1
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 PMCID: PMC11881328 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Cimpean M, Keppel MP, Gainullina A, Fan C, Sohn H, Schedler NC, Swain A, Kolicheski A, Shapiro H, Young HA, Wang T, Artyomov MN, Cooper MA. IL-15 Priming Alters IFN-γ Regulation in Murine NK Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1481-1493. [PMID: 37747317 PMCID: PMC10873103 DOI: 10.4049/jimmunol.2300283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
NK effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. Although both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared with naive cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared with naive NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. Although Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15-primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.
Collapse
Affiliation(s)
- Maria Cimpean
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Molly P. Keppel
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxu Fan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hyogon Sohn
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan C. Schedler
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Shapiro
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol 2023; 23:595-610. [PMID: 36941354 PMCID: PMC11140722 DOI: 10.1038/s41577-023-00843-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells - a condition known as clonal haematopoiesis (CH) - are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.
Collapse
Affiliation(s)
- Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle L Robinette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Manríquez RA, Sandoval M, Loncoman C, Tafalla C, Avendaño-Herrera R, Cárcamo JG. Epigenetic reprogramming around IFN1 and IFNy2 promoters in rainbow trout cells inoculated with infectious pancreatic necrosis virus (IPNV). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108947. [PMID: 37454879 DOI: 10.1016/j.fsi.2023.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) has proven to effectively evade the host antiviral responses. This study clarifies whether the modulation of the antiviral immune response exerted by IPNV involves epigenetic mechanisms. An in-silico characterization of the rainbow trout IFN1 and IFNγ2 promoters was performed, identifying the islands or sequences rich in CpG dinucleotides and the putative transcription factor binding sites (TBS) for both gene promoters. RTS11 cells (rainbow trout monocyte/macrophage) were infected with IPNV, and the course of viral infection was followed up to 48 h post infection (hpi). Infected cells showed increased IFN1 and IFNγ2 transcriptional expression at 6 and 24 hpi, respectively. IPNV infection caused increases and decreases in global IFNγ2 promoter methylation at 6 and 24 hpi, respectively. The CpG dinucleotides at positions -392 and + 38 of this promoter were the most sensitive to methylation changes. The IFN1 promoter remained fully unmethylated during the course of the infection, similar to the control. The changes in the methylation pattern observed for the IFNγ2 promoter were coincident with the changes in DNA methyltransferase (DNMT) expression levels, increasing at 6 hpi and decreasing below basal level at 24 hpi. Similarly, the H4 histones associated with the IFN1 and IFNγ2 promoters were hyperacetylated at 6 hpi, subsequently decreasing their acetylation below basal levels at 24 hpi, in both promoters. Coincidentally with the above, overexpression of histone acetyltransferase (HAT) was observed at 6 hpi and of histone deacetylase (HDAC) at 24 hpi, with return to baseline of HAT. These results suggest that IPNV would epigenetically modulate the expression of IFN1 by changing acetylation levels of the histones H4 associated with its promoter. Also, the modulation of the expression of IFNy2 would be by switching methylation/demethylation levels of its promoter, in addition to changes in acetylation levels of histones H4 associated with this promoter. This study is the first to demonstrate the effect of epigenetic reprogramming after IPNV infection in salmonid cells, demonstrating that promoter methylation/demethylation level and changes in the histone code associated with promoters may play a role in the modulation of the immune response induced by the virus.
Collapse
Affiliation(s)
- René A Manríquez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile
| | - Moisés Sandoval
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile
| | - Carlos Loncoman
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Tafalla
- Animal Health Research Center (CISA), INIA-CSIC, Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - R Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile; Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile; Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile.
| |
Collapse
|
5
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Hojjatipour T, Maali A, Azad M. Natural killer cell epigenetic reprogramming in tumors and potential for cancer immunotherapy. Epigenomics 2023; 15:249-266. [PMID: 37125432 DOI: 10.2217/epi-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Natural killer (NK) cells are critical members of the innate lymphoid cell population and have a pivotal role in cancer eradication. NK cell maturation, development and function are tightly regulated by epigenetic modifications, which can also be recruited for cancer propagation and immune escape. NK cells have the potential to be activated against tumors through several epigenetic regulators. Given that epigenetic changes are inducible and reversible, focusing on aberrant epigenetic regulations recruited by tumor cells provides a tremendous opportunity for cancer treatment. This review presents a comprehensive picture of NK cell normal epigenetic regulation and cancer-driven epigenetic modifications. From our perspective, a better understanding of epigenetic regulators that can edit and revise NK cells' activity is a promising avenue for NK cell-based therapy in cancer management.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology & Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
Cimpean M, Keppel MP, Gainullina A, Fan C, Schedler NC, Swain A, Kolicheski A, Shapiro H, Young HA, Wang T, Artyomov MN, Cooper MA. IL-15 priming alters IFN-γ regulation in murine NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537947. [PMID: 37163083 PMCID: PMC10168240 DOI: 10.1101/2023.04.23.537947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Natural killer (NK) effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. While both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared to naïve cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared to naïve NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. While Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15 primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.
Collapse
|
8
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Gajanayaka N, Dong SXM, Ali H, Iqbal S, Mookerjee A, Lawton DA, Caballero RE, Cassol E, Cameron DW, Angel JB, Crawley AM, Kumar A. TLR-4 Agonist Induces IFN-γ Production Selectively in Proinflammatory Human M1 Macrophages through the PI3K-mTOR- and JNK-MAPK-Activated p70S6K Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 207:2310-2324. [PMID: 34551966 DOI: 10.4049/jimmunol.2001191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Niranjala Gajanayaka
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Simon Xin Min Dong
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Salma Iqbal
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ananda Mookerjee
- Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David A Lawton
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramon Edwin Caballero
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Donald William Cameron
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Center for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ontario, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; .,Apoptosis Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Xia M, Wang B, Wang Z, Zhang X, Wang X. Epigenetic Regulation of NK Cell-Mediated Antitumor Immunity. Front Immunol 2021; 12:672328. [PMID: 34017344 PMCID: PMC8129532 DOI: 10.3389/fimmu.2021.672328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are critical innate lymphocytes that can directly kill target cells without prior immunization. NK cell activation is controlled by the balance of multiple germline-encoded activating and inhibitory receptors. NK cells are a heterogeneous and plastic population displaying a broad spectrum of functional states (resting, activating, memory, repressed, and exhausted). In this review, we present an overview of the epigenetic regulation of NK cell-mediated antitumor immunity, including DNA methylation, histone modification, transcription factor changes, and microRNA expression. NK cell-based immunotherapy has been recognized as a promising strategy to treat cancer. Since epigenetic alterations are reversible and druggable, these studies will help identify new ways to enhance NK cell-mediated antitumor cytotoxicity by targeting intrinsic epigenetic regulators alone or in combination with other strategies.
