1
|
Chubb JJ, Albanese KI, Rodger A, Woolfson DN. De Novo Design of Parallel and Antiparallel A 3B 3 Heterohexameric α-Helical Barrels. Biochemistry 2025; 64:1973-1982. [PMID: 40227224 PMCID: PMC12060282 DOI: 10.1021/acs.biochem.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
The de novo design of α-helical coiled-coil peptides is advanced. Using established sequence-to-structure relationships, it is possible to generate various coiled-coil assemblies with predictable numbers and orientations of helices. Here, we target new assemblies, namely, A3B3 heterohexamer α-helical barrels. These designs are based on pairs of sequences with three heptad repeats (abcdefg), programmed with a = Leu, d = Ile, e = Ala, and g = Ser, and b = c = Glu to make the acidic (A) chains and b = c = Lys in the basic (B) chains. These design rules ensure that the desired oligomeric state and stoichiometry are readily achieved. However, controlling the orientation of neighboring helices (parallel or antiparallel) is less straightforward. Surprisingly, we find that assembly and helix orientation are sensitive to the length of the overhang between helices. To study this, cyclically permutated peptide sequences with three heptad repeats (the register) in the peptide sequences were analyzed. Peptides starting at g (g-register) form a parallel 6-helix barrel in solution and in an X-ray crystal structure, whereas the b- and c-register peptides form an antiparallel complex. In lieu of experimental X-ray structures for b- and c-register peptides, AlphaFold-Multimer is used to predict atomistic models. However, considerably more sampling than the default value is required to match the models and the experimental data, as many confidently predicted and plausible models are generated with incorrect helix orientations. This work reveals the previously unknown influence of the heptad register on helical overhang and the orientation of α-helical coiled-coil peptides and provides insights for the modeling of oligopeptide coiled-coil complexes with AlphaFold.
Collapse
Affiliation(s)
- Joel J. Chubb
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Natural Sciences, Macquarie University, Sydney, New South Wales 2019, Australia
| | - Katherine I. Albanese
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alison Rodger
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol,
Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K.
- Bristol BioDesign
Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
2
|
Leone L, De Fenza M, Esposito A, Maglio O, Nastri F, Lombardi A. Peptides and metal ions: A successful marriage for developing artificial metalloproteins. J Pept Sci 2024; 30:e3606. [PMID: 38719781 DOI: 10.1002/psc.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Ennist NM, Stayrook SE, Dutton PL, Moser CC. Rational design of photosynthetic reaction center protein maquettes. Front Mol Biosci 2022; 9:997295. [PMID: 36213121 PMCID: PMC9532970 DOI: 10.3389/fmolb.2022.997295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.
Collapse
Affiliation(s)
- Nathan M. Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- *Correspondence: Nathan M. Ennist,
| | - Steven E. Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, United States
| | - P. Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher C. Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Wang J, Lisanza S, Juergens D, Tischer D, Watson JL, Castro KM, Ragotte R, Saragovi A, Milles LF, Baek M, Anishchenko I, Yang W, Hicks DR, Expòsit M, Schlichthaerle T, Chun JH, Dauparas J, Bennett N, Wicky BIM, Muenks A, DiMaio F, Correia B, Ovchinnikov S, Baker D. Scaffolding protein functional sites using deep learning. Science 2022; 377:387-394. [PMID: 35862514 PMCID: PMC9621694 DOI: 10.1126/science.abn2100] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, "constrained hallucination," optimizes sequences such that their predicted structures contain the desired functional site. The second approach, "inpainting," starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.
