1
|
Martino M, Magioncalda P. A working model of neural activity and phenomenal experience in psychosis. Mol Psychiatry 2024; 29:3814-3825. [PMID: 38844531 DOI: 10.1038/s41380-024-02607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 12/05/2024]
Abstract
According to classical phenomenology, phenomenal experience is composed of perceptions (related to environmental stimuli) and imagery/ideas (unrelated to environmental stimuli). Intensity/vividness is supposed to represent the key phenomenal difference between perceptions and ideas, higher in perceptions than ideas, and thus the core subjective criterion to distinguish reality from imagination. At a neural level, phenomenal experience is related to brain activity in the sensory areas, driven by receptor stimulation (underlying perception) or associative areas (underlying imagery/ideas). An alteration of the phenomenal experience that leads to a loss of contact with reality characterizes psychosis, which mainly consists of hallucinations (false perceptions) and delusions (fixed ideas). According to the current data on their neural correlates across subclinical conditions and different neuropsychiatric disorders (such as schizophrenia), hallucinations are mainly associated with: transient (modality-specific) activations of sensory cortices (primarily superior temporal gyrus, occipito-temporal cortex, postcentral gyrus, and insula) during the hallucinatory experience; increased intrinsic activity/connectivity of associative/default-mode network (DMN) areas (primarily temporoparietal junction, posterior cingulate cortex, and medial prefrontal cortex); and deficits in the sensory systems. Analogously, delusions are mainly associated with increased intrinsic activity/connectivity of associative/DMN areas (primarily medial prefrontal cortex). Integrating these data into our three-dimensional model of neural activity and phenomenal-behavioral patterns, we propose the following model of psychosis. A functional/structural deficit in the sensory systems complemented by a functional reconfiguration of intrinsic brain activity favoring hyperactivity of associative/DMN areas may drive neuronal activations in the sensory (auditory/visual/somatosensory) areas and insular (interoceptive) areas with spatiotemporal configurations maximally independent from environmental stimuli and predominantly related to associative processing. This manifests in perception deficit and imagery/ideas composed of exteroceptive-like and interoceptive/affective-like elements that show a phenomenal intensity indistinguishable from perceptions, impairing the reality monitoring, along with minimal changeability by environmental stimuli, ultimately resulting in dissociation of the phenomenal experience from the environment, i.e., psychosis.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Bajracharya P, Mirzaeian S, Fu Z, Calhoun V, Shultz S, Iraji A. Born Connected: Do Infants Already Have Adult-Like Multi-Scale Connectivity Networks? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625681. [PMID: 39651136 PMCID: PMC11623577 DOI: 10.1101/2024.11.27.625681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The human brain undergoes remarkable development with the first six postnatal months witnessing the most dramatic structural and functional changes, making this period critical for in-depth research. rsfMRI studies have identified intrinsic connectivity networks (ICNs), including the default mode network, in infants. Although early formation of these networks has been suggested, the specific identification and number of ICNs reported in infants vary widely, leading to inconclusive findings. In adults, ICNs have provided valuable insights into brain function, spanning various mental states and disorders. A recent study analyzed data from over 100,000 subjects and generated a template of 105 multi-scale ICNs enhancing replicability and generalizability across studies. Yet, the presence of these ICNs in infants has not been investigated. This study addresses this significant gap by evaluating the presence of these multi-scale ICNs in infants, offering critical insight into the early stages of brain development and establishing a baseline for longitudinal studies. To accomplish this goal, we employ two sets of analyses. First, we employ a fully data-driven approach to investigate the presence of these ICNs from infant data itself. Towards this aim, we also introduce burst independent component analysis (bICA), which provides reliable and unbiased network identification. The results reveal the presence of these multi-scale ICNs in infants, showing a high correlation with the template (rho > 0.5), highlighting the potential for longitudinal continuity in such studies. We next demonstrate that reference-informed ICA-based techniques can reliably estimate these ICNs in infants, highlighting the feasibility of leveraging the NeuroMark framework for robust brain network extraction. This approach not only enhances cross-study comparisons across lifespans but also facilitates the study of brain changes across different age ranges. In summary, our study highlights the novel discovery that the infant brain already possesses ICNs that are widely observed in older cohorts.
Collapse
|
3
|
Wang Z, Xue K, Kang Y, Liu Z, Cheng J, Zhang Y, Wei Y. Altered intrinsic neural activity and its molecular analyses in first-episode schizophrenia with auditory verbal hallucinations. Front Neurosci 2024; 18:1478963. [PMID: 39534020 PMCID: PMC11554611 DOI: 10.3389/fnins.2024.1478963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Auditory verbal hallucinations (AVHs) are one of the signature positive symptoms of schizophrenia, affecting a substantial portion of patients with schizophrenia. These hallucinations seriously impact the lives of patients, resulting in a substantial social burden. Recent studies have shown a significant correlation between abnormal local brain activity and the neurobiological mechanisms of AVHs. However, it is not fully clear whether altered intrinsic brain activity in schizophrenia patients with AVHs is correlated with specific neurotransmitter systems. Methods We included 50 first-episode, drug-naïve schizophrenia patients with AVHs, 50 patients without AVHs (NAVHs), and 50 age- and sex-matched healthy controls (HCs). The amplitude of low-frequency fluctuation (ALFF) was utilized to explore the altered intrinsic brain activity in the AVH group. Subsequently, we spatially correlated the altered ALFF with neurotransmitter maps using JuSpace. Results In our study, compared to HCs, the AVH group exhibited significantly reduced ALFF in multiple brain regions, mainly including the left precuneus, bilateral supplementary motor areas, bilateral paracentral lobules, bilateral precentral gyri, and bilateral postcentral gyri. The NAVH group showed significantly reduced ALFF in the left inferior occipital gyrus, left calcarine gyrus, and left lingual gyrus compared to HCs. Furthermore, the AVH group showed higher ALFF in the right inferior frontal gyrus compared to the NAVH group. Additionally, these ALFF alterations in the AVH group were closely related to three neurotransmitters, including dopamine, serotonin and norepinephrine. Conclusion We link neurotransmitters to abnormal intrinsic brain activity in first-episode, drug-naïve schizophrenia patients with AVHs, contributing to a comprehensive understanding of the pathophysiological processes and treatment pathways underlying AVHs.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| |
Collapse
|
4
|
Prete G, Rollo B, Palumbo R, Ceccato I, Mammarella N, Di Domenico A, Capotosto P, Tommasi L. Investigating the effect of rTMS over the temporoparietal cortex on the Right Ear Advantage for perceived and imagined voices. Sci Rep 2024; 14:24930. [PMID: 39438571 PMCID: PMC11496506 DOI: 10.1038/s41598-024-75671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
A Right Ear Advantage (REA) is well-established in perceptual tasks but it has been found also during imagery. It is ascribed to the left temporoparietal activity for language, and it can be absent/reversed in some clinical conditions including auditory hallucinations. We applied 1-Hz repetitive TMS over TP3/TP4 (left/right language areas) identified through neuronavigation in 18 healthy participants, before administering a modified white noise (WN) speech illusion paradigm: a voice was presented at one ear, at the same or lower intensities with respect to binaural WN. In some trials the voice was not presented, but participants were anyway instructed to report in which ear they believed perceiving it in all trials. Results confirmed the REA both when the voice was present (perceptual REA) and when it was absent (imaginative REA). Interestingly, results suggested that the correct localization of the voice when the stimulus was ambiguous (presented at low intensity and "masked" by WN) was better when TMS was applied over the right/left hemisphere, in male participants with a low/high proneness to unusual experiences (e.g., auditory hallucinations), respectively. This interaction must be further explored to shed light on the relationship between hemispheric asymmetries and auditory hallucinations, in healthy and clinical samples.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Benedetta Rollo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Irene Ceccato
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti and Pescara, Via Dei Vestini 29, 66013, Chieti, Italy.
- ITAB Istituto Di Tecnologie Avanzate Biomediche, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy.
| | - Luca Tommasi
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| |
Collapse
|
5
|
Chang X, Zhao W, Kang J, Xiang S, Xie C, Corona-Hernández H, Palaniyappan L, Feng J. Language abnormalities in schizophrenia: binding core symptoms through contemporary empirical evidence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:95. [PMID: 36371445 PMCID: PMC9653408 DOI: 10.1038/s41537-022-00308-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Both the ability to speak and to infer complex linguistic messages from sounds have been claimed as uniquely human phenomena. In schizophrenia, formal thought disorder (FTD) and auditory verbal hallucinations (AVHs) are manifestations respectively relating to concrete disruptions of those abilities. From an evolutionary perspective, Crow (1997) proposed that "schizophrenia is the price that Homo sapiens pays for the faculty of language". Epidemiological and experimental evidence points to an overlap between FTD and AVHs, yet a thorough investigation examining their shared neural mechanism in schizophrenia is lacking. In this review, we synthesize observations from three key domains. First, neuroanatomical evidence indicates substantial shared abnormalities in language-processing regions between FTD and AVHs, even in the early phases of schizophrenia. Second, neurochemical studies point to a glutamate-related dysfunction in these language-processing brain regions, contributing to verbal production deficits. Third, genetic findings further show how genes that overlap between schizophrenia and language disorders influence neurodevelopment and neurotransmission. We argue that these observations converge into the possibility that a glutamatergic dysfunction in language-processing brain regions might be a shared neural basis of both FTD and AVHs. Investigations of language pathology in schizophrenia could facilitate the development of diagnostic tools and treatments, so we call for multilevel confirmatory analyses focused on modulations of the language network as a therapeutic goal in schizophrenia.
