1
|
Jarman OD, Hirst J. Membrane-domain mutations in respiratory complex I impede catalysis but do not uncouple proton pumping from ubiquinone reduction. PNAS NEXUS 2022; 1:pgac276. [PMID: 36712358 PMCID: PMC9802314 DOI: 10.1093/pnasnexus/pgac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2022; 119:e2207761119. [PMID: 36095184 PMCID: PMC9499568 DOI: 10.1073/pnas.2207761119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel M. Frey
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
3
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
4
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Seica AFS, Iancu CV, Pfeilschifter B, Madej MG, Choe JY, Hellwig P. Asp 22 drives the protonation state of the Staphylococcus epidermidis glucose/H + symporter. J Biol Chem 2020; 295:15253-15261. [PMID: 32859752 DOI: 10.1074/jbc.ra120.014069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
The Staphylococcus epidermidis glucose/H+ symporter (GlcPSe) is a membrane transporter highly specific for glucose and a homolog of the human glucose transporters (GLUT, SLC2 family). Most GLUTs and their bacterial counterparts differ in the transport mechanism, adopting uniport and sugar/H+ symport, respectively. Unlike other bacterial GLUT homologs (for example, XylE), GlcPSe has a loose H+/sugar coupling. Asp22 is part of the proton-binding site of GlcPSe and crucial for the glucose/H+ co-transport mechanism. To determine how pH variations affect the proton site and the transporter, we performed surface-enhanced IR absorption spectroscopy on the immobilized GlcPSe We found that Asp22 has a pKa of 8.5 ± 0.1, a value consistent with that determined previously for glucose transport, confirming the central role of this residue for the transport mechanism of GlcPSe A neutral replacement of the negatively charged Asp22 led to positive charge displacements over the entire pH range, suggesting that the polarity change of the WT reflects the protonation state of Asp22 We expected that the substitution of the residue Ile105 for a serine, located within hydrogen-bonding distance to Asp22, would change the microenvironment, but the pKa of Asp22 corresponded to that of the WT. A167E mutation, selected in analogy to the XylE, introduced an additional protonatable site and perturbed the protonation state of Asp22, with the latter now exhibiting a pKa of 6.4. These studies confirm that Asp22 is the proton-binding residue in GlcPSe and show that charged residues in its vicinity affect the pKa of glucose/H+ symport.
Collapse
Affiliation(s)
- Ana Filipa Santos Seica
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
| | - Cristina V Iancu
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Benedikt Pfeilschifter
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Regensburg, Germany
| | - M Gregor Madej
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Regensburg, Germany
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA.
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
| |
Collapse
|
6
|
Reidelbach M, Imhof P. Proton transfer in the D-channel of cytochrome c oxidase modeled by a transition network approach. Biochim Biophys Acta Gen Subj 2020; 1864:129614. [PMID: 32305338 DOI: 10.1016/j.bbagen.2020.129614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate. METHODS Computation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling. RESULTS The optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole. CONCLUSIONS The optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems. GENERAL SIGNIFICANCE The correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14159 Berlin, Germany
| | - Petra Imhof
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14159 Berlin, Germany.
| |
Collapse
|
7
|
A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria. Proc Natl Acad Sci U S A 2020; 117:9349-9355. [PMID: 32291342 PMCID: PMC7196763 DOI: 10.1073/pnas.2001572117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We present a comprehensive investigation of mitochondrial DNA-encoded variants of cytochrome c oxidase (CcO) that harbor mutations within their core catalytic subunit I, designed to interrogate the presently disputed functions of the three putative proton channels. We assess overall respiratory competence, specific CcO catalytic activity, and, most importantly, proton/electron (H+/e−) stoichiometry from adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria. We unequivocally show that yeast mitochondrial CcO uses the D-channel to translocate protons across its hydrophilic core, providing direct evidence in support of a common proton pumping mechanism across all members of the A-type heme-copper oxidase superfamily, independent of their bacterial or mitochondrial origin. Mitochondria metabolize almost all the oxygen that we consume, reducing it to water by cytochrome c oxidase (CcO). CcO maximizes energy capture into the protonmotive force by pumping protons across the mitochondrial inner membrane. Forty years after the H+/e− stoichiometry was established, a consensus has yet to be reached on the route taken by pumped protons to traverse CcO’s hydrophobic core and on whether bacterial and mitochondrial CcOs operate via the same coupling mechanism. To resolve this, we exploited the unique amenability to mitochondrial DNA mutagenesis of the yeast Saccharomyces cerevisiae to introduce single point mutations in the hydrophilic pathways of CcO to test function. From adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria, we definitely established that the D-channel, and not the H-channel, is the proton pump of the yeast mitochondrial enzyme, supporting an identical coupling mechanism in all forms of the enzyme.
Collapse
|
8
|
Ahn YO, Albertsson I, Gennis RB, Ädelroth P. Mechanism of proton transfer through the K C proton pathway in the Vibrio cholerae cbb 3 terminal oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1191-1198. [PMID: 30251700 PMCID: PMC6260837 DOI: 10.1016/j.bbabio.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
The heme‑copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O2 reduction and for proton pumping. This pathway, called the KC-pathway, starts at Glu-49P in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the KC-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pKa of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.
Collapse
Affiliation(s)
- Young O Ahn
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Ingrid Albertsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
9
|
Cai X, Haider K, Lu J, Radic S, Son CY, Cui Q, Gunner M. Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:997-1005. [DOI: 10.1016/j.bbabio.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
|
10
|
Ghane T, Gorriz RF, Wrzalek S, Volkenandt S, Dalatieh F, Reidelbach M, Imhof P. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase. J Membr Biol 2018; 251:299-314. [PMID: 29435610 DOI: 10.1007/s00232-018-0019-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).