Collapse
Affiliation(s)
- Jue Wang
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Sidney Lisanza
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Graduate program in Biological Physics, Structure and
Design, University of Washington, Seattle, WA 98105, USA
| | - David Juergens
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Molecular Engineering Graduate Program, University of
Washington, Seattle, WA 98105, USA
| | - Doug Tischer
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Joseph L. Watson
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Karla M. Castro
- Institute of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Robert Ragotte
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Amijai Saragovi
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Lukas F. Milles
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Derrick R. Hicks
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Marc Expòsit
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Molecular Engineering Graduate Program, University of
Washington, Seattle, WA 98105, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Jung-Ho Chun
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Graduate program in Biological Physics, Structure and
Design, University of Washington, Seattle, WA 98105, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Nathaniel Bennett
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Molecular Engineering Graduate Program, University of
Washington, Seattle, WA 98105, USA
| | - Basile I. M. Wicky
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Andrew Muenks
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sergey Ovchinnikov
- FAS Division of Science, Harvard University, Cambridge, MA
02138, USA
- John Harvard Distinguished Science Fellowship Program,
Harvard University, Cambridge, MA 02138, USA
| | - David Baker
- Department of Biochemistry, University of Washington,
Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington,
Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington,
Seattle, WA 98105, USA
| |
Collapse
|
6
|
Aupič J, Lapenta F, Strmšek Ž, Merljak E, Plaper T, Jerala R. Metal ion-regulated assembly of designed modular protein cages. SCIENCE ADVANCES 2022; 8:eabm8243. [PMID: 35714197 PMCID: PMC9205593 DOI: 10.1126/sciadv.abm8243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sites to render an orthogonal set of CC heterodimers Zn(II)-responsive as a generally applicable principle. The designed peptides assemble into CC heterodimers only in the presence of Zn(II) ions, reversibly dissociate by metal ion sequestration, and additionally act as pH switches, with low pH triggering disassembly. The developed Zn(II)-responsive CC set is used to construct programmable folding of CC-based nanostructures, from protein triangles to a two-chain bipyramidal protein cage that closes and opens depending on the metal ion. This demonstrates that dynamic self-assembly can be designed into CC-based protein cages by incorporation of metal ion-responsive CC building modules that act as conformational switches and that could also be used in other contexts.
Collapse
Affiliation(s)
- Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Koebke KJ, Tebo AG, Manickas EC, Deb A, Penner-Hahn JE, Pecoraro VL. Nitrite reductase activity within an antiparallel de novo scaffold. J Biol Inorg Chem 2021; 26:855-862. [PMID: 34487215 PMCID: PMC11232943 DOI: 10.1007/s00775-021-01889-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.
Collapse
Affiliation(s)
- Karl J Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alison G Tebo
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
8
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
9
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
10
|
Sinha NJ, Wu D, Kloxin CJ, Saven JG, Jensen GV, Pochan DJ. Polyelectrolyte character of rigid rod peptide bundlemer chains constructed via hierarchical self-assembly. SOFT MATTER 2019; 15:9858-9870. [PMID: 31738361 DOI: 10.1039/c9sm01894h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Short α-helical peptides were computationally designed to self-assemble into robust coiled coils that are antiparallel, homotetrameric bundles. These peptide bundle units, or 'bundlemers', have been utilized as anisotropic building blocks to construct bundlemer-based polymers via a hierarchical, hybrid physical-covalent assembly pathway. The bundlemer chains were constructed using short linker connections via 'click' chemistry reactions between the N-termini of bundlemer constituent peptides. The resulting bundlemer chains appear as extremely rigid, cylindrical rods in transmission electron microscopy (TEM) images. Small angle neutron scattering (SANS) shows that these bundlemer chains exist as individual rods in solution with a cross-section that is equal to that of a single coiled coil bundlemer building block of ≈20 Å. SANS further confirms that the interparticle solution structure of the rigid rod bundlemer chains is heterogeneous and responsive to solution conditions, such as ionic-strength and pH. Due to their peptidic constitution, the bundlemer assemblies behave like polyelectrolytes that carry an average charge density of approximately 3 charges per bundlemer as determined from SANS structure factor data fitting, which describes the repulsion between charged rods in solution. This repulsion manifests as a correlation hole in the scattering profile that is suppressed by dilution or addition of salt. Presence of rod cluster aggregates with a mass fractal dimension of ≈2.5 is also confirmed across all samples. The formation of such dense, fractal-like cluster aggregates in a solution of net repulsive rods is a unique example of the subtle balance between short-range attraction and long-rage repulsion interactions in proteins and other biomaterials. With computational control of constituent peptide sequences, it is further possible to deconvolute the underlying sequence driven structure-property relationships in the modular bundlemer chains.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Lombardi A, Pirro F, Maglio O, Chino M, DeGrado WF. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities. Acc Chem Res 2019; 52:1148-1159. [PMID: 30973707 DOI: 10.1021/acs.accounts.8b00674] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
