed: 11/23/2022]
Abstract
Separation of bacterial DNA from human DNA in clinical samples may have an important impact on downstream applications, involving microbial diagnostic systems. We evaluated two commercially available reagents (MolYsis), Molzym GmbH & Co. KG, Bremen and Pureprove, SIRS-Lab GmbH, Jena, both Germany) for their potential to isolate and purify bacterial DNA from human DNA. We chose oral samples, which usually contain very high amounts of both human and bacterial cells. Three different DNA preparations each were made from eight caries and eight periodontal specimens using the two reagents above and a conventional DNA extraction strategy as reference. Based on target-specific real-time-quantitative PCR assays we compared the reduction of human DNA versus loss of bacterial DNA. Human DNA was monitored by targeting the beta-2-microglobulin gene, while bacteria were monitored by targeting 16S rDNA (total bacteria and Porphyromonas gingivalis) or the glycosyltransferase gene (Streptococcus mutans). We found that in most cases at least 90% of human DNA could successfully be removed, with complete removal in eight of 16 cases using MolYsis, and two (of 16) cases using Pureprove. Conversely, detection of bacterial DNA was possible in all cases with a recovery rate generally ranging from 35% to 50%. In conclusion, both strategies have the potential to reduce background interference from the host DNA which may be of remarkable value for nucleic-acid based microbial diagnostic systems.
Collapse
|
26
|
Dryden DTF, Thomson AR, White JH. How much of protein sequence space has been explored by life on Earth? J R Soc Interface 2008; 5:953-6. [PMID: 18426772 PMCID: PMC2459213 DOI: 10.1098/rsif.2008.0085] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We suggest that the vastness of protein sequence space is actually completely explorable during the populating of the Earth by life by considering upper and lower limits for the number of organisms, genome size, mutation rate and the number of functionally distinct classes of amino acids. We conclude that rather than life having explored only an infinitesimally small part of sequence space in the last 4 Gyr, it is instead quite plausible for all of functional protein sequence space to have been explored and that furthermore, at the molecular level, there is no role for contingency.
Collapse
Affiliation(s)
- David T F Dryden
- School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
27
|
Grünewald S, Huber KT, Wu Q. Two novel closure rules for constructing phylogenetic super-networks. Bull Math Biol 2008; 70:1906-24. [PMID: 18665426 DOI: 10.1007/s11538-008-9331-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/23/2008] [Indexed: 10/21/2022]
Abstract
A contemporary and fundamental problem faced by many evolutionary biologists is how to puzzle together a collection Weierstrass p of partial trees (leaf-labeled trees whose leaves are bijectively labeled by species or, more generally, taxa, each supported by, e.g., a gene) into an overall parental structure that displays all trees in Weierstrass p. This already difficult problem is complicated by the fact that the trees in Weierstrass p regularly support conflicting phylogenetic relationships and are not on the same but only overlapping taxa sets. A desirable requirement on the sought after parental structure, therefore, is that it can accommodate the observed conflicts. Phylogenetic networks are a popular tool capable of doing precisely this. However, not much is known about how to construct such networks from partial trees, a notable exception being the Z-closure super-network approach, which is based on the Z-closure rule, and the Q-imputation approach. Although attractive approaches, they both suffer from the fact that the generated networks tend to be multidimensional making it necessary to apply some kind of filter to reduce their complexity.To avoid having to resort to a filter, we follow a different line of attack in this paper and develop closure rules for generating circular phylogenetic networks which have the attractive property that they can be represented in the plane. In particular, we introduce the novel Y-(closure) rule and show that this rule on its own or in combination with one of Meacham's closure rules (which we call the M-rule) has some very desirable theoretical properties. In addition, we present a case study based on Rivera et al. "ring of life" to explore the reconstructive power of the M- and Y-rule and also reanalyze an Arabidopsis thaliana data set.
