1
|
Vaezi M, Nejat Pishkenari H. Self-propelled directed transport of C60 fullerene on the surface of the cone-shaped carbon nanotubes. Sci Rep 2024; 14:21630. [PMID: 39284904 PMCID: PMC11405730 DOI: 10.1038/s41598-024-72873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Directed transportation of materials at molecular scale is important due to its crucial role in the development of nanoelectromechanical devices, particularly the directional movements along the carbon nanotubes (CNTs), due to the applications of CNTs as nano-manipulators, confined reactors, and drug or other materials delivery systems. In the present investigation, we evaluate the movements of C60 fullerenes on the surface of the cone-shaped CNTs. The fullerene molecules indicate directed motion toward the narrower end of CNTs, which is due to the potential energy gradient along the nanotube length. A continuum model is proposed to evaluate the mechanism of the directed motion and the results of the theoretical model are compared with numerical simulations. Directed movements have been examined at various opening angles of CNTs, considering the trajectories of motions, variation of potential energy, and diffusion coefficients. At smaller opening angles, the driving force on the C60 increases and the molecule experiences more directed transport along the nanotube. The motion of fullerene has also been simulated inside the cone-shaped CNTs, with similar opening angle, and different average radius. At lower average radius of the cone-like nanotubes, the motion of C60 is comparatively more rectilinear. Directional transport of fullerene has been observed in the opposite direction, when the molecule moves on the external surface of the cone-like CNTs, which is due to the stronger interaction of C60 with the parts of the external surface with larger radius. The effect of temperature has been evaluated by performing the simulations at the temperature range of 100 to 400 K. The direction of the velocity reveals that the thermal fluctuations at higher temperatures hinder the directed motion of molecule along the cone-shaped CNTs. The results of the present study propose a new method to obtain directed transport of molecules which can be helpful in different applications such as drug delivery systems.
Collapse
Affiliation(s)
- Mehran Vaezi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Hossein Nejat Pishkenari
- Nano Robotics Laboratory, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Banerjee S, Hawthorne N, Batteas JD, Rappe AM. Two-Legged Molecular Walker and Curvature: Mechanochemical Ring Migration on Graphene. J Am Chem Soc 2023. [PMID: 38049385 DOI: 10.1021/jacs.3c08850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Attaining controllable molecular motion at the nanoscale can be beneficial for multiple reasons, spanning from optoelectronics to catalysis. Here we study the movement of a two-legged molecular walker by modeling the migration of a phenyl aziridine ring on curved graphene. We find that directional ring migration can be attained on graphene in the cases of both 1D (wrinkled/rippled) and 2D (bubble-shaped) curvature. Using a descriptor approach based on graphene's frontier orbital orientation, we can understand the changes in binding energy of the ring as it translates across different sites with variable curvature and the kinetic barriers associated with ring migration. Additionally, we show that the extent of covalent bonding between graphene and the molecule at different sites directly controls the binding energy gradient, propelling molecular migration. Importantly, one can envision such walkers as carriers of charge and disruptors of local bonding. This study enables a new way to tune the electronic structure of two-dimensional materials for a range of applications.
Collapse
Affiliation(s)
- Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3127, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Yazdanfar P, Heydarian H, Rashidian B. Controlled optical near-field growth of individual free-standing well-oriented carbon nanotubes, application for scattering SNOM/AFM probes. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4671-4686. [PMID: 39634747 PMCID: PMC11501618 DOI: 10.1515/nanoph-2022-0378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2024]
Abstract
Exploiting localized heat-generation density and the resulting enhanced temperature-rise for controlled growth of carbon nanotubes (CNTs) is reported, and its potentials for batch-production of high-quality CNT probes are demonstrated. Optical near field chemical vapor deposition (ONF-CVD) benchtop fabrication schemes are developed for the localized integration of individual well-aligned carbon nanotubes without bending/buckling exactly at desired nanoscale sites. It is demonstrated that generating self-aligned catalyst nanoparticles superimposed on top of silicon nanotips, along with near-field induced absorption confinement, provide the ability to localize the generated heat at the nanotips apexes, and control the CNT growth locations. The nanoscale maskless controllability of the growth site is shown by properly tailoring ONF-CVD conditions to overcome overall heat exposure of the substrate for selective activation of catalyst nanoparticles located at apexes, from those dispersing all over the tips. The calculated local power densities and temperature profiles of the simulated tips, clearly demonstrate the confined heat and optimal gradient of generated temperature rise as the main factors affecting the growth. In addition to determining necessary processing conditions to control the localization and orientation of the growth, parameters affecting the length and diameter of the localized individually grown nanotubes are also presented. Optical near-field-based growth schemes can be extended for localized maskless fabrication of other nanoscale devices, beyond the diffraction limit, using photothermal effects.
