1
|
Ferrié M, Alexandre V, Montpellier C, Bouquet P, Tubiana T, Mézière L, Ankavay M, Bentaleb C, Dubuisson J, Bressanelli S, Aliouat-Denis CM, Rouillé Y, Cocquerel L. The AP-1 adaptor complex is essential for intracellular trafficking of the ORF2 capsid protein and assembly of Hepatitis E virus. Cell Mol Life Sci 2024; 81:335. [PMID: 39117755 PMCID: PMC11335258 DOI: 10.1007/s00018-024-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.
Collapse
Affiliation(s)
- Martin Ferrié
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Virginie Alexandre
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Claire Montpellier
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Peggy Bouquet
- Unit of Clinical Microbiology, Institut Pasteur de Lille, Lille, F-59000, France
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Léa Mézière
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Maliki Ankavay
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
- Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Cyrine Bentaleb
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Cécile-Marie Aliouat-Denis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France.
| |
Collapse
|
2
|
Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. SCIENCE ADVANCES 2022; 8:eadd1412. [PMID: 36516255 PMCID: PMC9750158 DOI: 10.1126/sciadv.add1412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 06/02/2023]
Abstract
Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.
Collapse
Affiliation(s)
- Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yubo Tang
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Abbigale J. Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR–Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|
3
|
Zhu D, Wang M, Xu Y, Zhang J, Yang F, Yang Z. Identification of a 5 bp duplicate in the AP1S2 gene of an individual with X-linked intellectual disability. Neurogenetics 2022; 23:179-185. [DOI: 10.1007/s10048-022-00691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
|
4
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
5
|
Schoppe J, Schubert E, Apelbaum A, Yavavli E, Birkholz O, Stephanowitz H, Han Y, Perz A, Hofnagel O, Liu F, Piehler J, Raunser S, Ungermann C. Flexible open conformation of the AP-3 complex explains its role in cargo recruitment at the Golgi. J Biol Chem 2021; 297:101334. [PMID: 34688652 PMCID: PMC8591511 DOI: 10.1016/j.jbc.2021.101334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/17/2023] Open
Abstract
Vesicle formation at endomembranes requires the selective concentration of cargo by coat proteins. Conserved adapter protein complexes at the Golgi (AP-3), the endosome (AP-1), or the plasma membrane (AP-2) with their conserved core domain and flexible ear domains mediate this function. These complexes also rely on the small GTPase Arf1 and/or specific phosphoinositides for membrane binding. The structural details that influence these processes, however, are still poorly understood. Here we present cryo-EM structures of the full-length stable 300 kDa yeast AP-3 complex. The structures reveal that AP-3 adopts an open conformation in solution, comparable to the membrane-bound conformations of AP-1 or AP-2. This open conformation appears to be far more flexible than AP-1 or AP-2, resulting in compact, intermediate, and stretched subconformations. Mass spectrometrical analysis of the cross-linked AP-3 complex further indicates that the ear domains are flexibly attached to the surface of the complex. Using biochemical reconstitution assays, we also show that efficient AP-3 recruitment to the membrane depends primarily on cargo binding. Once bound to cargo, AP-3 clustered and immobilized cargo molecules, as revealed by single-molecule imaging on polymer-supported membranes. We conclude that its flexible open state may enable AP-3 to bind and collect cargo at the Golgi and could thus allow coordinated vesicle formation at the trans-Golgi upon Arf1 activation.
Collapse
Affiliation(s)
- Jannis Schoppe
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Evelyn Schubert
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Amir Apelbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Erdal Yavavli
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany
| | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Yaping Han
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Angela Perz
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
6
|
Silva B, Niehage C, Maglione M, Hoflack B, Sigrist SJ, Wassmer T, Pavlowsky A, Preat T. Interactions between amyloid precursor protein-like (APPL) and MAGUK scaffolding proteins contribute to appetitive long-term memory in Drosophila melanogaster. J Neurogenet 2020; 34:92-105. [PMID: 31965876 DOI: 10.1080/01677063.2020.1712597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer's disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α'/β' Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α'/β' neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.
Collapse
Affiliation(s)
- Bryon Silva
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | | | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Alice Pavlowsky
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| |
Collapse
|
7
|
Spatiotemporal Control of Lipid Conversion, Actin-Based Mechanical Forces, and Curvature Sensors during Clathrin/AP-1-Coated Vesicle Biogenesis. Cell Rep 2018; 20:2087-2099. [PMID: 28854360 DOI: 10.1016/j.celrep.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023] Open
Abstract
Clathrin/adaptor protein-1-coated carriers connect the secretory and the endocytic pathways. Carrier biogenesis relies on distinct protein networks changing membrane shape at the trans-Golgi network, each regulating coat assembly, F-actin-based mechanical forces, or the biophysical properties of lipid bilayers. How these different hubs are spatiotemporally coordinated remains largely unknown. Using in vitro reconstitution systems, quantitative proteomics, and lipidomics, as well as in vivo cell-based assays, we characterize the protein networks controlling membrane lipid composition, membrane shape, and carrier scission. These include PIP5K1A and phospholipase C-beta 3 controlling the conversion of PI[4]P into diacylglycerol. PIP5K1A binding to RAC1 provides a link to F-actin-based mechanical forces needed to tubulate membranes. Tubular membranes then recruit the BAR-domain-containing arfaptin-1/2 guiding carrier scission. These findings provide a framework for synchronizing the chemical/biophysical properties of lipid bilayers, F-actin-based mechanical forces, and the activity of proteins sensing membrane shape during clathrin/adaptor protein-1-coated carrier biogenesis.
