1
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
2
|
Sasani TA, Quinlan AR, Harris K. Epistasis between mutator alleles contributes to germline mutation spectrum variability in laboratory mice. eLife 2024; 12:RP89096. [PMID: 38381482 PMCID: PMC10942616 DOI: 10.7554/elife.89096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.
Collapse
Affiliation(s)
- Thomas A Sasani
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Aaron R Quinlan
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
- Department of Biomedical Informatics, University of UtahSalt Lake CityUnited States
| | - Kelley Harris
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Herbold Computational Biology Program, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
3
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sasani TA, Quinlan AR, Harris K. Epistasis between mutator alleles contributes to germline mutation spectra variability in laboratory mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537217. [PMID: 37162999 PMCID: PMC10168256 DOI: 10.1101/2023.04.25.537217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair [1], mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs [2,3]. In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh [4]. Its effect depended on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci had greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.
Collapse
Affiliation(s)
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah; Department of Biomedical Informatics, University of Utah · Funded by NIH/NHGRI R01HG012252
| | - Kelley Harris
- Department of Genome Sciences, University of Washington · Funded by NIH/NIGMS R35GM133428; Burroughs Wellcome Career Award at the Scientific Interface; Searle Scholarship; Pew Scholarship; Sloan Fellowship; Allen Discovery Center for Cell Lineage Tracing
| |
Collapse
|
5
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Xiong X, Yang M, Hai Z, Fei X, Zhu Y, Pan B, Yang Q, Xie Y, Cheng Y, Xiong Y, Lan D, Fu W, Li J. Maternal Kdm2a-mediated PI3K/Akt signaling and E-cadherin stimulate the morula-to-blastocyst transition revealing crucial roles in early embryonic development. Theriogenology 2023; 209:60-75. [PMID: 37356280 DOI: 10.1016/j.theriogenology.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Manzhen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Zhuo Hai
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wu Y, Tirichine L. Chromosome-Wide Distribution and Characterization of H3K36me3 and H3K27Ac in the Marine Model Diatom Phaeodactylum tricornutum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2852. [PMID: 37571007 PMCID: PMC10421102 DOI: 10.3390/plants12152852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Histone methylation and acetylation play a crucial role in response to developmental cues and environmental changes. Previously, we employed mass spectrometry to identify histone modifications such as H3K27ac and H3K36me3 in the model diatom Phaeodactylum tricornutum, which have been shown to be important for transcriptional activation in animal and plant species. To further investigate their evolutionary implications, we utilized chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) and explored their genome-wide distribution in P. tricornutum. Our study aimed to determine their role in transcriptional regulation of genes and transposable elements (TEs) and their co-occurrence with other histone marks. Our results revealed that H3K27ac and H3K36me3 were predominantly localized in promoters and genic regions indicating a high conservation pattern with studies of the same marks in plants and animals. Furthermore, we report the diversity of genes encoding H3 lysine 36 (H3K36) trimethylation-specific methyltransferase in microalgae leveraging diverse sequencing resources including the Marine Microbial Eukaryote Transcriptome Sequencing Project database (MMETSP). Our study expands the repertoire of epigenetic marks in a model microalga and provides valuable insights into the evolutionary context of epigenetic-mediated gene regulation. These findings shed light on the intricate interplay between histone modifications and gene expression in microalgae, contributing to our understanding of the broader epigenetic landscape in eukaryotic organisms.
Collapse
Affiliation(s)
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France;
| |
Collapse
|
8
|
Boroumand-Noughabi S, Pashaee A, Montazer M, Rahmati A, Ayatollahi H, Sadeghian MH, Keramati MR. Investigating the Expression Pattern of the SETMAR Gene Transcript Variants in Childhood Acute Leukemia: Revisiting an Old Gene. J Pediatr Hematol Oncol 2023; 45:e603-e608. [PMID: 36706314 DOI: 10.1097/mph.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/20/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The chimeric enzyme SETMAR (or Metnase) has been associated with several DNA processes, including DNA damage repair through the non-homologous joining pathway and suppression of chromosomal translocation in mouse fibroblasts. SETMAR overexpression has been reported in certain cancers suggesting that it might contribute to the establishment or progression of these cancers. In leukemia, the SETMAR gene transcript variants have not been widely studied. Therefore, this study aimed to quantify 3 predominant SETMAR variants in 2 types of childhood acute leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). METHODS In this study, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the relative expression of 3 SETMAR transcript variants (Var 1, Var 2, and Var A) were evaluated in the bone marrow samples collected from 30 newly diagnosed patients with AML, 65 newly diagnosed patients with ALL, and 15 healthy individuals. RESULTS The expression of SETMAR variants 1 and A were significantly higher in AML patients compared with controls ( P =0.02, and P =0.009, respectively). Variant A expression was significantly higher in ALL compared with controls ( P =0.003). When comparing the expression in translocation-positive and negative subgroups, the expression of variant 1 was significantly higher in translocation-positive ALL patients ( P =0.03). The variants' distribution patterns differed concerning translocation status ( P =0.041), as variants 1 and A were dominant in the translocation-positive ALL group, and variant 2 was more prevalent in translocation-negative ones. CONCLUSIONS According to the results, SETMAR showed increased expression in pediatric acute leukemia's bone marrow samples, indicating a role for this molecule in leukemia pathogenesis. As this is the first report of SETMAR expression in pediatric leukemias, further studies are needed to investigate the causality of this association.