Collapse
Affiliation(s)
- Tahereh Ghane
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Rene F Gorriz
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Sandro Wrzalek
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Senta Volkenandt
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ferand Dalatieh
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.,R Institute GmbH, Dortustraße 48, 14467, Potsdam, Germany
| | - Marco Reidelbach
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Petra Imhof
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
11
|
Abstract
Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and a H+ across the cytoplasmic membrane of Escherichia coli (galactoside/H+ symport). One of the most important aspects of the mechanism is the relationship between protonation and binding of the cargo galactopyranoside. In this regard, it has been shown that protonation is required for binding. Furthermore when galactoside affinity is measured as a function of pH, an apparent pK (pKapp) of ∼10.5 is obtained. Strikingly, when Glu325, a residue long known to be involved in coupling between H+ and sugar translocation, is replaced with a neutral side chain, the pH effect is abolished, and high-affinity binding is observed until LacY is destabilized at alkaline pH. In this paper, infrared spectroscopy is used to identify Glu325 in situ. Moreover, it is demonstrated that this residue exhibits a pKa of 10.5 ± 0.1 that is insensitive to the presence of galactopyranoside. Thus, it is apparent that protonation of Glu325 specifically is required for effective sugar binding to LacY.
Collapse
|
12
|
Supekar S, Gamiz-Hernandez AP, Kaila VRI. A Protonated Water Cluster as a Transient Proton-Loading Site in Cytochrome cOxidase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shreyas Supekar
- Department Chemie; Technische Universität München (TUM); Lichtenbergstraße 4 85747 Garching Germany
| | - Ana P. Gamiz-Hernandez
- Department Chemie; Technische Universität München (TUM); Lichtenbergstraße 4 85747 Garching Germany
| | - Ville R. I. Kaila
- Department Chemie; Technische Universität München (TUM); Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
13
|
Supekar S, Gamiz-Hernandez AP, Kaila VRI. A Protonated Water Cluster as a Transient Proton-Loading Site in Cytochrome c Oxidase. Angew Chem Int Ed Engl 2016; 55:11940-4. [PMID: 27539738 DOI: 10.1002/anie.201603606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Indexed: 01/11/2023]
Abstract
Cytochrome c oxidase (CcO) is a redox-driven proton pump that powers aerobic respiratory chains. We show here by multi-scale molecular simulations that a protonated water cluster near the active site is likely to serve as the transient proton-loading site (PLS) that stores a proton during the pumping process. The pKa of this water cluster is sensitive to the redox states of the enzyme, showing distinct similarities to other energy converting proton pumps.
Collapse
Affiliation(s)
- Shreyas Supekar
- Department Chemie, Technische Universität München (TUM), Lichtenbergstraße 4, 85747, Garching, Germany
| | - Ana P Gamiz-Hernandez
- Department Chemie, Technische Universität München (TUM), Lichtenbergstraße 4, 85747, Garching, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München (TUM), Lichtenbergstraße 4, 85747, Garching, Germany.
| |
Collapse
|
14
|
Yoshinaga MY, Kellermann MY, Valentine DL, Valentine RC. Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes. Prog Lipid Res 2016; 64:1-15. [PMID: 27448687 DOI: 10.1016/j.plipres.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/29/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.
Collapse
Affiliation(s)
- Marcos Y Yoshinaga
- University of Bremen, MARUM - Center for Marine and Environmental Sciences, Germany.
| | - Matthias Y Kellermann
- University of California Santa Barbara - Department of Earth Science and Marine Science Institute, USA
| | - David L Valentine
- University of California Santa Barbara - Department of Earth Science and Marine Science Institute, USA
| | | |
Collapse
|
15
|
Abstract
Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on spectroscopically "invisible" steps. For example, results from studies of voltage changes associated with electron and proton transfer in cytochrome c oxidase could, in principle, be used to discriminate between different theoretical models describing the molecular mechanism of proton pumping. Earlier analyses of data from these measurements have been based on macroscopic considerations that may not allow for exploring the actual molecular mechanisms. Here, we have used a coarse-grained model describing the relation between observed voltage changes and specific charge-transfer reactions, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The results from these calculations offer mechanistic insights at the molecular level. Our main conclusion is that previously assumed mechanistic evidence that was based on electrogenic measurements is not unique. However, the ability of our calculations to obtain reliable voltage changes means that we have a tool that can be used to describe a wide range of electrogenic charge transfers in channels and transporters, by combining voltage measurements with other experiments and simulations to analyze new mechanistic proposals.
Collapse
|
16
|
Vilhjálmsdóttir J, Johansson AL, Brzezinski P. Structural Changes and Proton Transfer in Cytochrome c Oxidase. Sci Rep 2015; 5:12047. [PMID: 26310633 PMCID: PMC4550891 DOI: 10.1038/srep12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
18
|
Goyal P, Yang S, Cui Q. Microscopic basis for kinetic gating in Cytochrome c oxidase: insights from QM/MM analysis. Chem Sci 2015; 6:826-841. [PMID: 25678950 PMCID: PMC4321873 DOI: 10.1039/c4sc01674b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps.