Collapse
Affiliation(s)
- S Grünewald
- Department of Combinatorics and Geometry, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
28
|
Huang J, Gogarten JP. Concerted gene recruitment in early plant evolution. Genome Biol 2008; 9:R109. [PMID: 18611267 PMCID: PMC2530860 DOI: 10.1186/gb-2008-9-7-r109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2008] [Accepted: 07/08/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. RESULTS Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. CONCLUSION Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
29
|
Egel R, Penny D. On the Origin of Meiosis in Eukaryotic Evolution: Coevolution of Meiosis and Mitosis from Feeble Beginnings. RECOMBINATION AND MEIOSIS 2007. [DOI: 10.1007/7050_2007_036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Mortier-Barrière I, Velten M, Dupaigne P, Mirouze N, Piétrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, Polard P, Claverys JP. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 2007; 130:824-36. [PMID: 17803906 DOI: 10.1016/j.cell.2007.07.038] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/25/2007] [Accepted: 07/13/2007] [Indexed: 11/15/2022]
Abstract
Natural transformation is a mechanism for genetic exchange in many bacterial genera. It proceeds through the uptake of exogenous DNA and subsequent homology-dependent integration into the genome. In Streptococcus pneumoniae, this integration requires the ubiquitous recombinase, RecA, and DprA, a protein of unknown function widely conserved in bacteria. To unravel the role of DprA, we have studied the properties of the purified S. pneumoniae protein and its Bacillus subtilis ortholog (Smf). We report that DprA and Smf bind cooperatively to single-stranded DNA (ssDNA) and that these proteins both self-interact and interact with RecA. We demonstrate that DprA-RecA-ssDNA filaments are produced and that these filaments catalyze the homology-dependent formation of joint molecules. Finally, we show that while the Escherichia coli ssDNA-binding protein SSB limits access of RecA to ssDNA, DprA lowers this barrier. We propose that DprA is a new member of the recombination-mediator protein family, dedicated to natural bacterial transformation.
Collapse
Affiliation(s)
- Isabelle Mortier-Barrière
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fitzpatrick BM, Shaffer HB. Hybrid vigor between native and introduced salamanders raises new challenges for conservation. Proc Natl Acad Sci U S A 2007; 104:15793-8. [PMID: 17884982 PMCID: PMC2000440 DOI: 10.1073/pnas.0704791104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Indexed: 12/22/2022] Open
Abstract
Hybridization between differentiated lineages can have many different consequences depending on fitness variation among hybrid offspring. When introduced organisms hybridize with natives, the ensuing evolutionary dynamics may substantially complicate conservation decisions. Understanding the fitness consequences of hybridization is an important first step in predicting its evolutionary outcome and conservation impact. Here, we measured natural selection caused by differential viability of hybrid larvae in wild populations where native California Tiger Salamanders (Ambystoma californiense) and introduced Barred Tiger Salamanders (Ambystoma tigrinum mavortium) have been hybridizing for 50-60 years. We found strong evidence of hybrid vigor; mixed-ancestry genotypes had higher survival rates than genotypes containing mostly native or mostly introduced alleles. Hybrid vigor may be caused by heterozygote advantage (overdominance) or recombinant hybrid vigor (due to epistasis or complementation). These genetic mechanisms are not mutually exclusive, and we find statistical support for both overdominant and recombinant contributions to hybrid vigor in larval tiger salamanders. Because recombinant homozygous genotypes can breed true, a single highly fit genotype with a mosaic of native and introduced alleles may eventually replace the historically pure California Tiger Salamander (listed as Threatened under the U.S. Endangered Species Act). The management implications of this outcome are complex: Genetically pure populations may not persist into the future, but average fitness and population viability of admixed California Tiger Salamanders may be enhanced. The ecological consequences for other native species are unknown.
Collapse
|
32
|
Wong JTF, Chen J, Mat WK, Ng SK, Xue H. Polyphasic evidence delineating the root of life and roots of biological domains. Gene 2007; 403:39-52. [PMID: 17884304 DOI: 10.1016/j.gene.2007.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/29/2022]
Abstract
Twenty different lines of polyphasic evidence obtained from tRNA and protein sequences, anticodon usages, gene contents, metabolism and geochemistry have made possible the identification of a Last Universal Common Ancestor (LUCA) phylogenetically located proximal to the hyperthermophilic methanogenic archaeon Methanopyrus. Combined with analysis of high-similarity cross-domain tRNA pairs, the evidence also suggests a Thermotoga-proximal Last Bacterial Common Ancestor (LBACA) that originated from Crenarchaeota close to Aeropyrum, and a Plasmodium-proximal Last Eukaryotic Common Ancestor (LECA) derived from Ferroplasma through endosymbiosis.