Collapse
|
8
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Currinn H, Guscott B, Balklava Z, Rothnie A, Wassmer T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell Mol Life Sci 2016; 73:393-408. [PMID: 26216398 PMCID: PMC4706845 DOI: 10.1007/s00018-015-1993-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 12/05/2022]
Abstract
Phosphoinositides are signalling lipids that are crucial for major signalling events as well as established regulators of membrane trafficking. Control of endosomal sorting and endosomal homeostasis requires phosphatidylinositol-3-phosphate (PI(3)P) and phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2), the latter a lipid of low abundance but significant physiological relevance. PI(3,5)P2 is formed by phosphorylation of PI(3)P by the PIKfyve complex which is crucial for maintaining endosomal homeostasis. Interestingly, loss of PIKfyve function results in dramatic neurodegeneration. Despite the significance of PIKfyve, its regulation is still poorly understood. Here we show that the Amyloid Precursor Protein (APP), a central molecule in Alzheimer's disease, associates with the PIKfyve complex (consisting of Vac14, PIKfyve and Fig4) and that the APP intracellular domain directly binds purified Vac14. We also show that the closely related APP paralogues, APLP1 and 2 associate with the PIKfyve complex. Whether APP family proteins can additionally form direct protein-protein interaction with PIKfyve or Fig4 remains to be explored. We show that APP binding to the PIKfyve complex drives formation of PI(3,5)P2 positive vesicles and that APP gene family members are required for supporting PIKfyve function. Interestingly, the PIKfyve complex is required for APP trafficking, suggesting a feedback loop in which APP, by binding to and stimulating PI(3,5)P2 vesicle formation may control its own trafficking. These data suggest that altered APP processing, as observed in Alzheimer's disease, may disrupt PI(3,5)P2 metabolism, endosomal sorting and homeostasis with important implications for our understanding of the mechanism of neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Heather Currinn
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Benjamin Guscott
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Zita Balklava
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Alice Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
10
|
Lin YH, Currinn H, Pocha SM, Rothnie A, Wassmer T, Knust E. AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust. J Cell Sci 2015; 128:4538-49. [PMID: 26527400 DOI: 10.1242/jcs.174573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity.
Collapse
Affiliation(s)
- Ya-Huei Lin
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Heather Currinn
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Shirin Meher Pocha
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alice Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
11
|
Association with PAK2 Enables Functional Interactions of Lentiviral Nef Proteins with the Exocyst Complex. mBio 2015; 6:e01309-15. [PMID: 26350970 PMCID: PMC4600113 DOI: 10.1128/mbio.01309-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasion in vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.
Collapse
|
12
|
Balklava Z, Niehage C, Currinn H, Mellor L, Guscott B, Poulin G, Hoflack B, Wassmer T. The Amyloid Precursor Protein Controls PIKfyve Function. PLoS One 2015; 10:e0130485. [PMID: 26125944 PMCID: PMC4488396 DOI: 10.1371/journal.pone.0130485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/20/2015] [Indexed: 12/27/2022] Open
Abstract
While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease.
Collapse
Affiliation(s)
- Zita Balklava
- Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Christian Niehage
- Biotechnologisches Zentrum, TU-Dresden, Tatzberg 47–49, 01307 Dresden, Germany
| | - Heather Currinn
- Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Laura Mellor
- University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Benjamin Guscott
- Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Gino Poulin
- University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Bernard Hoflack
- Biotechnologisches Zentrum, TU-Dresden, Tatzberg 47–49, 01307 Dresden, Germany
| | - Thomas Wassmer
- Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Yasamut U, Tongmuang N, Yenchitsomanus PT, Junking M, Noisakran S, Puttikhunt C, Chu JJH, Limjindaporn T. Adaptor Protein 1A Facilitates Dengue Virus Replication. PLoS One 2015; 10:e0130065. [PMID: 26090672 PMCID: PMC4474434 DOI: 10.1371/journal.pone.0130065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/15/2015] [Indexed: 11/23/2022] Open
Abstract
Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication.
Collapse
Affiliation(s)
- Umpa Yasamut
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nopprarat Tongmuang
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sansanee Noisakran
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
14
|
Gillard G, Shafaq-Zadah M, Nicolle O, Damaj R, Pécréaux J, Michaux G. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development 2015; 142:1684-94. [PMID: 25858456 DOI: 10.1242/dev.118216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Massiullah Shafaq-Zadah
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Ophélie Nicolle
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Raghida Damaj
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Jacques Pécréaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Grégoire Michaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| |
Collapse
|
15
|
Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 2014; 15:577-90. [PMID: 25145849 DOI: 10.1038/nrm3861] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.
Collapse
|
16
|
Anitei M, Chenna R, Czupalla C, Esner M, Christ S, Lenhard S, Korn K, Meyenhofer F, Bickle M, Zerial M, Hoflack B. A high-throughput siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking. J Cell Sci 2014; 127:5079-92. [PMID: 25278553 DOI: 10.1242/jcs.159608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.