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps. For the proton pump cytochrome c oxidase, while the regulation of thermodynamic driving force for key proton transfers has been discussed in great detail, the microscopic basis for the control of proton transfer kinetics has been poorly understood. Here we carry out extensive QM/MM free energy simulations to probe the kinetics of relevant proton transfer steps and analyze the effects of local structure and hydration level. We show that protonation of the proton loading site (PLS, taken to be a propionate of heme a3) requires a concerted process in which a key glutamic acid (Glu286H) delivers the proton to the PLS while being reprotonated by an excess proton coming from the D-channel. The concerted nature of the mechanism is a crucial feature that enables the loading of the PLS before the cavity containing Glu286 is better hydrated to lower its pKa to experimentally measured range; the charged rather than dipolar nature of the process also ensures a tight coupling with heme a reduction, as emphasized by Siegbahn and Blomberg. In addition, we find that rotational flexibility of the PLS allows its protonation before that of the binuclear center (the site where oxygen gets reduced to water). Together with our recent study (P. Goyal, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 18886–18891) that focused on the modulation of Glu286 pKa, the current work suggests a mechanism that builds in a natural sequence for the protonation of the PLS prior to that of the binuclear center. This provides microscopic support to the kinetic constraints revealed by kinetic network analysis as essential elements that ensure an efficient vectorial proton transport in cytochrome c oxidase.
Collapse
Affiliation(s)
- Puja Goyal
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Shuo Yang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
19
|
Svahn E, Faxén K, Gennis RB, Brzezinski P. Proton pumping by an inactive structural variant of cytochrome c oxidase. J Inorg Biochem 2014; 140:6-11. [PMID: 25042731 DOI: 10.1016/j.jinorgbio.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The aa3-type cytochrome c oxidases (CytcOs) from e.g. Rhodobacter sphaeroides and Paracoccus denitrificans harbor two proton-transfer pathways. The K pathway is used for proton uptake upon reduction of the CytcO, while the D pathway is used after binding of O2 to the catalytic site. The aim of the present study was to determine whether or not CytcO in which the K pathway is blocked (by e.g. the Lys362Met replacement) is capable of pumping protons. The process can not be studied using conventional assays because the O2-reduction activity is too low when the K pathway is blocked. Consequently, proton pumping with a blocked K pathway has not been demonstrated directly. Here, the Lys362Met and Ser299Glu structural variants were reconstituted in liposomes and allowed to (slowly) become completely reduced. Then, the reaction with O2 was studied with μs time resolution after flash photolysis of a blocking CO ligand bound to heme a3. The data show that with both the inactive Lys362Met and partly active Ser299Glu variants proton release occurred with the same time constants as with the wild-type oxidase, i.e. ~200μs and ~3ms, corresponding in time to formation of the ferryl and oxidized states, respectively. Thus, the data show that the K pathway is not required for proton pumping, suggesting that D and K pathways operate independently of each other after binding of O2 to the catalytic site.
Collapse
Affiliation(s)
- Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
20
|
Current advances in research of cytochrome c oxidase. Amino Acids 2013; 45:1073-87. [PMID: 23999646 DOI: 10.1007/s00726-013-1585-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
The function of cytochrome c oxidase as a biomolecular nanomachine that transforms energy of redox reaction into protonmotive force across a biological membrane has been subject of intense research, debate, and controversy. The structure of the enzyme has been solved for several organisms; however details of its molecular mechanism of proton pumping still remain elusive. Particularly, the identity of the proton pumping site, the key element of the mechanism, is still open to dispute. The pumping mechanism has been for a long time one of the key unsolved issues of bioenergetics and biochemistry, but with the accelerating progress in this field many important details and principles have emerged. Current advances in cytochrome oxidase research are reviewed here, along with a brief discussion of the most complete proton pumping mechanism proposed to date, and a molecular basis for control of its efficiency.
Collapse
|
21
|
Role of aspartate 132 at the orifice of a proton pathway in cytochrome c oxidase. Proc Natl Acad Sci U S A 2013; 110:8912-7. [PMID: 23674679 DOI: 10.1073/pnas.1303954110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proton transfer across biological membranes underpins central processes in biological systems, such as energy conservation and transport of ions and molecules. In the membrane proteins involved in these processes, proton transfer takes place through specific pathways connecting the two sides of the membrane via control elements within the protein. It is commonly believed that acidic residues are required near the orifice of such proton pathways to facilitate proton uptake. In cytochrome c oxidase, one such pathway starts near a conserved Asp-132 residue. Results from earlier studies have shown that replacement of Asp-132 by, e.g., Asn, slows proton uptake by a factor of ∼5,000. Here, we show that proton uptake at full speed (∼10(4) s(-1)) can be restored in the Asp-132-Asn oxidase upon introduction of a second structural modification further inside the pathway (Asn-139-Thr) without compensating for the loss of the negative charge. This proton-uptake rate was insensitive to Zn(2+) addition, which in the wild-type cytochrome c oxidase slows the reaction, indicating that Asp-132 is required for Zn(2+) binding. Furthermore, in the absence of Asp-132 and with Thr at position 139, at high pH (>9), proton uptake was significantly accelerated. Thus, the data indicate that Asp-132 is not strictly required for maintaining rapid proton uptake. Furthermore, despite the rapid proton uptake in the Asn-139-Thr/Asp-132-Asn mutant cytochrome c oxidase, proton pumping was impaired, which indicates that the segment around these residues is functionally linked to pumping.