Collapse
Affiliation(s)
- Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Bingbing Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Zihan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Bromodomain inhibitor JQ1 reversibly blocks IFN-γ production. Sci Rep 2019; 9:10280. [PMID: 31311960 PMCID: PMC6635431 DOI: 10.1038/s41598-019-46516-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023] Open
Abstract
As a class, ‘BET’ inhibitors disrupt binding of bromodomain and extra-terminal motif (BET) proteins, BRD2, BRD3, BRD4 and BRDT, to acetylated histones preventing recruitment of RNA polymerase 2 to enhancers and promoters, especially super-enhancers, to inhibit gene transcription. As such, BET inhibitors may be useful therapeutics for treatment of cancer and inflammatory disease. For example, the small molecule BET inhibitor, JQ1, selectively represses MYC, an important oncogene regulated by a super-enhancer. IFN-γ, a critical cytokine for both innate and adaptive immune responses, is also regulated by a super-enhancer. Here, we show that JQ1 represses IFN-γ expression in TH1 polarized PBMC cultures, CD4+ memory T cells, and NK cells. JQ1 treatment does not reduce activating chromatin marks at the IFNG locus, but displaces RNA polymerase II from the locus. Further, IFN-γ expression recovers in polarized TH1 cultures following removal of JQ1. Our results show that JQ1 abrogates IFN-γ expression, but repression is reversible. Thus, BET inhibitors may disrupt the normal functions of the innate and adaptive immune response.
Collapse
|
12
|
Abstract
Interferon gamma, referred to here as IFN-γ, is a major component in immunological cell signaling and is a critical regulatory protein for overall immune system function. First discovered in 1965 (Wheelock Science 149: (3681)310-311, 1965), IFN-γ is the only Type II interferon identified. Its expression is both positively and negatively controlled by different factors. In this chapter, we will review the transcriptional and post-transcriptional control of IFN-γ expression. In the transcriptional control part, the regular activators and suppressors are summarized, we will also focus on the epigenetic control, such as chromosome access, DNA methylation, and histone acetylation. The more we learn about the control of this regulatory protein will allow us to apply this knowledge in the future to effectively manipulate IFN-γ expression for the treatment of infections, cancer, inflammation, and autoimmune diseases.
Collapse
|
13
|
Djurovic J, Stamenkovic G, Todorovic J, Aleksic N, Stojkovic O. Polymorphisms and haplotypes in VDR gene are associated with female idiopathic infertility. HUM FERTIL 2018; 23:101-110. [PMID: 30221569 DOI: 10.1080/14647273.2018.1515503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Unexplained infertility refers to the absence of a definable cause of reproductive failure. Vitamin D receptor (VDR) acts as a transcription factor and regulates a number of vitamin D-responsive genes, including those involved in the immune system. Recent finding that VDR is expressed in reproductive tissues suggests a possible importance of vitamin D in pregnancy. We conducted a case-control study to examine the association of polymorphisms in VDR gene with reproductive success. DNA from 117 female patients with unexplained infertility and 130 fertile controls was isolated from peripheral blood and VDR genotypes (FokI, BsmI, ApaI and TaqI) were detected by PCR-RFLP. Haplotypes were determined using Haploview software. Our results show significant association of FokI and BsmI polymorphisms with infertility (p < 0.05). The haplotype analysis confirmed strong linkage disequilibrium between closely positioned BsmI, ApaI and TaqI polymorphisms. Two haplotypes were associated with infertility: (i) haplotype bAT was increasing the risk for secondary infertility; while (ii) haplotype BAT had a protective role against primary infertility (p < 0.05). By changing the expression and the activity of VDR gene, which leads to the change in expression of vitamin D-responsive genes, these polymorphisms and haplotypes could possibly have an effect on immune system in the female reproductive tract.
Collapse
Affiliation(s)
- Jelena Djurovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Belgrade, Serbia
| | - Gorana Stamenkovic
- Institute of Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jelena Todorovic
- Specialized Medical Practice in the Field of Internal Medicine "Teamed", Belgrade, Serbia
| | - Natasa Aleksic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Belgrade, Serbia
| | - Oliver Stojkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
15
|
Abstract
Metabolism is critical for a host of cellular functions and provides a source of intracellular energy. It has been recognized recently that metabolism also regulates differentiation and effector functions of immune cells. Although initial work in this field has focused largely on T lymphocytes, recent studies have demonstrated metabolic control of innate immune cells, including natural killer (NK) cells. Here, we review what is known regarding the metabolic requirements for NK cell activation, focusing on NK cell production of interferon-gamma (IFN-γ). NK cells are innate immune lymphocytes that are poised for rapid activation during the early immune response. Although their basal metabolic rates do not change with short-term activation, they exhibit specific metabolic requirements for activation depending upon the stimulus received. These metabolic requirements for NK cell activation are altered by culturing NK cells with interleukin-15, which increases NK cell metabolic rates at baseline and shifts them toward aerobic glycolysis. We discuss the metabolic pathways important for NK cell production of IFN-γ protein and potential mechanisms whereby metabolism regulates NK cell function.
Collapse
Affiliation(s)
- Annelise Y Mah
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Cytokine-driven role of Srebps in killer cell metabolism. Nat Immunol 2017; 18:1183-1184. [PMID: 29044236 DOI: 10.1038/ni.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 2017; 18:1197-1206. [PMID: 28920951 DOI: 10.1038/ni.3838] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Activated natural killer (NK) cells engage in a robust metabolic response that is required for normal effector function. Using genetic, pharmacological and metabolic analyses, we demonstrated an essential role for Srebp transcription factors in cytokine-induced metabolic reprogramming of NK cells that was independent of their conventional role in the control of lipid synthesis. Srebp was required for elevated glycolysis and oxidative phosphorylation and promoted a distinct metabolic pathway configuration in which glucose was metabolized to cytosolic citrate via the citrate-malate shuttle. Preventing the activation of Srebp or direct inhibition of the citrate-malate shuttle inhibited production of interferon-γ and NK cell cytotoxicity. Thus, Srebp controls glucose metabolism in NK cells, and this Srebp-dependent regulation is critical for NK cell effector function.
Collapse
|
18
|
Kespohl M, Vachharajani N, Luu M, Harb H, Pautz S, Wolff S, Sillner N, Walker A, Schmitt-Kopplin P, Boettger T, Renz H, Offermanns S, Steinhoff U, Visekruna A. The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4 + T Cells. Front Immunol 2017; 8:1036. [PMID: 28894447 PMCID: PMC5581317 DOI: 10.3389/fimmu.2017.01036] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), which are generated by the bacterial fermentation of dietary fibers, promote expansion of regulatory T cells (Tregs). Potential therapeutic value of SCFAs has been recently highlighted in the experimental models of T cell-mediated autoimmunity and allergic inflammation. These studies suggest that physiological intestinal concentrations of SCFAs within the millimolar range are crucial for dampening inflammation-mediated processes. Here, we describe opposing effects of SCFAs on T cell-mediated immune responses. In accordance with published data, lower butyrate concentrations facilitated differentiation of Tregs in vitro and in vivo under steady-state conditions. In contrast, higher concentrations of butyrate induced expression of the transcription factor T-bet in all investigated T cell subsets resulting in IFN-γ-producing Tregs or conventional T cells. This effect was mediated by the inhibition of histone deacetylase activity and was independent of SCFA-receptors FFA2 and FFA3 as well as of Na+-coupled SCFA transporter Slc5a8. Importantly, while butyrate was not able to induce the generation of Tregs in the absence of TGF-β1, the expression of T-bet and IFN-γ was triggered upon stimulation of CD4+ T cells with this SCFA alone. Moreover, the treatment of germ-free mice with butyrate enhanced the expression of T-bet and IFN-γ during acute colitis. Our data reveal that, depending on its concentration and immunological milieu, butyrate may exert either beneficial or detrimental effects on the mucosal immune system.