Collapse
Affiliation(s)
- Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | | | | | - Atefe Rahmati
- Department of Hematology and Blood Banking
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| |
Collapse
|
9
|
Nawae W, Sonthirod C, Yoocha T, Waiyamitra P, Soisook P, Tangphatsornruang S, Pootakham W. Genome assembly of the Pendlebury's roundleaf bat, Hipposideros pendleburyi, revealed the expansion of Tc1/Mariner DNA transposons in Rhinolophoidea. DNA Res 2022; 29:dsac026. [PMID: 36214371 PMCID: PMC9549598 DOI: 10.1093/dnares/dsac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bats (Chiroptera) constitute the second largest order of mammals and have several distinctive features, such as true self-powered flight and strong immunity. The Pendlebury's roundleaf bat, Hipposideros pendleburyi, is endemic to Thailand and listed as a vulnerable species. We employed the 10× Genomics linked-read technology to obtain a genome assembly of H. pendleburyi. The assembly size was 2.17 Gb with a scaffold N50 length of 15,398,518 bases. Our phylogenetic analysis placed H. pendleburyi within the rhinolophoid clade of the suborder Yinpterochiroptera. A synteny analysis showed that H. pendleburyi shared conserved chromosome segments (up to 105 Mb) with Rhinolophus ferrumequinum and Phyllostomus discolor albeit having different chromosome numbers and belonging different families. We found positive selection signals in genes involved in inflammation, spermatogenesis and Wnt signalling. The analyses of transposable elements suggested the contraction of short interspersed nuclear elements (SINEs) and the accumulation of young mariner DNA transposons in the analysed hipposiderids. Distinct mariners were likely horizontally transferred to hipposiderid genomes over the evolution of this family. The lineage-specific profiles of SINEs and mariners might involve in the evolution of hipposiderids and be associated with the phylogenetic separations of these bats from other bat families.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Pitchaporn Waiyamitra
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
10
|
Nickoloff JA. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy. Molecules 2022; 27:4736. [PMID: 35897913 PMCID: PMC9330692 DOI: 10.3390/molecules27154736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Bhat A, Ghatage T, Bhan S, Lahane GP, Dhar A, Kumar R, Pandita RK, Bhat KM, Ramos KS, Pandita TK. Role of Transposable Elements in Genome Stability: Implications for Health and Disease. Int J Mol Sci 2022; 23:7802. [PMID: 35887150 PMCID: PMC9319628 DOI: 10.3390/ijms23147802] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
Most living organisms have in their genome a sizable proportion of DNA sequences capable of mobilization; these sequences are commonly referred to as transposons, transposable elements (TEs), or jumping genes. Although long thought to have no biological significance, advances in DNA sequencing and analytical technologies have enabled precise characterization of TEs and confirmed their ubiquitous presence across all forms of life. These findings have ignited intense debates over their biological significance. The available evidence now supports the notion that TEs exert major influence over many biological aspects of organismal life. Transposable elements contribute significantly to the evolution of the genome by giving rise to genetic variations in both active and passive modes. Due to their intrinsic nature of mobility within the genome, TEs primarily cause gene disruption and large-scale genomic alterations including inversions, deletions, and duplications. Besides genomic instability, growing evidence also points to many physiologically important functions of TEs, such as gene regulation through cis-acting control elements and modulation of the transcriptome through epigenetic control. In this review, we discuss the latest evidence demonstrating the impact of TEs on genome stability and the underling mechanisms, including those developed to mitigate the deleterious impact of TEs on genomic stability and human health. We have also highlighted the potential therapeutic application of TEs.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, India;
| | - Trupti Ghatage
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, India;
| | - Ganesh P. Lahane
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Arti Dhar
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra 182320, India;
| | - Raj K. Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA;
| | - Tej K. Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
12
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
14
|
Lié O, Renault S, Augé-Gouillou C. SETMAR, a case of primate co-opted genes: towards new perspectives. Mob DNA 2022; 13:9. [PMID: 35395947 PMCID: PMC8994322 DOI: 10.1186/s13100-022-00267-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We carry out a review of the history and biological activities of one domesticated gene in higher primates, SETMAR, by discussing current controversies. Our purpose is to open a new outlook that will serve as a framework for future work about SETMAR, possibly in the field of cognition development. MAIN BODY What is newly important about SETMAR can be summarized as follows: (1) the whole protein sequence is under strong purifying pressure; (2) its role is to strengthen existing biological functions rather than to provide new ones; (3) it displays a tissue-specific pattern of expression, at least for the alternative-splicing it undergoes. Studies reported here demonstrate that SETMAR protein(s) may be involved in essential networks regulating replication, transcription and translation. Moreover, during embryogenesis, SETMAR appears to contribute to brain development. SHORT CONCLUSION Our review underlines for the first time that SETMAR directly interacts with genes involved in brain functions related to vocalization and vocal learning. These findings pave the way for future works regarding SETMAR and the development of cognitive abilities in higher primates.
Collapse
Affiliation(s)
- Oriane Lié
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France
| | - Sylvaine Renault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France
| | - Corinne Augé-Gouillou
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,iBrain, Team Neurogenomics and Neuronal physiopathology, Faculty of Medicine, 10 Bd Tonnellé, Cedex 1, 37032, Tours, France.
| |
Collapse
|
15
|
Structural and genome-wide analyses suggest that transposon-derived protein SETMAR alters transcription and splicing. J Biol Chem 2022; 298:101894. [PMID: 35378129 PMCID: PMC9062482 DOI: 10.1016/j.jbc.2022.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
Extensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre–mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.
Collapse
|
16
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
17
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Lee SH, Hromas R. Metnase and EEPD1: DNA Repair Functions and Potential Targets in Cancer Therapy. Front Oncol 2022; 12:808757. [PMID: 35155245 PMCID: PMC8831698 DOI: 10.3389/fonc.2022.808757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cells respond to DNA damage by activating signaling and DNA repair systems, described as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in cancer are important for understanding cancer etiology, how cancer cells exploit the DDR to survive endogenous and treatment-related stress, and to identify DDR targets as therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing radiation. These agents are cytotoxic because they induce DNA double-strand breaks (DSBs) directly, or indirectly by inducing replication stress which causes replication fork collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and Metnase promote repair of frank, two-ended DSBs, and both promote the timely and accurate restart of replication forks that have collapsed to single-ended DSBs. In addition to its roles in HR, Metnase also promotes DSB repair by classical non-homologous recombination, and chromosome decatenation mediated by TopoIIα. Although mutations in Metnase and EEPD1 are not common in cancer, both proteins are frequently overexpressed, which may help tumor cells manage oncogenic stress or confer resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair pathways, and discuss opportunities for targeting these pathways to enhance cancer therapy.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
18
|
Lié O, Virolle T, Gabut M, Pasquier C, Zemmoura I, Augé-Gouillou C. SETMAR Shorter Isoform: A New Prognostic Factor in Glioblastoma. Front Oncol 2022; 11:638397. [PMID: 35047379 PMCID: PMC8761672 DOI: 10.3389/fonc.2021.638397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that the chimeric protein SETMAR is a factor of interest in cancer, especially in glioblastoma. However, little is known about the expression of this protein in glioblastoma tissues, and no study has been done to assess if SETMAR could be a prognostic and/or diagnostic marker of glioblastoma. We analyzed protein extracts of 47 glioblastoma samples coming from a local and a national cohort of patients. From the local cohort, we obtained localized biopsies from the central necrosis area, the tumor, and the perilesional brain. From the French Glioblastoma Biobank (FGB), we obtained three types of samples: from the same tumors before and after treatment, from long survivors, and from very short survivors. We studied the correlations between SETMAR amounts, clinical profiles of patients and other associated proteins (PTN, snRNP70 and OLIG2). In glioblastoma tissues, the shorter isoform of SETMAR (S-SETMAR) was predominant over the full-length isoform (FL-SETMAR), and the expression of both SETMAR variants was higher in the tumor compared to the perilesional tissues. Data from the FGB showed that SETMAR amounts were not different between the initial tumors and tumor relapses after treatment. These data also showed a trend toward higher amounts of S-SETMAR in long survivors. In localized biopsies, we found a positive correlation between good prognosis and large amounts of S-SETMAR in the perilesional area. This is the main result presented here: survival in Glioblastoma is correlated with amounts of S-SETMAR in perilesional brain, which should be considered as a new relevant prognosis marker.