Collapse
Affiliation(s)
- Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Hugo Corona-Hernández
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Lawson Health Research Institute, London, Ontario, Canada.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Shanghai Center for Mathematical Sciences, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
6
|
He J, Ren H, Li J, Dong M, Dai L, Li Z, Miao Y, Li Y, Tan P, Gu L, Chen X, Tang J. Deficits in Sense of Body Ownership, Sensory Processing, and Temporal Perception in Schizophrenia Patients With/Without Auditory Verbal Hallucinations. Front Neurosci 2022; 16:831714. [PMID: 35495040 PMCID: PMC9046910 DOI: 10.3389/fnins.2022.831714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
It has been claimed that individuals with schizophrenia have difficulty in self-recognition and, consequently, are unable to identify the sources of their sensory perceptions or thoughts, resulting in delusions, hallucinations, and unusual experiences of body ownership. The deficits also contribute to the enhanced rubber hand illusion (RHI; a body perception illusion, induced by synchronous visual and tactile stimulation). Evidence based on RHI paradigms is emerging that auditory information can make an impact on the sense of body ownership, which relies on the process of multisensory inputs and integration. Hence, we assumed that auditory verbal hallucinations (AVHs), as an abnormal auditory perception, could be linked with body ownership, and the RHI paradigm could be conducted in patients with AVHs to explore the underlying mechanisms. In this study, we investigated the performance of patients with/without AVHs in the RHI. We administered the RHI paradigm to 80 patients with schizophrenia (47 with AVHs and 33 without AVHs) and 36 healthy controls. We conducted the experiment under two conditions (synchronous and asynchronous) and evaluated the RHI effects by both objective and subjective measures. Both patient groups experienced the RHI more quickly and strongly than HCs. The RHI effects of patients with AVHs were significantly smaller than those of patients without AVHs. Another important finding was that patients with AVHs did not show a reduction in RHI under asynchronous conditions. These results emphasize the disturbances of the sense of body ownership in schizophrenia patients with/without AVHs and the associations with AVHs. Furthermore, it is suggested that patients with AVHs may have multisensory processing dysfunctions and internal timing deficits.
Collapse
Affiliation(s)
- Jingqi He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Dong
- Guangdong Mental Health Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yating Miao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunjin Li
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Peixuan Tan
- Department of Medical Psychology and Behavioral Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lin Gu
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiaogang Chen,
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zigong Mental Health Center, Zigong, China
- Jinsong Tang,
| |
Collapse
|
7
|
Pollock NC, Ramroop JR, Hampel H, Troester MA, Conway K, Hu JJ, Freudenheim JL, Olopade OI, Huo D, Ziv E, Neuhausen SL, Stevens P, McElroy JP, Toland AE. Differences in somatic TP53 mutation type in breast tumors by race and receptor status. Breast Cancer Res Treat 2022; 192:639-648. [PMID: 35286522 PMCID: PMC8960361 DOI: 10.1007/s10549-022-06509-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Somatic driver mutations in TP53 are associated with triple-negative breast cancer (TNBC) and poorer outcomes. Breast cancers in women of African ancestry (AA) are more likely to be TNBC and have somatic TP53 mutations than cancers in non-Hispanic White (NHW) women. Missense driver mutations in TP53 have varied functional impact including loss-of-function (LOF) or gain-of-function (GOF) activity, and dominant negative (DNE) effects. We aimed to determine if there were differences in somatic TP53 mutation types by patient ancestry or TNBC status. METHODS We identified breast cancer datasets with somatic TP53 mutation data, ancestry, age, and hormone receptor status. Mutations were classified for functional impact using published data and type of mutation. We assessed differences using Fisher's exact test. RESULTS From 96 breast cancer studies, we identified 2964 women with somatic TP53 mutations: 715 (24.1%) Asian, 258 (8.7%) AA, 1931 (65.2%) NHW, and 60 (2%) Latina. The distribution of TP53 mutation type was similar by ancestry. However, 35.8% of tumors from NHW individuals had GOF mutations compared to 29% from AA individuals (p = 0.04). Mutations with DNE activity were positively associated with TNBC (OR 1.37, p = 0.03) and estrogen receptor (ER) negative status (OR 1.38; p = 0.005). CONCLUSIONS Somatic TP53 mutation types did not differ by ancestry overall, but GOF mutations were more common in NHW women than AA women. ER-negative and TNBC tumors are less likely to have DNE+ TP53 mutations which could reflect biological processes. Larger cohorts and functional studies are needed to further elucidate these findings.
Collapse
Affiliation(s)
- Nijole C Pollock
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Johnny R Ramroop
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Heather Hampel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Melissa A Troester
- Department of Epidemiology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen Conway
- Department of Epidemiology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Olufunmilayo I Olopade
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Patrick Stevens
- Bioinformatics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Joseph Paul McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Shen X, Jiang F, Fang X, Yan W, Xie S, Zhang R. Cognitive dysfunction and cortical structural abnormalities in first-episode drug-naïve schizophrenia patients with auditory verbal hallucination. Front Psychiatry 2022; 13:998807. [PMID: 36186860 PMCID: PMC9523744 DOI: 10.3389/fpsyt.2022.998807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The current study aimed to examine the cognitive profiles and cortical structural alterations in first-episode drug-naïve schizophrenia with AVH (auditory verbal hallucination). METHODS Cortical structural parameters including cortical thickness and local gyrification index (LGI) estimated using FreeSurfer as well as cognitive performance assessed on the MATRICS Consensus Cognitive Battery (MCCB) were acquired from 78 schizophrenia patients with AVH, 74 schizophrenia patients without AVH (non-AVH), and 76 healthy controls (HC). Hoffman Auditory Hallucination Rating Scale (HAHRS) was applied to assess the severity of AVH. RESULTS The results revealed extensive deficits in all cognitive domains among AVH, non-AVH, and HC groups. Compared to non-AVH group, the AVH group showed poorer performance on visual learning and verbal learning domains. There were six brain regions with cortical thinning in the right hemisphere of inferior temporal gyrus, superior temporal gyrus, lateral orbito frontal cortex, rostral anterior cingulate cortex, supramarginal gyrus and insula, and two brain regions with increased LGI in the left hemisphere of superior parietal gyrus and the right hemisphere of caudal anterior cingulate cortex on AVH group relative to non-AVH group. Correlation analysis revealed that the cortical thickness in the right hemisphere of lateral orbito frontal cortex was negatively correlated with the severity of AVH in schizophrenia patients with AVH. CONCLUSION Visual learning, verbal learning dysfunction, and specific disruption of cortical structure may characterize schizophrenia patients with AVH during early stages of the disorder. Right lateral orbito frontal cortical deficits may be the pathological mechanisms underlying AVH in first-episode drug-naïve schizophrenia.
Collapse
Affiliation(s)
- Xuran Shen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fuli Jiang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered dynamic functional connectivity of auditory cortex and medial geniculate nucleus in first-episode, drug-naïve schizophrenia patients with and without auditory verbal hallucinations. Front Psychiatry 2022; 13:963634. [PMID: 36159925 PMCID: PMC9489854 DOI: 10.3389/fpsyt.2022.963634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE As a key feature of schizophrenia, auditory verbal hallucination (AVH) is causing concern. Altered dynamic functional connectivity (dFC) patterns involving in auditory related regions were rarely reported in schizophrenia patients with AVH. The goal of this research was to find out the dFC abnormalities of auditory related regions in first-episode, drug-naïve schizophrenia patients with and without AVH using resting state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 107 schizophrenia patients with AVH, 85 schizophrenia patients without AVH (NAVH) underwent rs-fMRI examinations, and 104 healthy controls (HC) were matched. Seed-based dFC of the primary auditory cortex (Heschl's gyrus, HES), auditory association cortex (AAC, including Brodmann's areas 22 and 42), and medial geniculate nucleus (MGN) was conducted to build a whole-brain dFC diagram, then inter group comparison and correlation analysis were performed. RESULTS In comparison to the NAVH and HC groups, the AVH group showed increased dFC from left ACC to the right middle temporal gyrus and right middle occipital gyrus, decreased dFC from left HES to the left superior occipital gyrus, left cuneus gyrus, left precuneus gyrus, decreased dFC from right HES to the posterior cingulate gyrus, and decreased dFC from left MGN to the bilateral calcarine gyrus, bilateral cuneus gyrus, bilateral lingual gyrus. The Auditory Hallucination Rating Scale (AHRS) was significantly positively correlated with the dFC values of cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus, and posterior cingulate gyrus) using left AAC seed, cluster 2 (right middle temporal gyrus and right middle occipital gyrus) using left AAC seed, cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus and posterior cingulate gyrus) using right AAC seed and cluster 2 (posterior cingulate gyrus) using right HES seed in the AVH group. In both AVH and NAVH groups, a significantly negative correlation is also found between the dFC values of cluster 2 (posterior cingulate gyrus) using the right HES seed and the PANSS negative sub-scores. CONCLUSIONS The present findings demonstrate that schizophrenia patients with AVH showed multiple abnormal dFC regions using auditory related cortex and nucleus as seeds, particularly involving the occipital lobe, default mode network (DMN), and middle temporal lobe, implying that the different dFC patterns of auditory related areas could provide a neurological mechanism of AVH in schizophrenia.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Strawson WH, Wang HT, Quadt L, Sherman M, Larsson DEO, Davies G, Mckeown BLA, Silva M, Fielding-Smith S, Jones AM, Hayward M, Smallwood J, Critchley HD, Garfinkel SN. Voice Hearing in Borderline Personality Disorder Across Perceptual, Subjective, and Neural Dimensions. Int J Neuropsychopharmacol 2021; 25:375-386. [PMID: 34940826 PMCID: PMC9154289 DOI: 10.1093/ijnp/pyab093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) commonly occur in the context of borderline personality disorder (BPD) yet remain poorly understood. AVH are often perceived by patients with BPD as originating from inside the head and hence viewed clinically as "pseudohallucinations," but they nevertheless have a detrimental impact on well-being. METHODS The current study characterized perceptual, subjective, and neural expressions of AVH by using an auditory detection task, experience sampling and questionnaires, and functional neuroimaging, respectively. RESULTS Perceptually, reported AVH correlated with a bias for reporting the presence of a voice in white noise. Subjectively, questionnaire measures indicated that AVH were significantly distressing and persecutory. In addition, AVH intensity, but not perceived origin (i.e., inside vs outside the head), was associated with greater concurrent anxiety. Neurally, fMRI of BPD participants demonstrated that, relative to imagining or listening to voices, periods of reported AVH induced greater blood oxygenation level-dependent activity in anterior cingulate and bilateral temporal cortices (regional substrates for language processing). AVH symptom severity was associated with weaker functional connectivity between anterior cingulate and bilateral insular cortices. CONCLUSION In summary, our results indicate that AVH in participants with BPD are (1) underpinned by aberrant perceptual-cognitive mechanisms for signal detection, (2) experienced subjectively as persecutory and distressing, and (3) associated with distinct patterns of neural activity that inform proximal mechanistic understanding. Our findings are like analogous observations in patients with schizophrenia and validate the clinical significance of the AVH experience in BPD, often dismissed as "pseudohallucinations." These highlight a need to reconsider this experience as a treatment priority.