Collapse
Affiliation(s)
- Meike Kespohl
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Niyati Vachharajani
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
| | - Sabine Pautz
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Svenja Wolff
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Nina Sillner
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.,ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany.,Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
19
|
Barski A, Cuddapah S, Kartashov AV, Liu C, Imamichi H, Yang W, Peng W, Lane HC, Zhao K. Rapid Recall Ability of Memory T cells is Encoded in their Epigenome. Sci Rep 2017; 7:39785. [PMID: 28054639 PMCID: PMC5215294 DOI: 10.1038/srep39785] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Abstract
Even though T-cell receptor (TCR) stimulation together with co-stimulation is sufficient for the activation of both naïve and memory T cells, the memory cells are capable of producing lineage specific cytokines much more rapidly than the naïve cells. The mechanisms behind this rapid recall response of the memory cells are still not completely understood. Here, we performed epigenetic profiling of human resting naïve, central and effector memory T cells using ChIP-Seq and found that unlike the naïve cells, the regulatory elements of the cytokine genes in the memory T cells are marked by activating histone modifications even in the resting state. Therefore, the ability to induce expression of rapid recall genes upon activation is associated with the deposition of positive histone modifications during memory T cell differentiation. We propose a model of T cell memory, in which immunological memory state is encoded epigenetically, through poising and transcriptional memory.
Collapse
Affiliation(s)
- Artem Barski
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, NY, 10987, USA
| | - Andrey V Kartashov
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Chong Liu
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Hiromi Imamichi
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenjing Yang
- Department of Physics, The George Washington University, D.C., 20052, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, D.C., 20052, USA
| | - H Clifford Lane
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Zhao D, Zhang Q, Liu Y, Li X, Zhao K, Ding Y, Li Z, Shen Q, Wang C, Li N, Cao X. H3K4me3 Demethylase Kdm5a Is Required for NK Cell Activation by Associating with p50 to Suppress SOCS1. Cell Rep 2016; 15:288-99. [PMID: 27050510 DOI: 10.1016/j.celrep.2016.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
The H3K4me3 demethylase Kdm5a regulates gene transcription and is implicated in carcinogenesis. However, the role of Kdm5a in innate immune response remains poorly understood. Here, we demonstrate that Kdm5a deficiency impairs activation of natural killer (NK) cells, with decreased IFN-γ production. Accordingly, Kdm5a(-/-) mice are highly susceptible to Listeria monocytogenes (Lm) infection. During NK cell activation, loss of Kdm5a profoundly impairs phosphorylation and nuclear localization of STAT4, along with increased expression of suppressor of cytokine signaling 1 (SOCS1). Mechanistic studies reveal that Kdm5a associates with p50 and binds to the Socs1 promoter region in resting NK cells, leading to a substantial decrease in H3K4me3 modification and repressive chromatin configuration at the Socs1 promoter. Thus, Kdm5a is required for priming activation of NK cells by suppressing the suppressor, SOCS1. Our study provides insights into the epigenetic regulation of innate immune response of NK cells.
Collapse
Affiliation(s)
- Dezhi Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yiqi Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Zhao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuanyuan Ding
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiqing Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Chunmei Wang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China; National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
21
|
Fukuoka N, Harada M, Nishida A, Ito Y, Shiota H, Kataoka T. Eomesodermin promotes interferon-γ expression and binds to multiple conserved noncoding sequences across the Ifng locus in mouse thymoma cell lines. Genes Cells 2016; 21:146-62. [PMID: 26749212 DOI: 10.1111/gtc.12328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 11/23/2015] [Indexed: 01/03/2023]
Abstract
The T-box transcription factors T-bet and eomesodermin (Eomes) have been shown to regulate the lineage-specific expression of interferon-γ (IFN-γ). However, in contrast to T-bet, the role of Eomes in the expression of IFN-γ remains unclear. In this study, we investigated the Eomes-dependent expression of IFN-γ in the mouse thymoma BW5147 and EL4 cells, which do not express T-bet or Eomes. The ectopic expression of Eomes induced BW5147 and EL4 cells to produce IFN-γ in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In BW5147 cells, Eomes augmented luciferase activity driven by the Ifng promoter encoding from -2500 to +113 bp; however, it was not increased by a stimulation with PMA and IM. A chromatin immunoprecipitation assay showed that Eomes bound to the Ifng promoter and conserved noncoding sequence (CNS) -22 kb across the Ifng locus with high efficacy in BW5147 cells. Moreover, Eomes increased permissive histone modifications in the Ifng promoter and multiple CNSs. The stimulation with PMA and IM greatly augmented Eomes binding to CNS-54, CNS-34, CNS+19 and CNS+30, which was inhibited by FK506. These results indicated that Eomes bound to the Ifng promoter and multiple CNSs in stimulation-dependent and stimulation-independent manners.
Collapse
Affiliation(s)
- Natsuki Fukuoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Misuzu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ai Nishida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuko Ito
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Shiota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
22
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
23
|
Smith NLD, Denning DW. Clinical implications of interferon-γ genetic and epigenetic variants. Immunology 2015; 143:499-511. [PMID: 25052001 DOI: 10.1111/imm.12362] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Interferon-γ (IFN-γ) is an integral and critical molecule of the immune system, with multiple functions, mostly related to the T helper type 1 (Th1) response to infection. It is critical for defence against mycobacterial infection and is of increasing interest in defence against fungi. In this article, we review the genetic and epigenetic variants affecting IFN-γ expression and investigate its role in disease, with an emphasis on fungal diseases such as invasive and chronic pulmonary aspergillosis. Over 347 IFN-γ gene variants have been described, in multiple ethnic populations. Many appear to confer a susceptibility to disease, especially tuberculosis (TB) and hepatitis, but also some non-infectious conditions such as aplastic anaemia, cervical cancer and psoriasis. Several epigenetic modifications are also described, increasing IFN-γ expression in Th1 lymphocytes and reducing IFN-γ expression in Th2 lymphocytes. Recombinant IFN-γ administration is licensed for the prophylaxis of infection (bacterial and fungal) in patients with the phagocyte functional deficiency syndrome chronic granulomatous disease, although the benefits appear limited. Interferon-γ therapy is given to patients with profound defects in IFN-γ and interleukin-12 production and appears to be beneficial for patients with invasive aspergillosis and cryptococcal meningitis, but the studies are not definitive. A high proportion of patients with chronic pulmonary aspergillosis are poor producers of IFN-γ in response to multiple stimuli and could also benefit from IFN-γ administration. The investigation and management of patients with possible or demonstrated IFN-γ deficiency in adulthood is poorly studied and could be greatly enhanced with the integration of genetic data.
