1
|
Marple AC, Shannon BA, Rishi A, Estafanos L, Armstrong BD, Guariglia-Oropeza V, Tuffs SW, McCormick JK. The Streptococcus pyogenes mannose phosphotransferase system (Man-PTS) influences antimicrobial activity and niche-specific nasopharyngeal infection. J Bacteriol 2025; 207:e0049224. [PMID: 40135874 PMCID: PMC12004959 DOI: 10.1128/jb.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Streptococcus pyogenes is a human-adapted pathogen that can cause multiple diseases, including pharyngitis and skin infections. Although this bacterium produces many virulence factors, how S. pyogenes competes with the host microbiota is not well understood. Here, we detected antimicrobial activity from S. pyogenes MGAS8232 that prevented the growth of Micrococcus luteus. This activity was produced when cells were grown in 5% CO2 in M17 media supplemented with galactose; however, the addition of alternative sugars coupled with genome sequencing experiments revealed that the antimicrobial phenotype was not related to classical bacteriocins. To further determine genes involved in the production of this activity, a transposon mutant library in S. pyogenes MGAS8232 identified the mannose phosphotransferase system (Man-PTS), a major sugar transporter, as important for the antimicrobial phenotype. Loss-of-function transposon mutants linked to the antimicrobial activity were identified to also be involved in alternative sugar utilization, and additionally, the Man-PTS was further identified from an inadvertent secondary mutation in a bacteriocin operon mutant. Sugar utilization in the Man-PTS mutants demonstrated that galactose, mannose, and N-acetylglucosamine utilization was impaired. RNA-seq experiments in high and low glucose concentrations further characterized the Man-PTS as a glucose transporter; however, transcriptional regulators or virulence factors were not affected with the loss of the Man-PTS. Deletion of Man-PTS demonstrated defects in a mouse model of nasopharyngeal infection but not skin infection. This work suggests that the ability of S. pyogenes to utilize alternative sugars presented by glycans may play a role in acute infection and interactions with the endogenous microbial population existing in the nasopharynx.IMPORTANCEStreptococcus pyogenes is responsible for over 500,000 deaths per year primarily due to invasive infections and post-infection sequelae, although the most common manifestations include pharyngitis and impetigo. S. pyogenes can adapt to its environment through alternative sugar metabolism. Here, we identified an antimicrobial phenotype that was not bacteriocin-related but a by-product of alternative sugar metabolism. The mannose phosphotransferase system was involved in the production of the antimicrobial and was also important for S. pyogenes to utilize alternative sugars and establish nasopharyngeal infection but not skin infection. Overall, this study identified potential strategies used by S. pyogenes for interactions with the endogenous microbiota and further elucidated the importance of sugar metabolism in acute upper respiratory tract infection.
Collapse
Affiliation(s)
- Amanda C. Marple
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Blake A. Shannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Lana Estafanos
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Brent D. Armstrong
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | | | - Stephen W. Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Zeppa JJ, Avery EG, Aftanas P, Choi E, Uleckas S, Patel P, Waglechner N, Jimenez H, Vermeiren C, Katz K, Li XX, Maguire F, Kozak R. Comparison of pharyngeal and invasive isolates of Streptococcus pyogenes by whole-genome sequencing in Toronto, Canada. Microbiol Spectr 2025; 13:e0214124. [PMID: 39945517 PMCID: PMC11960128 DOI: 10.1128/spectrum.02141-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/24/2025] [Indexed: 04/03/2025] Open
Abstract
Invasive Group A streptococcal (iGAS) infections are rising in Canada and wordwide. The 2022-2023 Ontario iGAS season was among the highest recorded, a trend continuing in 2023-2024. We sequenced 38 invasive (blood) and 117 non-invasive (pharyngeal) Streptococcus pyogenes clinical isolates from Toronto (January-May 2023) to compare between the two cohorts and against published sequences to determine if any genomic changes accounted for the trend. Results demonstrated limited clustering with one small totally invasive cluster (emm49) with both invasive and non-invasive isolates represented across a diverse set of lineages. Non-invasive isolates were predominantly emm12 (70.1%), whereas invasive isolates included emm12 (26.32%), emm49 (23.68%), and emm1 (13.16%) with most emm1 strains containing the 27 SNPs that define the hypervirulent M1UK clone (58.33%). Although there were no differences in the presence of overall virulence factors/adhesin genes between cohorts, there were statistically more superantigen and DNase genes in non-invasive isolates and a rare phage gene was significantly associated with invasiveness across three emm-types. The prevalence of individual virulence factor/adhesin genes also differed between our cohorts, including a higher likelihood of speA, enn, mrp, ideS/Mac, fbaA, and fbaB in invasive isolates. There were also no significant differences across the 11 antimicrobial resistance genes identified. Finally, pharyngeal isolates had larger hydrolysis and hemolysis zones, and covS deletions were observed in only seven invasive strains. Despite there being no genetic signature that differentiated our isolates, we observed several features that were predominant in invasive strains which provides further insights into the factors that contribute to GAS invasiveness.IMPORTANCEIncreasing rates of invasive Group A streptococcal (iGAS) infections are being seen both in Canada and worldwide, which is leading to a greater disease burden caused by this pathogen. Leveraging whole-genome sequencing gives us an opportunity to better understand the underlying genetic mechanisms of streptococcal disease. By utilizing this technique, we shed light on the circulating invasive and non-invasive strains of Streptococcus pyogenes in the largest urban area in Canada from January to May 2023. GAS strains causing non-invasive disease were found to have a higher abundance of superantigen and DNase genes, whereas invasive isolates were more likely to contain M-like protein genes, the superantigen speA, the protease ideS/Mac, and/or the fibronectin-binding proteins fbaA and fbaB. This work provides valuable insights into iGAS disease which will help with surveillance, epidemiology as well as developing treatment and preventative modalities to help curb the disease burden caused by this globally important pathogen.