De novo protein design represents an attractive approach for testing and extending our understanding of metalloprotein structure and function. Here, we describe our work on the design of DF (Due Ferri or two-iron in Italian), a minimalist model for the active sites of much larger and more complex natural diiron and dimanganese proteins. In nature, diiron and dimanganese proteins protypically bind their ions in 4-Glu, 2-His environments, and they catalyze diverse reactions, ranging from hydrolysis, to O2-dependent chemistry, to decarbonylation of aldehydes. In the design of DF, the position of each atom-including the backbone, the first-shell ligands, the second-shell hydrogen-bonded groups, and the well-packed hydrophobic core-was bespoke using precise mathematical equations and chemical principles. The first member of the DF family was designed to be of minimal size and complexity and yet to display the quintessential elements required for binding the dimetal cofactor. After thoroughly characterizing its structural, dynamic, spectroscopic, and functional properties, we added additional complexity in a rational stepwise manner to achieve increasingly sophisticated catalytic functions, ultimately demonstrating substrate-gated four-electron reduction of O2 to water. We also briefly describe the extension of these studies to the design of proteins that bind nonbiological metal cofactors (a synthetic porphyrin and a tetranuclear cluster), and a Zn2+/proton antiporting membrane protein. Together these studies demonstrate a successful and generally applicable strategy for de novo metalloprotein design, which might indeed mimic the process by which primordial metalloproteins evolved. We began the design process with a highly symmetrical backbone and binding site, by using point-group symmetry to assemble the secondary structures that position the amino acid side chains required for binding. The resulting models provided a rough starting point and initial parameters for the subsequent precise design of the final protein using modern methods of computational protein design. Unless the desired site is itself symmetrical, this process requires reduction of the symmetry or lifting it altogether. Nevertheless, the initial symmetrical structure can be helpful to restrain the search space during assembly of the backbone. Finally, the methods described here should be generally applicable to the design of highly stable and robust catalysts and sensors. There is considerable potential in combining the efficiency and knowledge base associated with homogeneous metal catalysis with the programmability, biocompatibility, and versatility of proteins. While the work reported here focuses on testing and learning the principles of natural metalloproteins by designing and studying proteins one at a time, there is also considerable potential for using designed proteins that incorporate both biological and nonbiological metal ion cofactors for the evolution of novel catalysts.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
| | - Fabio Pirro
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
- IBB, National Research Council, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
| |
Collapse
|
12
|
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Abstract
Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight. In this review, we discuss different strategies used to rationally develop self-assembled peptide catalysts with natural and unnatural backbones as well as with metal-containing cofactors.
Collapse
Affiliation(s)
- O Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
14
|
Guan Z, Liu D, Lin J, Wang X. Aqueous self-assembly of hydrophobic macromolecules with adjustable rigidity of the backbone. SOFT MATTER 2017; 13:5130-5136. [PMID: 28657106 DOI: 10.1039/c7sm01101f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
P(FpC3P) (Fp: CpFe(CO)2; C3P: propyl diphenyl phosphine) has a helical backbone, resulting from piano stool metal coordination geometry, which is rigid with intramolecular aromatic interaction of the phenyl groups. The macromolecule is hydrophobic, but the polarized CO groups can interact with water for aqueous self-assembly. The stiffness of P(FpC3P), which is adjustable by temperature, is an important factor influencing the morphologies of kinetically trapped assemblies. P(FpC3P)7 self-assembles in DMSO/water (10/90 by volume) into lamellae at 25 °C, vesicles at 40 °C and irregular aggregates at higher temperatures (60 and 70 °C). The colloidal stability decreases in the order of lamellae, vesicles and irregular aggregates. Dissipative particle dynamics (DPD) simulation reveals the same temperature-dependent self-assembled morphologies with an interior of hydrophobic aromatic groups covered with the metal coordination units. The rigid backbone at 25 °C accounts for the formation of the layered morphology, while the reduced rigidity of the same P(FpC3P)7 at 40 °C curves up the lamellae into vesicles. At a higher temperature (60 or 70 °C), P(FpC3P)7 behaves as a random coil without obvious amphiphilic segregation, resulting in irregular aggregates. The stiffness is, therefore, a crucial factor for the aqueous assembly of macromolecules without obvious amphiphilic segregation, which is reminiscent of the solution behavior observed for many hydrophobic biological macromolecules such as proteins.