Collapse
Affiliation(s)
- J Tze-Fei Wong
- Department of Biochemistry and Applied Genomics Center, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China.
| | | | | | | | | |
Collapse
|
33
|
Suen G, Goldman BS, Welch RD. Predicting prokaryotic ecological niches using genome sequence analysis. PLoS One 2007; 2:e743. [PMID: 17710143 PMCID: PMC1937020 DOI: 10.1371/journal.pone.0000743] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/13/2007] [Indexed: 11/18/2022] Open
Abstract
Automated DNA sequencing technology is so rapid that analysis has become the rate-limiting step. Hundreds of prokaryotic genome sequences are publicly available, with new genomes uploaded at the rate of approximately 20 per month. As a result, this growing body of genome sequences will include microorganisms not previously identified, isolated, or observed. We hypothesize that evolutionary pressure exerted by an ecological niche selects for a similar genetic repertoire in those prokaryotes that occupy the same niche, and that this is due to both vertical and horizontal transmission. To test this, we have developed a novel method to classify prokaryotes, by calculating their Pfam protein domain distributions and clustering them with all other sequenced prokaryotic species. Clusters of organisms are visualized in two dimensions as 'mountains' on a topological map. When compared to a phylogenetic map constructed using 16S rRNA, this map more accurately clusters prokaryotes according to functional and environmental attributes. We demonstrate the ability of this map, which we term a "niche map", to cluster according to ecological niche both quantitatively and qualitatively, and propose that this method be used to associate uncharacterized prokaryotes with their ecological niche as a means of predicting their functional role directly from their genome sequence.
Collapse
Affiliation(s)
- Garret Suen
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | | | - Roy D. Welch
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Vinogradov SN, Hoogewijs D, Bailly X, Mizuguchi K, Dewilde S, Moens L, Vanfleteren JR. A model of globin evolution. Gene 2007; 398:132-42. [PMID: 17540514 DOI: 10.1016/j.gene.2007.02.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/19/2022]
Abstract
Putative globins have been identified in 426 bacterial, 32 Archaeal and 67 eukaryote genomes. Among these sequences are the hitherto unsuspected presence of single domain sensor globins within Bacteria, Fungi, and a Euryarchaeote. Bayesian phylogenetic trees suggest that their occurrence in the latter two groups could be the result of lateral gene transfer from Bacteria. Iterated psiblast searches based on groups of globin sequences indicate that bacterial flavohemoglobins are closer to metazoan globins than to the other two lineages, the 2-over-2 globins and the globin-coupled sensors. Since Bacteria is the only kingdom to have all the subgroups of the three globin lineages, we propose a working model of globin evolution based on the assumption that all three lineages originated and evolved only in Bacteria. Although the 2-over-2 globins and the globin-coupled sensors recognize flavohemoglobins, there is little recognition between them. Thus, in the first stage of globin evolution, we favor a flavohemoglobin-like single domain protein as the ancestral globin. The next stage comprised the splitting off to single domain 2-over-2 and sensor-like globins, followed by the covalent addition of C-terminal domains resulting in the chimeric flavohemoglobins and globin-coupled sensors. The last stage encompassed the lateral gene transfers of some members of the three globin lineages to specific groups of Archaea and Eukaryotes.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Simões-Barbosa A, Argañaraz ER, Barros AM, Rosa ADC, Alves NP, Louvandini P, D'Souza-Ault MR, Nitz N, Sturm NR, Nascimento RJ, Teixeira ARL. Hitchhiking Trypanosoma cruzi minicircle DNA affects gene expression in human host cells via LINE-1 retrotransposon. Mem Inst Oswaldo Cruz 2007; 101:833-43. [PMID: 17293976 DOI: 10.1590/s0074-02762006000800003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 09/19/2006] [Indexed: 11/22/2022] Open
Abstract
The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.