Collapse
Affiliation(s)
- Joseph J. Zeppa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ellen G. Avery
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Erin Choi
- Shared Hospital Laboratory, Toronto, Ontario, Canada
| | | | - Prachi Patel
- Shared Hospital Laboratory, Toronto, Ontario, Canada
| | | | | | - Christie Vermeiren
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kevin Katz
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Xena X. Li
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Finlay Maguire
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Department of Community Health & Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Kozak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Johnson AF, Bushman SD, LaRock DL, Díaz JM, McCormick JK, LaRock CN. Proinflammatory synergy between protease and superantigen streptococcal pyogenic exotoxins. Infect Immun 2025; 93:e0040524. [PMID: 39878494 PMCID: PMC11895496 DOI: 10.1128/iai.00405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/01/2025] [Indexed: 01/31/2025] Open
Abstract
Streptococcal pyogenic exotoxins (Spe proteins) secreted by Streptococcus pyogenes (group A Streptococcus, GAS) are responsible for scarlet fever and streptococcal toxic shock syndrome. Most Spes are superantigens that cause excessive inflammation by activating large numbers of T cells. However, Streptococcal pyogenic exotoxin B (SpeB) is an exception, which is pro-inflammatory through its protease activity. Prior work shows that SpeB has the potential to cleave bacterial proteins. If cleavage of superantigens results in their inactivation, this gives the possibility that these two classes of exotoxins work at cross-purposes. We examined SpeB cleavage of the 11 major GAS superantigens and found that lability was not specific to structure, conservation, or, when compared to orthologous superantigens from Staphylococcus aureus, species of origin. We further show that rather than strictly antagonizing superantigen activity through degradation, SpeB can synergistically enhance superantigen-induced inflammation. For SpeB-labile superantigens, such as SmeZ, this is limited due to degradation, but for protease-resistant superantigens like SpeA, activity remains synergistic even at high protease concentrations. These findings suggest two modes by which proteases like SpeB may post-translationally regulate superantigens: positively, as a force amplifier that cooperatively increases inflammation, and negatively, through degradation that could act as a rheostat-like mechanism to limit excessive immune activation. Both mechanisms may contribute to the pathogenesis of GAS and other superantigen-producing pathogens.IMPORTANCEStreptococcus pyogenes produces both superantigen and protease virulence factors to subvert host immunity. However, its major protease is highly promiscuous and would potentially limit superantigen activity through its degradation. We profile the sensitivity of the streptococcal superantigens to degradation by the protease SpeB, providing evidence that many are highly resistant. Furthermore, we show that these important toxins can have synergistic proinflammatory activity. This provides insight into diseases like scarlet fever and toxic shock syndrome caused by these toxins and suggests anti-inflammatories that may be therapeutically useful.
Collapse
Affiliation(s)
- Anders F. Johnson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Summer D. Bushman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Doris L. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juan Manuel Díaz
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Schiavolin L, Deneubourg G, Steinmetz J, Smeesters PR, Botteaux A. Group A Streptococcus adaptation to diverse niches: lessons from transcriptomic studies. Crit Rev Microbiol 2024; 50:241-265. [PMID: 38140809 DOI: 10.1080/1040841x.2023.2294905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.
Collapse
Affiliation(s)
- Lionel Schiavolin
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Deneubourg
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Jenny Steinmetz
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre R Smeesters
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Do H, Li ZR, Tripathi PK, Mitra S, Guerra S, Dash A, Weerasekera D, Makthal N, Shams S, Aggarwal S, Singh BB, Gu D, Du Y, Olsen RJ, LaRock C, Zhang W, Kumaraswami M. Engineered probiotic overcomes pathogen defences using signal interference and antibiotic production to treat infection in mice. Nat Microbiol 2024; 9:502-513. [PMID: 38228859 PMCID: PMC10847043 DOI: 10.1038/s41564-023-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Probiotic supplements are suggested to promote human health by preventing pathogen colonization. However, the mechanistic bases for their efficacy in vivo are largely uncharacterized. Here using metabolomics and bacterial genetics, we show that the human oral probiotic Streptococcus salivarius K12 (SAL) produces salivabactin, an antibiotic that effectively inhibits pathogenic Streptococcus pyogenes (GAS) in vitro and in mice. However, prophylactic dosing with SAL enhanced GAS colonization in mice and ex vivo in human saliva. We showed that, on co-colonization, GAS responds to a SAL intercellular peptide signal that controls SAL salivabactin production. GAS produces a secreted protease, SpeB, that targets SAL-derived salivaricins and enhances GAS survival. Using this knowledge, we re-engineered probiotic SAL to prevent signal eavesdropping by GAS and potentiate SAL antimicrobials. This engineered probiotic demonstrated superior efficacy in preventing GAS colonization in vivo. Our findings show that knowledge of interspecies interactions can identify antibiotic- and probiotic-based strategies to combat infection.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Research unit of cryogenic novel material, Korea Polar Research Institute, Incheon, South Korea
| | - Zhong-Rui Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Praveen Kumar Tripathi
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Sonali Mitra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Stephanie Guerra
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Ananya Dash
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Dulanthi Weerasekera
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Syed Shams
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Bharat Bhushan Singh
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Di Gu
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Atlanta, GA, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
6
|
The Cell Wall Deacetylases Spy1094 and Spy1370 Contribute to Streptococcus pyogenes Virulence. Microorganisms 2023; 11:microorganisms11020305. [PMID: 36838272 PMCID: PMC9966966 DOI: 10.3390/microorganisms11020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S. pyogenes serotype M1 are N-acetylglucosamine (GlcNAc) deacetylases. We have generated spy1094 and spy1370 gene deletion mutants in S. pyogenes and gain-of-function mutants in Lactococcus lactis. Similar to other cell wall deacetylases, our results show that Spy1094 and Spy1370 confer lysozyme-resistance. Furthermore, deletion of the genes decreased S. pyogenes virulence in a human whole blood killing assay and a Galleria mellonella (Greater wax moth) larvae infection model. Expression of the two genes in L. lactis resulted in increased lysozyme resistance and survival in whole human blood, and reduced survival of infected G. mellonella larvae. Deletion of the spy1370, but not the spy1094 gene, decreased resistance to the cationic antimicrobial peptide cecropin B, whereas both enzymes increased biofilm formation, probably resulting from the increase in positive charges due to deacetylation of the cell wall. In conclusion, Spy1094 and Spy1370 are important S. pyogenes virulence factors and might represent attractive targets for the development of antibacterial agents.
Collapse
|
7
|
Aghababa H, Ting YT, Pilapitiya D, Loh JM, Young PG, Proft T. Complement evasion factor (CEF), a novel immune evasion factor of Streptococcus pyogenes. Virulence 2022; 13:225-240. [PMID: 35094646 PMCID: PMC8803112 DOI: 10.1080/21505594.2022.2027629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Streptococcus pyogenes, a leading human pathogen, is responsible for a wide range of diseases, including skin and soft tissue infections and severe invasive diseases. S. pyogenes produces a large arsenal of virulence factors, including several immune evasion factors. We have identified an open reading frame (spy0136) in the S. pyogenes SF370 genome encoding a protein of unknown function. Using recombinant Spy0136 in a pull-down assay with human plasma and ELISA, we have identified four complement proteins (C1r, C1s, C3, and C5) as binding partners. Treatment of the complement proteins with PNGase F abrogated binding to C1s, C3, and C5, indicating glycan-dependent interactions. rSpy0136 inhibited complement-mediated hemolysis and interfered with all three complement pathways in a Wieslab complement assay. Furthermore, rSpy0136 inhibited deposition of the C3b opsonin and the membrane attack complex (MAC) on the surface of S. pyogenes. We therefore named the previously unknown protein ‘complement evasion factor’ (CEF). An S. pyogenes Δspy0136/cef deletion mutant showed decreased virulence in an in-vitro whole blood killing assay and a Galleria mellonella (wax moth) infection model. Furthermore, an L. lactis spy0136/cef gain-of-function mutant showed increased survival during growth in whole human blood. Analysis of serum samples from patients with invasive S. pyogenes revealed Spy0136/CEF sero-conversion indicating expression during disease. In summary, we have identified a novel S. pyogenes immune evasion factor that binds to several complement proteins to interfere with complement function. This is the first example of a S. pyogenes virulence factor binding to several different target proteins via glycan-dependent interactions.