Collapse
Affiliation(s)
- Nicola L D Smith
- Manchester Fungal Infection Group, Faculty of Medical and Human Science, The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, University Hospital South Manchester NHS Foundation Trust, Manchester, UK; NIHR South Manchester Respiratory and Allergy Clinical Research Facility, Manchester, UK
| | | |
Collapse
|
24
|
Fodil N, Langlais D, Moussa P, Boivin GA, Di Pietrantonio T, Radovanovic I, Dumaine A, Blanchette M, Schurr E, Gros P, Vidal SM. Specific dysregulation of IFNγ production by natural killer cells confers susceptibility to viral infection. PLoS Pathog 2014; 10:e1004511. [PMID: 25473962 PMCID: PMC4256466 DOI: 10.1371/journal.ppat.1004511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Natural Killer (NK) cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H+ NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease. Cytomegalovirus (CMV) is a ubiquitous herpesvirus that largely infects the human population leading to a significant cause of disease and death in the immunocompromised and elderly. The study of CMV in animal models has helped understand the pathogenic consequences of CMV infection and adds substantial understanding of the complex interplay of host and virus in living systems. Natural Killer (NK) cells have emerged as an important player during CMV infection trough their specific recognition of viral particles determinants and subsequent secretion of cytokines and cytolytic granules. In the present study, we have generated different mouse models to specifically investigate quantify viral recognition and cytokine expression by NK cells during CMV infection as a measure of NK cell function. We found that even after proper recognition of infected cells by NK cells, the adequate production of IFNγ is crucial to restrain viral infection. Moreover, we demonstrated that IFNγ production by NK cells is genetically determined and directly linked to the IFNγ locus. Hence, we provide the first evidence for of a unique mechanism of IFNγ production by NK cells which regulates susceptibility to viral infection.
Collapse
Affiliation(s)
- Nassima Fodil
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
- * E-mail: (NF); (SMV)
| | - David Langlais
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Peter Moussa
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
| | - Gregory Allan Boivin
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
| | - Tania Di Pietrantonio
- Research Institute of the McGill University Health Centre, McGill Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Irena Radovanovic
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Anne Dumaine
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada
| | - Erwin Schurr
- Research Institute of the McGill University Health Centre, McGill Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Silvia Marina Vidal
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
- * E-mail: (NF); (SMV)
| |
Collapse
|
25
|
Luetke-Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, Hamann A, Walter J, Chang HD, Dong J, Romagnani C. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 2014; 10:e1004441. [PMID: 25329659 PMCID: PMC4199780 DOI: 10.1371/journal.ppat.1004441] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022] Open
Abstract
Memory type 1 T helper (T(H)1) cells are characterized by the stable expression of interferon (IFN)-γ as well as by the epigenetic imprinting of the IFNG locus. Among innate cells, NK cells play a crucial role in the defense against cytomegalovirus (CMV) and represent the main source of IFN-γ. Recently, it was shown that memory-like features can be observed in NK cell subsets after CMV infection. However, the molecular mechanisms underlying NK cell adaptive properties have not been completely defined. In the present study, we demonstrated that only NKG2Chi NK cells expanded in human CMV (HCMV) seropositive individuals underwent epigenetic remodeling of the IFNG conserved non-coding sequence (CNS) 1, similar to memory CD8(+) T cells or T(H)1 cells. The accessibility of the CNS1 was required to enhance IFN-γ transcriptional activity in response to NKG2C and 2B4 engagement, which led to consistent IFN-γ production in NKG2C(hi) NK cells. Thus, our data identify epigenetic imprinting of the IFNG locus as selective hallmark and crucial mechanism driving strong and stable IFN-γ expression in HCMV-specific NK cell expansions, providing a molecular basis for the regulation of adaptive features in innate cells.
Collapse
Affiliation(s)
- Merlin Luetke-Eversloh
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Quirin Hammer
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
- Cell Biology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Karl Nordström
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Matthias Pink
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Hyun-Dong Chang
- Cell Biology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. THE JOURNAL OF IMMUNOLOGY 2014; 193:3959-65. [PMID: 25225667 DOI: 10.4049/jimmunol.1401099] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), critical regulators of protein-coding genes, are likely to be coexpressed with neighboring protein-coding genes in the genome. How the genome integrates signals to achieve coexpression of lncRNA genes and neighboring protein-coding genes is not well understood. The lncRNA Tmevpg1 (NeST, Ifng-AS1) is critical for Th1-lineage-specific expression of Ifng and is coexpressed with Ifng. In this study, we show that T-bet guides epigenetic remodeling of Tmevpg1 proximal and distal enhancers, leading to recruitment of stimulus-inducible transcription factors, NF-κB and Ets-1, to the locus. Activities of Tmevpg1-specific enhancers and Tmevpg1 transcription are dependent upon NF-κB. Thus, we propose that T-bet stimulates epigenetic remodeling of Tmevpg1-specific enhancers and Ifng-specific enhancers to achieve Th1-lineage-specific expression of Ifng.
Collapse
Affiliation(s)
- Sarah P Collier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Melodie A Henderson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M Aune
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
27
|
Luetke-Eversloh M, Cicek BB, Siracusa F, Thom JT, Hamann A, Frischbutter S, Baumgrass R, Chang HD, Thiel A, Dong J, Romagnani C. NK cells gain higher IFN-γ competence during terminal differentiation. Eur J Immunol 2014; 44:2074-84. [DOI: 10.1002/eji.201344072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/18/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Merlin Luetke-Eversloh
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Basak B. Cicek
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Francesco Siracusa
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Jenny T. Thom
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Alf Hamann
- Experimental Rheumatology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Stefan Frischbutter
- Signal Transduction; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Ria Baumgrass
- Signal Transduction; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Hyun-Dong Chang
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging; Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine; Berlin Germany
| | - Jun Dong
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Chiara Romagnani
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| |
Collapse
|
28
|
Balasubramani A, Winstead CJ, Turner H, Janowski KM, Harbour SN, Shibata Y, Crawford GE, Hatton RD, Weaver CT. Deletion of a conserved cis-element in the Ifng locus highlights the role of acute histone acetylation in modulating inducible gene transcription. PLoS Genet 2014; 10:e1003969. [PMID: 24415943 PMCID: PMC3886902 DOI: 10.1371/journal.pgen.1003969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
Differentiation-dependent regulation of the Ifng cytokine gene locus in T helper (Th) cells has emerged as an excellent model for functional study of distal elements that control lineage-specific gene expression. We previously identified a cis-regulatory element located 22 kb upstream of the Ifng gene (Conserved Non-coding Sequence -22, or CNS-22) that is a site for recruitment of the transcription factors T-bet, Runx3, NF-κB and STAT4, which act to regulate transcription of the Ifng gene in Th1 cells. Here, we report the generation of mice with a conditional deletion of CNS-22 that has enabled us to define the epigenetic and functional consequences of its absence. Deletion of CNS-22 led to a defect in induction of Ifng by the cytokines IL-12 and IL-18, with a more modest effect on induction via T-cell receptor activation. To better understand how CNS-22 and other Ifng CNSs regulated Ifng transcription in response to these distinct stimuli, we examined activation-dependent changes in epigenetic modifications across the extended Ifng locus in CNS-22-deficient T cells. We demonstrate that in response to both cytokine and TCR driven activation signals, CNS-22 and other Ifng CNSs recruit increased activity of histone acetyl transferases (HATs) that transiently enhance levels of histones H3 and H4 acetylation across the extended Ifng locus. We also demonstrate that activation-responsive increases in histone acetylation levels are directly linked to the ability of Ifng CNSs to acutely enhance Pol II recruitment to the Ifng promoter. Finally, we show that impairment in IL-12+IL-18 dependent induction of Ifng stems from the importance of CNS-22 in coordinating locus-wide levels of histone acetylation in response to these cytokines. These findings identify a role for acute histone acetylation in the enhancer function of distal conserved cis-elements that regulate of Ifng gene expression.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colleen J. Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Henrietta Turner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen M. Janowski