Collapse
Affiliation(s)
- Will H Strawson
- Correspondence: Will H. Strawson, MSci, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, BN1 9RY, UK ()
| | - Hao-Ting Wang
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,Sackler Centre for Consciousness Science, Falmer, UK
| | - Lisa Quadt
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,Sackler Centre for Consciousness Science, Falmer, UK
| | - Maxine Sherman
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,Sackler Centre for Consciousness Science, Falmer, UK,Department of Informatics, University of Sussex, UK
| | - Dennis E O Larsson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,Department of Psychology, Falmer, UK,Leverhulme Trust London, UK
| | - Geoff Davies
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | | | - Marta Silva
- Cognition and Brain Plasticity Unit, Barcelona, Catalunya, Spain,Institute of Neurosciences, University of Barcelona, Catalunya, Spain
| | - Sarah Fielding-Smith
- University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK,Oxford Health NHS Foundation Trust, Oxford, UK,Oxford Institute of Clinical Psychology Training and Research, Oxford, UK
| | - Anna-Marie Jones
- University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Mark Hayward
- Department of Psychology, Falmer, UK,University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Jonathan Smallwood
- Department of Psychology, University of York, York, UK,Department of Psychology, Queen’s University, Kingston, ON, Canada
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,Sackler Centre for Consciousness Science, Falmer, UK,University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Sarah N Garfinkel
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK,University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK,Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
11
|
Hare SM. Hallucinations: A Functional Network Model of How Sensory Representations Become Selected for Conscious Awareness in Schizophrenia. Front Neurosci 2021; 15:733038. [PMID: 34887720 PMCID: PMC8650055 DOI: 10.3389/fnins.2021.733038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Hallucinations are conscious perception-like experiences that are a common symptom of schizophrenia spectrum disorders (SSD). Current neuroscience evidence suggests several brain areas are involved in the generation of hallucinations including the sensory cortex, insula, putamen, and hippocampus. But how does activity in these regions give rise to aberrant conscious perceptions that seemingly invade ongoing conscious experience? Most existing models assume that sensory representations are sometimes spontaneously activated in the brain, and that these spontaneous activations somehow play a causal role in the generation of hallucinations. Yet, it remains unclear how these representations become selected for conscious processing. No existing theory of hallucinations has specified such a “selection mechanism.” Global Workspace (GW) theorists argue that the brain’s interconnected processors select relevant piece(s) of information for broadcasting to other brain processors, rendering the information accessible to consciousness; this process known as “ignition” is associated with synchronized activity across distributed cortical and subcortical brain regions. Yet, it remains unclear how certain information and representations become selected for conscious processing. While GW theorists maintain that attention plays an important role, they have not delineated a formal “selection mechanism.” This paper specifies a selection mechanism based upon two central hypotheses: (1) a functional network called the “salience network” plays a critical role in selecting sensory representations for conscious broadcast to the GW in normal (healthy) perception; (2) sensory representations become abnormally selected for conscious broadcast to the GW (instead of being filtered out of consciousness) in individuals with SSD that experience hallucinations.
Collapse
Affiliation(s)
- Stephanie M Hare
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Anderson A, Hartley S, Bucci S. A Systematic Review of the experimental induction of auditory perceptual experiences. J Behav Ther Exp Psychiatry 2021; 71:101635. [PMID: 33348277 DOI: 10.1016/j.jbtep.2020.101635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Voice-hearing exists on a continuum and research studies have utilised experimental paradigms in an attempt to induce unusual auditory experiences in clinical and non-clinical samples. The aim of the current review was to systematically identify, review and appraise voice-hearing induction paradigms in order to guide researchers. METHODS Five databases were searched for studies in which an experimental manipulation was used with the aim of inducing an auditory experience akin to voice-hearing. Papers were assessed for quality and the voice-hearing paradigms critically appraised. RESULTS Forty-nine studies, included in 41 papers, were reviewed. Studies were organised into five groups based on the type of voice-hearing paradigm used: sensory deprivation/limitation; hallucination suggestion; combined suggestion and ambiguous stimulus; signal detection and voice detection tasks; and auditory discrimination/transformation. Signal and voice detection tasks were found to be the most robust paradigms. The quality of paradigms was assessed, and their strengths and limitations evaluated, including evidence in relation to their utility, ecological validity and usability. LIMITATIONS The current review excluded case studies, grey literature and studies which were not written in the English language, and as such voice-hearing paradigms may have been missed. CONCLUSIONS Voice-hearing paradigms vary in their ecological validity and experimental robustness. A challenge for future research is to develop a paradigm in which internally generated material can be attributed externally in a way that more closely represents inner speech and the experience of voice-hearing.
Collapse
Affiliation(s)
- Amanda Anderson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Samantha Hartley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Pennine Care NHS Foundation Trust, United Kingdom.
| | - Sandra Bucci
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Schmitgen A, Saal J, Sankaran N, Desai M, Joseph I, Starr P, Chang EF, Shirvalkar P. Musical Hallucinations in Chronic Pain: The Anterior Cingulate Cortex Regulates Internally Generated Percepts. Front Neurol 2021; 12:669172. [PMID: 34017308 PMCID: PMC8129573 DOI: 10.3389/fneur.2021.669172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex (ACC) has been extensively implicated in the functional brain network underlying chronic pain. Electrical stimulation of the ACC has been proposed as a therapy for refractory chronic pain, although, mechanisms of therapeutic action are still unclear. As stimulation of the ACC has been reported to produce many different behavioral and perceptual responses, this region likely plays a varied role in sensory and emotional integration as well as modulating internally generated perceptual states. In this case series, we report the emergence of subjective musical hallucinations (MH) after electrical stimulation of the ACC in two patients with refractory chronic pain. In an N-of-1 analysis from one patient, we identified neural activity (local field potentials) that distinguish MH from both the non-MH condition and during a task involving music listening. Music hallucinations were associated with reduced alpha band activity and increased gamma band activity in the ACC. Listening to similar music was associated with different changes in ACC alpha and gamma power, extending prior results that internally generated perceptual phenomena are supported by circuits in the ACC. We discuss these findings in the context of phantom perceptual phenomena and posit a framework whereby chronic pain may be interpreted as a persistent internally generated percept.
Collapse
Affiliation(s)
- Ashlyn Schmitgen
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Jeremy Saal
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Narayan Sankaran
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Maansi Desai
- Department of Speech, Language, and Hearing Science, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Philip Starr
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward F. Chang
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Prasad Shirvalkar
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Wei X, Chen J, Zhu J, Li Q, Li W, Wang W. Functional connectivity of posterior cingulate gyrus in heroin dependents treated by methadone maintenance and protracted abstinence measures: an event-related fMRI study. Brain Imaging Behav 2021; 15:2472-2480. [PMID: 33502720 DOI: 10.1007/s11682-020-00447-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Protracted abstinence (PA) and Methadone maintenance treatment (MMT) are two main types of heroin addiction treatment, however, the effects of both measures on the functional connectivity (FC) of the brain in heroin dependents in the drug cue event-related response are unclear. Functional magnetic resonance imaging (fMRI) based drug cue-reactivity task has been widely used in addiction research, which may provide a new way to understand the change of brain function during a certain period of treatment. The default function network (DMN) with posterior cingulate cortex (PCC) as the core is generally involved in the process of addiction. The aim of the present study was to explore the brain response of FC in patients with heroin-dependent during PA, MMT treatment under task-fMRI. Twenty-two heroin-dependent patients during PA, 18 heroin-dependent patients during MMT and 16 healthy control (HC) individuals were included to conduct the heroin cue-reactivity task during fMRI. The MMT and PA patients' subjective craving for heroin was evaluated. The psychophysiological interaction (PPI) analysis of SPM12 was used to get FC during the task state. There was a significant difference on FC between PCC and the right medial Prefrontal Cortex (mPFC) in three groups. The post-hoc analysis showed that there was a significant difference of brain regions between the MMT and the PA group. The FC of PCC-mPFC in the MMT group was significantly stronger than that in the PA group. Compared with the PA group, the FC of the DMN in the MMT group was significantly increased under drug cue response. Therefore, PA is more beneficial for the heroin-dependent patients to lower the salience value of drug related cues, in turn to reduce relapse risks. It also reflected the important role of PCC-mPFC pathway in heroin dependents induced by heroin cues.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China.,Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China.