Collapse
Affiliation(s)
- Oriane Lié
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Thierry Virolle
- Institut de Biologie Valrose, Université Côte D’Azur, CNRS, INSERM, Nice, France
| | - Mathieu Gabut
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- Service de Neurochirurgie, CHRU de Tours, Tours, France
| | | |
Collapse
|
19
|
Tellier M. Structure, Activity, and Function of SETMAR Protein Lysine Methyltransferase. Life (Basel) 2021; 11:life11121342. [PMID: 34947873 PMCID: PMC8704517 DOI: 10.3390/life11121342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
20
|
He L, Lomberk G. Collateral Victim or Rescue Worker?-The Role of Histone Methyltransferases in DNA Damage Repair and Their Targeting for Therapeutic Opportunities in Cancer. Front Cell Dev Biol 2021; 9:735107. [PMID: 34869318 PMCID: PMC8636273 DOI: 10.3389/fcell.2021.735107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023] Open
Abstract
Disrupted DNA damage signaling greatly threatens cell integrity and plays significant roles in cancer. With recent advances in understanding the human genome and gene regulation in the context of DNA damage, chromatin biology, specifically biology of histone post-translational modifications (PTMs), has emerged as a popular field of study with great promise for cancer therapeutics. Here, we discuss how key histone methylation pathways contribute to DNA damage repair and impact tumorigenesis within this context, as well as the potential for their targeting as part of therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lishu He
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Gwen Lomberk,
| |
Collapse
|
21
|
Zhang J, Lu X, MoghaddamKohi S, Shi L, Xu X, Zhu WG. Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair (Amst) 2021; 107:103206. [PMID: 34411909 DOI: 10.1016/j.dnarep.2021.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Cells protect the integrity of the genome against DNA double-strand breaks through several well-characterized mechanisms including nonhomologous end-joining repair, homologous recombination repair, microhomology-mediated end-joining and single-strand annealing. However, aberrant DNA damage responses (DDRs) lead to genome instability and tumorigenesis. Clarification of the mechanisms underlying the DDR following lethal damage will facilitate the identification of therapeutic targets for cancer. Histones are small proteins that play a major role in condensing DNA into chromatin and regulating gene function. Histone modifications commonly occur in several residues including lysine, arginine, serine, threonine and tyrosine, which can be acetylated, methylated, ubiquitinated and phosphorylated. Of these, lysine modifications have been extensively explored during DDRs. Here, we focus on discussing the roles of lysine modifying enzymes involved in acetylation, methylation, and ubiquitination during the DDR. We provide a comprehensive understanding of the basis of potential epigenetic therapies driven by histone lysine modifications.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sara MoghaddamKohi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingzhi Xu
- Department of Cell Biology and Medical Genetics, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Nickoloff JA, Sharma N, Allen CP, Taylor L, Allen SJ, Jaiswal AS, Hromas R. Roles of homologous recombination in response to ionizing radiation-induced DNA damage. Int J Radiat Biol 2021; 99:903-914. [PMID: 34283012 PMCID: PMC9629169 DOI: 10.1080/09553002.2021.1956001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation induces a vast array of DNA lesions including base damage, and single- and double-strand breaks (SSB, DSB). DSBs are among the most cytotoxic lesions, and mis-repair causes small- and large-scale genome alterations that can contribute to carcinogenesis. Indeed, ionizing radiation is a 'complete' carcinogen. DSBs arise immediately after irradiation, termed 'frank DSBs,' as well as several hours later in a replication-dependent manner, termed 'secondary' or 'replication-dependent DSBs. DSBs resulting from replication fork collapse are single-ended and thus pose a distinct problem from two-ended, frank DSBs. DSBs are repaired by error-prone nonhomologous end-joining (NHEJ), or generally error-free homologous recombination (HR), each with sub-pathways. Clarifying how these pathways operate in normal and tumor cells is critical to increasing tumor control and minimizing side effects during radiotherapy. CONCLUSIONS The choice between NHEJ and HR is regulated during the cell cycle and by other factors. DSB repair pathways are major contributors to cell survival after ionizing radiation, including tumor-resistance to radiotherapy. Several nucleases are important for HR-mediated repair of replication-dependent DSBs and thus replication fork restart. These include three structure-specific nucleases, the 3' MUS81 nuclease, and two 5' nucleases, EEPD1 and Metnase, as well as three end-resection nucleases, MRE11, EXO1, and DNA2. The three structure-specific nucleases evolved at very different times, suggesting incremental acceleration of replication fork restart to limit toxic HR intermediates and genome instability as genomes increased in size during evolution, including the gain of large numbers of HR-prone repetitive elements. Ionizing radiation also induces delayed effects, observed days to weeks after exposure, including delayed cell death and delayed HR. In this review we highlight the roles of HR in cellular responses to ionizing radiation, and discuss the importance of HR as an exploitable target for cancer radiotherapy.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, Flow Cytometry and Cell Sorting Facility, Colorado State University, Fort Collins, CO, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Aruna S. Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
23
|
Miskei M, Horváth A, Viola L, Varga L, Nagy É, Feró O, Karányi Z, Roszik J, Miskey C, Ivics Z, Székvölgyi L. Genome-wide mapping of binding sites of the transposase-derived SETMAR protein in the human genome. Comput Struct Biotechnol J 2021; 19:4032-4041. [PMID: 34377368 PMCID: PMC8327481 DOI: 10.1016/j.csbj.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Throughout evolution, DNA transposons provide a recurrent supply of genetic information to give rise to novel gene functions by fusion of their transposase domain to various domains of host-encoded proteins. One of these "domesticated", transposase-derived factors is SETMAR/Metnase which is a naturally occurring fusion protein that consists of a histone-lysine methyltransferase domain and an HsMar1 transposase. To elucidate the biological role of SETMAR, it is crucial to identify genomic targets to which SETMAR specifically binds and link these sites to the regulation of gene expression. Herein, we mapped the genomic landscape of SETMAR binding in a near-haploid human leukemia cell line (HAP1) in order to identify on-target and off-target binding sites at high resolution and to elucidate their role in terms of gene expression. Our analysis revealed a perfect correlation between SETMAR and inverted terminal repeats (ITRs) of HsMar1 transposon remnants, which are considered as natural target sites for SETMAR binding. However, we did not detect any untargeted events at non-ITR sequences, calling into question previously proposed off-target binding sites. We identified sequence fidelity of the ITR motif as a key factor for determining the binding affinity of SETMAR for chromosomes, as higher conservation of ITR sequences resulted in increased affinity for chromatin and stronger repression of SETMAR-bound gene loci. These associations highlight how SETMAR's chromatin binding fine-tune gene regulatory networks in human tumour cells.