Collapse
Affiliation(s)
- Zhou Guan
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | | | | | | |
Collapse
|
15
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
16
|
Abstract
The assembly of individual protein subunits into large-scale symmetrical structures is widespread in nature and confers new biological properties. Engineered protein assemblies have potential applications in nanotechnology and medicine; however, a major challenge in engineering assemblies de novo has been to design interactions between the protein subunits so that they specifically assemble into the desired structure. Here we demonstrate a simple, generalizable approach to assemble proteins into cage-like structures that uses short de novo designed coiled-coil domains to mediate assembly. We assembled eight copies of a C3-symmetric trimeric esterase into a well-defined octahedral protein cage by appending a C4-symmetric coiled-coil domain to the protein through a short, flexible linker sequence, with the approximate length of the linker sequence determined by computational modeling. The structure of the cage was verified using a combination of analytical ultracentrifugation, native electrospray mass spectrometry, and negative stain and cryoelectron microscopy. For the protein cage to assemble correctly, it was necessary to optimize the length of the linker sequence. This observation suggests that flexibility between the two protein domains is important to allow the protein subunits sufficient freedom to assemble into the geometry specified by the combination of C4 and C3 symmetry elements. Because this approach is inherently modular and places minimal requirements on the structural features of the protein building blocks, it could be extended to assemble a wide variety of proteins into structures with different symmetries.
Collapse
|
17
|
Chino M, Leone L, Maglio O, Lombardi A. Designing Covalently Linked Heterodimeric Four-Helix Bundles. Methods Enzymol 2016; 580:471-99. [PMID: 27586346 DOI: 10.1016/bs.mie.2016.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
De novo design has proven a powerful methodology for understanding protein folding and function, and for mimicking or even bettering the properties of natural proteins. Extensive progress has been made in the design of helical bundles, simple structural motifs that can be nowadays designed with a high degree of precision. Among helical bundles, the four-helix bundle is widespread in nature, and is involved in numerous and fundamental processes. Representative examples are the carboxylate bridged diiron proteins, which perform a variety of different functions, ranging from reversible dioxygen binding to catalysis of dioxygen-dependent reactions, including epoxidation, desaturation, monohydroxylation, and radical formation. The "Due Ferri" (two-irons; DF) family of proteins is the result of a de novo design approach, aimed to reproduce in minimal four-helix bundle models the properties of the more complex natural diiron proteins, and to address how the amino acid sequence modulates their functions. The results so far obtained point out that asymmetric metal environments are essential to reprogram functions, and to achieve the specificity and selectivity of the natural enzymes. Here, we describe a design method that allows constructing asymmetric four-helix bundles through the covalent heterodimerization of two different α-helical harpins. In particular, starting from the homodimeric DF3 structure, we developed a protocol for covalently linking the two α2 monomers by using the Cu(I) catalyzed azide-alkyne cycloaddition. The protocol was then generalized, in order to include the construction of several linkers, in different protein positions. Our method is fast, low cost, and in principle can be applied to any couple of peptides/proteins we desire to link.
Collapse
Affiliation(s)
- M Chino
- University of Napoli Federico II, Napoli, Italy
| | - L Leone
- University of Napoli Federico II, Napoli, Italy
| | - O Maglio
- University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages-IBB, CNR, Napoli, Italy
| | - A Lombardi
- University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
18
|
Moser CC, Sheehan MM, Ennist NM, Kodali G, Bialas C, Englander MT, Discher BM, Dutton PL. De Novo Construction of Redox Active Proteins. Methods Enzymol 2016; 580:365-88. [PMID: 27586341 DOI: 10.1016/bs.mie.2016.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways.