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China.
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, BaQiao District, Xi'an, 710038, Shaanxi, China
| |
Collapse
|
15
|
Fazekas P. Hallucinations as intensified forms of mind-wandering. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190700. [PMID: 33308066 DOI: 10.1098/rstb.2019.0700] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This paper argues for a novel way of thinking about hallucinations as intensified forms of mind-wandering. Starting from the observation that hallucinations are associated with hyperactive sensory areas underlying the content of hallucinatory experiences and a confusion with regard to the reality of the source of these experiences, the paper first reviews the different factors that might contribute to the impairment of reality monitoring. The paper then focuses on the sensory characteristics determining the vividness of an experience, reviews their relationship to the sensory hyperactivity observed in hallucinations, and investigates under what circumstances they can drive reality judgements. Finally, based on these considerations, the paper presents its main proposal according to which hallucinations are intensified forms of mind-wandering that are amplified along their sensory characteristics, and sketches a possible model of what factors might determine if an internally and involuntarily generated perceptual representation is experienced as a hallucination or as an instance of mind-wandering. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Peter Fazekas
- Centre for Philosophical Psychology, Universiteit Antwerpen, Antwerpen, Belgium.,Cognitive Neuroscience Research Unit, Centre of Functionally Integrative Neuroscience, Aarhus Universitet, Aarhus, Denmark
| |
Collapse
|
16
|
McGregor M, Richer K, Ananth M, Thanos PK. The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain Behav 2020; 10:e01646. [PMID: 32562468 PMCID: PMC7428510 DOI: 10.1002/brb3.1646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Novel environment stimulation is thought to have an important role in cognitive development and has been shown to encourage exploratory behavior in rats. However, psychopathology or perceived danger or stress can impede this exploratory drive. The balance between brain circuits controlling the exploratory drive elicited by a novel environment, and the avoidance response to stressors, is not well understood. METHODS Using positron emission tomography (PET) and the glucose analog [18 F]fluorodeoxyglucose (18F-FDG), we assessed awake brain glucose metabolism (BGluM) in rats while in a novel environment (cage of an unfamiliar male rat) and non-novel environment (the animal's home cage). RESULTS Exposure to the novel environment increased BGluM in regions associated with vision (visual cortex), motor function and motivated behavior (striatum and motor cortex), and anxiety (stria terminalis), and decreased BGluM in regions associated with auditory processing (auditory cortex, insular cortex, inferior colliculus), locomotor activity (globus pallidus, striatum, motor cortex, ventral thalamic nucleus), spatial navigation (retrosplenial cortex), and working memory (hippocampus, cingulate cortex, prelimbic cortex, orbitofrontal cortex). CONCLUSION These results suggest that the novel cage is a stressful environment that inhibits activity in brain regions associated with exploratory behavior. Patterns of inhibition in the novel cage also support the proposed rat default mode network, indicating that animals are more cognitively engaged in this environment. Additionally, these data support the unique capability of combining FDG-PET with psychopharmacology experiments to examine novelty seeking and brain activation in the context of decision making, risk taking, and cognitive function more generally, along with response to environmental or stress challenges.
Collapse
Affiliation(s)
- Matthew McGregor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaleigh Richer
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mala Ananth
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
17
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
18
|
Fernyhough C. Modality-general and modality-specific processes in hallucinations. Psychol Med 2019; 49:2639-2645. [PMID: 31530334 PMCID: PMC6877466 DOI: 10.1017/s0033291719002496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
There is a growing recognition in psychosis research of the importance of hallucinations in modalities other than the auditory. This has focused attention on cognitive and neural processes that might be shared by, and which might contribute distinctly to, hallucinations in different modalities. In this article, I address some issues around the modality-generality of cognitive and neural processes in hallucinations, including the role of perceptual and reality-monitoring systems, top-down and bottom-up processes in relation to the psychological and neural substrates of hallucinations, and the phenomenon of simultaneous multimodal hallucinations of the same entity. I suggest that a functional systems approach, inspired by some neglected aspects of the writings of A. R. Luria, can help us to understand patterns of hallucinatory experience across modalities and across clinical and non-clinical groups. Understanding the interplay between modality-general and modality-specific processes may bear fruit for improved diagnosis and therapeutic approaches to dealing with distressing hallucinations.
Collapse
|
19
|
Han S, Wang Y, Liao W, Duan X, Guo J, Yu Y, Ye L, Li J, Chen X, Chen H. The distinguishing intrinsic brain circuitry in treatment-naïve first-episode schizophrenia: Ensemble learning classification. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.07.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
21
|
Geva S, Fernyhough C. A Penny for Your Thoughts: Children's Inner Speech and Its Neuro-Development. Front Psychol 2019; 10:1708. [PMID: 31474897 PMCID: PMC6702515 DOI: 10.3389/fpsyg.2019.01708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Inner speech emerges in early childhood, in parallel with the maturation of the dorsal language stream. To date, the developmental relations between these two processes have not been examined. We review evidence that the dorsal language stream has a role in supporting the psychological phenomenon of inner speech, before considering pediatric studies of the dorsal stream's anatomical development and evidence for its emerging functional roles. We examine possible causal accounts of the relations between these two developmental processes and consider their implications for phylogenetic theories about the evolution of inner speech and the accounts of the ontogenetic relations between language and cognition.
Collapse
Affiliation(s)
- Sharon Geva
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
22
|
Laloyaux J, De Keyser F, Pinchard A, Della Libera C, Larøi F. Testing a model of auditory hallucinations: the role of negative emotions and cognitive resources. Cogn Neuropsychiatry 2019; 24:256-274. [PMID: 31188062 DOI: 10.1080/13546805.2019.1629895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Models of auditory hallucinations (AH) state that AH arise through an interaction between negative emotions and limited available cognitive resources. However, this hypothesis has never been directly tested. Methods: A two-by-two factorial design was used to examine the effect of emotions (neutral VS negative) and available cognitive resources (high VS low) on the elicitation of false alarms in an auditory signal detection paradigm. One hundred and seventy four healthy participants were assigned to one of the four experimental conditions. While participants were listening to white noise, their emotional state was manipulated using affective pictures and the level of available cognitive resources was manipulated using a visual N-back task. Results: Results revealed significant interaction effects between emotions and cognitive resources on the number of false alarms. In particular, participants with fewer available cognitive resources and at the same time who were in a negative emotional state, tended to hear significantly more false alarms. In addition, the degree of certitude was significantly correlated with a higher degree of hallucination proneness. Conclusions: Such results are in agreement with models of AH and they provide new data for the understanding of the emotional and cognitive mechanisms that underpin AH.
Collapse
Affiliation(s)
- Julien Laloyaux
- a Department of Biological and Medical Psychology, University of Bergen , Bergen , Norway.,b NORMENT - Norwegian Center for Mental Disorders Research, University of Oslo , Oslo , Norway.,c Psychology and Neuroscience of Cognition Research Unit, University of Liège , Liège , Belgium
| | - Freya De Keyser
- d Faculty of Psychology and Educational Sciences, Department Of Experimental Psychology, University of Ghent , Ghent , Belgium
| | - Antoine Pinchard
- c Psychology and Neuroscience of Cognition Research Unit, University of Liège , Liège , Belgium
| | - Clara Della Libera
- c Psychology and Neuroscience of Cognition Research Unit, University of Liège , Liège , Belgium
| | - Frank Larøi
- a Department of Biological and Medical Psychology, University of Bergen , Bergen , Norway.,b NORMENT - Norwegian Center for Mental Disorders Research, University of Oslo , Oslo , Norway.,c Psychology and Neuroscience of Cognition Research Unit, University of Liège , Liège , Belgium
| |
Collapse
|
23
|
Garrison JR, Fernyhough C, McCarthy-Jones S, Simons JS, Sommer IEC. Paracingulate Sulcus Morphology and Hallucinations in Clinical and Nonclinical Groups. Schizophr Bull 2019; 45:733-741. [PMID: 30380115 PMCID: PMC6581129 DOI: 10.1093/schbul/sby157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hallucinations are a characteristic symptom of psychotic mental health conditions that are also experienced by many individuals without a clinical diagnosis. Hallucinations in schizophrenia have been linked to differences in the length of the paracingulate sulcus (PCS), a structure in the medial prefrontal cortex which has previously been associated with the ability to differentiate perceived and imagined information. We investigated whether this putative morphological basis for hallucinations extends to individuals without a clinical diagnosis, by examining whether nonclinical individuals with hallucinations have shorter PCS than nonclinical individuals without hallucinations. Structural MRI scans were examined from 3 demographically matched groups of individuals: 50 patients with psychotic diagnoses who experienced auditory verbal hallucinations (AVHs), 50 nonclinical individuals with AVHs, and 50 healthy control subjects with no life-time history of hallucinations. Results were verified using automated data-driven gyrification analyses. Patients with hallucinations had shorter PCS than both healthy controls and nonclinical individuals with hallucinations, with no difference between nonclinical individuals with hallucinations and healthy controls. These findings suggest that the association of shorter PCS length with hallucinations is specific to patients with a psychotic disorder. This presents challenges for full-continuum models of psychosis and suggests possible differences in the mechanisms underlying hallucinations in clinical and nonclinical groups.