Collapse
Affiliation(s)
- Márton Miskei
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Adrienn Horváth
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Lívia Viola
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Laura Varga
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Éva Nagy
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Orsolya Feró
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Jason Roszik
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Centre, University of Texas, USA
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen D-63225, Germany
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Hungary
| |
Collapse
|
24
|
Antoine-Lorquin A, Arensburger P, Arnaoty A, Asgari S, Batailler M, Beauclair L, Belleannée C, Buisine N, Coustham V, Guyetant S, Helou L, Lecomte T, Pitard B, Stévant I, Bigot Y. Two repeated motifs enriched within some enhancers and origins of replication are bound by SETMAR isoforms in human colon cells. Genomics 2021; 113:1589-1604. [PMID: 33812898 DOI: 10.1016/j.ygeno.2021.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Setmar is a gene specific to simian genomes. The function(s) of its isoforms are poorly understood and their existence in healthy tissues remains to be validated. Here we profiled SETMAR expression and its genome-wide binding landscape in colon tissue. We found isoforms V3 and V6 in healthy and tumour colon tissues as well as incell lines. In two colorectal cell lines SETMAR binds to several thousand Hsmar1 and MADE1 terminal ends, transposons mostly located in non-genic regions of active chromatin including in enhancers. It also binds to a 12-bp motifs similar to an inner motif in Hsmar1 and MADE1 terminal ends. This motif is interspersed throughout the genome and is enriched in GC-rich regions as well as in CpG islands that contain constitutive replication origins. It is also found in enhancers other than those associated with Hsmar1 and MADE1. The role of SETMAR in the expression of genes, DNA replication and in DNA repair are discussed.
Collapse
Affiliation(s)
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, - United States
| | - Ahmed Arnaoty
- EA GICC, 7501, CHRU de Tours, 37044 TOURS, Cedex 09, France
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martine Batailler
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Linda Beauclair
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Nicolas Buisine
- UMR CNRS 7221, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Serge Guyetant
- Tumorothèque du CHRU de Tours, 37044 Tours, Cedex, France
| | - Laura Helou
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France
| | | | - Bruno Pitard
- Université de Nantes, CNRS ERL6001, Inserm 1232, CRCINA, F-44000 Nantes, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, 1, 46 allée d'Italie, 69364 Lyon, France
| | - Yves Bigot
- PRC, UMR INRA 0085, CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
25
|
Want MY, Tsuji T, Singh PK, Thorne JL, Matsuzaki J, Karasik E, Gillard B, Cortes Gomez E, Koya RC, Lugade A, Odunsi K, Battaglia S. WHSC1/NSD2 regulates immune infiltration in prostate cancer. J Immunother Cancer 2021; 9:jitc-2020-001374. [PMID: 33589522 PMCID: PMC7887377 DOI: 10.1136/jitc-2020-001374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapy in prostate cancer (PCa) lags behind the progresses obtained in other cancer types partially because of its limited immune infiltration. Tumor-resident immune cells have been detected in the prostate, but the regulatory mechanisms that govern tumor infiltration are still poorly understood. To address this gap, we investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase enzyme that targets dimethyl and trimethyl H3K36. WHSC1 is known to promote malignant growth and progression in multiple tumors, but its role in the interface between PCa and immune system is unknown. METHODS RNA Sequencing (RNASeq) data from patients with PCa from The Cancer Genome Atlas (TCGA) were collected and divided into top/bottom 30% based on the expression of WHSC1 and disease-free survival was calculated. Publicly available chromatin immunoprecipitation (ChIPSeq) data were obtained from Cistrome and integrated with the available RNASeq data. RNASeq, ATACSeq and methylomic were analyzed using R Bioconductor packages comparing C42 cells with or without stable knockdown on WHSC1. Flow cytometry was used to measure Major Histocompatibility complex (MHC) levels, MHC-bound ovalbumin and tumor infiltration. C57B6 and NOD scid gamma (NSG) mice were subcutaneously grafted with TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) C2 cells and treated with MCTP39 (10 mg/kg); tumor size was monitored over time and curves were compared using permutation analyses. All analyses used a significance threshold of 0.05. RESULTS Leveraging TCGA data, we demonstrated that elevated WHSC1 levels positively correlate with the presence of an immunosuppressive microenvironment. We validated those results in vitro, demonstrating that genetic and pharmacological inhibition of WHSC1 restores antigen presentation. This occurs via an elegant epigenetic regulation of gene expression at the chromatin and DNA methylation levels. In vivo studies in immunocompetent mice also show an increased frequency of CD8+ T cells in tumors from mice treated with WHSC1 inhibitor, supporting the hypothesis that the antitumor effect following WHSC1 inhibition requires a fully functional immune system. CONCLUSIONS This study demonstrates a novel role for WHSC1 in defining immune infiltration in PCa, with significant future implications for the use of immunotherapies in prostate malignancies.