Collapse
Affiliation(s)
- Mihaela Anitei
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ramu Chenna
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Cornelia Czupalla
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Milan Esner
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Building A1, 62500 Brno, Czech Republic
| | - Sara Christ
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Steffi Lenhard
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Kerstin Korn
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Felix Meyenhofer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
17
|
Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5:e29469. [PMID: 24914539 DOI: 10.4161/sgtp.29469] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments.
Collapse
Affiliation(s)
- Pauline Croisé
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Catherine Estay-Ahumada
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Gasman
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Ory
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
18
|
GOLPH3 is essential for contractile ring formation and Rab11 localization to the cleavage site during cytokinesis in Drosophila melanogaster. PLoS Genet 2014; 10:e1004305. [PMID: 24786584 PMCID: PMC4006750 DOI: 10.1371/journal.pgen.1004305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis. In animal cell cytokinesis, constriction of an actomyosin ring at the equatorial cortex of dividing cells must be finely coordinated with plasma membrane remodeling and vesicle trafficking at the cleavage furrow. Accurate control of these events during cell cleavage is essential for maintaining ploidy and preventing neoplastic transformation. GOLPH3 has been recognized as a potent oncogene, involved in the development of several human tumors. However, the precise roles played by GOLPH3 in tumorigenesis are not yet understood. In this manuscript we demonstrate for the first time the requirement for GOLPH3 for cytokinesis. GOLPH3 protein localizes at the cleavage site of Drosophila dividing cells and is essential for cytokinesis in male meiotic cells and larval neuroblasts. We show that this protein acts as a key molecule in coupling plasma membrane remodeling with actomyosin ring assembly and stability during cytokinesis. Our studies indicate a novel connection between GOLPH3 and the molecular mechanisms of cytokinesis, opening new fields of investigation into the tumor cell biology of this oncogene.
Collapse
|
19
|
Abstract
Transport carriers regulate the bidirectional flow of membrane between the compartments of the secretory and endocytic pathways. Their biogenesis relies on the recruitment of a number of cytosolic proteins and protein complexes on specific membrane microdomains with defined protein and lipid compositions. The timely assembly of these cellular machines onto membranes involves multiple protein-protein and protein-lipid interactions and is necessary to select membrane proteins and lipids into nascent carriers, to bend the flat membrane of the donor compartment, to change the shape of this nascent carrier into a tubular-vesicular structure, and to operate its scission from the donor compartment. A challenge in this field of membrane cell biology has been to identify these machineries and to understand their precise function, in particular by studying their spatial and temporal dynamics during carrier biogenesis. During the past years, liposome-based synthetic biology fully recapitulating the fidelity of carrier biogenesis as seen in vivo has proved to be instrumental to identify these key cytosolic components using mass spectrometry and their dynamics using fluorescence microscopy. We describe here the methods to isolate on synthetic membranes the protein networks needed for carrier biogenesis, to identify them using label-free quantitative proteomics, and to visualize their dynamics on giant unilamellar vesicles.
Collapse
|
20
|
Wieffer M, Cibrián Uhalte E, Posor Y, Otten C, Branz K, Schütz I, Mössinger J, Schu P, Abdelilah-Seyfried S, Krauß M, Haucke V. PI4K2β/AP-1-Based TGN-Endosomal Sorting Regulates Wnt Signaling. Curr Biol 2013; 23:2185-90. [DOI: 10.1016/j.cub.2013.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/08/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
21
|
Patel FB, Soto MC. WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia. Dev Biol 2013; 377:319-32. [PMID: 23510716 DOI: 10.1016/j.ydbio.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in Caenorhabditis elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
Collapse
Affiliation(s)
- Falshruti B Patel
- Department of Pathology and Laboratory Medicine, UMDNJ--Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
22
|
Rac and Rab GTPases dual effector Nischarin regulates vesicle maturation to facilitate survival of intracellular bacteria. EMBO J 2013; 32:713-27. [PMID: 23386062 DOI: 10.1038/emboj.2013.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022] Open
Abstract
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella-containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane-bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP-bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63-containing late endosomes. Nischarin is recruited to the SCV in a Rab14-dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners--Rac1, Rab14 and Rab9 GTPases--reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.
Collapse
|
23
|
Abstract
The context of the membrane is crucial for the interaction of many membrane proteins with their ligands. However, many detailed studies cannot be carried out in living cells. Therefore, studying these interactions requires model membrane systems that are compatible with the used analytical method. A big variety of these methods is available, each of which has its advantages and disadvantages. This chapter gives an overview over the existing techniques, a basic introduction into work with lipids, and detailed protocols for selected methods.