Collapse
Affiliation(s)
- Jane R Garrison
- Department of Psychology, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,To whom correspondence should be addressed; Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; tel: +44-1223-333535, e-mail:
| | | | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Iris E C Sommer
- Department of Neuroscience, Rijks Universiteit Groningen (RUG), University Medical Center Groningen, Groningen, Netherlands,Department of Medical and Biological Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Evidence of a Right Ear Advantage in the absence of auditory targets. Sci Rep 2018; 8:15569. [PMID: 30349021 PMCID: PMC6197268 DOI: 10.1038/s41598-018-34086-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
The Right Ear Advantage effect (REA) was explored in a white noise speech illusion paradigm: binaural white noise (WN) could be presented i) in isolation (WN condition), ii) overlapped to a voice pronouncing the vowel /a/ presented in the left ear (LE condition), iii) overlapped to a voice pronouncing the vowel /a/ presented in the right ear (RE condition). Participants were asked to report in which ear the voice has been perceived. The voice could be female or male, and it could be presented at 4 different intensities. Participants carried out the task correctly both in LE and in RE conditions. Importantly, in the WN condition the “right ear” responses were more frequent with respect to both the chance level and the “left ear” responses. A perceptual REA was confirmed both in LE and RE conditions. Moreover, when the voice was presented at low intensities (masked by WN), it was more frequently reported in the right than in the left ear (“illusory” REA). A positive correlation emerged between perceptual and illusory REA. Potential links of the REA effects with auditory hallucinations are discussed.
Collapse
|
25
|
Intrinsic Neural Linkage between Primary Visual Area and Default Mode Network in Human Brain: Evidence from Visual Mental Imagery. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Orlov ND, Giampietro V, O’Daly O, Lam SL, Barker GJ, Rubia K, McGuire P, Shergill SS, Allen P. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study. Transl Psychiatry 2018; 8:46. [PMID: 29430009 PMCID: PMC5865171 DOI: 10.1038/s41398-017-0067-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.
Collapse
Affiliation(s)
- Natasza D. Orlov
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,0000 0001 0468 7274grid.35349.38Department of Psychology, University of Roehampton, London, UK
| | - Vincent Giampietro
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Owen O’Daly
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sheut-Ling Lam
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gareth J. Barker
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katya Rubia
- 0000 0001 2322 6764grid.13097.3cDepartment of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Philip McGuire
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sukhwinder S. Shergill
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul Allen
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,0000 0001 0468 7274grid.35349.38Department of Psychology, University of Roehampton, London, UK ,Combined Universities Brain Imaging Centre (CUBIC), London, UK
| |
Collapse
|
27
|
Alderson-Day B, Lima CF, Evans S, Krishnan S, Shanmugalingam P, Fernyhough C, Scott SK. Distinct processing of ambiguous speech in people with non-clinical auditory verbal hallucinations. Brain 2017; 140:2475-2489. [PMID: 29050393 DOI: 10.1093/brain/awx206] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023] Open
Abstract
Auditory verbal hallucinations (hearing voices) are typically associated with psychosis, but a minority of the general population also experience them frequently and without distress. Such 'non-clinical' experiences offer a rare and unique opportunity to study hallucinations apart from confounding clinical factors, thus allowing for the identification of symptom-specific mechanisms. Recent theories propose that hallucinations result from an imbalance of prior expectation and sensory information, but whether such an imbalance also influences auditory-perceptual processes remains unknown. We examine for the first time the cortical processing of ambiguous speech in people without psychosis who regularly hear voices. Twelve non-clinical voice-hearers and 17 matched controls completed a functional magnetic resonance imaging scan while passively listening to degraded speech ('sine-wave' speech), that was either potentially intelligible or unintelligible. Voice-hearers reported recognizing the presence of speech in the stimuli before controls, and before being explicitly informed of its intelligibility. Across both groups, intelligible sine-wave speech engaged a typical left-lateralized speech processing network. Notably, however, voice-hearers showed stronger intelligibility responses than controls in the dorsal anterior cingulate cortex and in the superior frontal gyrus. This suggests an enhanced involvement of attention and sensorimotor processes, selectively when speech was potentially intelligible. Altogether, these behavioural and neural findings indicate that people with hallucinatory experiences show distinct responses to meaningful auditory stimuli. A greater weighting towards prior knowledge and expectation might cause non-veridical auditory sensations in these individuals, but it might also spontaneously facilitate perceptual processing where such knowledge is required. This has implications for the understanding of hallucinations in clinical and non-clinical populations, and is consistent with current 'predictive processing' theories of psychosis.
Collapse
Affiliation(s)
- Ben Alderson-Day
- Department of Psychology, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - César F Lima
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK.,Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Samuel Evans
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK.,Department of Psychology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Saloni Krishnan
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK.,Department of Experimental Psychology, University of Oxford, S Parks Rd, Oxford OX1 3UD, UK
| | - Pradheep Shanmugalingam
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
| | - Charles Fernyhough
- Department of Psychology, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
28
|
Chang X, Collin G, Xi Y, Cui L, Scholtens LH, Sommer IE, Wang H, Yin H, Kahn RS, van den Heuvel MP. Resting-state functional connectivity in medication-naïve schizophrenia patients with and without auditory verbal hallucinations: A preliminary report. Schizophr Res 2017; 188:75-81. [PMID: 28130005 DOI: 10.1016/j.schres.2017.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 11/30/2022]
Abstract
Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia that has been associated with activation in language processing areas, in concert with higher-order cognitive brain networks. It remains to be determined whether, and if so how, the functional dynamics between these brain regions contributes to the emergence of AVH. The current study recruited 36 first-episode medication-naïve schizophrenia patients, including 18 patients with AVH, 18 patients free of AVH and 18 controls matched on age, gender and level of education. Resting-state functional MRI images were acquired for every subject and used to map functional brain connectivity. We compared functional connectivity in 18 bilateral regions of interest implicated by previous AVH studies among the three subject groups, with the aim of detecting patterns of dysconnectivity unique to or most pronounced in AVH patients. Results showed that AVH patients are characterized by dysconnectivity in neural circuitry involving the anterior cingulate cortex, insular cortex and language-related regions, comparing with both controls and non-AVH patients. Current findings suggest that abnormality in speech-sensitive areas and their functional cooperation with cortical regions involving in source monitoring and salience detection functions may contribute to the occurrence of AVH.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Guusje Collin
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yibin Xi
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Longbiao Cui
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Lianne H Scholtens
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iris E Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Simons JS, Garrison JR, Johnson MK. Brain Mechanisms of Reality Monitoring. Trends Cogn Sci 2017; 21:462-473. [PMID: 28462815 DOI: 10.1016/j.tics.2017.03.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Reality monitoring processes are necessary for discriminating between internally generated information and information that originated in the outside world. They help us to identify our thoughts, feelings, and imaginations, and to distinguish them from events we may have experienced or have been told about by someone else. Reality monitoring errors range from confusions between real and imagined experiences, that are byproducts of normal cognition, to symptoms of mental illness such as hallucinations. Recent advances support an emerging neurocognitive characterization of reality monitoring that provides insights into its underlying operating principles and neural mechanisms, the differing ways in which impairment may occur in health and disease, and the potential for rehabilitation strategies to be devised that might help those who experience clinically significant reality monitoring disruption.
Collapse
Affiliation(s)
- Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Jane R Garrison
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
30
|
Functional Connectivity Anomalies in Adolescents with Psychotic Symptoms. PLoS One 2017; 12:e0169364. [PMID: 28125578 PMCID: PMC5268394 DOI: 10.1371/journal.pone.0169364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
Background Previous magnetic resonance imaging (MRI) research suggests that, prior to the onset of psychosis, high risk youths already exhibit brain abnormalities similar to those present in patients with schizophrenia. Objectives The goal of the present study was to describe the functional organization of endogenous activation in young adolescents who report auditory verbal hallucinations (AVH) in view of the “distributed network” hypothesis of psychosis. We recruited 20 young people aged 13–16 years who reported AVHs and 20 healthy controls matched for age, gender and handedness from local schools. Methods Each participant underwent a semi-structured clinical interview and a resting state (RS) neuroimaging protocol. We explored functional connectivity (FC) involving three different networks: 1) default mode network (DMN) 2) salience network (SN) and 3) central executive network (CEN). In line with previous findings on the role of the auditory cortex in AVHs as reported by young adolescents, we also investigated FC anomalies involving both the primary and secondary auditory cortices (A1 and A2, respectively). Further, we explored between-group inter-hemispheric FC differences (laterality) for both A1 and A2. Compared to the healthy control group, the AVH group exhibited FC differences in all three networks investigated. Moreover, FC anomalies were found in a neural network including both A1 and A2. The laterality analysis revealed no between-group, inter-hemispheric differences. Conclusions The present study suggests that young adolescents with subclinical psychotic symptoms exhibit functional connectivity anomalies directly and indirectly involving the DMN, SN, CEN and also a neural network including both primary and secondary auditory cortical regions.