Collapse
|
22
|
Johansson AL, Carlsson J, Högbom M, Hosler JP, Gennis RB, Brzezinski P. Proton uptake and pKa changes in the uncoupled Asn139Cys variant of cytochrome c oxidase. Biochemistry 2013; 52:827-36. [PMID: 23305515 DOI: 10.1021/bi301597a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme that links electron transfer from cytochrome c to O(2) to proton pumping across the membrane. Protons are transferred through specific pathways that connect the protein surface with the catalytic site as well as the proton input with the proton output sides. Results from earlier studies have shown that one site within the so-called D proton pathway, Asn139, located ~10 Å from the protein surface, is particularly sensitive to mutations that uncouple the O(2) reduction reaction from the proton pumping activity. For example, none of the Asn139Asp (charged) or Asn139Thr (neutral) mutant CytcOs pump protons, although the proton-uptake rates are unaffected. Here, we have investigated the Asn139Cys and Asn139Cys/Asp132Asn mutant CytcOs. In contrast to other structural variants investigated to date, the Cys side chain may be either neutral or negatively charged in the experimentally accessible pH range. The data show that the Asn139Cys and Asn139Asp mutations result in the same changes of the kinetic and thermodynamic parameters associated with the proton transfer. The similarity is not due to introduction of charge at position 139, but rather introduction of a protonatable group that modulates the proton connectivity around this position. These results illuminate the mechanism by which CytcO couples electron transfer to proton pumping.
Collapse
Affiliation(s)
- Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Victoria D, Burton R, Crofts AR. Role of the -PEWY-glutamate in catalysis at the Q(o)-site of the Cyt bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:365-86. [PMID: 23123515 DOI: 10.1016/j.bbabio.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023]
Abstract
We re-examine the pH dependence of partial processes of ubihydroquinone (QH(2)) turnover in Glu-295 mutants in Rhodobacter sphaeroides to clarify the mechanistic role. In more crippled mutants, the bell-shaped pH profile of wildtype was replaced by dependence on a single pK at ~8.5 favoring electron transfer. Loss of the pK at 6.5 reflects a change in the rate-limiting step from the first to the second electron transfer. Over the range of pH 6-8, no major pH dependence of formation of the initial reaction complex was seen, and the rates of bypass reactions were similar to the wildtype. Occupancy of the Q(o)-site by semiquinone (SQ) was similar in the wildtype and the Glu→Trp mutant. Since heme b(L) is initially oxidized in the latter, the bifurcated reaction can still occur, allowing estimation of an empirical rate constant <10(3)s(-1) for reduction of heme b(L) by SQ from the domain distal from heme b(L), a value 1000-fold smaller than that expected from distance. If the pK ~8.5 in mutant strains is due to deprotonation of the neutral semiquinone, with Q(•-) as electron donor to heme b(L), then in wildtype this low value would preclude mechanisms for normal flux in which semiquinone is constrained to this domain. A kinetic model in which Glu-295 catalyzes H(+) transfer from QH•, and delivery of the H(+) to exit channel(s) by rotational displacement, and facilitates rapid electron transfer from SQ to heme b(L) by allowing Q(•-) to move closer to the heme, accounts well for the observations.
Collapse
Affiliation(s)
- Doreen Victoria
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
24
|
Lee HJ, Reimann J, Huang Y, Ädelroth P. Functional proton transfer pathways in the heme–copper oxidase superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:537-44. [DOI: 10.1016/j.bbabio.2011.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 12/21/2022]
|
25
|
Peng Y, Voth GA. Expanding the view of proton pumping in cytochrome c oxidase through computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:518-25. [PMID: 22178790 PMCID: PMC4120846 DOI: 10.1016/j.bbabio.2011.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 01/01/2023]
Abstract
In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies.
Collapse
Affiliation(s)
- Yuxing Peng
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Öjemyr LN, von Ballmoos C, Faxén K, Svahn E, Brzezinski P. The membrane modulates internal proton transfer in cytochrome c oxidase. Biochemistry 2012; 51:1092-100. [PMID: 22257086 DOI: 10.1021/bi201795c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O(2) reduction. Reconstitution of the detergent-solubilized enzyme in small unilamellar soybean phosphatidylcholine vesicles resulted in a lowering of the pK(a) in the pH dependence profile of the proton-uptake rate. This pK(a) change resulted in decreased proton-uptake rates in the pH range of ~6.5-9.5, which is explained in terms of lowering of the pK(a) of an internal proton donor within CytcO. At pH 7.5, the rate decreased to the same extent when vesicles were prepared from the pure zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho(1-rac-glycerol) (DOPG). In addition, a small change in the internal Cu(A)-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.
Collapse
Affiliation(s)
- Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Popović DM, Stuchebrukhov AA. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:506-17. [PMID: 22086149 DOI: 10.1016/j.bbabio.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/30/2022]
Abstract
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.
Collapse
Affiliation(s)
- Dragan M Popović
- Department of Chemistry, University of California, Davis, CA, USA.
| | | |
Collapse
|
28
|
Egawa T, Ganesan K, Lin MT, Yu MA, Hosler JP, Yeh SR, Rousseau DL, Gennis RB. Differential effects of glutamate-286 mutations in the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides and the cytochrome bo(3) ubiquinol oxidase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1342-8. [PMID: 21684251 PMCID: PMC3155654 DOI: 10.1016/j.bbabio.2011.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/26/2022]
Abstract
Both the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides (RsCcO(aa3)) and the closely related bo(3)-type ubiquinol oxidase from Escherichia coli (EcQO(bo3)) possess a proton-conducting D-channel that terminates at a glutamic acid, E286, which is critical for controlling proton transfer to the active site for oxygen chemistry and to a proton loading site for proton pumping. E286 mutations in each enzyme block proton flux and, therefore, inhibit oxidase function. In the current work, resonance Raman spectroscopy was used to show that the E286A and E286C mutations in RsCcO(aa3) result in long range conformational changes that influence the protein interactions with both heme a and heme a(3). Therefore, the severe reduction of the steady-state activity of the E286 mutants in RsCcO(aa3) to ~0.05% is not simply a result of the direct blockage of the D-channel, but it is also a consequence of the conformational changes induced by the mutations to heme a and to the heme a(3)-Cu(B) active site. In contrast, the E286C mutation of EcQO(bo3) exhibits no evidence of conformational changes at the two heme sites, indicating that its reduced activity (3%) is exclusively a result of the inhibition of proton transfer from the D-channel. We propose that in RsCcO(aa3), the E286 mutations severely perturb the active site through a close interaction with F282, which lies between E286 and the heme-copper active site. The local structure around E286 in EcQO(bo3) is different, providing a rationale for the very different effects of E286 mutations in the two enzymes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Krithika Ganesan
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Myat T. Lin
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Michelle A. Yu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jonathan P. Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Denis L. Rousseau
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Robert B. Gennis
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
29
|
Abstract
Cytochrome c oxidase (CcO), as the terminal oxidase of cellular respiration, coupled with a proton-pumping process, reduces molecular oxygen (O(2)) to water. This intriguing and highly organized chemical process represents one of the most critical aspects of cellular respiration. It employs transition metals (Fe and Cu) at the O(2) reduction site and has been considered one of the most challenging research subjects in life science. Extensive X-ray structural and mutational analyses have provided two different proposals with regard to the mechanism of proton pumping. One mechanism is based on bovine CcO and includes an independent pathway for the pumped protons. The second mechanistic proposal includes a common pathway for the pumped and chemical protons and is based upon bacterial CcO. Here, recent progress in experimental evaluations of these proposals is reviewed and strategies for improving our understanding of the mechanism of this physiologically important process are discussed.