Collapse
Affiliation(s)
- Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yi Tian Ting
- School of Biological Sciences, the University of Auckland, Auckland, New Zealand
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Devaki Pilapitiya
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jacelyn M.S. Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries. The University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- School of Biological Sciences, the University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries. The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries. The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
9
|
Host-to-Host Group A Streptococcus Transmission Causes Infection of the Lamina Propria but not Epithelium of the Upper Respiratory Tract in MyD88-Deficient Mice. Infect Immun 2021; 90:e0042321. [PMID: 34662211 DOI: 10.1128/iai.00423-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand protective immune responses against the onset of Group A Streptococcus respiratory infection, we investigated whether MyD88 KO mice were susceptible to acute infection through transmission. After commingling with mice that had intranasal GAS inoculation, MyD88-/- recipient mice had increased GAS loads in the nasal cavity and throat that reached a mean throat colonization of 6.3 x 106 cfu/swab and mean GAS load of 5.2 x 108 cfu in the nasal cavity on day 7. Beyond day 7, MyD88-/- recipient mice became moribund, with mean 1.6 x 107 cfu/swab and 2.5 x 109 cfu GAS in the throat and nasal cavity, respectively. Systemic GAS infection occurred a couple of days after the upper respiratory infection. GAS infects the lip, gingival sulcus of the incisor teeth, the lamina propria of the turbinate but not the nasal cavity and nasopharyngeal tract epithelia, and C57BL/6J recipient mice had no or low levels of GAS in the nasal cavity and throat. Direct nasal GAS inoculation of MyD88-/- mice caused GAS infection mainly in the lamina propria of the turbinate. In contrast, C57BL/6J mice with GAS inoculation had GAS bacteria in the nasal cavity but not in the lamina propria of the turbinates. Thus, MyD88-/- mice are highly susceptible to acute and lethal GAS infection through transmission, and MyD88 signaling is critical for protection of the respiratory tract lamina propria but not nasal and nasopharyngeal epithelia against GAS infection.
Collapse
|
10
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
11
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Andrade CM, Fleckenstein H, Thomson-Luque R, Doumbo S, Lima NF, Anderson C, Hibbert J, Hopp CS, Tran TM, Li S, Niangaly M, Cisse H, Doumtabe D, Skinner J, Sturdevant D, Ricklefs S, Virtaneva K, Asghar M, Homann MV, Turner L, Martins J, Allman EL, N'Dri ME, Winkler V, Llinás M, Lavazec C, Martens C, Färnert A, Kayentao K, Ongoiba A, Lavstsen T, Osório NS, Otto TD, Recker M, Traore B, Crompton PD, Portugal S. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat Med 2020; 26:1929-1940. [PMID: 33106664 DOI: 10.1038/s41591-020-1084-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022]
Abstract
The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannah Fleckenstein
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nathalia F Lima
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carrie Anderson
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine S Hopp
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dan Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacy Ricklefs
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Muhammad Asghar
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA
| | | | - Volker Winkler
- Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA.,Department of Chemistry, The Pennsylvania State University, State College, PA, USA
| | | | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Anna Färnert
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Mario Recker
- Centre for Mathematics & the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Heidelberg, Heidelberg, Germany. .,Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
13
|
Colonization of the Murine Oropharynx by Streptococcus pyogenes Is Governed by the Rgg2/3 Quorum Sensing System. Infect Immun 2020; 88:IAI.00464-20. [PMID: 32747598 DOI: 10.1128/iai.00464-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system-a peptide-based signaling system conserved in sequenced isolates of S. pyogenes Deletion of the QS system's transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice, while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to that of the wild type (WT). Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative reverse transcription-PCR (qRT-PCR) subsequently confirmed QS upregulation within 1 h of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.
Collapse
|
14
|
ExPortal and the LiaFSR Regulatory System Coordinate the Response to Cell Membrane Stress in Streptococcus pyogenes. mBio 2020; 11:mBio.01804-20. [PMID: 32934083 PMCID: PMC7492735 DOI: 10.1128/mbio.01804-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial two-component systems sense and induce transcriptional changes in response to environmental stressors, including antimicrobials and human antimicrobial peptides. Since the stresses imposed by the host’s defensive responses may act as markers of specific temporal stages of disease progression or host compartments, pathogens often coordinately regulate stress response programs with virulence factor expression. The mechanism by which bacteria recognize these stresses and subsequently induce transcriptional responses remains not well understood. In this study, we showed that LiaFSR senses cell envelope stress through colocalization of LiaF and LiaS with the group A Streptococcus (GAS) ExPortal and is activated in direct response to ExPortal disruption by antimicrobials or human antimicrobial peptides. Our studies shed new light on the sensing of cell envelope stress in Gram-positive bacteria and may contribute to the development of therapies targeting these processes. LiaFSR is a gene regulatory system important for response to cell membrane stress in Gram-positive bacteria but is minimally studied in the important human pathogen group A Streptococcus (GAS). Using immunofluorescence and immunogold electron microscopy, we discovered that LiaF (a membrane-bound repressor protein) and LiaS (a sensor kinase) reside within the GAS membrane microdomain (ExPortal). Cell envelope stress induced by antimicrobials resulted in ExPortal disruption and activation of the LiaFSR system. The only human antimicrobial peptide whose presence resulted in ExPortal disruption and LiaFSR activation was the alpha-defensin human neutrophil peptide 1 (hNP-1). Elimination of membrane cardiolipin through targeted gene deletion resulted in loss of LiaS colocalization with the GAS ExPortal and activation of LiaFSR, whereas LiaF membrane localization was unaffected. Isogenic mutants lacking either LiaF or LiaS revealed a critical role of LiaF in ExPortal integrity. Thus, LiaF and LiaS colocalize with the GAS ExPortal by distinct mechanisms, further supporting codependence. These are the first data identifying a multicomponent signal system within the ExPortal, thereby providing new insight into bacterial intramembrane signaling in GAS that may serve as a paradigm for Gram-positive bacteria.
Collapse
|
15
|
Makthal N, Do H, Wendel BM, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Group A Streptococcus AdcR Regulon Participates in Bacterial Defense against Host-Mediated Zinc Sequestration and Contributes to Virulence. Infect Immun 2020; 88:e00097-20. [PMID: 32393509 PMCID: PMC7375770 DOI: 10.1128/iai.00097-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9-/- mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9-/- mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Brian M Wendel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Dissecting Streptococcus pyogenes interaction with human. Arch Microbiol 2020; 202:2023-2032. [PMID: 32504132 DOI: 10.1007/s00203-020-01932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus pyogenes is a species of Gram-positive bacteria. It is also known as Group A Streptococcus (GAS) that causes pathogenesis to humans only. The GAS infection has several manifestations including invasive illness. Current research has linked the molecular modes of GAS virulence with substantial sequencing determinations for the isolation of genomes. These advances help to comprehend the molecular evolution resulting in the pandemic strains. Thus, it is indispensable to reconsider the philosophy that involves GAS pathogenesis. The recent investigations involve studying GAS in the nasopharynx and its capability to cause infection or asymptomatically reside in the host. These advances have been discussed in this article with an emphasis on the natural history of GAS and the evolutionary change in the pandemic strains. In addition, this review describes the unique functions for major pathogenicity determinants to comprehend their physiological effects.