Collapse
Affiliation(s)
- Augusto Simões-Barbosa
- Laboratório Multidisciplinar de Pesquisa em Doença de Chagas, Universidade de Brasília, 70919-970 Brasília, DF, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Teixeira ARL, Nascimento RJ, Sturm NR. Evolution and pathology in chagas disease--a review. Mem Inst Oswaldo Cruz 2007; 101:463-91. [PMID: 17072450 DOI: 10.1590/s0074-02762006000500001] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/07/2006] [Indexed: 02/04/2023] Open
Abstract
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Laboratório de Pesquisa Multidisciplinar em Doença de Chagas, Faculdade de Medicina, Universidade de Brasilia, Caixa Postal 04536, 70919-970 Brasilia,-DF, Brasil.
| | | | | |
Collapse
|
37
|
Payandeh J, Pai EF. Enzyme-Driven Speciation: Crystallizing Archaea via Lipid Capture. J Mol Evol 2007; 64:364-74. [PMID: 17253090 DOI: 10.1007/s00239-006-0141-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
As the origin(s) of life on Earth remains an open question, detailed characteristics about the "last universal ancestor" (LUA) continue to be obscured. Here we provide arguments that strengthen the bacterial-like nature of the LUA. Our view attempts to recreate the evolution of archaeal lipids, the major components of the distinctive membrane that encapsulates these ancient prokaryotes. We show that (S)- 3-O-geranylgeranylglyceryl phosphate synthase (GGGPS), a TIM-barrel protein that performs the committed step in archaeal lipid synthesis, likely evolved from the duplication and fusion of a (betaalpha)4 half-barrel ancestor. By comparison to the well-characterized HisA and HisF TIM-barrel proteins, we propose a time line for the invention of this diagnostic archaeal biosynthetic pathway. After excluding the possibility of horizontal gene transfer, we conclude that the evolutionary history of GGGPS mirrors the emergence of Archaea from the LUA. We illustrate aspects of this "lipid capture" model that support its likelihood in recreating key evolutionary events and, as our hypothesis is built on a single initiating event, we suggest that the appearance of GGGPS represents an example of enzyme-driven speciation.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
38
|
Suen G, Arshinoff BI, Taylor RG, Welch RD. Practical Applications of Bacterial Functional Genomics. Biotechnol Genet Eng Rev 2007; 24:213-42. [DOI: 10.1080/02648725.2007.10648101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Das BB, Sengupta T, Ganguly A, Majumder HK. Topoisomerases of kinetoplastid parasites: why so fascinating? Mol Microbiol 2006; 62:917-27. [PMID: 17042788 DOI: 10.1111/j.1365-2958.2006.05428.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA topoisomerases are the key enzymes involved in carrying out high precision DNA transactions inside the cells. However, they are detrimental to the cell when a wide variety of topoisomerase-targeted drugs generate cytotoxic lesions by trapping the enzymes in covalent complexes on the DNA. The discovery of unusual heterodimeric topoisomerase I in kinetoplastid family added a new twist in topoisomerase research related to evolution, functional conservation and their preferential sensitivity to Camptothecin. On the other hand, structural and mechanistic studies on kinetoplastid topoisomerase II delineate some distinguishing features that differentiate the parasitic enzyme from its prokaryotic and eukaryotic counterparts. This review summarizes the recent advances in research in kinetoplastid topoisomerases, their evolutionary significance and the death of the unicellular parasite Leishmania donovani induced by topoisomerase I inhibitor camptothecin.