Collapse
Affiliation(s)
- Payam Yazdanfar
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Heydarian
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Bizhan Rashidian
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Gürbüz R, Sarac B, Soprunyuk V, Rezvan A, Yüce E, Schranz W, Eckert J, Ozcan A, Sarac AS. Carbon nanotube‐polybutadiene‐poly(ethylene oxide)‐based composite fibers: Role of cryogenic treatment on intrinsic properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Remzi Gürbüz
- Department of Chemistry Eskisehir Technical University Eskisehir Turkey
| | - Baran Sarac
- Erich Schmid Institute of Materials Science Austrian Academy of Sciences Leoben Austria
| | - Viktor Soprunyuk
- Faculty of Physics, Physics of Functional Materials University of Vienna Vienna Austria
| | - Amir Rezvan
- Erich Schmid Institute of Materials Science Austrian Academy of Sciences Leoben Austria
- Department of Materials Science, Chair of Materials Physics Montanuniversität Leoben Leoben Austria
| | - Eray Yüce
- Erich Schmid Institute of Materials Science Austrian Academy of Sciences Leoben Austria
- Department of Materials Science, Chair of Materials Physics Montanuniversität Leoben Leoben Austria
| | - Wilfried Schranz
- Faculty of Physics, Physics of Functional Materials University of Vienna Vienna Austria
| | - Jürgen Eckert
- Erich Schmid Institute of Materials Science Austrian Academy of Sciences Leoben Austria
- Department of Materials Science, Chair of Materials Physics Montanuniversität Leoben Leoben Austria
| | - Ali Ozcan
- Department of Chemistry Eskisehir Technical University Eskisehir Turkey
| | - A. Sezai Sarac
- Polymer Science and Technology Istanbul Technical University Istanbul Turkey
| |
Collapse
|
5
|
Abstract
In this study, we propose that the curvature of graphene can be exploited to perform directional molecular motion and provide atomistic insights into the curvature-dependent molecular migration through density functional theory calculations. We first reveal the origin of the different migration trends observed experimentally for aromatic molecules with electron-donating and -withdrawing groups on p-doped functionalized graphene. Next, we show that the kinetic barrier for migration depends on the amount and nature of the curvature, that is, positive versus negative curvature. We find that the molecular migration on a wrinkled/rippled graphene sheet preferentially happens from the valley (positive curvature) to the mountain (negative curvature) regions. To understand the origin of such curvature-dependent molecular motion and migrational kinetic barrier trends, we develop a descriptor based on the frontier orbital orientation of graphene. Finally, based on these findings, we predict that time- and space-varying curvature can drive directional molecular motion on graphene and thus further propose that efforts should focus on exploring other two-dimensional materials as active platforms for performing controlled molecular motion.
Collapse
Affiliation(s)
- Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
Cheng B, Yang S, Li W, Li S, Shafique S, Wu D, Ji S, Sun Y, Jiang Z. Controlled growth of a single carbon nanotube on an AFM probe. MICROSYSTEMS & NANOENGINEERING 2021; 7:80. [PMID: 34721888 PMCID: PMC8519951 DOI: 10.1038/s41378-021-00310-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 05/24/2023]
Abstract
Carbon nanotubes (CNTs) can be used as atomic force microscopy (AFM) tips for high-resolution scanning due to their small diameter, high aspect ratio and outstanding wear resistance. However, previous approaches for fabricating CNT probes are complex and poorly controlled. In this paper, we introduce a simple method to selectively fabricate a single CNT on an AFM tip by controlling the trigger threshold to adjust the amount of growth solution attached to the tip. The yield rate is over 93%. The resulting CNT probes are suitable in length, without the need for a subsequent cutting process. We used the CNT probe to scan the complex nanostructure with a high aspect ratio, thereby solving the long-lasting problem of mapping complex nanostructures.
Collapse
Affiliation(s)
- Biyao Cheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Shuming Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Wei Li
- National Institute of Metrology, Beijing, 102200 China
| | - Shi Li
- National Institute of Metrology, Beijing, 102200 China
| | - Shareen Shafique
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Dong Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Anhui, 230027 China
| | - Shengyun Ji
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Anhui, 230027 China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 Canada
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
7
|
Ganesan R, Vasantha-Srinivasan P, Sadhasivam DR, Subramanian R, Vimalraj S, Suk KT. Carbon Nanotubes Induce Metabolomic Profile Disturbances in Zebrafish: NMR-Based Metabolomics Platform. Front Mol Biosci 2021; 8:688827. [PMID: 34277704 PMCID: PMC8283261 DOI: 10.3389/fmolb.2021.688827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
The present study aims to investigate the metabolic effects of single-walled carbon nanotubes (SWCNT) on zebrafish (Danio rerio) using 1H nuclear magnetic resonance (1H-NMR) spectroscopy. However, there is no significant information available regarding the characterization of organic molecules, and metabolites with SWCNT exposure. Noninvasive biofluid methods have improved our understanding of SWCNT metabolism in zebrafish in recent years. Here, we used targeted metabolomics to quantify a set of metabolites within biological systems. SWCNT at various concentrations was given to zebrafish, and the metabolites were extracted using two immiscible solvent systems, methanol and chloroform. Metabolomics profiling was used in association with univariate and multivariate data analysis to determine metabolomic phenotyping. The metabolites, malate, oxalacetate, phenylaniline, taurine, sn-glycero-3-phosphate, glycine, N-acetyl mate, lactate, ATP, AMP, valine, pyruvate, ADP, serine, niacinamide are significantly impacted. The metabolism of amino acids, energy and nucleotides are influenced by SWCNT which might indicate a disturbance in metabolic reaction networks. In conclusion, using high-throughput analytical methods, we provide a perspective of metabolic impacts and the underlying associated metabolic pathways.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea.,Department of Biological Sciences, Pusan National University, Busan, Korea.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.,Center for Biotechnology, Anna University, Chennai, India
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| |
Collapse
|
8
|
Marques-Moros F, Forment-Aliaga A, Pinilla-Cienfuegos E, Canet-Ferrer J. Mirror effect in atomic force microscopy profiles enables tip reconstruction. Sci Rep 2020; 10:18911. [PMID: 33144609 PMCID: PMC7641199 DOI: 10.1038/s41598-020-75785-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
In this work, the tip convolution effect in atomic force microscopy is revisited to illustrate the capabilities of cubic objects for determination of the tip shape and size. Using molecular-based cubic nanoparticles as a reference, a two-step tip reconstruction process has been developed. First, the tip-to-face angle is estimated by means of an analysis of the convolution error while the tip radius is extracted from the experimental profiles. The results obtained are in good agreement with specification of the tip supplier even though the experiments have been conducted using real distribution of nanoparticles with dispersion in size and aspect ratio. This demonstrates the reliability of our method and opens the door for a more accurate tip reconstruction by using calibration standards.