Collapse
|
17
|
Zhu L, Olsen RJ, Beres SB, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Waller AS, Sun Z, Palzkill T, Porter AR, DeLeo FR, Musser JM. Streptococcus pyogenes genes that promote pharyngitis in primates. JCI Insight 2020; 5:137686. [PMID: 32493846 DOI: 10.1172/jci.insight.137686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins - substrates for vaccine research - that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Newmarket, United Kingdom
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
18
|
Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, Cantu CC, Ojeda Saavedra M, Pensar J, Corander J, Jenkins L, Kao L, Granillo A, Porter AR, DeLeo FR, Musser JM. New Pathogenesis Mechanisms and Translational Leads Identified by Multidimensional Analysis of Necrotizing Myositis in Primates. mBio 2020; 11:e03363-19. [PMID: 32071274 PMCID: PMC7029145 DOI: 10.1128/mbio.03363-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Leslie Jenkins
- Comparative Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lillian Kao
- Department of Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Alejandro Granillo
- Department of Internal Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
19
|
Abstract
Global gene expression analyses in bacteria have undergone a dramatic transformation. Prior to the development of high-throughput sequencing technologies, real-time PCR or microarray studies were the mainstay of assessing differences in gene expression in bacteria. Real-time PCR remains a critical tool for targeted gene expression analyses. However, microarray studies have given way to the plethora of advantages in RNA sequencing (RNA-seq) for the determination of global gene expression (i.e., transcriptome). Increased accessibility to high-throughput sequencing and user-friendly bioinformatics data analysis software have made RNA-seq technology use more widespread. Here, we provide comprehensive methods to perform RNA sequencing of Streptococcus pyogenes strains grown in vitro in standard laboratory media, including cell growth, RNA extraction, ribosomal RNA depletion, and library construction. Considerations for library sequencing and data analysis are also provided.
Collapse
Affiliation(s)
- Misú Sanson
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| |
Collapse
|
20
|
Do H, Makthal N, Chandrangsu P, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Metal sensing and regulation of adaptive responses to manganese limitation by MtsR is critical for group A streptococcus virulence. Nucleic Acids Res 2019; 47:7476-7493. [PMID: 31188450 PMCID: PMC6698748 DOI: 10.1093/nar/gkz524] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023] Open
Abstract
Pathogenic bacteria encounter host-imposed manganese (Mn) limitation during infection. Herein we report that in the human pathogen Streptococcus pyogenes, the adaptive response to Mn limitation is controlled by a DtxR family metalloregulator, MtsR. Genes upregulated by MtsR during Mn limitation include Mn (mtsABC) and Fe acquisition systems (sia operon), and a metal-independent DNA synthesis enzyme (nrdFEI.2). To elucidate the mechanism of metal sensing and gene regulation by MtsR, we determined the crystal structure of MtsR. MtsR employs two Mn-sensing sites to monitor metal availability, and metal occupancy at each site influences MtsR regulatory activity. The site 1 acts as the primary Mn sensing site, and loss of metal at site 1 causes robust upregulation of mtsABC. The vacant site 2 causes partial induction of mtsABC, indicating that site 2 functions as secondary Mn sensing site. Furthermore, we show that the C-terminal FeoA domains of adjacent dimers participate in the oligomerization of MtsR on DNA, and multimerization is critical for MtsR regulatory activity. Finally, the mtsR mutant strains defective in metal sensing and oligomerization are attenuated for virulence in a mouse model of invasive infection, indicating that Mn sensing and gene regulation by MtsR are critical processes during S. pyogenes infection.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.,W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps College, Claremont, CA 91711, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
21
|
Jain I, Danger JL, Burgess C, Uppal T, Sumby P. The group A Streptococcus accessory protein RocA: regulatory activity, interacting partners and influence on disease potential. Mol Microbiol 2019; 113:190-207. [PMID: 31660653 PMCID: PMC7028121 DOI: 10.1111/mmi.14410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2019] [Indexed: 12/11/2022]
Abstract
The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain‐ and serotype‐specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two‐component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease‐encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild‐type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain‐ and serotype‐specific variability in RocA function.
Collapse
Affiliation(s)
- Ira Jain
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Cameron Burgess
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Timsy Uppal
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
22
|
Transcriptomic Analysis of Streptococcus pyogenes Colonizing the Vaginal Mucosa Identifies hupY, an MtsR-Regulated Adhesin Involved in Heme Utilization. mBio 2019; 10:mBio.00848-19. [PMID: 31239377 PMCID: PMC6593403 DOI: 10.1128/mbio.00848-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colonization of the host requires the ability to adapt to an environment that is often low in essential nutrients such as iron. Here we present data showing that the transcriptome of the important human pathogen Streptococcus pyogenes shows extensive remodeling during in vivo growth, resulting in, among many other differentially expressed genes and pathways, a significant increase in genes involved in acquiring iron from host heme. Data show that HupY, previously characterized as an adhesin in both S. pyogenes and the related pathogen Streptococcus agalactiae, binds heme and affects intracellular iron concentrations. HupY, a protein with no known heme binding domains, represents a novel heme binding protein playing an important role in bacterial iron homeostasis as well as vaginal colonization. Streptococcus pyogenes (group A streptococcus [GAS]) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide transcriptome sequencing (RNASeq) data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. This regulon includes two genes highly expressed during vaginal colonization, hupYZ. Here we show that HupY binds heme in vitro, affects intracellular concentrations of iron, and is essential for proper growth of GAS using hemoglobin or serum as the sole iron source. HupY is also important for murine vaginal colonization of both GAS and the related vaginal colonizer and pathogen Streptococcus agalactiae (group B streptococcus [GBS]). These data provide essential information on the link between metal regulation and mucosal colonization in both GAS and GBS.