Collapse
Affiliation(s)
- Heiko Keller
- BIOTEC, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
24
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
25
|
Pocha SM, Wassmer T. A novel role for retromer in the control of epithelial cell polarity. Commun Integr Biol 2012; 4:749-51. [PMID: 22446545 DOI: 10.4161/cib.17658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The establishment and maintenance of epithelial cell polarity is essential throughout the development and adult life of all multicellular organisms. A key player in maintaining epithelial polarity is Crumbs (Crb), an evolutionarily conserved type-I transmembrane protein initially identified in Drosophila. Correct Crb levels and apical localization are imperative for its function. However, as is the case for many polarized proteins, the mechanisms of its trafficking and strict apical localization are poorly understood. To address these questions, we developed a liposome-based assay to identify trafficking coats and interaction partners of Crb in a native-like environment. Thereby, we demonstrated that Crb is a cargo for Retromer, a trafficking complex required for transport from endosomes to the trans-Golgi-network. The functional importance of this interaction was revealed by studies in Drosophila epithelia, which established Retromer as a novel regulator of epithelial cell polarity and verified the vast potential of this technique.
Collapse
|
26
|
Gravotta D, Carvajal-Gonzalez JM, Mattera R, Deborde S, Banfelder JR, Bonifacino JS, Rodriguez-Boulan E. The clathrin adaptor AP-1A mediates basolateral polarity. Dev Cell 2012; 22:811-23. [PMID: 22516199 DOI: 10.1016/j.devcel.2012.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/29/2011] [Accepted: 02/06/2012] [Indexed: 12/16/2022]
Abstract
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.
Collapse
Affiliation(s)
- Diego Gravotta
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Shafaq-Zadah M, Brocard L, Solari F, Michaux G. AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 2012; 139:2061-70. [DOI: 10.1242/dev.076711] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial tubes perform functions that are essential for the survival of multicellular organisms. Understanding how their polarised features are maintained is therefore crucial. By analysing the function of the clathrin adaptor AP-1 in the C. elegans intestine, we found that AP-1 is required for epithelial polarity maintenance. Depletion of AP-1 subunits does not affect epithelial polarity establishment or the formation of the intestinal lumen. However, the loss of AP-1 affects the polarised distribution of both apical and basolateral transmembrane proteins. Moreover, it triggers de novo formation of ectopic apical lumens between intestinal cells along the lateral membranes later during embryogenesis. We also found that AP-1 is specifically required for the apical localisation of the small GTPase CDC-42 and the polarity determinant PAR-6. Our results demonstrate that AP-1 controls an apical trafficking pathway required for the maintenance of epithelial polarity in vivo in a tubular epithelium.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| | - Lysiane Brocard
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| | - Florence Solari
- CNRS UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Université Claude Bernard Lyon 1 F-69622 Villeurbanne, France
| | - Grégoire Michaux
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| |
Collapse
|
28
|
Le Bras S, Rondanino C, Kriegel-Taki G, Dussert A, Le Borgne R. Genetic identification of intracellular trafficking regulators involved in notch dependent binary cell fate acquisition following asymmetric cell division. J Cell Sci 2012; 125:4886-901. [DOI: 10.1242/jcs.110171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Notch signaling is involved in numerous cellular processes during development and throughout adult life. Although ligands and receptors are largely expressed in the whole organism, activation of Notch receptors only takes place in a subset of cells and/or tissues and is accurately regulated in time and space. Previous studies have demonstrated that endocytosis and recycling of both ligands and/or receptors are essential for this regulation. However, the precise endocytic routes, compartments and regulators involved in the spatio temporal regulation are largely unknown.
In order to identify Notch signaling intracellular trafficking regulators, we have undertaken a tissue-specific dsRNA genetic screen against candidates potentially involved in endocytosis and recycling within the endolysosomal pathway. dsRNA against 418 genes was induced in Drosophila melanogaster sensory organ lineage in which Notch signaling regulates binary cell fate acquisition. Gain- or loss-of Notch signaling phenotypes were observed in adult sensory organs for 113 of them. Furthermore, 26 genes presented a change in the steady state localization of Notch, Sanpodo, a Notch co-factor, and/or Delta in the pupal lineage. In particular, we identified 20 genes with previously unknown function in Drosophila melanogaster intracellular trafficking. Among them, we identified CG2747 and show that it regulates the localization of clathrin adaptor AP-1 complex, a negative regulator of Notch signaling. All together, our results further demonstrate the essential function of intracellular trafficking in regulating Notch signaling-dependent binary cell fate acquisition and constitute an additional step toward the elucidation of the routes followed by Notch receptor and ligands to signal.
Collapse
|
29
|
Anitei M, Hoflack B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat Cell Biol 2011; 14:11-9. [PMID: 22193159 DOI: 10.1038/ncb2409] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transport carriers regulate membrane flow between compartments of the secretory and endocytic pathways in eukaryotic cells. Carrier biogenesis is assisted by microtubules, actin filaments and their associated motors that link to membrane-associated coats, adaptors and accessory proteins. We summarize here how the biochemical properties of membranes inform their interactions with cytoskeletal regulators. We also discuss how the forces generated by the cytoskeleton and motor proteins alter the biophysical properties and the shape of membranes. The interplay between the cytoskeleton and membrane proteins ensures tight spatial and temporal control of carrier biogenesis, which is essential for cellular homeostasis.
Collapse
Affiliation(s)
- Mihaela Anitei
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | |
Collapse
|
30
|
WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc Natl Acad Sci U S A 2011; 108:14449-54. [PMID: 21844371 DOI: 10.1073/pnas.1107666108] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.