Collapse
Affiliation(s)
- Benu Brata Das
- Department of Molecular Parasitology, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | | | |
Collapse
|
40
|
Using the nucleotide substitution rate matrix to detect horizontal gene transfer. BMC Bioinformatics 2006; 7:476. [PMID: 17067382 PMCID: PMC1657035 DOI: 10.1186/1471-2105-7-476] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 10/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) has allowed bacteria to evolve many new capabilities. Because transferred genes perform many medically important functions, such as conferring antibiotic resistance, improved detection of horizontally transferred genes from sequence data would be an important advance. Existing sequence-based methods for detecting HGT focus on changes in nucleotide composition or on differences between gene and genome phylogenies; these methods have high error rates. RESULTS First, we introduce a new class of methods for detecting HGT based on the changes in nucleotide substitution rates that occur when a gene is transferred to a new organism. Our new methods discriminate simulated HGT events with an error rate up to 10 times lower than does GC content. Use of models that are not time-reversible is crucial for detecting HGT. Second, we show that using combinations of multiple predictors of HGT offers substantial improvements over using any single predictor, yielding as much as a factor of 18 improvement in performance (a maximum reduction in error rate from 38% to about 3%). Multiple predictors were combined by using the random forests machine learning algorithm to identify optimal classifiers that separate HGT from non-HGT trees. CONCLUSION The new class of HGT-detection methods introduced here combines advantages of phylogenetic and compositional HGT-detection techniques. These new techniques offer order-of-magnitude improvements over compositional methods because they are better able to discriminate HGT from non-HGT trees under a wide range of simulated conditions. We also found that combining multiple measures of HGT is essential for detecting a wide range of HGT events. These novel indicators of horizontal transfer will be widely useful in detecting HGT events linked to the evolution of important bacterial traits, such as antibiotic resistance and pathogenicity.
Collapse
|
41
|
Inagaki Y, Susko E, Roger AJ. Recombination between elongation factor 1alpha genes from distantly related archaeal lineages. Proc Natl Acad Sci U S A 2006; 103:4528-33. [PMID: 16537397 PMCID: PMC1450205 DOI: 10.1073/pnas.0600744103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) and lateral gene transfer are major processes in genome evolution. The combination of the two processes, HR between genes in different species, has been documented but is thought to be restricted to very similar sequences in relatively closely related organisms. Here we report two cases of interspecific HR in the gene encoding the core translational protein translation elongation factor 1alpha (EF-1alpha) between distantly related archaeal groups. Maximum-likelihood sliding window analyses indicate that a fragment of the EF-1alpha gene from the archaeal lineage represented by Methanopyrus kandleri was recombined into the orthologous gene in a common ancestor of the Thermococcales. A second recombination event appears to have occurred between the EF-1alpha gene of the genus Methanothermobacter and its ortholog in a common ancestor of the Methanosarcinales, a distantly related euryarchaeal lineage. These findings suggest that HR occurs across a much larger evolutionary distance than generally accepted and affects highly conserved essential "informational" genes. Although difficult to detect by standard whole-gene phylogenetic analyses, interspecific HR in highly conserved genes may occur at an appreciable frequency, potentially confounding deep phylogenetic inference and hypothesis testing.
Collapse
Affiliation(s)
- Yuji Inagaki
- *Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Edward Susko
- Department of Mathematics and Statistics and Genome Atlantic, Dalhousie University, Halifax, NS, Canada B3H 3J5; and
| | - Andrew J. Roger
- Canadian Institute for Advanced Research and Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5
| |
Collapse
|
42
|
Bailey CD, Fain MG, Houde P. On conditioned reconstruction, gene content data, and the recovery of fusion genomes. Mol Phylogenet Evol 2006; 39:263-70. [PMID: 16414287 DOI: 10.1016/j.ympev.2005.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 11/23/2005] [Accepted: 11/28/2005] [Indexed: 11/17/2022]
Affiliation(s)
- C Donovan Bailey
- Department of Biology, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003, USA.