Collapse
|
23
|
Do H, Makthal N, VanderWal AR, Saavedra MO, Olsen RJ, Musser JM, Kumaraswami M. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nat Commun 2019; 10:2586. [PMID: 31197146 PMCID: PMC6565748 DOI: 10.1038/s41467-019-10556-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria control gene expression in concert with their population density by a process called quorum sensing, which is modulated by bacterial chemical signals and environmental factors. In the human pathogen Streptococcus pyogenes, production of secreted virulence factor SpeB is controlled by a quorum-sensing pathway and environmental pH. The quorum-sensing pathway consists of a secreted leaderless peptide signal (SIP), and its cognate receptor RopB. Here, we report that the SIP quorum-sensing pathway has a pH-sensing mechanism operative through a pH-sensitive histidine switch located at the base of the SIP-binding pocket of RopB. Environmental acidification induces protonation of His144 and reorganization of hydrogen bonding networks in RopB, which facilitates SIP recognition. The convergence of two disparate signals in the SIP signaling pathway results in induction of SpeB production and increased bacterial virulence. Our findings provide a model for investigating analogous crosstalk in other microorganisms.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Gogos A, Federle MJ. Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse. Front Cell Infect Microbiol 2019; 9:137. [PMID: 31119108 PMCID: PMC6507483 DOI: 10.3389/fcimb.2019.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human-restricted pathogen most commonly found in the posterior oropharynx of the human host. The bacterium is responsible for 600 million annual cases of pharyngitis globally and has been found to asymptomatically colonize the pharynxes of 4-30% of the population. As such, many studies have utilized animals as models in order to decipher bacterial and host elements that contribute to the bacterial-pharyngeal interaction and determine differences between acute infection and asymptomatic colonization. The aim of this review is to first describe both bacterial and host factors that are important for the pharyngeal persistence of GAS in humans, then to detail the bacterial and host factors that are important for colonization in murine model, and finally to compare the two in order to evaluate the strength of murine pharyngeal colonization as a model for the human-GAS pharyngeal interaction.
Collapse
Affiliation(s)
- Artemis Gogos
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Davies FJ, Olme C, Lynskey NN, Turner CE, Sriskandan S. Streptococcal superantigen-induced expansion of human tonsil T cells leads to altered T follicular helper cell phenotype, B cell death and reduced immunoglobulin release. Clin Exp Immunol 2019; 197:83-94. [PMID: 30815853 PMCID: PMC6591145 DOI: 10.1111/cei.13282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 01/18/2023] Open
Abstract
Streptococcal pyrogenic exotoxin (Spe) A expression is epidemiologically linked to streptococcal tonsillo‐pharyngitis and outbreaks of scarlet fever, although the mechanisms by which superantigens confer advantage to Streptococcus pyogenes are unclear. S. pyogenes is an exclusively human pathogen. As the leucocyte profile of tonsil is unique, the impact of SpeA production on human tonsil cell function was investigated. Human tonsil cells from routine tonsillectomy were co‐incubated with purified streptococcal superantigens or culture supernatants from isogenic streptococcal isolates, differing only in superantigen production. Tonsil cell proliferation was quantified by tritiated thymidine incorporation, and cell surface characteristics assessed by flow cytometry. Soluble mediators including immunoglobulin were measured using enzyme‐linked immunosorbent assay. Tonsil T cells proliferated in response to SpeA and demonstrated typical release of proinflammatory cytokines. When cultured in the absence of superantigen, tonsil preparations released large quantities of immunoglobulin over 7 days. In contrast, marked B cell apoptosis and abrogation of total immunoglobulin (Ig)A, IgM, and IgG production occurred in the presence of SpeA and other superantigens. In SpeA‐stimulated cultures, T follicular helper (Tfh) cells showed a reduction in C‐X‐C chemokine receptor (CXCR)5 (CD185) expression, but up‐regulation of OX40 (CD134) and inducible T cell co‐stimulator (ICOS) (CD278) expression. The phenotypical change in the Tfh population was associated with impaired chemotactic response to CXCL13. SpeA and other superantigens cause dysregulated tonsil immune function, driving T cells from Tfh to a proliferating phenotype, with resultant loss of B cells and immunoglobulin production, providing superantigen‐producing bacteria with a probable survival advantage.
Collapse
Affiliation(s)
- F J Davies
- Department of Medicine, Imperial College London, London, UK
| | - C Olme
- Department of Medicine, Imperial College London, London, UK
| | - N N Lynskey
- Department of Medicine, Imperial College London, London, UK
| | - C E Turner
- Department of Medicine, Imperial College London, London, UK
| | - S Sriskandan
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Casadei E, Salinas I. Comparative models for human nasal infections and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:212-222. [PMID: 30513304 PMCID: PMC7102639 DOI: 10.1016/j.dci.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.
Collapse
Affiliation(s)
- Elisa Casadei
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| |
Collapse
|
27
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
28
|
Ozberk V, Pandey M, Good MF. Contribution of cryptic epitopes in designing a group A streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2034-2052. [PMID: 29873591 PMCID: PMC6150013 DOI: 10.1080/21645515.2018.1462427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes may provide a strategy to circumvent the obstacles of antigenic variation.
Collapse
Affiliation(s)
- Victoria Ozberk
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Manisha Pandey
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Michael F Good
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| |
Collapse
|
29
|
Levenson EA, Martens C, Kanakabandi K, Turner CV, Virtaneva K, Paneru M, Ricklefs S, Sosnovtsev SV, Johnson JA, Porcella SF, Green KY. Comparative Transcriptomic Response of Primary and Immortalized Macrophages to Murine Norovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:4157-4169. [PMID: 29735480 DOI: 10.4049/jimmunol.1700384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-β expression were not coupled in that a significant delay in the detection of secreted INF-β was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-β that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.
Collapse
Affiliation(s)
- Eric A Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Craig Martens
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kishore Kanakabandi
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Charles V Turner
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kimmo Virtaneva
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Monica Paneru
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stacy Ricklefs
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jordan A Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Stephen F Porcella
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
30
|
Paediatric Autoimmune Neuropsychiatric Disorder Associated with Group A Beta-Haemolytic Streptococcal Infection: An Indication for Tonsillectomy? A Review of the Literature. Int J Otolaryngol 2018; 2018:2681304. [PMID: 29675045 PMCID: PMC5841079 DOI: 10.1155/2018/2681304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/03/2022] Open
Abstract
Background. Paediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection (PANDAS) is the acute onset of neuropsychiatric symptoms following group A beta-haemolytic streptococcal infection. The aetiology remains elusive. However, with group A streptococcus being the most common bacterial cause of tonsillitis, surgical intervention in the form of tonsillectomy has often been considered as a potential therapy. Methods. A MEDLINE® search was undertaken using keywords “PANDAS” or “paediatric autoimmune neuropsychiatric disorders associated with streptococcus” combined with “tonsillectomy”. Results. Six case reports and 3 case series met the inclusion criteria. Demesh et al. (case series) reported a dramatic reduction in neuropsychiatric symptom severity in the patient cohort undergoing tonsillectomy. Two case series suggest that there is no association between tonsillectomy and resolution of PANDAS. Conclusion. Due to the lack of uniform data and sporadic reports, tonsillectomy should be carefully adopted for the treatment of this disorder. In particular, tonsillectomies/adenoidectomies to alleviate neuropsychiatric symptoms should be avoided until more definitive evidence is at our disposal. This review highlights the importance of a potential collaborative prospective study.