Collapse
|
31
|
Abstract
All cells complete cell division by the process of cytokinesis. At the end of mitosis, eukaryotic cells accurately mark the site of division between the replicated genetic material and assemble a contractile ring comprised of myosin II, actin filaments and other proteins, which is attached to the plasma membrane. The myosin-actin interaction drives constriction of the contractile ring, forming a cleavage furrow (the so-called 'purse-string' model of cytokinesis). After furrowing is completed, the cells remain attached by a thin cytoplasmic bridge, filled with two anti-parallel arrays of microtubules with their plus-ends interdigitating in the midbody region. The cell then assembles the abscission machinery required for cleavage of the intercellular bridge, and so forms two genetically identical daughter cells. We now know much of the molecular detail of cytokinesis, including a list of potential genes/proteins involved, analysis of the function of some of these proteins, and the temporal order of their arrival at the cleavage site. Such studies reveal that membrane trafficking and/or remodelling appears to play crucial roles in both furrowing and abscission. In the present review, we assess studies of vesicular trafficking during cytokinesis, discuss the role of the lipid components of the plasma membrane and endosomes and their role in cytokinesis, and describe some novel molecules implicated in cytokinesis. The present review covers experiments performed mainly on tissue culture cells. We will end by considering how this mechanistic insight may be related to cytokinesis in other systems, and how other forms of cytokinesis may utilize similar aspects of the same machinery.
Collapse
Affiliation(s)
- Hélia Neto
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | | | | |
Collapse
|
32
|
Ma D, Taneja TK, Hagen BM, Kim BY, Ortega B, Lederer WJ, Welling PA. Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 2011; 145:1102-15. [PMID: 21703452 PMCID: PMC3139129 DOI: 10.1016/j.cell.2011.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/04/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Mechanisms that are responsible for sorting newly synthesized proteins for traffic to the cell surface from the Golgi are poorly understood. Here, we show that the potassium channel Kir2.1, mutations in which are associated with Andersen-Tawil syndrome, is selected as cargo into Golgi export carriers in an unusual signal-dependent manner. Unlike conventional trafficking signals, which are typically comprised of short linear peptide sequences, Golgi exit of Kir2.1 is dictated by residues that are embedded within the confluence of two separate domains. This signal patch forms a recognition site for interaction with the AP1 adaptor complex, thereby marking Kir2.1 for incorporation into clathrin-coated vesicles at the trans-Golgi. The identification of a trafficking signal in the tertiary structure of Kir2.1 reveals a quality control step that couples protein conformation to Golgi export and provides molecular insight into how mutations in Kir2.1 arrest the channels at the Golgi.
Collapse
Affiliation(s)
| | | | - Brian M. Hagen
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Bo-Young Kim
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Bernardo Ortega
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Paul A. Welling
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| |
Collapse
|
33
|
Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr Biol 2011; 21:1111-7. [PMID: 21700461 DOI: 10.1016/j.cub.2011.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/20/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022]
Abstract
The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity.
Collapse
|
34
|
Exit from the trans-Golgi network: from molecules to mechanisms. Curr Opin Cell Biol 2011; 23:443-51. [PMID: 21550789 DOI: 10.1016/j.ceb.2011.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 11/23/2022]
Abstract
The trans-Golgi network is a major sorting platform of the secretory pathway from which proteins and lipids, both newly synthesized and retrieved from endocytic compartments, are targeted to different destinations. These sorting processes occur during the formation of pleomorphic tubular-vesicular carriers. The past years have provided insights into basic mechanisms coordinating the spatial and temporal organization of machineries necessary for the segregation of membrane components into distinct microdomains, for the bending, elongation, and fission of corresponding membranes, thus revealing a complex interplay of protein-protein and protein-lipid interactions.
Collapse
|
35
|
Michaux G, Dyer CEF, Nightingale TD, Gallaud E, Nurrish S, Cutler DF. A role for Rab10 in von Willebrand factor release discovered by an AP-1 interactor screen in C. elegans. J Thromb Haemost 2011; 9:392-401. [PMID: 21070595 DOI: 10.1111/j.1538-7836.2010.04138.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endothelial von Willebrand factor (VWF) mediates platelet adhesion and acts as a protective chaperone to clotting factor VIII. Rapid release of highly multimerized VWF is particularly effective in promoting hemostasis. To produce this protein, an elaborate biogenesis is required, culminating at the trans-Golgi network (TGN) in storage within secretory granules called Weibel-Palade bodies (WPB). Failure to correctly form these organelles can lead to uncontrolled secretion of low-molecular-weight multimers of VWF. The TGN-associated adaptor AP-1 and its interactors clathrin, aftiphilin and γ-synergin are essential to initial WPB formation at the Golgi apparatus, and thus to VWF storage and secretion. OBJECTIVES To identify new proteins implicated in VWF storage and/or secretion. METHODS A genomewide RNA interference (RNAi) screen was performed in the Nematode C. elegans to identify new AP-1 genetic interactors. RESULTS The small GTPase Rab10 was found to genetically interact with a partial loss of function of AP-1 in C. elegans. We investigated Rab10 in human primary umbilical vein endothelial cells (HUVECs). We report that Rab10 is enriched at the Golgi apparatus, where WPB are formed, and that in cells where Rab10 expression has been suppressed by siRNA, VWF secretion is altered: the amount of rapidly released VWF was significantly reduced. We also found that Rab8A has a similar function. CONCLUSION Rab10 and Rab8A are new cytoplasmic factors implicated in WPB biogenesis that play a role in generating granules that can rapidly respond to secretagogue.