Collapse
|
31
|
Ćurčić-Blake B, Ford JM, Hubl D, Orlov ND, Sommer IE, Waters F, Allen P, Jardri R, Woodruff PW, David O, Mulert C, Woodward TS, Aleman A. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Prog Neurobiol 2016; 148:1-20. [PMID: 27890810 PMCID: PMC5240789 DOI: 10.1016/j.pneurobio.2016.11.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/04/2016] [Accepted: 11/20/2016] [Indexed: 12/22/2022]
Abstract
The language, auditory and memory/limbic networks are of particular relevance for auditory verbal hallucinations. An increased interaction among the auditory-language and striatal brain regions occurs while patients hallucinate. Fronto-temporal connections are often altered in AVH individuals, but there is no consensus regarding increase or decrease. Connections of the interhemispheric auditory pathway are stronger for first episode patients, but they are weaker in chronic patients. The majority of studies support hybrid AVH hypotheses in which all three networks and the striatal network are involved.
Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses.
Collapse
Affiliation(s)
- Branislava Ćurčić-Blake
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Judith M Ford
- University of California and Veterans Affairs Medical Center, San Francisco, United States
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Natasza D Orlov
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Iris E Sommer
- Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Flavie Waters
- Graylands Hospital, North Metro Health Service Mental Health, The University of Western Australia, Australia; School of Psychiatry and Clinical Neurosciences, The University of Western Australia Graylands Hospital, Australia
| | - Paul Allen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Department of Psychology, University of Roehampton, London, United Kingdom
| | - Renaud Jardri
- University of Lille, CNRS UMR9193, SCA-Lab & CHU Lille, Fontan Hospital (CURE), Lille, France
| | - Peter W Woodruff
- Department of Neuroscience, The University of Sheffield, United Kingdom
| | - Olivier David
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neuroscience, Grenoble, France
| | - Christoph Mulert
- University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch, Hamburg, Germany
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, Canada; BC Mental Health and Addiction Research Institute, Vancouver, Canada
| | - André Aleman
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Garrison JR, Moseley P, Alderson-Day B, Smailes D, Fernyhough C, Simons JS. Testing continuum models of psychosis: No reduction in source monitoring ability in healthy individuals prone to auditory hallucinations. Cortex 2016; 91:197-207. [PMID: 27964941 PMCID: PMC5460393 DOI: 10.1016/j.cortex.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 10/28/2022]
Abstract
People with schizophrenia who hallucinate show impairments in reality monitoring (the ability to distinguish internally generated information from information obtained from external sources) compared to non-hallucinating patients and healthy individuals. While this may be explained at least in part by an increased externalizing bias, it remains unclear whether this impairment is specific to reality monitoring, or whether it also reflects a general deficit in the monitoring of self-generated information (internal source monitoring). Much interest has focused recently on continuum models of psychosis which argue that hallucination-proneness is distributed in clinical and non-clinical groups, but few studies have directly investigated reality monitoring and internal source monitoring abilities in healthy individuals with a proneness to hallucinations. Two experiments are presented here: the first (N = 47, with participants selected for hallucination-proneness from a larger sample of 677 adults) found no evidence of an impairment or externalizing bias on a reality monitoring task in hallucination-prone individuals; the second (N = 124) found no evidence of atypical performance on an internal source monitoring task in hallucination-prone individuals. The significance of these findings is reviewed in light of the clinical evidence and the implications for models of hallucination generation discussed.
Collapse
Affiliation(s)
- Jane R Garrison
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Peter Moseley
- Psychology Department, Durham University, UK; School of Psychology, University of Central Lancashire, UK
| | | | - David Smailes
- School of Health and Social Sciences, Leeds Trinity University, UK
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.
| |
Collapse
|
33
|
Resting-state brain networks revealed by granger causal connectivity in frogs. Neuroscience 2016; 334:332-340. [PMID: 27530699 DOI: 10.1016/j.neuroscience.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/02/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022]
Abstract
Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli.
Collapse
|
34
|
Neymotin SA, Talbot ZN, Jung JQ, Fenton AA, Lytton WW. Tracking recurrence of correlation structure in neuronal recordings. J Neurosci Methods 2016; 275:1-9. [PMID: 27746231 DOI: 10.1016/j.jneumeth.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Correlated neuronal activity in the brain is hypothesized to contribute to information representation, and is important for gauging brain dynamics in health and disease. Due to high dimensional neural datasets, it is difficult to study temporal variations in correlation structure. NEW METHOD We developed a multiscale method, Population Coordination (PCo), to assess neural population structure in multiunit single neuron ensemble and multi-site local field potential (LFP) recordings. PCo utilizes population correlation (PCorr) vectors, consisting of pair-wise correlations between neural elements. The PCo matrix contains the correlations between all PCorr vectors occurring at different times. RESULTS We used PCo to interpret dynamics of two electrophysiological datasets: multisite LFP and single unit ensemble. In the LFP dataset from an animal model of medial temporal lobe epilepsy, PCo isolated anomalous brain states, where particular brain regions broke off from the rest of the brain's activity. In a dataset of rat hippocampal single-unit recordings, PCo enabled visualizing neuronal ensemble correlation structure changes associated with changes of animal environment (place-cell remapping). COMPARISON WITH EXISTING METHOD(S) PCo allows directly visualizing high dimensional data. Dimensional reduction techniques could also be used to produce dynamical snippets that could be examined for recurrence. PCo allows intuitive, visual assessment of temporal recurrence in correlation structure directly in the high dimensionality dataset, allowing for immediate assessment of relevant dynamics at a single site. CONCLUSIONS PCo can be used to investigate how neural correlation structure occurring at multiple temporal and spatial scales reflect underlying dynamical recurrence without intermediate reduction of dimensionality.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department of Physiology & Pharmacology, SUNY Downstate, United States.
| | - Zoe N Talbot
- Center for Neural Science, New York University, United States; Graduate Program of Neuroscience and Physiology, NYU School of Medicine, United States
| | - Jeeyune Q Jung
- Whitman Center, Marine Biological Laboratory, United States
| | - André A Fenton
- Department of Physiology & Pharmacology, SUNY Downstate, United States; Center for Neural Science, New York University, United States
| | - William W Lytton
- Department of Physiology & Pharmacology, SUNY Downstate, United States; Department of Neurology, SUNY Downstate, United States; Department of Neurology, Kings County Hospital Center, United States; Whitman Center, Marine Biological Laboratory, United States
| |
Collapse
|
35
|
Garrison JR, Bond R, Gibbard E, Johnson MK, Simons JS. Monitoring what is real: The effects of modality and action on accuracy and type of reality monitoring error. Cortex 2016; 87:108-117. [PMID: 27444616 PMCID: PMC5312673 DOI: 10.1016/j.cortex.2016.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/06/2022]
Abstract
Reality monitoring refers to processes involved in distinguishing internally generated information from information presented in the external world, an activity thought to be based, in part, on assessment of activated features such as the amount and type of cognitive operations and perceptual content. Impairment in reality monitoring has been implicated in symptoms of mental illness and associated more widely with the occurrence of anomalous perceptions as well as false memories and beliefs. In the present experiment, the cognitive mechanisms of reality monitoring were probed in healthy individuals using a task that investigated the effects of stimulus modality (auditory vs visual) and the type of action undertaken during encoding (thought vs speech) on subsequent source memory. There was reduced source accuracy for auditory stimuli compared with visual, and when encoding was accompanied by thought as opposed to speech, and a greater rate of externalization than internalization errors that was stable across factors. Interpreted within the source monitoring framework (Johnson, Hashtroudi, & Lindsay, 1993), the results are consistent with the greater prevalence of clinically observed auditory than visual reality discrimination failures. The significance of these findings is discussed in light of theories of hallucinations, delusions and confabulation.
Collapse
Affiliation(s)
- Jane R Garrison
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Rebecca Bond
- Department of Psychology, University of Cambridge, UK
| | - Emma Gibbard
- Department of Psychology, University of Cambridge, UK
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.
| |
Collapse
|
36
|
Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 2016; 316:344-66. [PMID: 26746357 PMCID: PMC4724569 DOI: 10.1016/j.neuroscience.2015.12.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023]
Abstract
Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in this case providing stability for persistent activity.
Collapse
Affiliation(s)
- S A Neymotin
- Department of Physiology & Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - R A McDougal
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - A S Bulanova
- Department of Physiology & Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - M Zeki
- Department of Mathematics, Zirve University, 27260 Gaziantep, Turkey.
| | - P Lakatos
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - D Terman
- Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA.
| | - M L Hines
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - W W Lytton
- Department of Physiology & Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Neurology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department Neurology, Kings County Hospital Center, 451 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
37
|
Northoff G. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J Affect Disord 2016; 190:854-866. [PMID: 26048657 DOI: 10.1016/j.jad.2015.05.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice.