Collapse
|
31
|
Sitkiewicz I, Musser JM. Deletion of from Streptococcus pyogenes. Results in Hypervirulence in a Mouse Model of Sepsis and is LuxS Independent. Pol J Microbiol 2018; 66:17-24. [PMID: 29359701 DOI: 10.5604/17331331.1234989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a Gram-positive human pathogen that causes a variety of diseases ranging from pharyngitis to life-threatening streptococcal toxic shock syndrome. Recently, several global gene expression analyses have yielded extensive new information regarding the regulation of genes encoding known and putative virulence factors in GAS. A microarray analysis found that transcription of the GAS gene M5005_Spy_1343 was significantly increased in response to interaction with human polymorphonuclear leukocytes. M5005_Spy_1343 is predicted to encode a member of the LysR family of transcriptional regulators and is located upstream of a putative operon containing six genes. Five of these genes have sequence similarity to genes involved in short-chain fatty acid metabolism, whereas the sixth gene (luxS) is found in many bacterial species and is involved in quorum sensing. Unexpectedly, inactivation of the M5005_Spy_1343 gene resulted in hypervirulence in an intraperitoneal mouse model of infection. Increased virulence was not due to changes in luxS gene expression. We postulate that short-chain fatty acid metabolism is involved in GAS pathogenesis.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
32
|
Valdes KM, Sundar GS, Belew AT, Islam E, El-Sayed NM, Le Breton Y, McIver KS. Glucose Levels Alter the Mga Virulence Regulon in the Group A Streptococcus. Sci Rep 2018; 8:4971. [PMID: 29563558 PMCID: PMC5862849 DOI: 10.1038/s41598-018-23366-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens coordinately regulate genes encoding important metabolic pathways during disease progression, including the phosphoenolpyruvate (PEP)-phosphotransferase system (PTS) for uptake of carbohydrates. The Gram-positive Group A Streptococcus (GAS) is a pathogen that infects multiple tissues in the human host. The virulence regulator Mga in GAS can be phosphorylated by the PTS, affecting Mga activity based on carbohydrate availability. Here, we explored the effects of glucose availability on the Mga regulon. RNA-seq was used to identify transcriptomic differences between the Mga regulon grown to late log phase in the presence of glucose (THY) or after glucose has been expended (C media). Our results revealed a correlation between the genes activated in C media with those known to be repressed by CcpA, indicating that C media mimics a non-preferred sugar environment. Interestingly, we found very little overlap in the Mga regulon from GAS grown in THY versus C media beyond the core virulence genes. We also observed an alteration in the phosphorylation status of Mga, indicating that the observed media differences in the Mga regulon may be directly attributed to glucose levels. Thus, these results support an in vivo link between glucose availability and virulence regulation in GAS.
Collapse
Affiliation(s)
- Kayla M Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA
| | - Ganesh S Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA
| | - Ashton T Belew
- Center for Bioinformatics and Computation Biology, UMCP, College Park, MD, USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA
| | - Najib M El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA.,Center for Bioinformatics and Computation Biology, UMCP, College Park, MD, USA
| | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA.
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA.
| |
Collapse
|
33
|
Siemens N, Oehmcke-Hecht S, Mettenleiter TC, Kreikemeyer B, Valentin-Weigand P, Hammerschmidt S. Port d'Entrée for Respiratory Infections - Does the Influenza A Virus Pave the Way for Bacteria? Front Microbiol 2017; 8:2602. [PMID: 29312268 PMCID: PMC5742597 DOI: 10.3389/fmicb.2017.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
34
|
Novel Genes Required for the Fitness of Streptococcus pyogenes in Human Saliva. mSphere 2017; 2:mSphere00460-17. [PMID: 29104937 PMCID: PMC5663985 DOI: 10.1128/mspheredirect.00460-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) causes 600 million cases of pharyngitis each year. Despite this considerable disease burden, the molecular mechanisms used by GAS to infect, cause clinical pharyngitis, and persist in the human oropharynx are poorly understood. Saliva is ubiquitous in the human oropharynx and is the first material GAS encounters in the upper respiratory tract. Thus, a fuller understanding of how GAS survives and proliferates in saliva may provide valuable insights into the molecular mechanisms at work in the human oropharynx. We generated a highly saturated transposon insertion mutant library in serotype M1 strain MGAS2221, a strain genetically representative of a pandemic clone that arose in the 1980s and spread globally. The transposon mutant library was exposed to human saliva to screen for GAS genes required for wild-type fitness in this clinically relevant fluid. Using transposon-directed insertion site sequencing (TraDIS), we identified 92 genes required for GAS fitness in saliva. The more prevalent categories represented were genes involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. Using six isogenic mutant strains, we confirmed that each of the mutants was significantly impaired for growth or persistence in human saliva ex vivo. Mutants with an inactivated Spy0644 (sptA) or Spy0646 (sptC) gene had especially severe persistence defects. This study is the first to use of TraDIS to study bacterial fitness in human saliva. The new information we obtained will be valuable for future translational maneuvers designed to prevent or treat human GAS infections. IMPORTANCE The human bacterial pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes more than 600 million cases of pharyngitis annually worldwide, 15 million of which occur in the United States. The human oropharynx is the primary anatomic site for GAS colonization and infection, and saliva is the first material encountered. Using a genome-wide transposon mutant screen, we identified 92 GAS genes required for wild-type fitness in human saliva. Many of the identified genes are involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. The new information is potentially valuable for developing novel GAS therapeutics and vaccine research.
Collapse
|
35
|
Lindsay S, Oates A, Bourdillon K. The detrimental impact of extracellular bacterial proteases on wound healing. Int Wound J 2017; 14:1237-1247. [PMID: 28745010 DOI: 10.1111/iwj.12790] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
In addition to clinical signs of infection (e.g. inflammation, purulence and pain), a microbial count of ≥105 colony-forming units/g has historically been used to define wound infection. However, it is increasingly recognised that, rather than a high bioburden level alone being detrimental to wound healing, it is the virulence of the invading microorganism and the host's immune status that can affect clinical outcomes. Bacteria, such as Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis, have developed a range of virulence factors to help them overcome host defences and proliferate within the underlying soft tissue. More specifically, bacterial proteases are one such virulence factor that has been implicated in promoting the invasion and destruction of the host tissue. Because of the complexities of microorganisms, the proteases can negatively impact the wound environment, leading to delayed wound healing. The aim of the present paper is to describe various extracellular bacterial proteases; review the impact they have on the wound environment, the host immune response and biofilms; and discuss potential wound management strategies against them. The evidence discussed suggests that proteases may play a profound role in wound infections, contribute to the development of an inflammatory response and impede wound healing.