Collapse
Affiliation(s)
- G Michaux
- INSERM Avenir team Trafic intracellulaire et polarité chez C. elegans, Rennes, France.
| | | | | | | | | | | |
Collapse
|
36
|
Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol 2010; 27:443-56. [DOI: 10.3109/09687688.2010.522601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Abstract
The majority of cells of the immune system are specialized secretory cells, whose function depends on regulated exocytosis. The latter is mediated by vesicular transport involving the sorting of specialized cargo into the secretory granules (SGs), thereby generating the transport vesicles; their transport along the microtubules and eventually their signal-dependent fusion with the plasma membrane. Each of these steps is tightly controlled by mechanisms, which involve the participation of specific sorting signals on the cargo proteins and their recognition by cognate adaptor proteins, posttranslational modifications of the cargo proteins and multiple GTPases and SNARE proteins. In some of the cells (i.e. mast cells, T killer cells) an intimate connection exists between the secretory system and the endocytic one, whereby the SGs are lysosome related organelles (LROs) also referred to as secretory lysosomes. Herein, we discuss these mechanisms in health and disease states.
Collapse
Affiliation(s)
- Anat Benado
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
38
|
Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Höning S, Evans PR, Owen DJ. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 2010; 141:1220-9. [PMID: 20603002 PMCID: PMC3655264 DOI: 10.1016/j.cell.2010.05.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/08/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
The AP2 adaptor complex (alpha, beta2, sigma2, and mu2 subunits) crosslinks the endocytic clathrin scaffold to PtdIns4,5P(2)-containing membranes and transmembrane protein cargo. In the "locked" cytosolic form, AP2's binding sites for the two endocytic motifs, YxxPhi on the C-terminal domain of mu2 (C-mu2) and [ED]xxxL[LI] on sigma2, are blocked by parts of beta2. Using protein crystallography, we show that AP2 undergoes a large conformational change in which C-mu2 relocates to an orthogonal face of the complex, simultaneously unblocking both cargo-binding sites; the previously unstructured mu2 linker becomes helical and binds back onto the complex. This structural rearrangement results in AP2's four PtdIns4,5P(2)- and two endocytic motif-binding sites becoming coplanar, facilitating their simultaneous interaction with PtdIns4,5P(2)/cargo-containing membranes. Using a range of biophysical techniques, we show that the endocytic cargo binding of AP2 is driven by its interaction with PtdIns4,5P(2)-containing membranes.
Collapse
Affiliation(s)
- Lauren P. Jackson
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Bernard T. Kelly
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Gaffry
- Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52 50931 Cologne, Germany
| | - Leo C. James
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52 50931 Cologne, Germany
| | - Philip R. Evans
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - David J. Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
39
|
ANITEI M, STANGE C, PARSHINA I, BAUST T, SCHENCK A, RAPOSO G, KIRCHHAUSEN T, HOFLACK B. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol 2010; 12:330-40. [PMID: 20228810 PMCID: PMC3241509 DOI: 10.1038/ncb2034] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/19/2010] [Indexed: 12/12/2022]
Abstract
Actin dynamics is a tightly regulated process involved in various cellular events including biogenesis of clathrin-coated, AP-1 (adaptor protein 1)-coated transport carriers connecting the trans-Golgi network (TGN) and the endocytic pathway. However, the mechanisms coordinating coat assembly, membrane and actin remodelling during post-TGN transport remain poorly understood. Here we show that the Arf1 (ADP-ribosylation factor 1) GTPase synchronizes the TGN association of clathrin-AP-1 coats and protein complexes comprising CYFIP (cytoplasmic fragile-X mental retardation interacting protein; Sra, PIR121), a clathrin heavy chain binding protein associated with mental retardation. The Rac1 GTPase and its exchange factor beta-PIX (PAK-interacting exchange factor) activate these complexes, allowing N-WASP-dependent and Arp2/3-dependent actin polymerization towards membranes, thus promoting tubule formation. These phenomena can be recapitulated with synthetic membranes. This protein-network-based mechanism facilitates the sequential coordination of Arf1-dependent membrane priming, through the recruitment of coats and CYFIP-containing complexes, and of Rac1-dependent actin polymerization, and provides complementary but independent levels of regulation during early stages of clathrin-AP1-coated carrier biogenesis.