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada; Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Center for Brain and Consciousness, Taipeh Medical University (TMU), Taipeh, Taiwan; College for Humanities and Medicine, Taipeh Medical University (TMU), Taipeh, Taiwan; ITAB, University of Chieti, Chieti, Italy.
| |
Collapse
|
38
|
Fovet T, Orlov N, Dyck M, Allen P, Mathiak K, Jardri R. Translating Neurocognitive Models of Auditory-Verbal Hallucinations into Therapy: Using Real-time fMRI-Neurofeedback to Treat Voices. Front Psychiatry 2016; 7:103. [PMID: 27445865 PMCID: PMC4921472 DOI: 10.3389/fpsyt.2016.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Auditory-verbal hallucinations (AVHs) are frequent and disabling symptoms, which can be refractory to conventional psychopharmacological treatment in more than 25% of the cases. Recent advances in brain imaging allow for a better understanding of the neural underpinnings of AVHs. These findings strengthened transdiagnostic neurocognitive models that characterize these frequent and disabling experiences. At the same time, technical improvements in real-time functional magnetic resonance imaging (fMRI) enabled the development of innovative and non-invasive methods with the potential to relieve psychiatric symptoms, such as fMRI-based neurofeedback (fMRI-NF). During fMRI-NF, brain activity is measured and fed back in real time to the participant in order to help subjects to progressively achieve voluntary control over their own neural activity. Precisely defining the target brain area/network(s) appears critical in fMRI-NF protocols. After reviewing the available neurocognitive models for AVHs, we elaborate on how recent findings in the field may help to develop strong a priori strategies for fMRI-NF target localization. The first approach relies on imaging-based "trait markers" (i.e., persistent traits or vulnerability markers that can also be detected in the presymptomatic and remitted phases of AVHs). The goal of such strategies is to target areas that show aberrant activations during AVHs or are known to be involved in compensatory activation (or resilience processes). Brain regions, from which the NF signal is derived, can be based on structural MRI and neurocognitive knowledge, or functional MRI information collected during specific cognitive tasks. Because hallucinations are acute and intrusive symptoms, a second strategy focuses more on "state markers." In this case, the signal of interest relies on fMRI capture of the neural networks exhibiting increased activity during AVHs occurrences, by means of multivariate pattern recognition methods. The fine-grained activity patterns concomitant to hallucinations can then be fed back to the patients for therapeutic purpose. Considering the potential cost necessary to implement fMRI-NF, proof-of-concept studies are urgently required to define the optimal strategy for application in patients with AVHs. This technique has the potential to establish a new brain imaging-guided psychotherapy for patients that do not respond to conventional treatments and take functional neuroimaging to therapeutic applications.
Collapse
Affiliation(s)
- Thomas Fovet
- Univ Lille, CNRS, UMR-9193, psyCHIC team & CHU Lille, Psychiatry Dpt (CURE), Fontan Hospital , Lille , France
| | - Natasza Orlov
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London , London , UK
| | - Miriam Dyck
- Department of Psychiatry, Psychotherapy and Psychosomatics, JARA-Brain, RWTH Aachen University , Aachen , Germany
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Department of Psychology, University of Roehampton, London, UK
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, JARA-Brain, RWTH Aachen University , Aachen , Germany
| | - Renaud Jardri
- Univ Lille, CNRS, UMR-9193, psyCHIC team & CHU Lille, Psychiatry Dpt (CURE), Fontan Hospital , Lille , France
| |
Collapse
|
39
|
Prete G, Marzoli D, Brancucci A, Tommasi L. Hearing it right: Evidence of hemispheric lateralization in auditory imagery. Hear Res 2015; 332:80-86. [PMID: 26706706 DOI: 10.1016/j.heares.2015.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022]
Abstract
An advantage of the right ear (REA) in auditory processing (especially for verbal content) has been firmly established in decades of behavioral, electrophysiological and neuroimaging research. The laterality of auditory imagery, however, has received little attention, despite its potential relevance for the understanding of auditory hallucinations and related phenomena. In Experiments 1-4 we find that right-handed participants required to imagine hearing a voice or a sound unilaterally show a strong population bias to localize the self-generated auditory image at their right ear, likely the result of left-hemispheric dominance in auditory processing. In Experiments 5-8 - by means of the same paradigm - it was also ascertained that the right-ear bias for hearing imagined voices depends just on auditory attention mechanisms, as biases due to other factors (i.e., lateralized movements) were controlled. These results, suggesting a central role of the left hemisphere in auditory imagery, demonstrate that brain asymmetries can drive strong lateral biases in mental imagery.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychological Science, Health and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Italy.
| | - Daniele Marzoli
- Department of Psychological Science, Health and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Italy
| | - Alfredo Brancucci
- Department of Psychological Science, Health and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Italy
| | - Luca Tommasi
- Department of Psychological Science, Health and Territory, 'G. d'Annunzio' University of Chieti-Pescara, Italy
| |
Collapse
|
40
|
Rayner LH, Lee KH, Woodruff PWR. Reduced attention-driven auditory sensitivity in hallucination-prone individuals. Br J Psychiatry 2015; 207:414-9. [PMID: 26382950 DOI: 10.1192/bjp.bp.114.149799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 01/15/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Evidence suggests that auditory hallucinations may result from abnormally enhanced auditory sensitivity. AIMS To investigate whether there is an auditory processing bias in healthy individuals who are prone to experiencing auditory hallucinations. METHOD Two hundred healthy volunteers performed a temporal order judgement task in which they determined whether an auditory or a visual stimulus came first under conditions of directed attention ('attend-auditory' and 'attend-visual' conditions). The Launay-Slade Hallucination Scale was used to divide the sample into high and low hallucination-proneness groups. RESULTS The high hallucination-proneness group exhibited a reduced sensitivity to auditory stimuli under the attend-auditory condition. By contrast, attention-directed visual sensitivity did not differ significantly between groups. CONCLUSIONS Healthy individuals prone to hallucinatory experiences may possess a bias in attention towards internal auditory stimuli at the expense of external sounds. Interventions involving the redistribution of attentional resources would have therapeutic benefit in patients experiencing auditory hallucinations.
Collapse
Affiliation(s)
- Louise H Rayner
- Louise H. Rayner, MBChB, BMedSci, Kwang-Hyuk Lee, PhD, Peter W. R. Woodruff, MRCPsych, PhD, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kwang-Hyuk Lee
- Louise H. Rayner, MBChB, BMedSci, Kwang-Hyuk Lee, PhD, Peter W. R. Woodruff, MRCPsych, PhD, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Peter W R Woodruff
- Louise H. Rayner, MBChB, BMedSci, Kwang-Hyuk Lee, PhD, Peter W. R. Woodruff, MRCPsych, PhD, Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Alderson-Day B, McCarthy-Jones S, Fernyhough C. Hearing voices in the resting brain: A review of intrinsic functional connectivity research on auditory verbal hallucinations. Neurosci Biobehav Rev 2015; 55:78-87. [PMID: 25956256 PMCID: PMC5901708 DOI: 10.1016/j.neubiorev.2015.04.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/16/2015] [Accepted: 04/25/2015] [Indexed: 12/26/2022]
Abstract
Resting state networks (RSNs) are thought to reflect the intrinsic functional connectivity of brain regions. Alterations to RSNs have been proposed to underpin various kinds of psychopathology, including the occurrence of auditory verbal hallucinations (AVH). This review outlines the main hypotheses linking AVH and the resting state, and assesses the evidence for alterations to intrinsic connectivity provided by studies of resting fMRI in AVH. The influence of hallucinations during data acquisition, medication confounds, and movement are also considered. Despite a large variety of analytic methods and designs being deployed, it is possible to conclude that resting connectivity in the left temporal lobe in general and left superior temporal gyrus in particular are disrupted in AVH. There is also preliminary evidence of atypical connectivity in the default mode network and its interaction with other RSNs. Recommendations for future research include the adoption of a common analysis protocol to allow for more overlapping datasets and replication of intrinsic functional connectivity alterations.
Collapse
Affiliation(s)
- Ben Alderson-Day
- Department of Psychology, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom.
| | - Simon McCarthy-Jones
- Department of Cognitive Science, Australian Hearing Hub, Macquarie University, 16 University Avenue, NSW 2109, Australia
| | - Charles Fernyhough
- Department of Psychology, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
42
|
Abstract
A large number of neuroimaging studies have investigated imagined sensory processing and motor behaviours. These studies have reported neural activation patterns for imagined processes that resemble those of real sensory and motor events. The widespread use of such methods has raised questions about the extent to which imagined sensorimotor events mimic their overt counterparts, including their ability to elicit sensorimotor interactions. Direct behavioural evidence of imagery-induced multisensory interactions has been found recently in tasks involving auditory and visual processing. An influence of sensory imagery on the control of motor action, however, has not been investigated previously. Here, we show that both real and imagined moving sounds induce involuntary ocular movement in a nonvisual tracking task. The present data build on the results of previous studies of sensory imagery by showing that such conditions activate sensory neural areas. Moreover, we show an engagement of functional sensorimotor networks for imagined stimuli in a manner similar to the processing of real auditory stimuli.
Collapse
|
43
|
Northoff G. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2014; 12:189-95. [PMID: 25598821 PMCID: PMC4293163 DOI: 10.9758/cpn.2014.12.3.189] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/23/2022]
Abstract
While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia.
Collapse
Affiliation(s)
- Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada. ; Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei, Taiwan. ; Taipei Medical University-Shuang Ho Hospital, Brain and Consciousness Research Center, New Taipei City, Taiwan. ; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan. ; National Chengchi University, Department of Psychology, Taipei, Taiwan. ; Centre for Cognition and Brain Disorders (CBBD), Normal University Hangzhou, Hangzhou, China
| |
Collapse
|
44
|
Rodriguez Moreno D, Schiff ND, Hirsch J. Negative blood oxygen level dependent signals during speech comprehension. Brain Connect 2014; 5:232-44. [PMID: 25412406 DOI: 10.1089/brain.2014.0272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity.