Collapse
|
30
|
Johansson AL, Chakrabarty S, Siöberg CB, Högbom M, Warshel A, Brzezinski P. Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1083-94. [PMID: 21463601 PMCID: PMC3139697 DOI: 10.1016/j.bbabio.2011.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa₃ CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O₂ reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a "pump site" and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O₂ reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO.
Collapse
Affiliation(s)
- Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Suman Chakrabarty
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Catrine Berthold Siöberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Henry RM, Caplan D, Fadda E, Pomès R. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:234102. [PMID: 21613706 DOI: 10.1088/0953-8984/23/23/234102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay of long-range electrostatic forces and local structural fluctuations in the control of proton movement and provide a physical explanation for the restoration of proton pumping activity in the double mutant.
Collapse
Affiliation(s)
- Rowan M Henry
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | | | | |
Collapse
|
32
|
Varanasi L, Hosler J. Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 2011; 50:2820-8. [PMID: 21344856 PMCID: PMC3082432 DOI: 10.1021/bi102002v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To characterize protein structures that control proton uptake, we assayed forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The N139D/D132N mutant contains a carboxyl group 6 Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow, but once subunit III is removed, its activity is the same as that of wild-type CcO lacking subunit III (∼1800 H+/s). Thus, a carboxyl group∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cys-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO because of simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor.
Collapse
Affiliation(s)
- Lakshman Varanasi
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jonathan Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
33
|
Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez K. Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed Laser Surg 2010; 28 Suppl 1:S41-52. [PMID: 20649429 DOI: 10.1089/pho.2009.2647] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The objective of this review is to propose and document a role for the water oscillator in near-infrared (NIR) photobiomodulation. Greater understanding of the role of the water oscillator may add to a more-coherent description of central effects of NIR light on redox centers and key transmembrane enzymes such as cytochrome c oxidase (CcO). In addition, water provides a complementary pathway for absorption and transportation of NIR energy in photobiomodulation. Because of its unexpected potential, we propose terming it the "water oscillator paradox." Photobiologic mechanisms involved in the treatment of complex diseases are discussed in light of the present state of the art.
Collapse
Affiliation(s)
- Luis Santana-Blank
- Fundalas, Foundation Interdisciplinary for Research and Development, Caracas, Venezuela.
| | | | | |
Collapse
|
34
|
Lee HJ, Svahn E, Swanson JM, Lepp H, Voth GA, Brzezinski P, Gennis RB. Intricate role of water in proton transport through cytochrome c oxidase. J Am Chem Soc 2010; 132:16225-39. [PMID: 20964330 PMCID: PMC3005615 DOI: 10.1021/ja107244g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CytcO), the final electron acceptor in the respiratory chain, catalyzes the reduction of O(2) to H(2)O while simultaneously pumping protons across the inner mitochondrial or bacterial membrane to maintain a transmembrane electrochemical gradient that drives, for example, ATP synthesis. In this work mutations that were predicted to alter proton translocation and enzyme activity in preliminary computational studies are characterized with extensive experimental and computational analysis. The mutations were introduced in the D pathway, one of two proton-uptake pathways, in CytcO from Rhodobacter sphaeroides . Serine residues 200 and 201, which are hydrogen-bonded to crystallographically resolved water molecules halfway up the D pathway, were replaced by more bulky hydrophobic residues (Ser200Ile, Ser200Val/Ser201Val, and Ser200Val/Ser201Tyr) to query the effects of changing the local structure on enzyme activity as well as proton uptake, release, and intermediate transitions. In addition, the effects of these mutations on internal proton transfer were investigated by blocking proton uptake at the pathway entrance (Asp132Asn replacement in addition to the above-mentioned mutations). Even though the overall activities of all mutant CytcO's were lowered, both the Ser200Ile and Ser200Val/Ser201Val variants maintained the ability to pump protons. The lowered activities were shown to be due to slowed oxidation kinetics during the P(R) → F and F → O transitions (P(R) is the "peroxy" intermediate formed at the catalytic site upon reaction of the four-electron-reduced CytcO with O(2), F is the oxoferryl intermediate, and O is the fully oxidized CytcO). Furthermore, the P(R) → F transition is shown to be essentially pH independent up to pH 12 (i.e., the apparent pK(a) of Glu286 is increased from 9.4 by at least 3 pK(a) units) in the Ser200Val/Ser201Val mutant. Explicit simulations of proton transport in the mutated enzymes revealed that the solvation dynamics can cause intriguing energetic consequences and hence provide mechanistic insights that would never be detected in static structures or simulations of the system with fixed protonation states (i.e., lacking explicit proton transport). The results are discussed in terms of the proton-pumping mechanism of CytcO.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jessica M.J. Swanson
- Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | | | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
- Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Zhu J, Han H, Pawate A, Gennis RB. Decoupling mutations in the D-channel of the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping. Biochemistry 2010; 49:4476-82. [PMID: 20441187 PMCID: PMC2876219 DOI: 10.1021/bi100344x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides utilizes two proton-input channels to provide all the protons for chemistry (water formation) and proton pumping. The D-channel is responsible for the uptake of all pumped protons, four protons per O(2). Several substitutions of either N139 or N207, near the entrance of the D-channel, were previously reported to decouple the proton pump from oxidase activity. In this work, the characteristics of additional mutations in this region of the protein (N139, N207, N121, and S142) are determined to elucidate the mechanism of decoupling. With the exception of the substitution of a large, hydrophobic residue (N139L), all the mutations of N139 resulted in an enzyme with high oxidase activity but with a severely diminished proton pumping stoichiometry. Whereas N207D was previously shown to be decoupled, N207A and N207T exhibit nearly wild-type behavior. The new data display a pattern. Small, nonionizable substitutions of N139 or N121 result in decoupling of the proton pump but maintain high turnover rates. These residues are directly hydrogen bonded to two water molecules (Water6574 and Water6584) that are part of the single-file chain of water molecules within the D-channel leading to E286 at the top of the channel. The data suggest that the integrity of this water chain within the D-channel is critical for rapid proton transfer. The mechanism of decoupling is most likely due to the slowing of the rate of proton delivery below a threshold that is required for protonation of the putative proton loading site. Protons delivered outside this time window are delivered to the active site where they are consumed in the formation of water. The rate of proton delivery required to protonate the pump site must be significantly faster than the rate of delivery of protons to the catalytic site. For this reason, mutations can result in decoupling of the proton pump without slowing the catalytic turnover by the enzyme.
Collapse
Affiliation(s)
- Jiapeng Zhu
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Huazhi Han
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Ashtamurthy Pawate
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
36
|
Brzezinski P, Johansson AL. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:710-23. [DOI: 10.1016/j.bbabio.2010.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
37
|
Siletsky SA, Zhu J, Gennis RB, Konstantinov AA. Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel. Biochemistry 2010; 49:3060-73. [PMID: 20192226 PMCID: PMC2862684 DOI: 10.1021/bi901719e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N139L substitution in the D-channel of cytochrome oxidase from Rhodobacter sphaeroides results in an approximately 15-fold decrease in the turnover number and a loss of proton pumping. Time-resolved absorption and electrometric assays of the F --> O transition in the N139L mutant oxidase result in three major findings. (1) Oxidation of the reduced enzyme by O(2) shows approximately 200-fold inhibition of the F --> O step (k approximately 2 s(-1) at pH 8) which is not compatible with enzyme turnover ( approximately 30 s(-1)). Presumably, an abnormal intermediate F(deprotonated) is formed under these conditions, one proton-deficient relative to a normal F state. In contrast, the F --> O transition in N139L oxidase induced by single-electron photoreduction of intermediate F, generated by reaction of the oxidized enzyme with H(2)O(2), decelerates to an extent compatible with enzyme turnover. (2) In the N139L mutant, the protonic phase of Deltapsi generation coupled to the flash-induced F --> O transition greatly decreases in rate and magnitude and can be assigned to the movement of a proton from E286 to the binuclear site, required for reduction of heme a(3) from the Fe(4+) horizontal lineO(2-) state to the Fe(3+)-OH(-) state. Electrogenic reprotonation of E286 from the inner aqueous phase is missing from the F --> O step in the mutant. (3) In the N139L mutant, the KCN-insensitive rapid electrogenic phase may be composed of two components with lifetimes of approximately 10 and approximately 40 mus and a magnitude ratio of approximately 3:2. The 10 mus phase matches vectorial electron transfer from Cu(A) to heme a, whereas the 40 mus component is assigned to intraprotein proton displacement across approximately 20% of the membrane dielectric thickness. This proton displacement might be triggered by rotation of the charged K362 side chain coupled to heme a reduction. The two components of the rapid electrogenic phase have been resolved subsequently with other D-channel mutants as well as with cyanide-inhibited wild-type oxidase. The finding helps to reconcile the unusually high relative contribution of the microsecond electrogenic phase in the bacterial enzyme ( approximately 30%) with the net electrogenicity of the F --> O transition coupled to transmembrane transfer of two charges per electron.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | - Jiapeng Zhu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander A. Konstantinov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| |
Collapse
|
38
|
Sugitani R, Stuchebrukhov AA. Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1140-50. [PMID: 19393218 PMCID: PMC4220738 DOI: 10.1016/j.bbabio.2009.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
We have examined the network of connected internal cavities in cytochrome c oxidase along which water produced at the catalytic center is removed from the enzyme. Using combination of structural analysis, molecular dynamics simulations, and free energy calculations we have identified two exit pathways that connect the Mg2+ ion cavity to the outside of the enzyme. Each pathway has a well-defined bottleneck, which determines the overall rate of water traffic along the exit pathway, and a specific cooperative mechanism of passing it. One of the pathways is going via Arg438/439 (in bovine numbering) toward the CuA center, approaching closely its His204B ligand and Lys171B residue; and the other is going toward Asp364 and Thr294. Comparison of the pathways among different aa3-type enzymes shows that they are well conserved. Possible connections of the finding to redox-coupled proton pumping mechanism are discussed. We propose specific mutations near the bottlenecks of the exit pathways that can test some of our hypotheses.