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stacey N. Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yoichiro Shibata
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Gregory E. Crawford
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Robin D. Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (RDH); (CTW)
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (RDH); (CTW)
| |
Collapse
|
29
|
Guilmot A, Bosse J, Carlier Y, Truyens C. Monocytes play an IL-12-dependent crucial role in driving cord blood NK cells to produce IFN-g in response to Trypanosoma cruzi. PLoS Negl Trop Dis 2013; 7:e2291. [PMID: 23819002 PMCID: PMC3688561 DOI: 10.1371/journal.pntd.0002291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/15/2013] [Indexed: 01/21/2023] Open
Abstract
We previously reported that foetuses congenitally infected with Trypanosoma cruzi, the agent of Chagas disease, mount an adult-like parasite-specific CD8+ T-cell response, producing IFN-g, and present an altered NK cell phenotype, possibly reflecting a post-activation state supported by the ability of the parasite to trigger IFN-g synthesis by NK cells in vitro. We here extended our knowledge on NK cell activation by the parasite. We compared the ability of T. cruzi to activate cord blood and adult NK cells from healthy individuals. Twenty-four hours co-culture of cord blood mononuclear cells with T. cruzi trypomastigotes and IL-15 induced high accumulation of IFN-g transcripts and IFN-g release. TNF-a, but not IL-10, was also produced. This was associated with up-regulation of CD69 and CD54, and down-regulation of CD62L on NK cells. The CD56bright NK cell subset was the major IFN-g responding subset (up to 70% IFN-g-positive cells), while CD56dim NK cells produced IFN-g to a lesser extent. The response points to a synergy between parasites and IL-15. The neonatal response, observed in all newborns, remained however slightly inferior to that of adults. Activation of IL-15-sensitized cord blood NK cells by the parasite required contacts with live/intact parasites. In addition, it depended on the engagement of TLR-2 and 4 and involved IL-12 and cross-talk with monocytes but not with myeloid dendritic cells, as shown by the use of neutralizing antibodies and cell depletion. This work highlights the ability of T. cruzi to trigger a robust IFN-g response by IL-15-sensitized human neonatal NK cells and the important role of monocytes in it, which might perhaps partially compensate for the neonatal defects of DCs. It suggests that monocyte- and IL-12- dependent IFN-g release by NK cells is a potentially important innate immune response pathway allowing T. cruzi to favour a type 1 immune response in neonates. IFN-g release by NK cells is essential in early control of infections with intracellular pathogens by driving protective type 1 immune response. NK cell activation requires integration of signals delivered by cytokines, dendritic cells, monocytes/macrophages and/or pathogens. Little information is available about this topic in neonates, known to be deficient in mounting type 1 immune response. We show that Trypanosoma cruzi, the protozoa agent of Chagas disease, rapidly and strongly up-regulates the production of IFN-g by IL-15-primed cord blood NK cells to a level close to that produced by adult NK cells. This neonatal NK cell response was dependent on cross-talk with monocytes and engagement of TLR2 and TLR4 by the parasite. Importantly, IL-12 synthesis by monocytes, but not by dendritic cells, was central in driving NK cell IFN-g release. This study suggests that monocytes may compensate for the known defects of neonatal DCs to produce IL-12. This innate pathway may allow a pathogen to circumvent the defect to mount type 1 immune response in early life. This observation may be relevant in vivo in T. cruzi congenital infection, since such newborns have previously been shown to mount an adult like type 1 immune response.
Collapse
Affiliation(s)
- Aline Guilmot
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Julie Bosse
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
- * E-mail:
| |
Collapse
|
30
|
Aune TM, Collins PL, Collier SP, Henderson MA, Chang S. Epigenetic Activation and Silencing of the Gene that Encodes IFN-γ. Front Immunol 2013; 4:112. [PMID: 23720660 PMCID: PMC3655339 DOI: 10.3389/fimmu.2013.00112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/28/2013] [Indexed: 12/24/2022] Open
Abstract
Transcriptional activation and repression of genes that are developmentally regulated or exhibit cell-type specific expression patterns is largely achieved by modifying the chromatin template at a gene locus. Complex formation of stable epigenetic histone marks, loss or gain of DNA methylation, alterations in chromosome conformation, and specific utilization of both proximal and distal transcriptional enhancers and repressors all contribute to this process. In addition, long non-coding RNAs are a new species of regulatory RNAs that either positively or negatively regulate transcription of target gene loci. IFN-γ is a pro-inflammatory cytokine with critical functions in both innate and adaptive arms of the immune system. This review focuses on our current understanding of how the chromatin template is modified at the IFNG locus during developmental processes leading to its transcriptional activation and silencing.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | | | | | |
Collapse
|
31
|
Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 2013; 152:743-54. [PMID: 23415224 DOI: 10.1016/j.cell.2013.01.015] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/28/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.
Collapse
Affiliation(s)
- J Antonio Gomez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev 2012; 23:283-91. [PMID: 22989617 DOI: 10.1016/j.cytogfr.2012.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Besides the transcription-promoting role of histone acetyltransferases (HATs) and the transcription-delimiting function of histone deacetylases (HDACs) through histone acetylation and deacetylation respectively, HATs and HDACs also regulate the activity of several non-histone proteins. This includes signal transducers and activators of transcription (STATs), key proteins in cytokine signaling. Unlike Tyr phosphorylation/dephosphorylation, which mainly acts as an on/off switch of STAT activity, the control exerted by HATs and HDACs appears multifaceted and far more complex than initially imagined. Our review focuses on the latest trends and novel hypotheses to explain differential context-dependent STAT regulation by complex posttranslational modification patterns. We chart the knowledge on how STATs interact with HATs and HDACs, and additionally bring a transcriptional regulatory and gene-set specific role for HDACs in the picture. Indeed, a growing amount of evidence demonstrates, paradoxically, that not only HAT but also HDAC activity can be required for STAT-dependent transcription, in a STAT subtype- and cell type-dependent manner. Referring to recent reports, we review and discuss the various molecular mechanisms that have recently been proposed to account for this peculiar regulation, in an attempt to shed more light on the difficult yet important question on how STAT specificity is being generated.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
33
|
Collins PL, Henderson MA, Aune TM. Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element. Genes Immun 2012; 13:481-8. [PMID: 22622197 PMCID: PMC4180225 DOI: 10.1038/gene.2012.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/23/2012] [Indexed: 12/24/2022]
Abstract
Certain groups of physically linked genes remain linked over long periods of evolutionary time. The general view is that such evolutionary conservation confers 'fitness' to the species. Why gene order confers 'fitness' to the species is incompletely understood. For example, linkage of IL26 and IFNG is preserved over evolutionary time yet Th17 lineages express IL26 and Th1 lineages express IFNG. We considered the hypothesis that distal enhancer elements may be shared between adjacent genes, which would require linkage be maintained in evolution. We test this hypothesis using a bacterial artificial chromosome transgenic model with deletions of specific conserved non-coding sequences. We identify one enhancer element uniquely required for IL26 expression but not for IFNG expression. We identify a second enhancer element positioned between IL26 and IFNG required for both IL26 and IFNG expression. One function of this enhancer is to facilitate recruitment of RNA polymerase II to promoters of both genes. Thus, sharing of distal enhancers between adjacent genes may contribute to evolutionary preservation of gene order.