Collapse
Affiliation(s)
- Sharon Lindsay
- Research & Development Department, Systagenix, Gargrave, UK
| | - Angela Oates
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
36
|
Iron Efflux by PmtA Is Critical for Oxidative Stress Resistance and Contributes Significantly to Group A Streptococcus Virulence. Infect Immun 2017; 85:IAI.00091-17. [PMID: 28348051 DOI: 10.1128/iai.00091-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-only pathogen that causes a spectrum of disease conditions. Given its survival in inflamed lesions, the ability to sense and overcome oxidative stress is critical for GAS pathogenesis. PerR senses oxidative stress and coordinates the regulation of genes involved in GAS antioxidant defenses. In this study, we investigated the role of PerR-controlled metal transporter A (PmtA) in GAS pathogenesis. Previously, PmtA was implicated in GAS antioxidant defenses and suggested to protect against zinc toxicity. Here, we report that PmtA is a P1B4-type ATPase that functions as an Fe(II) exporter and aids GAS defenses against iron intoxication and oxidative stress. The expression of pmtA is specifically induced by excess iron, and this induction requires PerR. Furthermore, a pmtA mutant exhibited increased sensitivity to iron toxicity and oxidative stress due to an elevated intracellular accumulation of iron. RNA-sequencing analysis revealed that GAS undergoes significant alterations in gene expression to adapt to iron toxicity. Finally, using two mouse models of invasive infection, we demonstrated that iron efflux by PmtA is critical for bacterial survival during infection and GAS virulence. Together, these data demonstrate that PmtA is a key component of GAS antioxidant defenses and contributes significantly to GAS virulence.
Collapse
|
37
|
Viciani E, Montagnani F, Tordini G, Romano A, Salerni L, De Luca A, Ruggiero P, Manetti AGO. Prevalence of M75 Streptococcus pyogenes Strains Harboring slaA Gene in Patients Affected by Pediatric Obstructive Sleep Apnea Syndrome in Central Italy. Front Microbiol 2017; 8:294. [PMID: 28293224 PMCID: PMC5329643 DOI: 10.3389/fmicb.2017.00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Recently we reported an association between pediatric obstructive sleep apnea syndrome (OSAS) and Group A streptococcus (GAS) sub-acute chronic tonsil colonization. We showed that GAS may contribute to tonsil hyperplasia via a streptolysin O (SLO)-dependent cysteinyl leukotrienes (CysLTs) production, which can trigger T and B cell proliferation. In the present study, we characterized the GAS strains isolated from pediatric OSAS patients in comparison with a panel of age and sex matched GAS strains unrelated to OSAS, but isolated in the same area and during the same period ranging from 2009 to 2013. We found that slaA gene, previously reported to be associated to CysLTs production pathway, was significantly associated to GAS OSAS strains. Moreover, the most numerous group (32%) of the GAS OSAS strains belonged to M75 type, and 6 out of 7 of these strains harbored the slaA gene. Multilocus Sequence Typing (MLST) experiments demonstrated that the clone emm75/ST49/ smeZ, slaA was associated to OSAS cases. In conclusion, we found an association between slaA gene and the GAS OSAS strains, and we showed that the clone emm75/ST49 harboring genes smeZ and slaA was exclusively isolated from patients affected by OSAS, thus suggesting that this genotype might be associated to the pathogenesis of OSAS, although further studies are needed to elucidate the possible role of SlaA in tonsil hypertrophy development.
Collapse
Affiliation(s)
- Elisa Viciani
- GSK Vaccines S.r.l.Siena, Italy; Host-Microbiota Interaction Team, Wellcome Trust Sanger InstituteCambridge, UK
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of SienaSiena, Italy; Hospital Department of Specialized and Internal Medicine, University Division of Infectious DiseasesSiena, Italy
| | - Giacinta Tordini
- Department of Medical Biotechnologies, University of Siena Siena, Italy
| | - Antonio Romano
- Clinica Otorinolaringoiatrica, Policlinico Universitario "Le Scotte" Siena, Italy
| | - Lorenzo Salerni
- Clinica Otorinolaringoiatrica, Policlinico Universitario "Le Scotte" Siena, Italy
| | - Andrea De Luca
- Department of Medical Biotechnologies, University of SienaSiena, Italy; Hospital Department of Specialized and Internal Medicine, University Division of Infectious DiseasesSiena, Italy
| | | | | |
Collapse
|
38
|
Wilkening RV, Federle MJ. Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions. Trends Microbiol 2017; 25:562-572. [PMID: 28216292 DOI: 10.1016/j.tim.2017.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/15/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role.
Collapse
Affiliation(s)
- Reid V Wilkening
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
39
|
Bachert BA, Choi SJ, LaSala PR, Harper TI, McNitt DH, Boehm DT, Caswell CC, Ciborowski P, Keene DR, Flores AR, Musser JM, Squeglia F, Marasco D, Berisio R, Lukomski S. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus. Front Cell Infect Microbiol 2016; 6:90. [PMID: 27630827 PMCID: PMC5005324 DOI: 10.3389/fcimb.2016.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.
Collapse
Affiliation(s)
- Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Soo J Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Paul R LaSala
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Tiffany I Harper
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | | - Anthony R Flores
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalHouston, TX, USA; Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital SystemHouston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital System Houston, TX, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
40
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
41
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
42
|
Meissner EG, Kohli A, Virtaneva K, Sturdevant D, Martens C, Porcella SF, McHutchison JG, Masur H, Kottilil S. Achieving sustained virologic response after interferon-free hepatitis C virus treatment correlates with hepatic interferon gene expression changes independent of cirrhosis. J Viral Hepat 2016; 23:496-505. [PMID: 26840694 PMCID: PMC5021171 DOI: 10.1111/jvh.12510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C virus (HCV) infection can now be treated with oral directly acting antiviral agents, either with or without ribavirin (RBV). Virologic relapse after treatment can occur, and in some studies was more common in cirrhotic subjects. We previously observed changes in hepatic immunity during interferon (IFN)-free therapy that correlated with favourable outcome in subjects with early liver disease. Here, we compared changes in endogenous IFN pathways during IFN-free, RBV-free therapy between cirrhotic and noncirrhotic subjects. mRNA and microRNA (miRNA) expression analyses were performed on paired pre- and post-treatment liver biopsies from genotype-1 HCV subjects treated with sofosbuvir/ledipasvir (SOF/LDV) for 12 weeks (n = 4, 3 cirrhotics) or SOF/LDV combined with GS-9669 or GS-9451 for 6 weeks (n = 6, 0 cirrhotics). Nine of ten subjects achieved a sustained virologic response (SVR), while one noncirrhotic subject relapsed. Hepatic IFN-stimulated gene expression decreased with treatment in the liver of all subjects, with no observable impact of cirrhosis. Hepatic gene expression of type III IFNs (IFNL1, IFNL3, IFNL4-ΔG) similarly decreased with treatment, while IFNA2 expression, undetectable in all subjects pretreatment, was detected post-treatment in three subjects who achieved a SVR. Only the subject who relapsed had detectable IFNL4-ΔG expression in post-treatment liver. Other IFNs had no change in gene expression (IFNG, IFNB1, IFNA5) or could not be detected. Although expression of multiple hepatic miRNAs changed with treatment, many miRNAs previously implicated in HCV replication and IFN signalling had unchanged expression. In conclusion, favourable treatment outcome during IFN-free HCV therapy is associated with changes in the host IFN response regardless of cirrhosis.