Collapse
Affiliation(s)
- Mihaela ANITEI
- Biotechnology Center, Dresden University of Technology, Tatzberg 47-51, 01307 Dresden, Germany
| | - Christoph STANGE
- Biotechnology Center, Dresden University of Technology, Tatzberg 47-51, 01307 Dresden, Germany
| | - Irina PARSHINA
- Biotechnology Center, Dresden University of Technology, Tatzberg 47-51, 01307 Dresden, Germany
| | - Thorsten BAUST
- Biotechnology Center, Dresden University of Technology, Tatzberg 47-51, 01307 Dresden, Germany
- Harvard Medical School/CBRI, W. Alpert Building Room 128 200 Longwood Ave, Boston, Massachusetts, 02115 USA
| | - Annette SCHENCK
- Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognition and Behaviour & Radboud University Nijmegen Medical Center, Department of Human Genetics Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Graça RAPOSO
- Institut Curie, CNRS-UMR 144, Paris 75248, France
| | - Tomas KIRCHHAUSEN
- Harvard Medical School/CBRI, W. Alpert Building Room 128 200 Longwood Ave, Boston, Massachusetts, 02115 USA
| | - Bernard HOFLACK
- Biotechnology Center, Dresden University of Technology, Tatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
40
|
AP-1/sigma1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory. EMBO J 2010; 29:1318-30. [PMID: 20203623 DOI: 10.1038/emboj.2010.15] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 01/26/2010] [Indexed: 11/09/2022] Open
Abstract
Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1-sigma1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1-sigma1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three sigma1 subunit isoforms: A, B and C. The expressions of sigma1A and sigma1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from sigma1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The sigma1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation.
Collapse
|
41
|
Polevoy G, Wei HC, Wong R, Szentpetery Z, Kim YJ, Goldbach P, Steinbach SK, Balla T, Brill JA. Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. ACTA ACUST UNITED AC 2010; 187:847-58. [PMID: 19995935 PMCID: PMC2806325 DOI: 10.1083/jcb.200908107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Successful completion of cytokinesis relies on addition of new membrane, and requires the recycling endosome regulator Rab11, which localizes to the midzone. Despite the critical role of Rab11 in this process, little is known about the formation and composition of Rab11-containing organelles. Here, we identify the phosphatidylinositol (PI) 4-kinase III beta four wheel drive (Fwd) as a key regulator of Rab11 during cytokinesis in Drosophila melanogaster spermatocytes. We show Fwd is required for synthesis of PI 4-phosphate (PI4P) on Golgi membranes and for formation of PI4P-containing secretory organelles that localize to the midzone. Fwd binds and colocalizes with Rab11 on Golgi membranes, and is required for localization of Rab11 in dividing cells. A kinase-dead version of Fwd also binds Rab11 and partially restores cytokinesis to fwd mutant flies. Moreover, activated Rab11 partially suppresses loss of fwd. Our data suggest Fwd plays catalytic and noncatalytic roles in regulating Rab11 during cytokinesis.
Collapse
Affiliation(s)
- Gordon Polevoy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Uno T, Moriwaki T, Isoyama Y, Uno Y, Kanamaru K, Yamagata H, Nakamura M, Takagi M. Rab14 from Bombyx mori (Lepidoptera: Bombycidae) shows ATPase activity. Biol Lett 2010; 6:379-81. [PMID: 20071392 DOI: 10.1098/rsbl.2009.0878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rab GTPases are essential for vesicular transport, whereas adenosine triphosphate (ATP) is the most important and versatile of the activated carriers in the cell. But there are little reports to clarify the connection between ATP and Rab GTPases. A cDNA clone (Rab14) from Bombyx mori was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein bound to [(3)H]-GDP and [(35)S]-GTPgammaS. Binding of [(35)S]-GTPgammaS was inhibited by guanosine diphosphate (GDP), guanosine triphosphate (GTP) and ATP. Rab14 showed GTP- and ATP-hydrolysis activity. The Km value of Rab14 for ATP was lower than that for GTP. Human Rab14 also showed an ATPase activity. Furthermore, bound [(3)H]-GDP was exchanged efficiently with GTP and ATP. These results suggest that Rab14 is an ATPase as well as GTPase and gives Rab14 an exciting integrative function between cell metabolic status and membrane trafficking.
Collapse
Affiliation(s)
- Tomohide Uno
- Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Hyogo 657-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Baust T, Anitei M, Czupalla C, Parshyna I, Bourel L, Thiele C, Krause E, Hoflack B. Protein networks supporting AP-3 function in targeting lysosomal membrane proteins. Mol Biol Cell 2008; 19:1942-51. [PMID: 18287518 PMCID: PMC2366865 DOI: 10.1091/mbc.e08-02-0110] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 01/08/2023] Open
Abstract
The AP-3 adaptor complex targets selected transmembrane proteins to lysosomes and lysosome-related organelles. We reconstituted its preferred interaction with liposomes containing the ADP ribosylation factor (ARF)-1 guanosine triphosphatase (GTPase), specific cargo tails, and phosphatidylinositol-3 phosphate, and then we performed a proteomic screen to identify new proteins supporting its sorting function. We identified approximately 30 proteins belonging to three networks regulating either AP-3 coat assembly or septin polymerization or Rab7-dependent lysosomal transport. RNA interference shows that, among these proteins, the ARF-1 exchange factor brefeldin A-inhibited exchange factor 1, the ARF-1 GTPase-activating protein 1, the Cdc42-interacting Cdc42 effector protein 4, an effector of septin-polymerizing GTPases, and the phosphatidylinositol-3 kinase IIIC3 are key components regulating the targeting of lysosomal membrane proteins to lysosomes in vivo. This analysis reveals that these proteins, together with AP-3, play an essential role in protein sorting at early endosomes, thereby regulating the integrity of these organelles.