Collapse
Affiliation(s)
| | | | | | - Josep Canet-Ferrer
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain.
| |
Collapse
|
9
|
Lee H, Gan Z, Chen M, Min S, Yang J, Xu Z, Shao X, Lin Y, Li WD, Kim JT. On-Demand 3D Printing of Nanowire Probes for High-Aspect-Ratio Atomic Force Microscopy Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46571-46577. [PMID: 32924414 DOI: 10.1021/acsami.0c14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the growing importance of three-dimensional (3D) nanomaterials and devices, there has been a great demand for high-fidelity, full profile topographic characterizations in a nondestructive manner. A promising route is to employ a high-aspect-ratio (HAR) probe in atomic force microscopy (AFM) imaging. However, the fabrication of HAR-AFM probes continues to suffer from extravagant cost, limited material choice, and complicated manufacturing steps. Here, we report one-step, on-demand electrohydrodynamic 3D printing of metallic HAR-AFM probes with tailored dimensions. Our additive fabrication approach yields a freestanding metallic nanowire with an aspect ratio over 30 directly on a cantilever within tens of seconds, producing a HAR-AFM probe. Furthermore, the benefits associated with unprecedented simplicity in the probe's dimension control, material selection, and regeneration are provided. The 3D-printed HAR-AFM probe exhibits a better fidelity in deep trench AFM imaging than a standard pyramidal probe. We expect this approach to find facile, material-saving manufacturing routes in particular for customizing functional nanoprobes.
Collapse
Affiliation(s)
- Heekwon Lee
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhuofei Gan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojun Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Siyi Min
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhaoyi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wen-Di Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Cheng B, Yang S, Woldu YT, Shafique S, Wang F. A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio. NANOTECHNOLOGY 2020; 31:145707. [PMID: 31842011 DOI: 10.1088/1361-6528/ab6239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanotube (CNT) probes are used in atomic force microscopes (AFMs) for high-resolution imaging, especially in the measurement of high aspect ratio micro/nano structures. Due to the use of a longer CNT tip leading to the degradation of image resolution, researchers have used several methods to cut CNTs. However, the principle of the selection of the cutting length has hardly been reported. Moreover, the influence of the effect of size on the mechanical properties of a CNT tip is not fully understood. In this study, an accurate model of finite element simulations is constructed on the basis of scanning electron microscopy data to investigate the mechanical properties of a CNT probe. An elastic model is employed to study the factors that influence the critical buckling force at the CNT tip during the measurement process. The calculation shows that the mechanical stiffness of the probe is affected by the diameter and the length-to-diameter ratio of the CNT tip. The changes in the von Mises stress at the bond between the AFM probe and the CNT tip as well as the variation of the strain energy at the CNT tip are discussed. It is hoped that this study will provide guidance for the selection of the cutting length of CNT-AFM probes and propose a basis for probe selection and design in practical measurements.
Collapse
Affiliation(s)
- Biyao Cheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Analysis of Vibration Frequency of Carbon Nanotubes used as Nano-Force Sensors Considering Clamped Boundary Condition. ELECTRONICS 2019. [DOI: 10.3390/electronics8101082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) can be used as atomic force microscope (AFM) probes since they are ideal tip materials with a small diameter, high aspect ratio, and stiffness. In this study, a model of CNTs clamped in an elastic medium is proposed as nanoscale force sensing AFM probes. The relationship between vibration frequency and axial force of the CNT probe clamped in an elastic medium is analyzed based on the Euler-Bernoulli beam model and the Whitney-Riley model. The clamped length of CNTs, and the elastic modulus of elastic medium affect largely on the vibration and the buckling stability of a CNT AFM probe. The result showed that the sensitivity to vibration increases as the applied loads increase. The critical load in which the vibration frequency decreases rapidly, moving to large ones with decreasing ratio of length to diameter of CNTs. The theoretical investigation on the vibration frequency of CNT loaded in the axial direction would give a useful reference for designing a CNT used as a nano-force sensor.
Collapse
|
12
|
Toca‐Herrera JL. Atomic Force Microscopy Meets Biophysics, Bioengineering, Chemistry, and Materials Science. CHEMSUSCHEM 2019; 12:603-611. [PMID: 30556380 PMCID: PMC6492253 DOI: 10.1002/cssc.201802383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Indexed: 05/12/2023]
Abstract
Briefly, herein the use of atomic force microscopy (AFM) in the characterization of molecules and (bioengineered) materials related to chemistry, materials science, chemical engineering, and environmental science and biotechnology is reviewed. First, the basic operations of standard AFM, Kelvin probe force microscopy, electrochemical AFM, and tip-enhanced Raman microscopy are described. Second, several applications of these techniques to the characterization of single molecules, polymers, biological membranes, films, cells, hydrogels, catalytic processes, and semiconductors are provided and discussed.
Collapse
Affiliation(s)
- José L. Toca‐Herrera
- Institute for Biophysics, Department of NanobiotechnologyUniversity of Natural Resources and Life Sciences Vienna (BOKU)Muthgasse 111190ViennaAustria
| |
Collapse
|
13
|
Hu X, Wei H, Deng Y, Chi X, Liu J, Yue J, Peng Z, Cai J, Jiang P, Sun L. Amplitude response of conical multiwalled carbon nanotube probes for atomic force microscopy. RSC Adv 2018; 9:429-434. [PMID: 35521594 PMCID: PMC9059376 DOI: 10.1039/c8ra08683d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
Carbon nanotubes are considered as great candidates for atomic force microscopy (AFM) probes because of their high aspect ratio and outstanding mechanical properties. In this work, we report that a conical AFM probe can be fabricated with arc discharge prepared multiwalled carbon nanotubes (MWCNTs) with an individual MWCNT at the apex by dielectrophoresis. The amplitude-displacement curve of the conical MWCNT probe demonstrates that this structure can remain stable until the force exerted on it increases to 14.0 ± 1.5 nN (nanonewton). Meanwhile, the conical MWCNT probes are able to resolve complex structure with high aspect ratio compared to commercial AFM probes, suggesting great potential for various AFM applications.