Collapse
Affiliation(s)
- C C Moser
- University of Pennsylvania, Philadelphia, PA, United States
| | - M M Sheehan
- University of Pennsylvania, Philadelphia, PA, United States
| | - N M Ennist
- University of Pennsylvania, Philadelphia, PA, United States
| | - G Kodali
- University of Pennsylvania, Philadelphia, PA, United States
| | - C Bialas
- University of Pennsylvania, Philadelphia, PA, United States
| | - M T Englander
- University of Pennsylvania, Philadelphia, PA, United States
| | - B M Discher
- University of Pennsylvania, Philadelphia, PA, United States
| | - P L Dutton
- University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Olson TL, Espiritu E, Edwardraja S, Simmons CR, Williams JC, Ghirlanda G, Allen JP. Design of dinuclear manganese cofactors for bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:539-547. [PMID: 26392146 DOI: 10.1016/j.bbabio.2015.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Chad R Simmons
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
20
|
Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Eur J Inorg Chem 2015; 2015:3371-3390. [PMID: 27630532 PMCID: PMC5019575 DOI: 10.1002/ejic.201500470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron-oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco San Francisco, CA 94158, USA
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
21
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
22
|
Panda JJ, Chauhan VS. Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polym Chem 2014. [DOI: 10.1039/c4py00173g] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-assembling peptides with many potential biomedical applications.
Collapse
Affiliation(s)
- Jiban Jyoti Panda
- International Centre for Genetic Engineering and Biotechnology
- New Delhi 110067, India
- Institute of Nano Science and Technology
- Mohali, India
| | | |
Collapse
|
23
|
Zastrow ML, Pecoraro VL. Designing functional metalloproteins: from structural to catalytic metal sites. Coord Chem Rev 2013; 257:2565-2588. [PMID: 23997273 PMCID: PMC3756834 DOI: 10.1016/j.ccr.2013.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metalloenzymes efficiently catalyze some of the most important and difficult reactions in nature. For many years, coordination chemists have effectively used small molecule models to understand these systems. More recently, protein design has been shown to be an effective approach for mimicking metal coordination environments. Since the first designed proteins were reported, much success has been seen for incorporating metal sites into proteins and attaining the desired coordination environment but until recently, this has been with a lack of significant catalytic activity. Now there are examples of designed metalloproteins that, although not yet reaching the activity of native enzymes, are considerably closer. In this review, we highlight work leading up to the design of a small metalloprotein containing two metal sites, one for structural stability (HgS3) and the other a separate catalytic zinc site to mimic carbonic anhydrase activity (ZnN3O). The first section will describe previous studies that allowed for a high affinity thiolate site that binds heavy metals in a way that stabilizes three-stranded coiled coils. The second section will examine ways of preparing histidine rich environments that lead to metal based hydrolytic catalysts. We will also discuss other recent examples of the design of structural metal sites and functional metalloenzymes. Our work demonstrates that attaining the proper first coordination geometry of a metal site can lead to a significant fraction of catalytic activity, apparently independent of the type of secondary structure of the surrounding protein environment. We are now in a position to begin to meet the challenge of building a metalloenzyme systematically from the bottom-up by engineering and analyzing interactions directly around the metal site and beyond.
Collapse
Affiliation(s)
- Melissa L. Zastrow
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
King NP, Lai YT. Practical approaches to designing novel protein assemblies. Curr Opin Struct Biol 2013; 23:632-8. [PMID: 23827813 DOI: 10.1016/j.sbi.2013.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/21/2013] [Accepted: 06/01/2013] [Indexed: 12/29/2022]
Abstract
Molecular self-assembly offers a means by which sophisticated materials can be constructed with unparalleled precision. Designing self-assembling protein structures is of particular interest as a result of the unique functional capabilities of proteins. Custom-designed protein materials could lead to new possibilities in therapeutics, bioenergy, and materials science. Although the field was long hampered by the challenges involved in designing such complex molecules, novel approaches and computational tools have recently led to remarkable progress. Here we review recent design studies in the context of three fundamental aspects of self-assembling materials: subunit organization, subunit interactions, and regulation of assembly.