Collapse
Affiliation(s)
- Muzamil Y Want
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Takemasa Tsuji
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Prashant K Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - James L Thorne
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, West Yorkshire, UK
| | - Junko Matsuzaki
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellen Karasik
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Bryan Gillard
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard C Koya
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amit Lugade
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kunle Odunsi
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sebastiano Battaglia
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
26
|
Zhou Y, Shao C. Histone methylation can either promote or reduce cellular radiosensitivity by regulating DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108362. [PMID: 34083050 DOI: 10.1016/j.mrrev.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Radiotherapy is one of the primary modalities for cancer treatment, and its efficiency usually relies on cellular radiosensitivity. DNA damage repair is a core content of cellular radiosensitivity, and the primary mechanism of which includes non-homologous end-joining (NHEJ) and homologous recombination (HR). By affecting DNA damage repair, histone methylation regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs) participates in the regulation of cellular radiosensitivity via three mechanisms: (a) recruiting DNA repair-related proteins, (b) regulating the expressions of DNA repair genes, and (c) mediating the dynamic change of chromatin. Interestingly, both aberrantly high and low levels of histone methylation could impede DNA repair processes. Here we reviewed the mechanisms of the dual effects of histone methylation on cell response to radiation. Since some inhibitors of HMTs and HDMs are reported to increase cellular radiosensitivity, understanding their molecular mechanisms may be helpful in developing new drugs for the therapy of radioresistant tumors.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
28
|
Xie R, Chen X, Cheng L, Huang M, Zhou Q, Zhang J, Chen Y, Peng S, Chen Z, Dong W, Huang J, Lin T. NONO Inhibits Lymphatic Metastasis of Bladder Cancer via Alternative Splicing of SETMAR. Mol Ther 2020; 29:291-307. [PMID: 32950106 DOI: 10.1016/j.ymthe.2020.08.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer patients with lymph node (LN) metastasis have an extremely poor prognosis and no effective treatment. The alternative splicing of precursor (pre-)mRNA participates in the progression of various tumors. However, the precise mechanisms of splicing factors and cancer-related variants in LN metastasis of bladder cancer remain largely unknown. The present study identified a splicing factor, non-POU domain-containing octamer-binding protein (NONO), that was significantly downregulated in bladder cancer tissues and correlated with LN metastasis status, tumor stage, and prognosis. Functionally, NONO markedly inhibited bladder cancer cell migration and invasion in vitro and LN metastasis in vivo. Mechanistically, NONO regulated the exon skipping of SETMAR by binding to its motif, mainly through the RRM2 domain. NONO directly interacted with splicing factor proline/glutamine rich (SFPQ) to regulate the splicing of SETMAR, and it induced metastasis suppression of bladder cancer cells. SETMAR-L overexpression significantly reversed the metastasis of NONO-knockdown bladder cancer cells, both in vitro and in vivo. The further analysis revealed that NONO-mediated SETMAR-L can induce H3K27me3 at the promotor of metastatic oncogenes and inhibit their transcription, ultimately resulting in metastasis suppression. Therefore, the present findings uncover the molecular mechanism of lymphatic metastasis in bladder cancer, which may provide novel clinical markers and therapeutic strategies for LN-metastatic bladder cancer.
Collapse
Affiliation(s)
- Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyue Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China.
| |
Collapse
|
29
|
Ren Z, Zhao Y, Song W, Wang C, Mu C, Li R. Transcriptome analysis of the Sepia pharaonis: Identification of low salinity stress-related information and microsatellite markers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100705. [PMID: 32623150 DOI: 10.1016/j.cbd.2020.100705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
Sepia pharaonis has great commercial value for aquaculture. However, it is sensitive to salinity fluctuations and lacking in genomic information. The present work utilized high-throughput transcriptome sequencing to assess the effect of low salinity (22.0 ppt) on gills of S. pharaonis. 6153 genes were identified as differentially expressed (p < 0.05), of which 3340 were increased and 2813 were decreased in low salinity group (22.0 ppt) relative to the control group (29.0 ppt). Subsequently, these DEGs were allocated to 226 KEGG pathways and 491 GO terms. Analysis of the transcriptome sequences and DEGs identified several unigenes and pathways involved in salt stress regulation. Moreover, the S. pharaonis carried 101,576 simple sequence repeats (SSRs). This is the first time osmoregulation in S. pharaonis has been explored by transcriptome sequencing. The data presented here reveals key insights into the genetic markers of salt stress in S. pharaonis.
Collapse
Affiliation(s)
- Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo City, Zhejiang Province 315832, PR China
| | - Yun Zhao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo City, Zhejiang Province 315832, PR China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo City, Zhejiang Province 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo City, Zhejiang Province 315832, PR China.
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo City, Zhejiang Province 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo City, Zhejiang Province 315832, PR China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo City, Zhejiang Province 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo City, Zhejiang Province 315832, PR China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo City, Zhejiang Province 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo City, Zhejiang Province 315832, PR China
| |
Collapse
|
30
|
Sharma N, Speed MC, Allen CP, Maranon DG, Williamson E, Singh S, Hromas R, Nickoloff JA. Distinct roles of structure-specific endonucleases EEPD1 and Metnase in replication stress responses. NAR Cancer 2020; 2:zcaa008. [PMID: 32743552 PMCID: PMC7380491 DOI: 10.1093/narcan/zcaa008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
Accurate DNA replication and segregation are critical for maintaining genome integrity and suppressing cancer. Metnase and EEPD1 are DNA damage response (DDR) proteins frequently dysregulated in cancer and implicated in cancer etiology and tumor response to genotoxic chemo- and radiotherapy. Here, we examine the DDR in human cell lines with CRISPR/Cas9 knockout of Metnase or EEPD1. The knockout cell lines exhibit slightly slower growth rates, significant hypersensitivity to replication stress, increased genome instability and distinct alterations in DDR signaling. Metnase and EEPD1 are structure-specific nucleases. EEPD1 is recruited to and cleaves stalled forks to initiate fork restart by homologous recombination. Here, we demonstrate that Metnase is also recruited to stalled forks where it appears to dimethylate histone H3 lysine 36 (H3K36me2), raising the possibility that H3K36me2 promotes DDR factor recruitment or limits nucleosome eviction to protect forks from nucleolytic attack. We show that stalled forks are cleaved normally in the absence of Metnase, an important and novel result because a prior study indicated that Metnase nuclease is important for timely fork restart. A double knockout was as sensitive to etoposide as either single knockout, suggesting a degree of epistasis between Metnase and EEPD1. We propose that EEPD1 initiates fork restart by cleaving stalled forks, and that Metnase may promote fork restart by processing homologous recombination intermediates and/or inducing H3K36me2 to recruit DDR factors. By accelerating fork restart, Metnase and EEPD1 reduce the chance that stalled replication forks will adopt toxic or genome-destabilizing structures, preventing genome instability and cancer. Metnase and EEPD1 are overexpressed in some cancers and thus may also promote resistance to genotoxic therapeutics.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Michael C Speed
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Christopher P Allen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Elizabeth Williamson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sudha Singh
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
31
|
Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, Fang D. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 2020; 10:9. [PMID: 32021684 PMCID: PMC6995143 DOI: 10.1186/s13578-020-0374-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone marks control many cellular processes including DNA damage repair. This review will focus primarily on the active histone mark H3K36me3 in the regulation of DNA damage repair and the maintenance of genomic stability after DNA damage. There are diverse clues showing H3K36me3 participates in DNA damage response by directly recruiting DNA repair machinery to set the chromatin at a “ready” status, leading to a quick response upon damage. Reduced H3K36me3 is associated with low DNA repair efficiency. This review will also place a main emphasis on the H3K36me3-mediated DNA damage repair in the tumorigenesis of the newly found oncohistone mutant tumors. Gaining an understanding of different aspects of H3K36me3 in DNA damage repair, especially in cancers, would share the knowledge of chromatin and DNA repair to serve to the drug discovery and patient care.