Collapse
Affiliation(s)
- Xiao Hu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ya Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiannian Chi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jia Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junyi Yue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhisheng Peng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinzhong Cai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Lianfeng Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| |
Collapse
|
14
|
Carbon Nanospikes: Synthesis, characterization and application for high resolution AFM. Ultramicroscopy 2018; 197:11-15. [PMID: 30447556 DOI: 10.1016/j.ultramic.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022]
Abstract
We present a detailed study of synthesis, structural characterization of sharp, spike-like carbon structures and its application for high-resolution atomic-force microscopy (AFM) measurements of biological molecules. The probes are obtained by chemical vapor deposition of spike-like carbon structures on the apexes of common AFM silicon probes. The deposition process is carried out in carbonaceous gas mixture activated by a direct-current discharge. It was revealed by electron microscopy and Raman spectroscopy that the having dimensions at their ends of few nanometers the structures consist of amorphous carbon. The carbon spikes demonstrate high efficiency and resolutions in AFM studies of biological objects. Sub-molecular resolution is demonstrated on the samples of DNA and streptavidin molecules in AFM measurements with the ultra-sharp carbon tips.
Collapse
|
15
|
Improved Application of Carbon Nanotube Atomic Force Microscopy Probes Using PeakForce Tapping Mode. NANOMATERIALS 2018; 8:nano8100807. [PMID: 30304791 PMCID: PMC6215228 DOI: 10.3390/nano8100807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/24/2018] [Accepted: 10/06/2018] [Indexed: 11/23/2022]
Abstract
In this work PeakForce tapping (PFT) imaging was demonstrated with carbon nanotube atomic force microscopy (CNT-AFM) probes; this imaging mode shows great promise for providing simple, stable imaging with CNT-AFM probes, which can be difficult to apply. The PFT mode is used with CNT-AFM probes to demonstrate high resolution imaging on samples with features in the nanometre range, including a Nioprobe calibration sample and gold nanoparticles on silicon, in order to demonstrate the modes imaging effectiveness, and to also aid in determining the diameter of very thin CNT-AFM probes. In addition to stable operation, the PFT mode is shown to eliminate “ringing” artefacts that often affect CNT-AFM probes in tapping mode near steep vertical step edges. This will allow for the characterization of high aspect ratio structures using CNT-AFM probes, an exercise which has previously been challenging with the standard tapping mode.
Collapse
|
16
|
Collins L, Kilpatrick JI, Kalinin SV, Rodriguez BJ. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:086101. [PMID: 29990308 DOI: 10.1088/1361-6633/aab560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fundamental mechanisms of energy storage, corrosion, sensing, and multiple biological functionalities are directly coupled to electrical processes and ionic dynamics at solid-liquid interfaces. In many cases, these processes are spatially inhomogeneous taking place at grain boundaries, step edges, point defects, ion channels, etc and possess complex time and voltage dependent dynamics. This necessitates time-resolved and real-space probing of these phenomena. In this review, we discuss the applications of force-sensitive voltage modulated scanning probe microscopy (SPM) for probing electrical phenomena at solid-liquid interfaces. We first describe the working principles behind electrostatic and Kelvin probe force microscopies (EFM & KPFM) at the gas-solid interface, review the state of the art in advanced KPFM methods and developments to (i) overcome limitations of classical KPFM, (ii) expand the information accessible from KPFM, and (iii) extend KPFM operation to liquid environments. We briefly discuss the theoretical framework of electrical double layer (EDL) forces and dynamics, the implications and breakdown of classical EDL models for highly charged interfaces or under high ion concentrations, and describe recent modifications of the classical EDL theory relevant for understanding nanoscale electrical measurements at the solid-liquid interface. We further review the latest achievements in mapping surface charge, dielectric constants, and electrodynamic and electrochemical processes in liquids. Finally, we outline the key challenges and opportunities that exist in the field of nanoscale electrical measurements in liquid as well as providing a roadmap for the future development of liquid KPFM.
Collapse
Affiliation(s)
- Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America. Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | | | | | | |
Collapse
|
17
|
Ozkan AD, Topal AE, Dikecoglu FB, Guler MO, Dana A, Tekinay AB. Probe microscopy methods and applications in imaging of biological materials. Semin Cell Dev Biol 2018; 73:153-164. [DOI: 10.1016/j.semcdb.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/21/2023]
|
18
|
Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties. ELECTRONICS 2017. [DOI: 10.3390/electronics6030056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Monthioux M, Serp P, Caussat B, Flahaut E, Razafinimanana M, Valensi F, Laurent C, Peigney A, Mesguich D, Weibel A, Bacsa W, Broto JM. Carbon Nanotubes. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46:158-196. [DOI: 10.1039/c6cs00517a] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remarkable advances achieved in modern material technology, especially in device fabrication, have facilitated diverse materials to expand the list of their application fields.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ruma Rani
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - K. Tankeshwar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
- Department of Physics
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| |
Collapse
|
21
|
Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing. SENSORS 2016; 17:s17010017. [PMID: 28025540 PMCID: PMC5298590 DOI: 10.3390/s17010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
Abstract
Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.
Collapse
|
22
|
Slattery AD, Shearer CJ, Gibson CT, Shapter JG, Lewis DA, Stapleton AJ. Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy. NANOTECHNOLOGY 2016; 27:475708. [PMID: 27782008 DOI: 10.1088/0957-4484/27/47/475708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conductive atomic force microscopy (C-AFM) is used to characterise the nanoscale electrical properties of many conducting and semiconducting materials. We investigate the effect of single walled carbon nanotube (SWCNT) modification of commercial Pt/Ir cantilevers on the sensitivity and image stability during C-AFM imaging. Pt/Ir cantilevers were modified with small bundles of SWCNTs via a manual attachment procedure and secured with a conductive platinum pad. AFM images of topography and current were collected from heterogeneous polymer and nanomaterial samples using both standard and SWCNT modified cantilevers. Typically, achieving a good current image comes at the cost of reduced feedback stability. In part, this is due to electrostatic interaction and increased tip wear upon applying a bias between the tip and the sample. The SWCNT modified tips displayed superior current sensitivity and feedback stability which, combined with superior wear resistance of SWCNTs, is a significant advancement for C-AFM.