Collapse
Affiliation(s)
- Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
25
|
Der BS, Machius M, Miley MJ, Mills JL, Szyperski T, Kuhlman B. Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J Am Chem Soc 2011; 134:375-85. [PMID: 22092237 DOI: 10.1021/ja208015j] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 μM. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (Cα rmsd = 1.4 Å).
Collapse
Affiliation(s)
- Bryan S Der
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chakraborty S, Kravitz JY, Thulstrup PW, Hemmingsen L, DeGrado WF, Pecoraro VL. Design of a three-helix bundle capable of binding heavy metals in a triscysteine environment. Angew Chem Int Ed Engl 2011; 50:2049-53. [PMID: 21344549 PMCID: PMC3058785 DOI: 10.1002/anie.201006413] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 11/06/2022]
Affiliation(s)
- Saumen Chakraborty
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chakraborty S, Yudenfreund Kravitz J, Thulstrup PW, Hemmingsen L, DeGrado WF, Pecoraro VL. Design of a Three-Helix Bundle Capable of Binding Heavy Metals in a Triscysteine Environment. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Zou Z, Zheng Q, Wu Y, Guo X, Yang S, Li J, Pan H. Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons. J Biomed Mater Res A 2010; 95:1125-31. [PMID: 20878982 DOI: 10.1002/jbm.a.32910] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/25/2010] [Accepted: 06/07/2010] [Indexed: 11/07/2022]
Abstract
We report here a designer self-assembling peptide nanofiber scaffold developed specifically for nerve tissue engineering. We synthesized a peptide FGL-RADA containing FGL (EVYVVAENQQGKSKA), the motif of neural cell adhesion molecule (NCAM), and then attended to make a FGL nanofiber scaffold (FGL-NS) by assembling FGL-RADA with the peptide RADA-16 (AcN-RADARADARADARADA-CONH2). The microstructures of the scaffolds were tested using atomic force microscopy (AFM), and rheological properties of materials were accessed. Then we demonstrated the biocompatibility and bioactivity of FGL-NS for rat dorsal root ganglion neurons (DRGn). We found that the designer self-assembling peptide scaffold was noncytotoxic to neurons and able to promote adhesion and neurite sprouting of neurons. Our results indicate that the designer peptide scaffold containing FGL had excellent biocompatibility and bioactivity with adult sensory neurons and could be used for neuronal regeneration.
Collapse
Affiliation(s)
- Zhenwei Zou
- Department of Orthopaedics, Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Torres Martin de Rosales R, Faiella M, Farquhar E, Que L, Andreozzi C, Pavone V, Maglio O, Nastri F, Lombardi A. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions. J Biol Inorg Chem 2010; 15:717-28. [PMID: 20225070 PMCID: PMC2915772 DOI: 10.1007/s00775-010-0639-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 02/14/2010] [Indexed: 10/19/2022]
Abstract
The design, synthesis, and metal-binding properties of DF3, a new de novo designed di-iron protein model are described ("DF" represents due ferri, Italian for "two iron," "di-iron"). DF3 is the latest member of the DF family of synthetic proteins. They consist of helix-loop-helix hairpins, designed to dimerize and form an antiparallel four-helix bundle that encompasses a metal-binding site similar to those of non-heme carboxylate-bridged di-iron proteins. Unlike previous DF proteins, DF3 is highly soluble in water (up to 3 mM) and forms stable complexes with several metal ions (Zn, Co, and Mn), with the desired secondary structure and the expected stoichiometry of two ions per protein. UV-vis studies of Co(II) and Fe(III) complexes confirm a metal-binding environment similar to previous di-Co(II)- and di-Fe(III)-DF proteins, including the presence of a mu-oxo-di-Fe(III) unit. Interestingly, UV-vis, EPR, and resonance Raman studies suggest the interaction of a tyrosine adjacent to the di-Fe(III) center. The design of DF3 was aimed at increasing the accessibility of small molecules to the active site of the four-helix bundle. Indeed, binding of azide to the di-Fe(III) site demonstrates a more accessible metal site compared with previous DFs. In fact, fitting of the binding curve to the Hill equation allows us to quantify a 150% accessibility enhancement, with respect to DF2. All these results represent a significant step towards the development of a functional synthetic DF metalloprotein.