Collapse
Affiliation(s)
- Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongfei Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
32
|
Zaghi M, Broccoli V, Sessa A. H3K36 Methylation in Neural Development and Associated Diseases. Front Genet 2020; 10:1291. [PMID: 31998360 PMCID: PMC6962298 DOI: 10.3389/fgene.2019.01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Post-translational methylation of H3 lysine 36 (H3K36) is an important epigenetic marker that majorly contributes to the functionality of the chromatin. This mark is interpreted by the cell in several crucial biological processes including gene transcription and DNA methylation. The homeostasis of H3K36 methylation is finely regulated by different enzyme classes which, when impaired, lead to a plethora of diseases; ranging from multi-organ syndromes to cancer, to pure neurological diseases often associated with brain development. This mini-review summarizes current knowledge on these important epigenetic signals with emphasis on the molecular mechanisms that (i) regulate their abundance, (ii) are influenced by H3K36 methylation, and (iii) the associated diseases.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Concilio Nazionale Delle Ricerche (CNR), Instituto di Neuroscienze, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Asoshina M, Myo G, Tada N, Tajino K, Shimizu N. Targeted amplification of a sequence of interest in artificial chromosome in mammalian cells. Nucleic Acids Res 2019; 47:5998-6006. [PMID: 31062017 PMCID: PMC6582328 DOI: 10.1093/nar/gkz343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
A plasmid with a replication initiation region (IR) and a matrix attachment region (MAR) initiates gene amplification in mammalian cells at a random chromosomal location. A mouse artificial chromosome (MAC) vector can stably carry a large genomic region. In this study we combined these two technologies with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)9 strategy to achieve targeted amplification of a sequence of interest. We previously showed that the IR/MAR plasmid was amplified up to the extrachromosomal tandem repeat; here we demonstrate that cleavage of these tandem plasmids and MAC by Cas9 facilitates homologous recombination between them. The plasmid array on the MAC could be further extended to form a ladder structure with high gene expression by a breakage–fusion–bridge cycle involving breakage at mouse major satellites. Amplification of genes on the MAC has the advantage that the MAC can be transferred between cells. We visualized the MAC in live cells by amplifying the lactose operator array on the MAC in cells expressing lactose repressor-green fluorescent protein fusion protein. This targeted amplification strategy is in theory be applicable to any sequence at any chromosomal site, and provides a novel tool for animal cell technology.
Collapse
Affiliation(s)
- Manami Asoshina
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Genki Myo
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Natsuko Tada
- Chromocenter Inc., Yonago, Tottori 683-0823, Japan
| | - Koji Tajino
- Chromocenter Inc., Yonago, Tottori 683-0823, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
34
|
Mușat MG, Nițulescu GM, Surleac M, Tsatsakis A, Spandidos DA, Margină D. HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review). Mol Med Rep 2019; 20:4749-4762. [PMID: 31702817 PMCID: PMC6854553 DOI: 10.3892/mmr.2019.10777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Transposases are ubiquitous mobile genetic elements responsible for genome development, driving rearrangements, such as insertions, deletions and translocations. Across species evolution, some transposases are tamed by their host and are made part of complex cellular systems. The proliferation of retroviruses is also dependent on transposase related enzymes termed integrases. Recombination‑activating gene protein (RAG)1 and metnase are just two examples of transposase domestication and together with retroviral integrases (INs), they belong to the DDE polynucleotidyl transferases superfamily. They share mechanistic and structural features linked to the RNase H‑like fold, harboring a DDE(D) metal dependent catalytic motif. Recent antiretroviral compounds target the catalytic domain of integrase, but they also have the potential of inhibiting other related enzymes. In this review, we report the activity of different classes of integrase inhibitors on various DDE transposases. Computational simulations are useful to predict the extent of off‑target activity and have been employed to study the interactions between RAG1 recombinase and compounds from three different pharmacologic classes. We demonstrate that strand‑transfer inhibitors display a higher affinity towards the RAG1 RNase H domain, as suggested by experimental data compared to allosteric inhibitors. While interference with RAG1 and 2 recombination is associated with a negative impact on immune function, the inhibition of metnase or HTLV‑1 integrase opens the way for the development of novel therapies for refractory cancers.
Collapse
Affiliation(s)
- Mihaela Georgiana Mușat
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - George Mihai Nițulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Marius Surleac
- National Institute for Infectious Diseases ‘Matei Bals’, 021105 Bucharest, Romania
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margină
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
35
|
Tellier M, Chalmers R. Human SETMAR is a DNA sequence-specific histone-methylase with a broad effect on the transcriptome. Nucleic Acids Res 2019; 47:122-133. [PMID: 30329085 PMCID: PMC6326780 DOI: 10.1093/nar/gky937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022] Open
Abstract
Transposons impart dynamism to the genomes they inhabit and their movements frequently rewire the control of nearby genes. Occasionally, their proteins are domesticated when they evolve a new function. SETMAR is a protein methylase with a sequence-specific DNA binding domain. It began to evolve about 50 million years ago when an Hsmar1 transposon integrated downstream of a SET-domain methylase gene. Here we show that the DNA-binding domain of the transposase targets the enzyme to transposon-end remnants and that this is capable of regulating gene expression, dependent on the methylase activity. When SETMAR was modestly overexpressed in human cells, almost 1500 genes changed expression by more than 2-fold (65% up- and 35% down-regulated). These genes were enriched for the KEGG Pathways in Cancer and include several transcription factors important for development and differentiation. Expression of a similar level of a methylase-deficient SETMAR changed the expression of many fewer genes, 77% of which were down-regulated with no significant enrichment of KEGG Pathways. Our data is consistent with a model in which SETMAR is part of an anthropoid primate-specific regulatory network centered on the subset of genes containing a transposon end.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
36
|
Tellier M, Chalmers R. The roles of the human SETMAR (Metnase) protein in illegitimate DNA recombination and non-homologous end joining repair. DNA Repair (Amst) 2019; 80:26-35. [PMID: 31238295 PMCID: PMC6715855 DOI: 10.1016/j.dnarep.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
Full length SETMAR expression has no effect on DNA repair and integration in vivo. SETMAR putative nuclease activity is not required in vivo. Separate expression of the SET and MAR domains affects DNA repair and integration. SETMAR isoform with a truncated SET-domain is specific to species containing the MAR domain.