Collapse
Affiliation(s)
- Ashley D Slattery
- Flinders Centre for NanoScale Science and Technology, Flinders University, GPO Box 2100, Adelaide, SA, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Assis TAD, Dall'Agnol FF. Mechanically stable nanostructures with desirable characteristic field enhancement factors: a response from scale invariance in electrostatics. NANOTECHNOLOGY 2016; 27:44LT01. [PMID: 27669327 DOI: 10.1088/0957-4484/27/44/44lt01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work presents an accurate numerical study of the electrostatics of a system formed by individual nanostructures mounted on support substrate tips, which provides a theoretical prototype for applications in field electron emission or for the construction of tips in probe microscopy that requires high resolution. The aim is to describe the conditions to produce structures mechanically robust with desirable field enhancement factor (FEF). We modeled a substrate tip with a height h 1, radius r 1 and characteristic FEF [Formula: see text], and a top nanostructure with a height h 2, radius [Formula: see text] and FEF [Formula: see text], for both hemispheres on post-like structures. The nanostructure mounted on the support substrate tip then has a characteristic FEF, [Formula: see text]. Defining the relative difference [Formula: see text], where [Formula: see text] corresponds to the reference FEF for a hemisphere of the post structure with a radius [Formula: see text] and height [Formula: see text], our results show, from a numerical solution of Laplace's equation using a finite element scheme, a scaling [Formula: see text], where [Formula: see text] and [Formula: see text]. Given a characteristic variable u c, for [Formula: see text], we found a power law [Formula: see text], with [Formula: see text]. For [Formula: see text], [Formula: see text], which led to conditions where [Formula: see text]. As a consequence of scale invariance, it is possible to derive a simple expression for [Formula: see text] and to predict the conditions needed to produce related systems with a desirable FEF that are robust owing to the presence of the substrate tip. Finally, we discuss the validity of Schottky's conjecture (SC) for these systems, showing that, while to obey SC is indicative of scale invariance, the opposite is not necessarily true. This result suggests that a careful analysis must be performed before attributing SC as an origin of giant FEF in experiments.
Collapse
Affiliation(s)
- Thiago A de Assis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
| | | |
Collapse
|
24
|
Korneev DV, Popova AV, Generalov VM, Zaitsev BN. Atomic force microscopy-based single virus particle spectroscopy. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2016; 85:17.7.1-17.7.21. [PMID: 27479503 DOI: 10.1002/cpps.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
26
|
Xie T, Song S, Schwenke K, Singh M, Gonzalez LE, Del Gado E, Hahm JI. Low-Index ZnO Crystal Plane-Specific Binding Behavior of Whole Immunoglobulin G Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10493-9. [PMID: 26361274 DOI: 10.1021/acs.langmuir.5b02599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Crystallographic surface-resolved examination of protein-ZnO interactions can greatly enhance the fundamental understanding of protein adsorption on these technologically important solid surfaces which, in turn, will be tremendously valuable for the emerging applications of ZnO-based biomaterials and biosensors. We examine experimentally and via computer simulations the intriguing differences in the adsorption preferences and binding behavior of whole immunoglobulin G (IgG) proteins to various, low-index ZnO crystal surfaces at the individual biomolecule level. By performing direct atomic force microscopy imaging, we determine that IgG predominantly binds to the ZnO plane of (101̅0) relative to the other three low-index planes of (0001), (0001̅), and (112̅0). This phenomenon is highly unusual, particularly considering the fact that the average binding energy of amino acids (AAs) on the ZnO (0001) facet is higher than that on the (101̅0) plane. In conjunction with combined Monte Carlo-molecular dynamics simulations, we further explain the possible origins of our unusual experimental findings with critical factors such as the specific spatial locations of strongly binding AAs in the protein and their spatial distributions on the exterior surface of the protein.
Collapse
Affiliation(s)
| | | | - Konrad Schwenke
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich , Zurich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Gibbons MM, Perotti LE, Klug WS. Computational mechanics of viral capsids. Methods Mol Biol 2015; 1252:139-88. [PMID: 25358779 DOI: 10.1007/978-1-4939-2131-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics. Even though the theory of continuum elasticity is most commonly used to study deformable bodies at larger macroscopic length scales, it has been shown that this very rich theoretical field can still offer useful insights into the mechanics of viral structures at the nanometer scale. Here we show the construction of viral capsid continuum mechanics models starting from different forms of experimental data. We will discuss the kinematics assumptions, the issue of the reference configuration, the material constitutive laws, and the numerical discretization necessary to construct a complete Finite Element capsid mechanical model. Some examples in the second part of the chapter will show the predictive capabilities of the constructed models and underline useful practical aspects related to efficiency and accuracy. We conclude each example by collecting several key findings discovered by simulating AFM indentation experiments using the constructed numerical models.
Collapse
Affiliation(s)
- Melissa M Gibbons
- Department of Mechanical and Aerospace Engineering, UCLA, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | | | | |
Collapse
|
28
|
Chen Y, Zhang Y, Hu Y, Kang L, Zhang S, Xie H, Liu D, Zhao Q, Li Q, Zhang J. State of the art of single-walled carbon nanotube synthesis on surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5898-5922. [PMID: 25042346 DOI: 10.1002/adma.201400431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.
Collapse
Affiliation(s)
- Yabin Chen
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ido S, Kimiya H, Kobayashi K, Kominami H, Matsushige K, Yamada H. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. NATURE MATERIALS 2014; 13:264-270. [PMID: 24441879 DOI: 10.1038/nmat3847] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.