| | | | | |
Collapse
|
43
|
Csűrös M, Miklós I. A Probabilistic Model for Gene Content Evolution with Duplication, Loss, and Horizontal Transfer. LECTURE NOTES IN COMPUTER SCIENCE 2006. [DOI: 10.1007/11732990_18] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Leebens-Mack J, Vision T, Brenner E, Bowers JE, Cannon S, Clement MJ, Cunningham CW, dePamphilis C, deSalle R, Doyle JJ, Eisen JA, Gu X, Harshman J, Jansen RK, Kellogg EA, Koonin EV, Mishler BD, Philippe H, Pires JC, Qiu YL, Rhee SY, Sjölander K, Soltis DE, Soltis PS, Stevenson DW, Wall K, Warnow T, Zmasek C. Taking the first steps towards a standard for reporting on phylogenies: Minimum Information About a Phylogenetic Analysis (MIAPA). OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:231-7. [PMID: 16901231 PMCID: PMC3167193 DOI: 10.1089/omi.2006.10.231] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the eight years since phylogenomics was introduced as the intersection of genomics and phylogenetics, the field has provided fundamental insights into gene function, genome history and organismal relationships. The utility of phylogenomics is growing with the increase in the number and diversity of taxa for which whole genome and large transcriptome sequence sets are being generated. We assert that the synergy between genomic and phylogenetic perspectives in comparative biology would be enhanced by the development and refinement of minimal reporting standards for phylogenetic analyses. Encouraged by the development of the Minimum Information About a Microarray Experiment (MIAME) standard, we propose a similar roadmap for the development of a Minimal Information About a Phylogenetic Analysis (MIAPA) standard. Key in the successful development and implementation of such a standard will be broad participation by developers of phylogenetic analysis software, phylogenetic database developers, practitioners of phylogenomics, and journal editors.
Collapse
Affiliation(s)
- Jim Leebens-Mack
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Martin W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 2005; 8:630-7. [PMID: 16242992 DOI: 10.1016/j.mib.2005.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
The eukaryotic nucleus is a unique structure. Because it lacks an obvious homologue or precursor among prokaryotes, ideas about its evolutionary origin are diverse. Current attempts to derive the nuclear membrane focus on invaginations of the plasma membrane in a prokaryote, endosymbiosis of an archaebacterium within a eubacterial host, or the origin of a genuinely new membrane system following the origin of mitochondria in an archaebacterial host. Recent reports point to ways in which different ideas regarding the origin of the nucleus might someday be discriminated.
Collapse
Affiliation(s)
- William Martin
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
46
|
Ouzounis CA. Ancestral state reconstructions for genomes. Curr Opin Genet Dev 2005; 15:595-600. [PMID: 16216489 DOI: 10.1016/j.gde.2005.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 09/28/2005] [Indexed: 11/26/2022]
Abstract
The recent expansion of phylogenetic analysis from the traditional field of molecular evolution, analyzing histories of genes, to the nascent field of "genomic evolution", analyzing histories of entire genomes, enables the construction of trees based on genome information, the quantification of the key processes that shape genome content and, ultimately, plausible parsimony reconstructions of ancestral genomes. Thus, when genomes are considered as phylogenetic characters, it is possible to reconstruct not only the history of species but also the ancestral states in terms of genome structure or function. In the future, we might be able to accurately reconstruct--or retrodict--a chain of events that led to the emergence of a specific genome sequence and, ultimately, to synthesize ancestral genomes at will, creating a "Jurassic database" of genomes.
Collapse
Affiliation(s)
- Christos A Ouzounis
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| |
Collapse
|
47
|
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Curr Opin Genet Dev 2005; 15:589-94. [PMID: 16185861 DOI: 10.1016/j.gde.2005.09.006] [Citation(s) in RCA: 868] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed. Experimental data have shown that in some species new genes are discovered even after sequencing the genomes of several strains. Mathematical modeling predicts that new genes will be discovered even after sequencing hundreds of genomes per species. Therefore, a bacterial species can be described by its pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome" containing genes present in two or more strains and genes unique to single strains. Given that the number of unique genes is vast, the pan-genome of a bacterial species might be orders of magnitude larger than any single genome.
Collapse
Affiliation(s)
- Duccio Medini
- Immunobiological Research Institute of Siena (IRIS), Chiron Vaccines, via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
48
|
Hey J, Fitch WM, Ayala FJ. Systematics and the origin of species: an introduction. Proc Natl Acad Sci U S A 2005; 102 Suppl 1:6515-9. [PMID: 15851660 PMCID: PMC1131868 DOI: 10.1073/pnas.0501939102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jody Hey
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, 08854, USA
| | | | | |
Collapse
|