Collapse
Affiliation(s)
- E. G. Meissner
- Division of Infectious DiseasesDepartment of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSCUSA,Laboratory of ImmunoregulationNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA,Critical Care Medicine DepartmentNIH Clinical CenterBethesdaMDUSA
| | - A. Kohli
- Laboratory of ImmunoregulationNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA,St Joseph's Hospital and Medical CenterDepartment of HepatologyCreighton University School of MedicinePhoenixAZUSA
| | - K. Virtaneva
- Genomics UnitResearch Technologies SectionRocky Mountain LaboratoriesNIAID, NIHHamiltonMTUSA
| | - D. Sturdevant
- Genomics UnitResearch Technologies SectionRocky Mountain LaboratoriesNIAID, NIHHamiltonMTUSA
| | - C. Martens
- Genomics UnitResearch Technologies SectionRocky Mountain LaboratoriesNIAID, NIHHamiltonMTUSA
| | - S. F. Porcella
- Genomics UnitResearch Technologies SectionRocky Mountain LaboratoriesNIAID, NIHHamiltonMTUSA
| | | | - H. Masur
- St Joseph's Hospital and Medical CenterDepartment of HepatologyCreighton University School of MedicinePhoenixAZUSA
| | - S. Kottilil
- Laboratory of ImmunoregulationNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA,Division of Clinical Care and ResearchInstitute of Human VirologyUniversity of MarylandBaltimoreMDUSA
| |
Collapse
|
43
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
44
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
45
|
Al-Shahib A, Underwood A, Afshar B, Turner CE, Lamagni T, Sriskandan S, Efstratiou A. Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microb Genom 2016; 2:e000059. [PMID: 28348855 PMCID: PMC5320645 DOI: 10.1099/mgen.0.000059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Abstract
A sudden increase in invasive Group A Streptococcus (iGAS) infections associated with emm/M3 isolates during the winter of 2008/09 prompted the initiation of enhanced surveillance in England. In order to characterise the population of emm/M3 GAS within the UK and determine bacterial factors that might be responsible for this upsurge, 442 emm/M3 isolates from cases of invasive and non-invasive infections during the period 2001-2013 were subjected to whole genome sequencing. MLST analysis differentiated emm/M3 isolates into three sequence types (STs): ST15, ST315 and ST406. Analysis of the whole genome SNP-based phylogeny showed that the majority of isolates from the 2008-2009 upsurge period belonged to a distinct lineage characterized by the presence of a prophage carrying the speC exotoxin and spd1 DNAase genes but loss of two other prophages considered typical of the emm/M3 lineage. This lineage was significantly associated with the upsurge in iGAS cases and we postulate that the upsurge could be attributed in part to expansion of this novel prophage-containing lineage within the population. The study underlines the importance of prompt genomic analysis of changes in the GAS population, providing an advanced public health warning system for newly emergent, pathogenic strains.
Collapse
Affiliation(s)
- Ali Al-Shahib
- Disease and Informatics, 61 Colindale Avenue, Public Health England, Colindale, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes. mBio 2016; 7:mBio.00403-16. [PMID: 27247229 PMCID: PMC4895104 DOI: 10.1128/mbio.00403-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.
Collapse
|
47
|
Transcriptome Analysis Reveals a Signature Profile for Tick-Borne Flavivirus Persistence in HEK 293T Cells. mBio 2016; 7:mBio.00314-16. [PMID: 27222466 PMCID: PMC4895102 DOI: 10.1128/mbio.00314-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Tick-borne flaviviruses (TBFVs) cause febrile illnesses, which may progress to severe encephalitis and/or death in humans globally. Most people who recover from severe acute disease suffer from debilitating neurological sequelae, which may be due to viral persistence, infection-induced neurological cell damage, host response, or some combination of these. Acute TBFV infection of human embryonic kidney (HEK) 293T cells in vitro results in the death of >95% of infected cells by day 5. However, replacing cell growth medium allows surviving cells to repopulate and become persistently infected for extended periods of time. The mechanisms responsible for initiation and maintenance of viral persistence remain vague. We subjected the HEK 293T cell transcriptome to deep sequencing to identify genes differentially expressed during acute infection and persistent infection. A total of 451 genes showed unique significant differential expression levels in persistently infected cells relative to the acute phase of infection. Ingenuity Pathway Analysis results suggested that the expression of prosurvival oncogenes AKT2 and ERBB2 was upregulated in persistently infected cells, whereas proapoptotic genes, such as Bad and the beta interferon 1 (IFN-β1) gene, were downregulated. Genes encoding antiviral cytokines such as the CCL5, tumor necrosis factor alpha (TNF-α), and CXCL10 genes were upregulated during the acute phase, but the same genes were relatively quiescent in persistently infected cells. Exogenous induction of apoptosis demonstrated that persistently infected cells were resistant to apoptosis in a dose-dependent manner. In summary, the differential transcriptome profiles of acute-phase compared to persistently infected HEK 293T cells demonstrated an evasion of apoptosis, which may be critical for a chronic TBFV infection state. These results provide a basis for further study of the mechanisms of TBFV persistence. IMPORTANCE Tick-borne flaviviruses (TBFVs) cause life-threatening encephalitic disease in humans worldwide. Some people who recover from severe disease may suffer prolonged neurological symptoms due to either virus- or host response-induced cell damage or a combination of the two that are linked to viral persistence. By examining the genes that are significantly differentially expressed in acute TBFV infection versus persistent TBFV infection, we may be able to find the molecular basis of viral persistence. Here we used deep sequencing of the host cell transcriptome to discover that the expression levels of prosurvival genes were upregulated in persistently infected cells relative to acute TBFV infections whereas the expression levels of genes that promote programmed cell death were downregulated. In addition, persistently infected cells were also resistant to exogenous chemical induction of cell death, in a dose-dependent manner, compared to uninfected cells. Our results pave the way for further studies aimed at understanding the precise mechanisms of TBFV persistence.
Collapse
|
48
|
Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children. Sci Rep 2016; 6:22030. [PMID: 26911649 PMCID: PMC4766568 DOI: 10.1038/srep22030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well-conserved among different GAS strains, upregulated in host-pathogen interaction studies, and predicted to be extracellular or associated with the surface of the bacteria. The antigens were tested for both antibody recognition and T cell responses in human adults and children. The antigenicity of a selected group of antigens was further validated using a high-density peptide array technology that also identified the linear epitopes. Based on immunological recognition, four targets were selected and tested for protective capabilities in an experimental GAS infection model in mice. Shown for the first time, three of these targets (spy0469, spy1228 and spy1801) conferred significant protection whereas one (spy1643) did not.
Collapse
|
49
|
Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, Heinzen RA. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form. PLoS One 2016; 11:e0149957. [PMID: 26909555 PMCID: PMC4766238 DOI: 10.1371/journal.pone.0149957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022] Open
Abstract
A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.
Collapse
Affiliation(s)
- Kelsi M. Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bryan Hansen
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Vinod Nair
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
50
|
Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk. mBio 2015; 6:e01765-15. [PMID: 26578681 PMCID: PMC4659474 DOI: 10.1128/mbio.01765-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. IMPORTANCE Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease.
Collapse
|