Collapse
Affiliation(s)
- Shinichiro Ido
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirokazu Kimiya
- Device Solutions Center, Panasonic Corporation, Yagumo-naka-machi 3-1-1, Moriguchi, Osaka 570-8501, Japan
| | - Kei Kobayashi
- 1] Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan [2] The Hakubi Center for Advanced Research, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8520, Japan
| | - Hiroaki Kominami
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kazumi Matsushige
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
30
|
Pensini E, Sleep BE, Yip CM, O’Carroll D. Forces of interactions between iron and aluminum silicates: Effect of water chemistry and polymer coatings. J Colloid Interface Sci 2013; 411:8-15. [DOI: 10.1016/j.jcis.2013.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/24/2013] [Indexed: 11/30/2022]
|
31
|
Forces of interaction between fresh iron particles and iron oxide (magnetite): Effect of water chemistry and polymer coatings. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Murphy KF, Chen LY, Gianola DS. Effect of organometallic clamp properties on the apparent diversity of tensile response of nanowires. NANOTECHNOLOGY 2013; 24:235704. [PMID: 23669193 DOI: 10.1088/0957-4484/24/23/235704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The influence of the experimental boundary conditions used for tensile testing of individual nanowires on the measured apparent mechanical response is reported. Using a microelectromechanical platform designed for in situ tensile testing, in combination with digital image correlation of sequences of scanning electron microscope images, the mechanical behavior of single crystalline Si, Pd, and Ge2Sb2Te5 nanowires was measured during load-unload cycles. In situ testing enables direct determination of the nanowire strain. Comparison of the direct strain with common metrics for apparent strain that include any compliance or slipping of the clamping materials (electron-beam induced Pt-containing deposits) highlights several different artifacts that may be manifested. Calculation of the contact stiffness is thus enabled, providing guidelines for both proper strain measurement and selection of clamping materials and geometries that facilitate elucidation of intrinsic material response. Our results suggest that the limited ability to tailor the stiffness of electron-beam induced deposits results from the predominance of the organic matrix in controlling its mechanical properties owing to relatively low Pt content and sparse morphology.
Collapse
Affiliation(s)
- Kathryn F Murphy
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Pensini E, Sleep BE, Yip CM, O'Carroll D. Forces of interactions between bare and polymer-coated iron and silica: effect of pH, ionic strength, and humic acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:13401-13408. [PMID: 23163600 DOI: 10.1021/es3036779] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interactions between a silica substrate and iron particles were investigated using atomic force microscopy-based force spectroscopy (AFM). The micrometer- and nanosized iron particles employed were either bare or coated with carboxymethyl cellulose (CMC), a polymer utilized to stabilize iron particle suspensions. The effect of water chemistry on the forces of interaction was probed by varying ionic strength (with 100 mM NaCl and 100 mM CaCl₂) or pH (4, 5.5, and 8) or by introducing 10 mg/L of humic acids (HA). When particles were uncoated, the forces upon approach between silica and iron were attractive at pH 4 and 5.5 and in 100 mM CaCl₂ at pH 8, but they were negligible in 100 mM NaCl buffered to pH 8 and repulsive in water buffered to pH 8 and in HA solutions. HA produced electrosteric repulsion between iron particles and silica, likely due to its sorption to iron particles. HA sorption to silica was excluded on the basis of experiments conducted with a quartz-crystal microbalance with dissipation monitoring. Repulsion with CMC-coated iron was attributed to electrosteric forces, which were damped at high ionic strength. An extended DLVO model and a modified version of Ohshima's theory were successfully utilized to model AFM data.
Collapse
Affiliation(s)
- Erica Pensini
- Department of Civil Engineering, University of Toronto , Toronto, ON M5S 1A4, Canada
| | | | | | | |
Collapse
|
34
|
Inaba A, Takei Y, Kan T, Matsumoto K, Shimoyama I. Electrochemical impedance measurement of a carbon nanotube probe electrode. NANOTECHNOLOGY 2012; 23:485302. [PMID: 23124171 DOI: 10.1088/0957-4484/23/48/485302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible.
Collapse
Affiliation(s)
- Akira Inaba
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
35
|
Jin K, Feng X, Ng TW, Xu Z. On the applicability of carbon nanotubes as nanomechanical probes and manipulators. NANOTECHNOLOGY 2012; 23:415502. [PMID: 23018682 DOI: 10.1088/0957-4484/23/41/415502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Carbon nanotube (CNT) probes offer improved imaging resolution in atomic force microscopy (AFM) and nanomanipulating devices due to their excellent mechanical properties and high aspect ratios. The basis of ascertaining scanning image quality using CNT probes is often centered on whether axial buckling has occurred or not. Here we explore the mechanical behavior and applicability of CNTs in surface scanning using molecular dynamics simulations in which the influence of van der Waals interactions is accounted for. Our results indicate the possible deleterious effects from van der Waals interaction dominated buckling of the probe, which is exacerbated by surface corrugations at the atomic scale. Under the premise that these issues can be surmounted, a cantilever model developed under known requirements for the structural characteristics of CNT probes is shown to be able to assess imaging fidelity. This model offers an effective guide to the selection and design of CNT probes for AFM.
Collapse
Affiliation(s)
- Kai Jin
- Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Abstract
Carbon nanotubes are a significant addition to the emerging field of nanotube biotechnology. The biocompatibility, high structural integrity, and unique electronic and mechanical properties of carbon nanotubes complement or surpass those of self-assembled lipid nanotubes, peptide nanotubes, and template-synthesised nanotubes (metals, polymers, semiconductors, and carbons). Carbon nanotubes are candidates for a range of biomolecular applications that is likely to widen considerably in the future.
Collapse
Affiliation(s)
- M Baxendale
- Queen Mary, University of London, Physics Department, London, UK
| |
Collapse
|
37
|
Koehne J, Stevens R, Zink T, Deng Z, Chen H, Weng I, Liu F, Liu G. Using carbon nanotube probes for high-resolution three-dimensional imaging of cells. Ultramicroscopy 2011; 111:1155-62. [DOI: 10.1016/j.ultramic.2011.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 11/29/2022]
|
38
|
Martínez L, Tello M, Díaz M, Román E, Garcia R, Huttel Y. Aspect-ratio and lateral-resolution enhancement in force microscopy by attaching nanoclusters generated by an ion cluster source at the end of a silicon tip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:023710. [PMID: 21361604 DOI: 10.1063/1.3556788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
One of the factors that limit the spatial resolution in atomic force microscopy (AFM) is the physical size of the probe. This limitation is particularly severe when the imaged structures are comparable in size to the tip's apex. The resolution in the AFM is usually enhanced by using sharp tips with high aspect ratios. In the present paper we propose an approach to modify AFM tips that consists of depositing nanoclusters on standard silicon tips. We show that the use of those tips leads to atomic force microscopy images of higher aspect ratios and spatial resolution. The present approach has two major properties. It provides higher aspect-ratio images of nanoscale objects and, at the same time, enables to functionalize the AFM tips by depositing nanoparticles with well-controlled chemical composition.