Collapse
Affiliation(s)
- Ryogo Sugitani
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
39
|
Lee HJ, Öjemyr L, Vakkasoglu A, Brzezinski P, Gennis RB. Properties of Arg481 mutants of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a3 is likely to be the proton loading site of the proton pump. Biochemistry 2009; 48:7123-31. [PMID: 19575527 PMCID: PMC2735617 DOI: 10.1021/bi901015d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase utilizes the energy from electron transfer and reduction of oxygen to water and pumps protons across the membrane, generating a proton motive force. A large body of biochemical work has shown that all the pumped protons enter the enzyme through the D-channel, which is apparent in X-ray structures as a chain of water molecules connecting D132 at the cytoplasmic surface of the enzyme to E286, near the enzyme active site. The exit pathway utilized by pumped protons beyond this point and leading to the bacterial periplasm is not known. Also not known is the proton loading site (or sites) which undergoes changes in pKa in response to the chemistry at the enzyme active site and drives the proton pump mechanism. In this paper, we examine the role of R481, a highly conserved arginine that forms an ion pair with the D-propionate of heme a3. The R481H, R481N, R481Q, and R481L mutants were examined. The R481H mutant oxidase is approximately 18% active and pumps protons with approximately 40% of the stoichiometry of the wild type. The R481N, R481Q, and R481L mutants each retain only approximately 5% of the steady-state activity, and this is shown to be due to inhibition of steps in the reaction of O(2) with the reduced enzyme. Neither the R481N mutant nor the R481Q mutant oxidases pump protons, but remarkably, the R481L mutant does pump protons with the same efficiency as the R481H mutant. Since the proton pump is clearly operating in the R481L mutant, these results rule out an essential role in the proton pump mechanism for R481 or its hydrogen bond partner, the D-propionate of heme a3.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Linda Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ahmet Vakkasoglu
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Center for Computational Biology and Biophysics, University of Illinois, Urbana, IL 61801, USA
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Center for Computational Biology and Biophysics, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Functional hydration and conformational gating of proton uptake in cytochrome c oxidase. J Mol Biol 2009; 387:1165-85. [PMID: 19248790 DOI: 10.1016/j.jmb.2009.02.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/10/2009] [Accepted: 02/14/2009] [Indexed: 11/24/2022]
Abstract
Cytochrome c oxidase couples the reduction of dioxygen to proton pumping against an electrochemical gradient. The D-channel, a 25-A-long cavity, provides the principal pathway for the uptake of chemical and pumped protons. A water chain is thought to mediate the relay of protons via a Grotthuss mechanism through the D-channel, but it is interrupted at N139 in all available crystallographic structures. We use free-energy simulations to examine the proton uptake pathway in the wild type and in single-point mutants N139V and N139A, in which redox and pumping activities are compromised. We present a general approach for the calculation of water occupancy in protein cavities and demonstrate that combining efficient sampling algorithms with long simulation times (hundreds of nanoseconds) is required to achieve statistical convergence of equilibrium properties in the protein interior. The relative population of different conformational and hydration states of the D-channel is characterized. Results shed light on the role of N139 in the mechanism of proton uptake and clarify the physical basis for inactive phenotypes. The conformational isomerization of the N139 side chain is shown to act as a gate controlling the formation of a functional water chain or "proton wire." In the closed state of N139, the spatial distribution of water in the D-channel is consistent with available crystallographic models. However, a metastable state of N139 opens up a narrow bottleneck in which 50% occupancy by a water molecule establishes a proton pathway throughout the D-channel. Results for N139V suggest that blockage of proton uptake resulting from persistent interruption of the water pathway is the cause of this mutant's marginal oxidase activity. In contrast, results for N139A indicate that the D-channel is a continuously hydrated cavity, implying that the decoupling of oxidase activity from proton pumping measured in this mutant is not due to interruption of the proton relay chain.
Collapse
|
41
|
Dürr KL, Koepke J, Hellwig P, Müller H, Angerer H, Peng G, Olkhova E, Richter OMH, Ludwig B, Michel H. A D-Pathway Mutation Decouples the Paracoccus denitrificans Cytochrome c Oxidase by Altering the Side-Chain Orientation of a Distant Conserved Glutamate. J Mol Biol 2008; 384:865-77. [DOI: 10.1016/j.jmb.2008.09.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/28/2008] [Accepted: 09/17/2008] [Indexed: 11/16/2022]
|
42
|
Abstract
CytcO (cytochrome c oxidase) is a membrane-bound multisubunit protein which catalyses the reduction of O2 to H2O. The reaction is arranged topographically so that the electrons and protons are taken from opposite sides of the membrane and, in addition, it is also linked to proton pumping across the membrane. Thus the CytcO moves an equivalent of two positive charges across the membrane per electron transferred to O2. Proton transfer through CytcO must be controlled by the protein to prevent leaks, which would dissipate the proton electrochemical gradient that is maintained across the membrane. The molecular mechanism by which the protein controls the unidirectionality of proton-transfer (cf. proton diode) reactions and energetically links electron transfer to proton translocation is not known. This short review summarizes selected results from studies aimed at understanding this mechanism, and we discuss a possible mechanistic principle utilized by the oxidase to pump protons.