Collapse
Affiliation(s)
- Thorsten Baust
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Mihaela Anitei
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Cornelia Czupalla
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Iryna Parshyna
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| | - Line Bourel
- Faculté de Pharmacie de Lille, Laboratoire de Chimie, BP 83 59006 Lille Cedex, France
| | - Christoph Thiele
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; and
| | - Eberhard Krause
- Institute of Molecular Pharmacology, 10 13125, Berlin, Germany
| | - Bernard Hoflack
- *Biotechnological Center, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
44
|
Demmel L, Gravert M, Ercan E, Habermann B, Müller-Reichert T, Kukhtina V, Haucke V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 2008; 19:1991-2002. [PMID: 18287542 DOI: 10.1091/mbc.e06-10-0937] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4-phosphate (PI(4)P) is a key regulator of membrane transport required for the formation of transport carriers from the trans-Golgi network (TGN). The molecular mechanisms of PI(4)P signaling in this process are still poorly understood. In a search for PI(4)P effector molecules, we performed a screen for synthetic lethals in a background of reduced PI(4)P and found the gene GGA2. Our analysis uncovered a PI(4)P-dependent recruitment of the clathrin adaptor Gga2p to the TGN during Golgi-to-endosome trafficking. Gga2p recruitment to liposomes is stimulated both by PI(4)P and the small GTPase Arf1p in its active conformation, implicating these two molecules in the recruitment of Gga2p to the TGN, which ultimately controls the formation of clathrin-coated vesicles. PI(4)P binding occurs through a phosphoinositide-binding signature within the N-terminal VHS domain of Gga2p resembling a motif found in other clathrin interacting proteins. These data provide an explanation for the TGN-specific membrane recruitment of Gga2p.
Collapse
Affiliation(s)
- Lars Demmel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, D-01307, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee I, Doray B, Govero J, Kornfeld S. Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP. ACTA ACUST UNITED AC 2008; 180:467-72. [PMID: 18250197 PMCID: PMC2234244 DOI: 10.1083/jcb.200709037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The adaptor protein AP-1 is the major coat protein involved in the formation of clathrin-coated vesicles at the trans-Golgi network. The prevailing view is that AP-1 recruitment involves coincident binding to multiple low-affinity sites comprising adenosine diphosphate ribosylation factor 1 (Arf-1)–guanosine triphosphate (GTP), cargo sorting signals, and phosphoinositides. We now show that binding of cargo signal peptides to AP-1 induces a conformational change in its core domain that greatly enhances its interaction with Arf-1–GTP. In addition, we provide evidence for cross talk between the dileucine and tyrosine binding sites within the AP-1 core domain such that binding of a cargo signal to one site facilitates binding to the other site. The stable association of AP-1 with Arf-1–GTP, which is induced by cargo signals, would serve to provide sufficient time for adaptor polymerization and clathrin recruitment while ensuring the packaging of cargo molecules into the forming transport vesicles.
Collapse
Affiliation(s)
- Intaek Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
46
|
Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. ACTA ACUST UNITED AC 2007; 176:343-53. [PMID: 17261850 PMCID: PMC2063960 DOI: 10.1083/jcb.200606023] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Assembly of E-cadherin–based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIγ also interacts with the μ subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIγ or disruption of PIPKIγ binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIγ binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIγ serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.
Collapse
Affiliation(s)
- Kun Ling
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hirst J, Seaman MNJ, Buschow SI, Robinson MS. The role of cargo proteins in GGA recruitment. Traffic 2007; 8:594-604. [PMID: 17451558 PMCID: PMC1891007 DOI: 10.1111/j.1600-0854.2007.00556.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/09/2007] [Indexed: 11/29/2022]
Abstract
Coat proteins are recruited onto membranes to form vesicles that transport cargo from one compartment to another, but the extent to which the cargo helps to recruit the coat proteins is still unclear. Here we have examined the role of cargo in the recruitment of Golgi-localized, gamma-ear-containing, ADP ribosylation factor (ARF)-binding proteins (GGAs) onto membranes in HeLa cells. Moderate overexpression of CD8 chimeras with cytoplasmic tails containing DXXLL-sorting signals, which bind to GGAs, increased the localization of all three GGAs to perinuclear membranes, as observed by immunofluorescence. GGA2 was also expressed at approximately twofold higher levels in these cells because it was degraded more slowly. However, this difference only partially accounted for the increase in membrane localization because there was a approximately fivefold increase in GGA2 associated with crude membranes and a approximately 12-fold increase in GGA2 associated with clathrin-coated vesicles (CCVs) in cells expressing CD8-DXXLL chimeras. The effect of cargo proteins on GGA recruitment was reconstituted in vitro using permeabilized control and CD8-DXXLL-expressing cells incubated with cytosol containing recombinant GGA2 constructs. Together, these results demonstrate that cargo proteins contribute to the recruitment of GGAs onto membranes and to the formation of GGA-positive CCVs.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
| | - Sonja I Buschow
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
- Current address: Department of Biochemistry and Cell Biology, University of UtrechtUtrecht 3508 TD, The Netherlands
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of CambridgeCambridge CB2 0XY, UK
| |
Collapse
|