Collapse
Affiliation(s)
- L Martínez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The atomic force microscope (AFM) is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years, but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. The advantages of both methods may be exploited by combining and synchronizing them. In this paper, the biological applications of AFM, fluorescence, and their combinations are briefly reviewed, and the assembly and utilization of a spatially and temporally synchronized AFM and total internal reflection fluorescence microscope are described. The application of the method is demonstrated on a fluorescently labeled cell culture.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
40
|
Cui HF, Vashist SK, Al-Rubeaan K, Luong JHT, Sheu FS. Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 2010; 23:1131-47. [PMID: 20402485 DOI: 10.1021/tx100050h] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The unique structures and properties of carbon nanotubes (CNTs) have attracted extensive investigations for many applications, such as those in the field of biomedical materials and devices, biosensors, drug delivery, and tissue engineering. Anticipated large-scale productions for numerous diversified applications of CNTs might adversely affect the environment and human health. For successful applications in the biomedical field, the issue of interfacing between CNTs and mammalian cells in vitro needs to be addressed before in vivo studies can be carried out systematically. We review the important studies pertaining to the internalization of CNTs into the cells and the culturing of cells on the CNT-based scaffold or support materials. The review will focus on the description of a variety of factors affecting CNT cytotoxicity: type of CNTs, impurities, lengths of CNTs, aspect ratios, dispersion, chemical modification, and assaying methods of cytotoxicity.
Collapse
Affiliation(s)
- Hui-Fang Cui
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore
| | | | | | | | | |
Collapse
|
41
|
Druzhinina TS, Hoeppener S, Schubert US. Microwave-assisted fabrication of carbon nanotube AFM tips. NANO LETTERS 2010; 10:4009-4012. [PMID: 20866100 DOI: 10.1021/nl101934j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new, fast, alternative approach for the fabrication of carbon nanotube (CNT) atomic force microscopy (AFM) tips is reported. Thereby, the tube material is grown on the apex of an AFM tip by utilizing microwave irradiation and selective heating of the catalyst. Reaction times as short as three minutes allowed the fabrication of CNT AFM tips in a highly efficient process. This method represents a promising approach toward a cheaper, faster, and straightforward synthesis of CNT AFM tips.
Collapse
Affiliation(s)
- Tamara S Druzhinina
- Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | | | | |
Collapse
|
42
|
Tourek CJ, Sundararajan S. Atom scale characterization of the near apex region of an atomic force microscope tip. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:636-642. [PMID: 20670465 DOI: 10.1017/s1431927610000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Three-dimensional atom probe tomography (APT) is successfully used to analyze the near-apex regions of an atomic force microscope (AFM) tip. Atom scale material structure and chemistry from APT analysis for standard silicon AFM tips and silicon AFM tips coated with a thin film of Cu is presented. Comparison of the thin film data with that observed using transmission electron microscopy indicates that APT can be reliably used to investigate the material structure and chemistry of the apex of an AFM tip at near atomic scales.
Collapse
Affiliation(s)
- Christopher J Tourek
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
43
|
Baclayon M, Roos WH, Wuite GJL. Sampling protein form and function with the atomic force microscope. Mol Cell Proteomics 2010; 9:1678-88. [PMID: 20562411 PMCID: PMC2938060 DOI: 10.1074/mcp.r110.001461] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 12/17/2022] Open
Abstract
To study the structure, function, and interactions of proteins, a plethora of techniques is available. Many techniques sample such parameters in non-physiological environments (e.g. in air, ice, or vacuum). Atomic force microscopy (AFM), however, is a powerful biophysical technique that can probe these parameters under physiological buffer conditions. With the atomic force microscope operating under such conditions, it is possible to obtain images of biological structures without requiring labeling and to follow dynamic processes in real time. Furthermore, by operating in force spectroscopy mode, it can probe intramolecular interactions and binding strengths. In structural biology, it has proven its ability to image proteins and protein conformational changes at submolecular resolution, and in proteomics, it is developing as a tool to map surface proteomes and to study protein function by force spectroscopy methods. The power of AFM to combine studies of protein form and protein function enables bridging various research fields to come to a comprehensive, molecular level picture of biological processes. We review the use of AFM imaging and force spectroscopy techniques and discuss the major advances of these experiments in further understanding form and function of proteins at the nanoscale in physiologically relevant environments.
Collapse
Affiliation(s)
- Marian Baclayon
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Wouter H. Roos
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Gijs J. L. Wuite
- From the Natuur- en Sterrenkunde and Lasercentrum, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
44
|
Tourek CJ, Sundararajan S. An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:073711. [PMID: 20687735 DOI: 10.1063/1.3459886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Force studies using atomic force microscopy generally require knowledge of the cantilever spring constants and the optical lever sensitivity. The traditional method of evaluating the optical lever sensitivity by pressing the tip against a hard surface can damage the tip, especially sharp ones. Here a method is shown to calculate the sensitivity without having to bring the tip into contact. Instead a sharpened tungsten wire is used to cause a point contact directly onto the cantilever and cause cantilever bending. Using beam theory, the sensitivity thus found can be converted to the equivalent sensitivity that would be obtained using the tip location. A comparison is presented between sensitivity values obtained from the conventional tip contact method and those derived from the wire-based technique for a range of cantilevers in air. It was found that the difference between the calculated sensitivity from the wire-based technique and the sensitivity obtained conventionally was less than 12%. These measurements indicate the presented method offers a simple alternative approach to obtain optical lever sensitivity without compromising the tip shape.