Collapse
|
45
|
Weston PSJ, Hunter MD, Sokhi DS, Wilkinson ID, Woodruff PWR. Discrimination of voice gender in the human auditory cortex. Neuroimage 2014; 105:208-14. [PMID: 25449748 DOI: 10.1016/j.neuroimage.2014.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 10/19/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022] Open
Abstract
Discerning a speaker's gender from their voice is a basic and crucial aspect of human communication. Voice pitch height, the perceptual correlate of fundamental frequency, is higher in females and provides a cue for gender discrimination. However, male and female voices are also differentiated by multiple other spectral and temporal characteristics, including mean formant frequency and spectral flux. The robust perceptual segregation of male and female voices is thought to result from processing the combination of discriminating features, which in neural terms may correspond to early sound object analysis occurring in non-primary auditory cortex. However, the specific mechanism for gender perception has been unclear. Here, using functional magnetic resonance imaging, we show that discrete sites in non-primary auditory cortex are differentially activated by male and female voices, with female voices consistently evoking greater activation in the upper bank of the superior temporal sulcus and posterior superior temporal plane. This finding was observed at the individual subject-level in all 24 subjects. The neural response was highly specific: no auditory regions were more activated by male than female voices. Further, the activation associated with female voices was 1) larger than can be accounted for by a sole effect of fundamental frequency, 2) not due to psychological attribution of female gender and 3) unaffected by listener gender. These results demonstrate that male and female voices are represented as distinct auditory objects in the human brain, with the mechanism for gender discrimination being a gender-dependent activation-level cue in non-primary auditory cortex.
Collapse
Affiliation(s)
- Philip S J Weston
- Sheffield Cognition and Neuroimaging Laboratory (SCANLab), Academic Clinical Psychiatry, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, The Longley Centre, Norwood Grange Drive, Sheffield S5 7JT, United Kingdom
| | - Michael D Hunter
- Sheffield Cognition and Neuroimaging Laboratory (SCANLab), Academic Clinical Psychiatry, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, The Longley Centre, Norwood Grange Drive, Sheffield S5 7JT, United Kingdom
| | - Dilraj S Sokhi
- Sheffield Cognition and Neuroimaging Laboratory (SCANLab), Academic Clinical Psychiatry, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, The Longley Centre, Norwood Grange Drive, Sheffield S5 7JT, United Kingdom
| | - Iain D Wilkinson
- Academic Radiology, Department of Human Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, United Kingdom
| | - Peter W R Woodruff
- Sheffield Cognition and Neuroimaging Laboratory (SCANLab), Academic Clinical Psychiatry, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, The Longley Centre, Norwood Grange Drive, Sheffield S5 7JT, United Kingdom.
| |
Collapse
|
46
|
Boyen K, de Kleine E, van Dijk P, Langers DR. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res 2014; 312:48-59. [DOI: 10.1016/j.heares.2014.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 01/17/2023]
|
47
|
Gisselgård J, Anda LG, Brønnick K, Langeveld J, Ten Velden Hegelstad W, Joa I, Johannessen JO, Larsen TK. Verbal working memory deficits predict levels of auditory hallucination in first-episode psychosis. Schizophr Res 2014; 153:38-41. [PMID: 24457037 DOI: 10.1016/j.schres.2013.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/19/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Auditory verbal hallucinations are a characteristic symptom in schizophrenia. Recent causal models of auditory verbal hallucinations propose that cognitive mechanisms involving verbal working memory are involved in the genesis of auditory verbal hallucinations. Thus, in the present study, we investigate the hypothesis that verbal working memory is a specific factor behind auditory verbal hallucinations. METHODS In the present study, we investigated the association between verbal working memory manipulation (Backward Digit Span and Letter-Number Sequencing) and auditory verbal hallucinations in a population study (N=52) of first episode psychosis. The degree of auditory verbal hallucination as reported in the P3-subscale of the PANSS interview was included as dependent variable using sequential multiple regression, while controlling for age, psychosis symptom severity, executive cognitive functions and simple auditory working memory span. RESULTS Multiple sequential regression analyses revealed verbal working memory manipulation to be the only significant predictor of verbal hallucination severity. CONCLUSIONS Consistent with cognitive data from auditory verbal hallucinations in healthy individuals, the present results suggest a specific association between auditory verbal hallucinations, and cognitive processes involving the manipulation of phonological representations during a verbal working memory task.
Collapse
Affiliation(s)
- Jens Gisselgård
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway.
| | - Liss Gøril Anda
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway
| | - Kolbjørn Brønnick
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway; Network for Medical Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Johannes Langeveld
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway
| | | | - Inge Joa
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway; Network for Medical Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Jan Olav Johannessen
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway; Network for Medical Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Tor Ketil Larsen
- Stavanger University Hospital, TIPS, Regional Centre for Clinical Research in Psychosis, Stavanger, Norway
| |
Collapse
|
48
|
Tak S, Wang DJJ, Polimeni JR, Yan L, Chen JJ. Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. Neuroimage 2013; 84:672-80. [PMID: 24099842 DOI: 10.1016/j.neuroimage.2013.09.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) in the resting state, particularly fMRI based on the blood-oxygenation level-dependent (BOLD) signal, has been extensively used to measure functional connectivity in the brain. However, the mechanisms of vascular regulation that underlie the BOLD fluctuations during rest are still poorly understood. In this work, using dual-echo pseudo-continuous arterial spin labeling and MR angiography (MRA), we assess the spatio-temporal contribution of cerebral blood flow (CBF) to the resting-state BOLD signals and explore how the coupling of these signals is associated with regional vasculature. Using a general linear model analysis, we found that statistically significant coupling between resting-state BOLD and CBF fluctuations is highly variable across the brain, but the coupling is strongest within the major nodes of established resting-state networks, including the default-mode, visual, and task-positive networks. Moreover, by exploiting MRA-derived large vessel (macrovascular) volume fraction, we found that the degree of BOLD-CBF coupling significantly decreased as the ratio of large vessels to tissue volume increased. These findings suggest that the portion of resting-state BOLD fluctuations at the sites of medium-to-small vessels (more proximal to local neuronal activity) is more closely regulated by dynamic regulations in CBF, and that this CBF regulation decreases closer to large veins, which are more distal to neuronal activity.
Collapse
Affiliation(s)
- Sungho Tak
- Rotman Research Institute at Baycrest Centre, University of Toronto, Toronto, Ontario M6A 2E1, Canada.
| | | | | | | | | |
Collapse
|
49
|
Gómez F, Phillips C, Soddu A, Boly M, Boveroux P, Vanhaudenhuyse A, Bruno MA, Gosseries O, Bonhomme V, Laureys S, Noirhomme Q. Changes in effective connectivity by propofol sedation. PLoS One 2013; 8:e71370. [PMID: 23977030 PMCID: PMC3747149 DOI: 10.1371/journal.pone.0071370] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 07/01/2013] [Indexed: 11/23/2022] Open
Abstract
Mechanisms of propofol-induced loss of consciousness remain poorly understood. Recent fMRI studies have shown decreases in functional connectivity during unconsciousness induced by this anesthetic agent. Functional connectivity does not provide information of directional changes in the dynamics observed during unconsciousness. The aim of the present study was to investigate, in healthy humans during an auditory task, the changes in effective connectivity resulting from propofol induced loss of consciousness. We used Dynamic Causal Modeling for fMRI (fMRI-DCM) to assess how causal connectivity is influenced by the anesthetic agent in the auditory system. Our results suggest that the dynamic observed in the auditory system during unconsciousness induced by propofol, can result in a mixture of two effects: a local inhibitory connectivity increase and a decrease in the effective connectivity in sensory cortices.
Collapse
Affiliation(s)
- Francisco Gómez
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
- * E-mail:
| | - Christophe Phillips
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Andrea Soddu
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Melanie Boly
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Pierre Boveroux
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
- Department of Anesthesiology and Reanimation, University Hospital of Liège, Liège, Belgium
| | - Audrey Vanhaudenhuyse
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Marie-Aurélie Bruno
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesiology and Reanimation, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Quentin Noirhomme
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
50
|
Mou X, Bai F, Xie C, Shi J, Yao Z, Hao G, Chen N, Zhang Z. Voice recognition and altered connectivity in schizophrenic patients with auditory hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:265-70. [PMID: 23545112 DOI: 10.1016/j.pnpbp.2013.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 11/17/2022]
Abstract
Auditory verbal hallucination (AVH) is a pathological hallmark of schizophrenia; however, their neural basis is unclear. Voice identity is an important phenomenological feature of AVHs. Certain voice identity recognition deficits are specific to schizophrenic patients with AVHs. We tested our hypothesis that among schizophrenia patients with hallucination, dysfunctional voice identity recognition is associated with poor functional integration in the neural networks involved in the evaluation of voice identity. Using functional magnetic resonance imaging (fMRI) during a voice recognition task, we examined the modulation of neural network connectivity in 26 schizophrenic patients with or without AVHs, and 13 healthy controls. Our results showed that the schizophrenic patients with AVHs had altered frontotemporal connectivity compared to the schizophrenic patients without AVHs and healthy controls. The latter two groups did not show any differences in functional connectivity. In addition, the strength of frontotemporal connectivity was correlated with the accuracy of voice recognition. These findings provide preliminary evidence that impaired functional integration may contribute to the faulty appraisal of voice identity in schizophrenic patients with AVHs.
Collapse
Affiliation(s)
- Xiaodong Mou
- Medical School of Southeast University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|