Collapse
Affiliation(s)
- P L Collins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2681, USA
| | | | | |
Collapse
|
34
|
Wang X, Bishop KA, Hegde S, Rodenkirch LA, Pike JW, Gumperz JE. Human invariant natural killer T cells acquire transient innate responsiveness via histone H4 acetylation induced by weak TCR stimulation. ACTA ACUST UNITED AC 2012; 209:987-1000. [PMID: 22508835 PMCID: PMC3348100 DOI: 10.1084/jem.20111024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Weak TCR stimulation of iNKT cells, such as that resulting from self-antigen recognition, induces histone modifications at the IFNG locus that allow the iNKT cells to subsequently produce IFN-γ in response to proinflammatory cytokines alone. Invariant NKT cells (iNKT cells) are innate T lymphocytes that are thought to play an important role in producing an early burst of IFN-γ that promotes successful tumor immunosurveillance and antimicrobial immunity. The cellular activation processes underlying innate IFN-γ production remain poorly understood. We show here that weak T cell receptor (TCR) stimulation that does not directly activate iNKT cell IFN-γ messenger RNA transcription nevertheless induces histone H4 acetylation at specific regions near the IFNG gene locus. This renders the iNKT cells able to produce IFN-γ in an innate manner (i.e., not requiring concurrent TCR stimulation) upon exposure to IL-12 and IL-18. The iNKT cells retain the capacity for innate activation for hours to days after the initial weak TCR stimulation, although their innate responsiveness gradually declines as a function of histone deacetylation. These results explain how iNKT cells are able to mediate rapid innate IFN-γ secretion in a manner that does not require them to undergo permanent TH1 differentiation. Moreover, our results also indicate that iNKT cell motility is maintained during activation by IL-12 and IL-18. Therefore, iNKT cells activated through this pathway can continue to migrate and may thus disseminate the IFN-γ that they produce, which may amplify its impact.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
35
|
Collins PL, Henderson MA, Aune TM. Diverse functions of distal regulatory elements at the IFNG locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:1726-33. [PMID: 22246629 DOI: 10.4049/jimmunol.1102879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies have identified multiple conserved noncoding sequences (CNS) at the mouse Ifng locus sufficient for enhancer activity in cell-based assays. These studies do not directly address biology of the human IFNG locus in a genomic setting. IFNG enhancers may be functionally redundant or each may be functionally unique. We test the hypothesis that each IFNG enhancer has a unique necessary function using a bacterial artificial chromosome transgenic model. We find that CNS-30, CNS-4, and CNS+20 are required at distinct stages of Th1 differentiation, whereas CNS-16 has a repressive role in Th1 and Th2 cells. CNS+20 is required for IFN-γ expression by memory Th1 cells and NKT cells. CNS-4 is required for IFN-γ expression by effector Th1 cells. In contrast, CNS-16, CNS-4, and CNS+20 are each partially required for human IFN-γ expression by NK cells. Thus, IFNG CNS enhancers have redundant necessary functions in NK cells but unique necessary functions in Th cells. These results also demonstrate that distinct CNSs are required to transcribe IFNG at each stage of the Th1 differentiation pathway.
Collapse
Affiliation(s)
- Patrick L Collins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
36
|
Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 2011. [PMID: 21889323 DOI: 10.1016/j.coi.2011.08.003.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine that drives T-cell growth, augments NK cytolytic activity, induces the differentiation of regulatory T cells, and mediates activation-induced cell death. Along with IL-4, IL-7, IL-9, IL-15, and IL-21, IL-2 shares the common cytokine receptor γ chain, γ(c), which is mutated in humans with X-linked severe combined immunodeficiency. Herein, we primarily focus on the recently discovered complex roles of IL-2 in broadly modulating T cells for T helper cell differentiation. IL-2 does not specify the type of Th differentiation that occurs; instead, IL-2 modulates expression of receptors for other cytokines and transcription factors, thereby either promoting or inhibiting cytokine cascades that correlate with each Th differentiation state. In this fashion, IL-2 can prime and potentially maintain Th1 and Th2 differentiation as well as expand such populations of cells, whereas it inhibits Th17 differentiation but also can expand Th17 cells.
Collapse
Affiliation(s)
- Wei Liao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | | | |
Collapse
|
37
|
Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 2011; 23:598-604. [PMID: 21889323 DOI: 10.1016/j.coi.2011.08.003] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 12/19/2022]
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine that drives T-cell growth, augments NK cytolytic activity, induces the differentiation of regulatory T cells, and mediates activation-induced cell death. Along with IL-4, IL-7, IL-9, IL-15, and IL-21, IL-2 shares the common cytokine receptor γ chain, γ(c), which is mutated in humans with X-linked severe combined immunodeficiency. Herein, we primarily focus on the recently discovered complex roles of IL-2 in broadly modulating T cells for T helper cell differentiation. IL-2 does not specify the type of Th differentiation that occurs; instead, IL-2 modulates expression of receptors for other cytokines and transcription factors, thereby either promoting or inhibiting cytokine cascades that correlate with each Th differentiation state. In this fashion, IL-2 can prime and potentially maintain Th1 and Th2 differentiation as well as expand such populations of cells, whereas it inhibits Th17 differentiation but also can expand Th17 cells.