Collapse
Affiliation(s)
- Christopher J Tourek
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
45
|
Yum K, Yu MF, Wang N, Xiang YK. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochim Biophys Acta Gen Subj 2010; 1810:330-8. [PMID: 20580773 DOI: 10.1016/j.bbagen.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/04/2010] [Accepted: 05/17/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND Accessing the interior of live cells with minimal intrusiveness for visualizing, probing, and interrogating biological processes has been the ultimate goal of much of the biological experimental development. SCOPE OF REVIEW The recent development and use of the biofunctionalized nanoneedles for local and spatially controlled intracellular delivery brings in exciting new opportunities in accessing the interior of living cells. Here we review the technical aspect of this relatively new intracellular delivery method and the related demonstrations and studies and provide our perspectives on the potential wide applications of this new nanotechnology-based tool in the biological field, especially on its use for high-resolution studies of biological processes in living cells. MAJOR CONCLUSIONS Different from the traditional micropipette-based needles for intracellular injection, a nanoneedle deploys a sub-100-nm-diameter solid nanowire as a needle to penetrate a cell membrane and to transfer and deliver the biological cargo conjugated onto its surface to the target regions inside a cell. Although the traditional micropipette-based needles can be more efficient in delivery biological cargoes, a nanoneedle-based delivery system offers an efficient introduction of biomolecules into living cells with high spatiotemporal resolution but minimal intrusion and damage. It offers a potential solution to quantitatively address biological processes at the nanoscale. GENERAL SIGNIFICANCE The nanoneedle-based cell delivery system provides new possibilities for efficient, specific, and precise introduction of biomolecules into living cells for high-resolution studies of biological processes, and it has potential application in addressing broad biological questions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Kyungsuk Yum
- Department of Mechanical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
46
|
Abstract
When approached from both sides, a piece of single-duplex-single DNA may be drawn into the inlets of two bundles of carbon nanotubes. This provides opportunities to manipulate the DNA by two bundles of nanotubes. The capture and manipulation processes envisaged above are simulated by molecular dynamics in this work. The radius of the carbon nanotube and the ambient temperature show the effects on the spontaneous insertion of DNA strands. This procedure, if successful, could be used for capturing expectant sdsDNAs, with subsequent manipulation to pull or to unzip the captured DNA.
Collapse
Affiliation(s)
- Zhenhai Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
47
|
Klinov DV, Neretina TV, Prokhorov VV, Dobrynina TV, Aldarov KG, Demin VV. High-resolution atomic force microscopy of DNA. BIOCHEMISTRY (MOSCOW) 2010; 74:1150-4. [PMID: 19916928 DOI: 10.1134/s0006297909100113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A method using high resolution atomic force microscopy for imaging DNA has been elaborated. Using super-sharp probes and modified graphite as support for molecule adsorption, DNA molecule images were obtained whose resolution made possible the observation of their fine structure with repeated helical motifs. The method can be used to visualize individual spread molecules of single-stranded DNA.
Collapse
Affiliation(s)
- D V Klinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | | | |
Collapse
|
48
|
Edgeworth JP, Burt DP, Dobson PS, Weaver JMR, Macpherson JV. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips. NANOTECHNOLOGY 2010; 21:105605. [PMID: 20160341 DOI: 10.1088/0957-4484/21/10/105605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe the development of catalysed chemical vapour deposition (cCVD) growth schemes suitable for the production of carbon nanotube atomic force microscopy (CNT-AFM) probes. Growth and sample processing conditions are utilized that both incorporate safety in the process, e.g. the use of ethanol (EtOH) vapour as a carbon feedstock and hydrogen at only 4% (flow proportion), and simplicity, e.g. no catalyst patterning is required. Cobalt is employed as the growth catalyst and thin films of aluminium on silicon as the substrate material. Purpose-fabricated silicon substrates containing large numbers of tip structures are used as models of AFM probes. This enables growth to be carried out on many tips at once, facilitating a thorough investigation of the effect of different growth schemes on yields. cCVD growth schemes are chosen which produce stabilizing high density networks of carbon nanotubes on the sidewalls of the pyramidal tips to aid in anchoring the apex protruding carbon nanotube(s) in place. This results in long-lasting AFM imaging tips. We demonstrate that through rational tailoring of cCVD conditions it is possible to tune the growth conditions such that CNTs which protrude straight from tip apexes can be obtained at yields of greater than or equal to 78%. Application of suitable growth schemes to CNT growth on commercially available AFM probes resulted in CNT-AFM probes which were found to be extremely useful for extended lifetime metrological profiling of complex structures.
Collapse
Affiliation(s)
- J P Edgeworth
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
49
|
Yum K, Wang N, Yu MF. Nanoneedle: a multifunctional tool for biological studies in living cells. NANOSCALE 2010; 2:363-372. [PMID: 20644817 DOI: 10.1039/b9nr00231f] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Studying biology in living cells is methodologically challenging but highly beneficial. Recent advances in nanobiotechnology offer exciting new opportunities to address this challenge. The nanoneedle technology, as an emerging technology that uses a cell membrane-penetrating nanoneedle to probe and manipulate biological processes in living cells, is expected to play an important role in this endeavor. Here we review the recent development and future direction of the nanoneedle technology for biological studies in living cells. The nanoneedle technology is shown to be powerful and versatile, and can offer numerous new ways to explore biological processes and biophysical properties of living cells with high spatial and temporal precision potentially reaching molecular resolution.
Collapse
Affiliation(s)
- Kyungsuk Yum
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
50
|
Single-photon atomic force microscopy. Anal Bioanal Chem 2010; 397:987-90. [PMID: 20066528 DOI: 10.1007/s00216-009-3426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
In the last few years, an array of novel technologies, especially the big family of scanning probe microscopy, now often integrated with other powerful imaging tools such as laser confocal microscopy and total internal reflection fluorescence microscopy, have been widely applied in the investigation of biomolecular interactions and dynamics. But it is still a great challenge to directly monitor the dynamics of biomolecular interactions with high spatial and temporal resolution in living cells. An innovative method termed "single-photon atomic force microscopy" (SP-AFM), superior to existing techniques in tracing biomolecular interactions and dynamics in vivo, was proposed on the basis of the combination of atomic force microscopy with the technologies of carbon nanotubes and single-photon detection. As a unique tool, SP-AFM, capable of simultaneous topography imaging and molecular identification at the subnanometer level by synchronous acquisitions and analyses of the surface topography and fluorescent optical signals while scanning the sample, could play a very important role in exploring biomolecular interactions and dynamics in living cells or in a complicated biomolecular background.
Collapse
|