SETMAR is a fusion between a SET-domain methyltransferase gene and a mariner-family transposase gene, which is specific to anthropoid primates. However, the ancestral SET gene is present in all other mammals and birds. SETMAR is reported to be involved in transcriptional regulation and a diverse set of reactions related to DNA repair. Since the transcriptional effects of SETMAR depend on site-specific DNA binding, and are perturbed by inactivating the methyltransferase, we wondered whether we could differentiate the effects of the SET and MAR domains in DNA repair assays. We therefore generated several stable U2OS cell lines expressing either wild type SETMAR or truncation or point mutant variants. We tested these cell lines with in vivo plasmid-based assays to determine the relevance of the different domains and activities of SETMAR in DNA repair. Contrary to previous reports, we found that wild type SETMAR had little to no effect on the rate of cell division, DNA integration into the genome or non-homologous end joining. Also contrary to previous reports, we failed to detect any effect of a strong active-site mutation that should have knocked out the putative nuclease activity of SETMAR.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
37
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
38
|
Luo S, Tang M, Frandsen PB, Stewart RJ, Zhou X. The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera). Gigascience 2018; 7:5202446. [PMID: 30476205 PMCID: PMC6302954 DOI: 10.1093/gigascience/giy143] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background Caddisflies (Insecta: Trichoptera) are a highly adapted freshwater group of insects split from a common ancestor with Lepidoptera. They are the most diverse (>16,000 species) of the strictly aquatic insect orders and are widely employed as bio-indicators in water quality assessment and monitoring. Among the numerous adaptations to aquatic habitats, caddisfly larvae use silk and materials from the environment (e.g., stones, sticks, leaf matter) to build composite structures such as fixed retreats and portable cases. Understanding how caddisflies have adapted to aquatic habitats will help explain the evolution and subsequent diversification of the group. Findings We sequenced a retreat-builder caddisfly Stenopsyche tienmushanensis Hwang and assembled a high-quality genome from both Illumina and Pacific Biosciences (PacBio) sequencing. In total, 601.2 M Illumina reads (90.2 Gb) and 16.9 M PacBio subreads (89.0 Gb) were generated. The 451.5 Mb assembled genome has a contig N50 of 1.29 M, has a longest contig of 4.76 Mb, and covers 97.65% of the 1,658 insect single-copy genes as assessed by Benchmarking Universal Single-Copy Orthologs. The genome comprises 36.76% repetitive elements. A total of 14,672 predicted protein-coding genes were identified. The genome revealed gene expansions in specific groups of the cytochrome P450 family and olfactory binding proteins, suggesting potential genomic features associated with pollutant tolerance and mate finding. In addition, the complete gene complex of the highly repetitive H-fibroin, the major protein component of caddisfly larval silk, was assembled. Conclusions We report the draft genome of Stenopsyche tienmushanensis, the highest-quality caddisfly genome so far. The genome information will be an important resource for the study of caddisflies and may shed light on the evolution of aquatic insects.
Collapse
Affiliation(s)
- Shiqi Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Min Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA.,Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, DC 20002, USA
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
39
|
Brown A, Geiger H. Chromosome integrity checkpoints in stem and progenitor cells: transitions upon differentiation, pathogenesis, and aging. Cell Mol Life Sci 2018; 75:3771-3779. [PMID: 30066086 PMCID: PMC6154040 DOI: 10.1007/s00018-018-2891-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023]
Abstract
Loss of chromosome integrity is a major contributor to cancer. Checkpoints within the cell division cycle that facilitate the accuracy and outcome of chromosome segregation are thus critical pathways for preserving chromosome integrity and preventing chromosomal instability. The spindle assembly checkpoint, the decatenation checkpoint and the post-mitotic tetraploidy checkpoint ensure the appropriate establishment of the spindle apparatus, block mitotic entry upon entanglement of chromosomes or prevent further progression of post-mitotic cells that display massive spindle defects. Most of our knowledge on these mechanisms originates from studies conducted in yeast, cancer cell lines and differentiated cells. Considering that in many instances cancer derives from transformed stem and progenitor cells, our knowledge on these checkpoints in these cells just started to emerge. With this review, we provide a general overview of the current knowledge of these checkpoints in embryonic as well as in adult stem and progenitor cells with a focus on the hematopoietic system and outline common mis-regulations of their function associated with cancer and leukemia. Most cancers are aging-associated diseases. We will thus also discuss changes in the function and outcome of these checkpoints upon aging of stem and progenitor cells.
Collapse
Affiliation(s)
- Andreas Brown
- Institute of Molecular Medicine, Ulm University, Life Science Building N27, James Franck-Ring/Meyerhofstrasse, 89081, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Life Science Building N27, James Franck-Ring/Meyerhofstrasse, 89081, Ulm, Germany.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
40
|
Gong F, Miller KM. Histone methylation and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:37-47. [PMID: 31395347 DOI: 10.1016/j.mrrev.2017.09.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
Abstract
Preserving genome function and stability are paramount for ensuring cellular homeostasis, an imbalance in which can promote diseases including cancer. In the presence of DNA lesions, cells activate pathways referred to as the DNA damage response (DDR). As nuclear DNA is bound by histone proteins and organized into chromatin in eukaryotes, DDR pathways have evolved to sense, signal and repair DNA damage within the chromatin environment. Histone proteins, which constitute the building blocks of chromatin, are highly modified by post-translational modifications (PTMs) that regulate chromatin structure and function. An essential histone PTM involved in the DDR is histone methylation, which is regulated by histone methyltransferase (HMT) and histone demethylase (HDM) enzymes that add and remove methyl groups on lysine and arginine residues within proteins respectively. Methylated histones can alter how proteins interact with chromatin, including their ability to be bound by reader proteins that recognize these PTMs. Here, we review histone methylation in the context of the DDR, focusing on DNA double-strand breaks (DSBs), a particularly toxic lesion that can trigger genome instability and cell death. We provide a comprehensive overview of histone methylation changes that occur in response to DNA damage and how the enzymes and reader proteins of these marks orchestrate the DDR. Finally, as many epigenetic pathways including histone methylation are altered in cancer, we discuss the potential involvement of these pathways in the etiology and treatment of this disease.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States.