Collapse
Affiliation(s)
- Wei Liao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | | | |
Collapse
|
38
|
Balasubramani A, Mukasa R, Hatton RD, Weaver CT. Regulation of the Ifng locus in the context of T-lineage specification and plasticity. Immunol Rev 2011; 238:216-32. [PMID: 20969595 DOI: 10.1111/j.1600-065x.2010.00961.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Study of the development of distinct CD4(+) T-cell subsets from naive precursors continues to provide excellent opportunities for dissection of mechanisms that control lineage-specific gene expression or repression. Whereas it had been thought that the induction of transcription networks that control T-lineage commitment were highly stable, reinforced by epigenetic processes that confer heritability of functional phenotypes by the progeny of mature T cells, recent findings support a more dynamic view of T-lineage commitment. Here, we highlight advances in the mapping and functional characterization of cis elements in the Ifng locus that have provided new insights into the control of the chromatin structure and transcriptional activity of this signature T-helper 1 cell gene. We also examine epigenetic features of the Ifng locus that have evolved to enable its reprogramming for expression by other T-cell subsets, particularly T-helper 17 cells, and contrast features of the Ifng locus with those of the Il17a-Il17f locus, which appears less promiscuous.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
39
|
McAlees JW, Smith LT, Erbe RS, Jarjoura D, Ponzio NM, Sanders VM. Epigenetic regulation of beta2-adrenergic receptor expression in T(H)1 and T(H)2 cells. Brain Behav Immun 2011; 25:408-15. [PMID: 21047549 PMCID: PMC3073579 DOI: 10.1016/j.bbi.2010.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022] Open
Abstract
We showed previously that murine naive CD4(+) T cells and T(H)1 cell clones express the beta2-adrenergic receptor (β(2)AR), while T(H)2 cell clones do not. We report here that naive CD4(+) T cells that differentiated for 1-5 days under T(H)1 driving conditions increased β(2)AR gene expression, while cells cultured under T(H)2 driving conditions decrease β(2)AR gene expression. Chromatin immunoprecipitation revealed that the increase in β(2)AR gene expression in T(H)1 cells is mediated by an increase in histone 3 (H3) and H4 acetylation, as well as an increase in histone 3 lysine 4 (H3K4) methylation. Conversely, the decrease in β(2)AR gene expression in T(H)2 cells is mediated by a decrease in H3 and H4 acetylation and a decrease in H3K4 methylation, as well as an increase H3K9 and H3K27 methylation. The histone changes could be detected as early as 3 days of differentiating conditions. Genomic bisulfite sequencing showed that the level of methylated CpG dinucleotides within the promoter of the β(2)AR gene was increased in T(H)2 cells as compared to naive and T(H)1 cells. Collectively, these results suggest that epigenetic mechanisms mediate maintenance and repression, respectively, of the β(2)AR gene expression in T(H)1- and T(H)2-driven cells, providing a potential mechanism by which the level of β(2)AR expression might be modulated pharmacologically within immune cells and other cell types in which the expression profile may change during a disease process.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Cells, Cultured
- Chromatin Immunoprecipitation
- DNA Methylation
- Epigenesis, Genetic
- Histones/genetics
- Histones/metabolism
- Mice
- Mice, Inbred BALB C
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Th1 Cells/metabolism
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Jaclyn W. McAlees
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Integrated Biological Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Laura T. Smith
- Division of Human Cancer Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert S. Erbe
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - David Jarjoura
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nicholas M. Ponzio
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School and Graduate School Biomedical Sciences, Newark, NJ 07101, USA
| | - Virginia M. Sanders
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, Mathews HL. Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun 2011; 25:239-49. [PMID: 20656012 PMCID: PMC2989339 DOI: 10.1016/j.bbi.2010.07.244] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/11/2010] [Accepted: 07/18/2010] [Indexed: 11/18/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell activity (NKCA) and dysregulates cytokine balance. This may be mediated by stress-induced release of glucocorticoids, which have broad effects on the immune system, including the suppression of NKCA and alteration of cytokine production. The purpose of this study was to evaluate epigenetic mechanisms that may underlie the effect of glucocorticoids on NK cells, using the human NK cell line, NK92. Treatment of NK92 cells with the synthetic glucocorticoid, dexamethasone, at a concentration of 10⁻⁷M, produced a significant reduction in NKCA. Glucocorticoid inhibition was a consequence of not only a reduced capacity of the NK cells to bind to tumor targets but also a reduced production of granule constituents (perforin and granzyme B) with no detectable effect on granule exocytosis. Glucocorticoids also reduced the constitutive and the stimulated production of the cytokines, IL-6, TNF alpha and IFN gamma, and reduced the surface expression of LFA-1. Glucocorticoid treatment also reduced global histone acetylation, the acetylation of histone 4 lysine position 8, and the accessibility of the proximal promoters of perforin, interferon gamma and granzyme B. Histone acetylation was recovered by treatment of the NK cells with a histone deacetylase inhibitor, which also restored NKCA and IFN gamma production. These results demonstrate glucocorticoids to dysregulate NK cell function at least in part through an epigenetic mechanism, which reduces promoter accessibility through modification of histone acetylation status. This epigenetic modification decreases the expression of effector proteins necessary to the full functional activity of NK cells.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Justin Eddy
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Kelly Loster Kosik
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Teresa Konley
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Loyola University of Chicago, Maywood, IL 60153 USA
| | - Herbert L. Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153 USA
- Correspondence author. Herbert L. Mathews, Department of Microbiology and Immunology, Loyola University of Chicago, 2160 South First Ave., Maywood, IL 60153 USA. Tel. (708) 216-4586, Fax. (708) 216-9574,
| |
Collapse
|
41
|
Encoding stability versus flexibility: lessons learned from examining epigenetics in T helper cell differentiation. Curr Top Microbiol Immunol 2011; 356:145-64. [PMID: 21748629 DOI: 10.1007/82_2011_141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is currently unclear whether our classifications for T helper cell subtypes truly define stable lineages or rather they represent cells with a more flexible phenotype. This distinction is important for predicting the behavior of T helper cells during normal immune responses as well as in pathogenic conditions. Determining the mechanisms by which T helper cell lineage-defining transcription factors are expressed and subsequently regulate epigenetic and downstream gene regulatory events will provide insight into this complex question. Importantly, lineage-defining transcription factors that regulate epigenetic events have the potential to redefine the fate of the cell when they are expressed. In contrast, factors that regulate the events downstream of a permissive epigenetic environment will only have the capacity to modulate the underlying gene expression profile that is already established in that cell. Finally, mechanisms related to the antagonism versus cooperation between the lineage-defining factors for opposing T helper cell subsets will influence the characteristics of the cell. Here, we provide an overview of these topics by discussing epigenetic states in T helper cell subtypes as well as the mechanisms by which lineage-defining factors, such as T-bet, regulate gene expression profiles at both the epigenetic and general transcription level. We also examine some of what is known about the interplay between the T helper cell lineage-defining transcription factors T-bet, GATA3, Foxp3, Rorγt, and Bcl-6 and how this relates to the proper functioning of T helper cell subsets. Defining the mechanisms by which these factors regulate gene expression profiles will aid in our ability to predict the functional capabilities of T helper cell subsets.
Collapse
|
42
|
Smith MA, Maurin M, Cho HI, Becknell B, Freud AG, Yu J, Wei S, Djeu J, Celis E, Caligiuri MA, Wright KL. PRDM1/Blimp-1 controls effector cytokine production in human NK cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6058-67. [PMID: 20944005 DOI: 10.4049/jimmunol.1001682] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are major effectors of the innate immune response through cytolysis and bridge to the adaptive immune response through cytokine release. The mediators of activation are well studied; however, little is known about the mechanisms that restrain activation. In this report, we demonstrate that the transcriptional repressor PRDM1 (also known as Blimp-1 or PRDI-BF1) is a critical negative regulator of NK function. Three distinct PRDM1 isoforms are selectively induced in the CD56(dim) NK population in response to activation. PRDM1 coordinately suppresses the release of IFN-γ, TNF-α, and TNF-β through direct binding to multiple conserved regulatory regions. Ablation of PRDM1 expression leads to enhanced production of IFN-γ and TNF-α but does not alter cytotoxicity, whereas overexpression blocks cytokine production. PRDM1 response elements are defined at the IFNG and TNF loci. Collectively, these data demonstrate a key role for PRDM1 in the negative regulation of NK activation and position PRDM1 as a common regulator of the adaptive and innate immune response.