Collapse
|
43
|
Sharpe MA, Ferguson-Miller S. A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases. J Bioenerg Biomembr 2008; 40:541-9. [PMID: 18830692 PMCID: PMC2613019 DOI: 10.1007/s10863-008-9182-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/01/2008] [Indexed: 11/28/2022]
Abstract
A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, The Methodist Hospital, Houston, TX 77030, USA.
| | | |
Collapse
|
44
|
Brzezinski P, Gennis RB. Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 2008; 40:521-31. [PMID: 18975062 PMCID: PMC4012550 DOI: 10.1007/s10863-008-9181-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, 600 South Goodwin Avenue, A320 CLSL, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Sugitani R, Medvedev ES, Stuchebrukhov AA. Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1129-39. [PMID: 18541140 PMCID: PMC2699453 DOI: 10.1016/j.bbabio.2008.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/03/2008] [Accepted: 05/05/2008] [Indexed: 11/30/2022]
Abstract
We have developed theory and the computational scheme for the analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. The theory allows one to connect the charge motions inside the enzyme to the membrane potential observed in the experiments by using data from the "dielectric topography" map of the enzyme that we have created. The developed theory is applied for the analysis of the potentiometric data recently reported by the Wikström group [I. Belevich, D.A. Bloch, N. Belevich, M. Wikström and M.I. Verkhovsky, Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 2685-2690] on the O to E transition in Paracoccus denitrificans oxidase. Our analysis suggests, that the electron transfer to the binuclear center is coupled to a proton transfer (proton loading) to a group just "above" the binuclear center of the enzyme, from which the pumped proton is subsequently expelled by the chemical proton arriving to the binuclear center. The identity of the pump site could not be determined with certainty, but could be localized to the group of residues His326 (His291 in bovine), propionates of heme a(3), Arg 473/474, and Trp164. The analysis also suggests that the dielectric distance from the P-side to Fe a is 0.4 or larger. The difficulties and pitfalls of quantitative interpretation of potentiometric data are discussed.
Collapse
Affiliation(s)
- Ryogo Sugitani
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Emile S. Medvedev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | | |
Collapse
|
46
|
Abstract
The history of research on voltage-gated proton channels is recounted, from their proposed existence in dinoflagellates by Hastings in 1972 and their demonstration in snail neurons by Thomas and Meech in 1982 to the discovery in 2006 (after a decade of controversy) of genes that unequivocally code for proton channels. Voltage-gated proton channels are perfectly selective for protons, conduct deuterons half as well, and the conductance is strongly temperature dependent. These properties are consistent with a conduction mechanism involving hydrogen-bonded-chain transfer, in which the selectivity filter is a titratable amino acid residue. Channel opening is regulated stringently by pH such that only outward current is normally activated. Main functions of proton channels include acid extrusion from cells and charge compensation for the electrogenic activity of the phagocyte NADPH oxidase. Genetic approaches hold the promise of rapid progress in the near future.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, Illinois 60612, USA.
| |
Collapse
|
47
|
Pereira MM, Sousa FL, Veríssimo AF, Teixeira M. Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:929-34. [PMID: 18515066 DOI: 10.1016/j.bbabio.2008.05.441] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/15/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Haem-copper oxygen reductases are transmembrane protein complexes that reduce dioxygen to water and pump protons across the mitochondrial or periplasmatic membrane, contributing to the transmembrane difference of electrochemical potential. Seven years ago we proposed a classification of these enzymes into three different families (A, B and C), based on the amino acid residues of their proton channels and amino acid sequence comparison, later supported by the so far identified characteristics of the catalytic centre of members from each family. The three families have in common the same general structural fold of the catalytic subunit, which contains the same or analogous prosthetic groups, and proton channels. These observations raise the hypothesis that the mechanisms for dioxygen reduction, proton pumping and the coupling of the two processes may be the same for all these enzymes. Under this hypothesis, they should be performed and controlled by the same or equivalent elements/events, and the identification of retained elements in all families will reveal their importance and may prompt the definition of the enzyme operating mode. Thus, we believe that the search for a minimum common denominator has a crucial importance, and in this article we highlight what is already established for the haem-copper oxygen reductases and emphasize the main questions still unanswered in a comprehensive basis.
Collapse
Affiliation(s)
- Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República - EAN, 2780-157 Oeiras, Portugal.
| | | | | | | |
Collapse
|
48
|
Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci U S A 2008; 105:6255-9. [PMID: 18430799 DOI: 10.1073/pnas.0800770105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is based on a molecular machinery that utilizes oxygen as a terminal electron sink. The membrane-bound cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water in mitochondria and many bacteria. The energy released in this reaction is conserved by pumping protons across the mitochondrial or bacterial membrane, creating an electrochemical proton gradient that drives production of ATP. A crucial question is how the protons pumped by CcO are prevented from flowing backwards during the process. Here, we show by molecular dynamics simulations that the conserved glutamic acid 242 near the active site of CcO undergoes a protonation state-dependent conformational change, which provides a valve in the pumping mechanism. The valve ensures that at any point in time, the proton pathway across the membrane is effectively discontinuous, thereby preventing thermodynamically favorable proton back-leakage while maintaining an overall high efficiency of proton translocation. Suppression of proton leakage is particularly important in mitochondria under physiological conditions, where production of ATP takes place in the presence of a high electrochemical proton gradient.
Collapse
|
49
|
Lepp H, Salomonsson L, Zhu JP, Gennis RB, Brzezinski P. Impaired proton pumping in cytochrome c oxidase upon structural alteration of the D pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:897-903. [PMID: 18457654 DOI: 10.1016/j.bbabio.2008.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
Abstract
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.
Collapse
Affiliation(s)
- Håkan Lepp
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
50
|
Wikström M, Verkhovsky MI. Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1200-14. [PMID: 17689487 DOI: 10.1016/j.bbabio.2007.06.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the "pump site", its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.
Collapse
Affiliation(s)
- Mårten Wikström
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|