| |
Collapse
|
41
|
Keating ST, Plutzky J, El-Osta A. Epigenetic Changes in Diabetes and Cardiovascular Risk. Circ Res 2017; 118:1706-22. [PMID: 27230637 DOI: 10.1161/circresaha.116.306819] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 01/03/2023]
Abstract
Cardiovascular complications remain the leading causes of morbidity and premature mortality in patients with diabetes mellitus. Studies in humans and preclinical models demonstrate lasting gene expression changes in the vasculopathies initiated by previous exposure to high glucose concentrations and the associated overproduction of reactive oxygen species. The molecular signatures of chromatin architectures that sensitize the genome to these and other cardiometabolic risk factors of the diabetic milieu are increasingly implicated in the biological memory underlying cardiovascular complications and now widely considered as promising therapeutic targets. Atherosclerosis is a complex heterocellular disease where the contributing cell types possess distinct epigenomes shaping diverse gene expression. Although the extent that pathological chromatin changes can be manipulated in human cardiovascular disease remains to be established, the clinical applicability of epigenetic interventions will be greatly advanced by a deeper understanding of the cell type-specific roles played by writers, erasers, and readers of chromatin modifications in the diabetic vasculature. This review details a current perspective of epigenetic mechanisms of macrovascular disease in diabetes mellitus and highlights recent key descriptions of chromatinized changes associated with persistent gene expression in endothelial, smooth muscle, and circulating immune cells relevant to atherosclerosis. Furthermore, we discuss the challenges associated with pharmacological targeting of epigenetic networks to correct abnormal or deregulated gene expression as a strategy to alleviate the clinical burden of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Samuel T Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Jorge Plutzky
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (A.E.-O.), Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.P.); Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Victoria, Australia (A.E.-O.).
| |
Collapse
|
42
|
Dussaussois-Montagne A, Jaillet J, Babin L, Verrelle P, Karayan-Tapon L, Renault S, Rousselot-Denis C, Zemmoura I, Augé-Gouillou C. SETMAR isoforms in glioblastoma: A matter of protein stability. Oncotarget 2017; 8:9835-9848. [PMID: 28038463 PMCID: PMC5354774 DOI: 10.18632/oncotarget.14218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023] Open
Abstract
Glioblastomas (GBMs) are the most frequent and the most aggressive brain tumors, known for their chemo- and radio-resistance, making them often incurable. We also know that SETMAR is a protein involved in chromatin dynamics and genome plasticity, of which overexpression confers chemo- and radio-resistance to some tumors. The relationships between SETMAR and GBM have never been explored. To fill this gap, we define the SETMAR status of 44 resected tumors and of GBM derived cells, at both the mRNA and the protein levels. We identify a new, small SETMAR protein (so called SETMAR-1200), enriched in GBMs and GBM stem cells as compared to the regular enzyme (SETMAR-2100). We show that SETMAR-1200 is able to increase DNA repair by non-homologous end-joining, albeit with a lower efficiency than the regular SETMAR protein. Interestingly, the regular/small ratio of SETMAR in GBM cells changes depending on cell type, providing evidence that SETMAR expression is regulated by alternative splicing. We also demonstrate that SETMAR expression can be regulated by the use of an alternative ATG. In conclusion, various SETMAR proteins can be synthesized in human GBM that may each have specific biophysical and/or biochemical properties and characteristics. Among them, the small SETMAR may play a role in GBMs biogenesis. On this basis, we would like to consider SETMAR-1200 as a new potential therapeutic target to investigate, in addition to the regular SETMAR protein already considered by others.
Collapse
Affiliation(s)
| | - Jérôme Jaillet
- EA 6306 IGC, University François Rabelais, 37200 Tours, France
| | - Laetitia Babin
- EA 6306 IGC, University François Rabelais, 37200 Tours, France
- UMR CNRS 7292 GICC, University François Rabelais, 37000 Tours, France
| | - Pierre Verrelle
- EA 7283 CREaT, Université d′Auvergne, BP 10448, 63000 Clermont-Ferrand, France
- Institut Curie, Dpt d'Oncologie Radiothérapique, 75005 Paris, France
- Centre Jean Perrin, Service Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, 63000 Clermont-Ferrand, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86021 Poitiers, France
- University of Poitiers, F-86022 Poitiers, France
- CHU of Poitiers, Laboratoire de Cancérologie Biologique, F-86021 Poitiers, France
| | | | | | - Ilyess Zemmoura
- INSERM U930 Imagerie & Cerveau, University François Rabelais, 37000 Tours, France
- CHRU of Tours, Service de Neurochirurgie, 37000 Tours, France
| | | |
Collapse
|
43
|
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots. Mol Cell Biol 2017; 37:MCB.00942-15. [PMID: 27821479 DOI: 10.1128/mcb.00942-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined "hot spots." In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots.
Collapse
|
44
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
45
|
Chen Q, Georgiadis M. Crystallization of and selenomethionine phasing strategy for a SETMAR-DNA complex. Acta Crystallogr F Struct Biol Commun 2016; 72:713-9. [PMID: 27599863 PMCID: PMC5012212 DOI: 10.1107/s2053230x16012723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/06/2016] [Indexed: 11/10/2022] Open
Abstract
Transposable elements have played a critical role in the creation of new genes in all higher eukaryotes, including humans. Although the chimeric fusion protein SETMAR is no longer active as a transposase, it contains both the DNA-binding domain (DBD) and catalytic domain of the Hsmar1 transposase. The amino-acid sequence of the DBD has been virtually unchanged in 50 million years and, as a consequence, SETMAR retains its sequence-specific binding to the ancestral Hsmar1 terminal inverted repeat (TIR) sequence. Thus, the DNA-binding activity of SETMAR is likely to have an important biological function. To determine the structural basis for the recognition of TIR DNA by SETMAR, the design of TIR-containing oligonucleotides and SETMAR DBD variants, crystallization of DBD-DNA complexes, phasing strategies and initial phasing experiments are reported here. An unexpected finding was that oligonucleotides containing two BrdUs in place of thymidines produced better quality crystals in complex with SETMAR than their natural counterparts.
Collapse
Affiliation(s)
- Qiujia Chen
- Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Millie Georgiadis
- Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
46
|
Chen Y, Zhu WG. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:603-16. [PMID: 27217472 DOI: 10.1093/abbs/gmw050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR.
Collapse
Affiliation(s)
- Yongcan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
47
|
End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 2016; 43:57-68. [PMID: 27262532 DOI: 10.1016/j.dnarep.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.
Collapse
|
48
|
Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P, Galiana D, Volff JN. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 2016; 22:312-323. [PMID: 26899828 DOI: 10.1016/j.cmi.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/24/2022]
Abstract
Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage.
Collapse
Affiliation(s)
- M Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - I A Warren
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - Z Haftek-Terreau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France; Department of Genetics, University of Georgia, Athens, GA, USA
| | - F Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - P Levin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - J-N Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France.
| |
Collapse
|
49
|
Histone modifications in DNA damage response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:257-70. [PMID: 26825946 DOI: 10.1007/s11427-016-5011-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.
Collapse
|
50
|
Kuci V, Nordström L, Conrotto P, Ek S. SOX11 and HIG-2 are cross-regulated and affect growth in mantle cell lymphoma. Leuk Lymphoma 2016; 57:1883-92. [DOI: 10.3109/10428194.2015.1121257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|