Collapse
Affiliation(s)
- Matthew A Smith
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
IκBζ is essential for natural killer cell activation in response to IL-12 and IL-18. Proc Natl Acad Sci U S A 2010; 107:17680-5. [PMID: 20876105 DOI: 10.1073/pnas.1012977107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IκBζ, encoded by Nfibiz, is a nuclear IκB-like protein harboring ankyrin repeats. IκBζ has been shown to regulate IL-6 production in macrophages and Th17 development in T cells. However, the role of IκBζ in natural killer (NK) cells has not be understood. In the present study, we found that the expression of IκBζ was rapidly induced in response to IL-18 in NK cells, but not in T cells. Analysis of Nfkbiz(-/-) mice revealed that IκBζ was essential for the production of IFN-γ production and cytotoxic activity in NK cells in response to IL-12 and/or IL-18 stimulation. IL-12/IL-18-mediated gene induction was profoundly impaired in Nfkbiz(-/-) NK cells. Whereas the phosphorylation of STAT4 was normally induced by IL-12 stimulation, STAT4 was not recruited to the Ifng gene regions in Nfkbiz(-/-) NK cells. Acetylation of histone 3 K9 on Ifng regions was also abrogated in Nfkbiz(-/-) NK cells. IκBζ was recruited on the proximal promoter region of the Ifng gene, and overexpression of IκBζ together with IL-12 activated the Ifng promoter. Furthermore, Nfkbiz(-/-) mice were highly susceptible to mouse MCMV infection. Taken together, these results demonstrate that IκBζ is essential for the activation of NK cells and antiviral host defense responses.
Collapse
|
44
|
Balasubramani A, Shibata Y, Crawford GE, Baldwin AS, Hatton RD, Weaver CT. Modular utilization of distal cis-regulatory elements controls Ifng gene expression in T cells activated by distinct stimuli. Immunity 2010; 33:35-47. [PMID: 20643337 DOI: 10.1016/j.immuni.2010.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/20/2010] [Accepted: 05/11/2010] [Indexed: 01/09/2023]
Abstract
Distal cis-regulatory elements play essential roles in the T lineage-specific expression of cytokine genes. We have mapped interactions of three trans-acting factors-NF-kappaB, STAT4, and T-bet-with cis elements in the Ifng locus. We find that RelA is critical for optimal Ifng expression and is differentially recruited to multiple elements contingent upon T cell receptor (TCR) or interleukin-12 (IL-12) plus IL-18 signaling. RelA recruitment to at least four elements is dependent on T-bet-dependent remodeling of the Ifng locus and corecruitment of STAT4. STAT4 and NF-kappaB therefore cooperate at multiple cis elements to enable NF-kappaB-dependent enhancement of Ifng expression. RelA recruitment to distal elements was similar in T helper 1 (Th1) and effector CD8(+) T (Tc1) cells, although T-bet was dispensable in CD8 effectors. These results support a model of Ifng regulation in which distal cis-regulatory elements differentially recruit key transcription factors in a modular fashion to initiate gene transcription induced by distinct activation signals.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the 'rules' of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen dependent and can be demonstrated following cytokine stimulation. Here, we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation.
Collapse
Affiliation(s)
- Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
46
|
Abstract
Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the 'rules' of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen dependent and can be demonstrated following cytokine stimulation. Here, we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation.
Collapse
Affiliation(s)
- Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
47
|
Abstract
Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the 'rules' of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen dependent and can be demonstrated following cytokine stimulation. Here, we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation.
Collapse
Affiliation(s)
- Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
48
|
Collins PL, Chang S, Henderson M, Soutto M, Davis GM, McLoed AG, Townsend MJ, Glimcher LH, Mortlock DP, Aune TM. Distal regions of the human IFNG locus direct cell type-specific expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:1492-501. [PMID: 20574006 DOI: 10.4049/jimmunol.1000124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, such as IFNG, which are expressed in multiple cell lineages of the immune system, may employ a common set of regulatory elements to direct transcription in multiple cell types or individual regulatory elements to direct expression in individual cell lineages. By employing a bacterial artificial chromosome transgenic system, we demonstrate that IFNG employs unique regulatory elements to achieve lineage-specific transcriptional control. Specifically, a one 1-kb element 30 kb upstream of IFNG activates transcription in T cells and NKT cells but not in NK cells. This distal regulatory element is a Runx3 binding site in Th1 cells and is needed for RNA polymerase II recruitment to IFNG, but it is not absolutely required for histone acetylation of the IFNG locus. These results support a model whereby IFNG uses cis-regulatory elements with cell type-restricted function.
Collapse
Affiliation(s)
- Patrick L Collins
- Division of Rheumatology, Department of Medicine, Medical Center North T3219, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, Crawford GE, Hatton RD, Weaver CT. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 2010; 32:616-27. [PMID: 20471290 DOI: 10.1016/j.immuni.2010.04.016] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/28/2010] [Accepted: 03/23/2010] [Indexed: 01/29/2023]
Abstract
Phenotypic plasticity of T helper 17 (Th17) cells suggests instability of chromatin structure of key genes of this lineage. We identified epigenetic modifications across the clustered Il17a and Il17f and the Ifng loci before and after differential IL-12 or TGF-beta cytokine signaling, which induce divergent fates of Th17 cell precursors. We found that Th17 cell precursors had substantial remodeling of the Ifng locus, but underwent critical additional modifications to enable high expression when stimulated by IL-12. Permissive modifications across the Il17a-Il17f locus were amplified by TGF-beta signaling in Th17 cells, but were rapidly reversed downstream of IL-12-induced silencing of the Rorc gene by the transcription factors STAT4 and T-bet. These findings reveal substantial chromatin instability of key transcription factor and cytokine genes of Th17 cells and support a model of Th17 cell lineage plasticity in which cell-extrinsic factors modulate Th17 cell fates through differential effects on the epigenetic status of Th17 cell lineage factors.
Collapse
Affiliation(s)
- Ryuta Mukasa
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wierda RJ, Geutskens SB, Jukema JW, Quax PHA, van den Elsen PJ. Epigenetics in atherosclerosis and inflammation. J Cell Mol Med 2010; 14:1225-40. [PMID: 20132414 PMCID: PMC3828841 DOI: 10.1111/j.1582-4934.2010.01022.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a multifactorial disease with a severe burden on western society. Recent insights into the pathogenesis of atherosclerosis underscore the importance of chronic inflammation in both the initiation and progression of vascular remodelling. Expression of immunoregulatory molecules by vascular wall components within the atherosclerotic lesions is accordingly thought to contribute to the ongoing inflammatory process. Besides gene regulatory proteins (transcription factors), epigenetic mechanisms also play an essential and fundamental role in the transcriptional control of gene expression. These epigenetic mechanisms change the accessibility of chromatin by DNA methylation and histone modifications. Epigenetic modulators are thus critically involved in the regulation of vascular, immune and tissue-specific gene expression within the atherosclerotic lesion. Importantly, epigenetic processes are reversible and may provide an excellent therapeutic target. The concept of epigenetic regulation is gradually being recognized as an important factor in the pathogenesis of atherosclerosis. Recent research provides an essential link between inflammation and reprogramming of the epigenome. In this review we therefore discuss the basis of epigenetic regulation – and the contribution thereof in the regulation of inflammatory processes in general and during atherosclerosis in particular. Moreover we highlight potential therapeutic interventions based on epigenetic mechanisms.
Collapse
Affiliation(s)
- Rutger J Wierda
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|