Collapse
Affiliation(s)
| | - Marina Faiella
- Department of Chemistry, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Erik Farquhar
- Department of Chemistry, Centre for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lawrence Que
- Department of Chemistry, Centre for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA
| | - Concetta Andreozzi
- Department of Chemistry, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Chemistry, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemistry, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemistry, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemistry, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy,
| |
Collapse
|
30
|
Fry HC, Lehmann A, Saven JG, DeGrado WF, Therien MJ. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore. J Am Chem Soc 2010; 132:3997-4005. [PMID: 20192195 PMCID: PMC2856663 DOI: 10.1021/ja907407m] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.
Collapse
Affiliation(s)
- H. Christopher Fry
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Andreas Lehmann
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Jeffrey G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - William F. DeGrado
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
- Department of Biochemistry and Molecular Biophysics, Johnson Foundation, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059
| | | |
Collapse
|
31
|
Abstract
The rational design of artificial enzymes, either by applying physico-chemical intuition of protein structure and function or with the aid of computational methods, is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way from simple α-helical peptide catalysts to proteins that facilitate multistep chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes that could be used to improve the speed and selectivity of artificial catalysts.
Collapse
Affiliation(s)
- Vikas Nanda
- Robert Wood Johnson Medical School - UMDNJ Biochemistry, Center for Advanced Biotechnology and Medicine, 679 Hoes Lane West, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
32
|
Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Abstract
Helical bundles which bind heme and porphyrin cofactors have been popular targets for cofactor-containing de novo protein design. By analyzing a highly nonredundant subset of the protein databank we have determined a rotamer distribution for helical histidines bound to heme cofactors. Analysis of the entire nonredundant database for helical sequence preferences near the ligand histidine demonstrated little preference for amino acid side chain identity, size, or charge. Analysis of the database subdivided by ligand histidine rotamer, however, reveals strong preferences in each case, and computational modeling illuminates the structural basis for some of these findings. The majority of the rotamer distribution matches that predicted by molecular simulation of a single porphyrin-bound histidine residue placed in the center of an all-alanine helix, and the deviations explain two prominent features of natural heme protein binding sites: heme distortion in the case of the cytochromes C in the m166 histidine rotamer, and a highly prevalent glycine residue in the t73 histidine rotamer. These preferences permit derivation of helical consensus sequence templates which predict optimal side chain-cofactor packing interactions for each rotamer. These findings thus promise to guide future design endeavors not only in the creation of higher affinity heme and porphyrin binding sites, but also in the direction of bound cofactor geometry.
Collapse
Affiliation(s)
| | - Christian Fufezan
- Department of Physics, the City College of New York, New York, NY 10031
| | - Ronald L. Koder
- Department of Physics, the City College of New York, New York, NY 10031
| |
Collapse
|
34
|
|
35
|
Pantoja-Uceda D, Pastor MT, Salgado J, Pineda-Lucena A, Pérez-Payá E. Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously. J Pept Sci 2008; 14:845-54. [DOI: 10.1002/psc.1015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Calhoun JR, Bell CB, Smith TJ, Thamann TJ, DeGrado WF, Solomon EI. Oxygen reactivity of the biferrous site in the de novo designed four helix bundle peptide DFsc: nature of the "intermediate" and reaction mechanism. J Am Chem Soc 2008; 130:9188-9. [PMID: 18572936 DOI: 10.1021/ja801657y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DFsc and DFscE11D de novo designed protein scaffolds support biomimetic diiron cofactor sites that react with dioxygen forming a 520 nm "intermediate" species with an apparent pseudo-first-order formation rate constant of 2.2 and 4.8 s-1, respectively. Resonance Raman spectroscopy shows that this absorption feature is due to a phenolate-to-ferric charge transfer transition arising from a single tyrosine residue coordinating terminally to one of the ferric ions in the site. Phenol coordination could provide a proton to promote rapid loss of a putative peroxo species.
Collapse
Affiliation(s)
- Jennifer R Calhoun
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | | | | | | | |
Collapse
|
37
|
Maglio O, Nastri F, Martin de Rosales RT, Faiella M, Pavone V, DeGrado WF, Lombardi A. Diiron-containing metalloproteins: Developing functional models. CR CHIM 2007. [DOI: 10.1016/j.crci.2007.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Touw DS, Nordman CE, Stuckey JA, Pecoraro VL. Identifying important structural characteristics of arsenic resistance proteins by using designed three-stranded coiled coils. Proc Natl Acad Sci U S A 2007; 104:11969-74. [PMID: 17609383 PMCID: PMC1924535 DOI: 10.1073/pnas.0701979104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Indexed: 11/18/2022] Open
Abstract
Arsenic, a contaminant of water supplies worldwide, is one of the most toxic inorganic ions. Despite arsenic's health impact, there is relatively little structural detail known about its interactions with proteins. Bacteria such as Escherichia coli have evolved arsenic resistance using the Ars operon that is regulated by ArsR, a repressor protein that dissociates from DNA when As(III) binds. This protein undergoes a critical conformational change upon binding As(III) with three cysteine residues. Unfortunately, structures of ArsR with or without As(III) have not been reported. Alternatively, de novo designed peptides can bind As(III) in an endo configuration within a thiolate-rich environment consistent with that proposed for both ArsR and ArsD. We report the structure of the As(III) complex of Coil Ser L9C to a 1.8-A resolution, providing x-ray characterization of As(III) in a Tris thiolate protein environment and allowing a structural basis by which to understand arsenated ArsR.
Collapse
Affiliation(s)
| | | | | | - Vincent L. Pecoraro
- *Department of Chemistry
- Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Schmittel M, Kalsani V, Michel C, Mal P, Ammon H, Jäckel F, Rabe JP. Towards Nanotubular Structures with Large Voids: Dynamic Heteroleptic Oligophenanthroline Metallonanoscaffolds and their Solution-State Properties. Chemistry 2007; 13:6223-37. [PMID: 17508376 DOI: 10.1002/chem.200700020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The assembly of a rigid macrocycle with two exotopic phenanthroline binding sites in combination with linear bis- or trisphenanthrolines and copper(I) ions is used to generate nanoscale double and triple deckers, the latter showing a tubular structure. With supramolecular chemistry expanding to dynamic, large cavity, nanoscale structures, it becomes increasingly important to use robust assembly protocols as well as reliable characterization techniques. To fully elucidate and to describe the dynamic nature of metallonanoscaffolds with large voids, we applied a battery of both direct and indirect solution-state characterization methods. These methods along with the conventional direct methods provide a very useful tool for characterizing tubular nanoscaffold aggregates.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Koder RL, Dutton PL. Intelligent design: the de novo engineering of proteins with specified functions. Dalton Trans 2006:3045-51. [PMID: 16786062 DOI: 10.1039/b514972j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the principal successes of de novo protein design has been the creation of small, robust protein-cofactor complexes which can serve as simplified models, or maquettes, of more complicated multicofactor protein complexes commonly found in nature. Different maquettes, generated by us and others, recreate a variety of aspects, or functional elements, recognized as parts of natural enzyme function. The current challenge is to both expand the palette of functional elements and combine and/or integrate them in recreating familiar enzyme activities or generating novel catalysis in the simplest protein scaffolds.
Collapse
Affiliation(s)
- Ronald L Koder
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Discher BM, Noy D, Strzalka J, Ye S, Moser CC, Lear JD, Blasie JK, Dutton PL. Design of amphiphilic protein maquettes: controlling assembly, membrane insertion, and cofactor interactions. Biochemistry 2005; 44:12329-43. [PMID: 16156646 PMCID: PMC2574520 DOI: 10.1021/bi050695m] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed polypeptides combining selected lipophilic (LP) and hydrophilic (HP) sequences that assemble into amphiphilic (AP) alpha-helical bundles to reproduce key structure characteristics and functional elements of natural membrane proteins. The principal AP maquette (AP1) developed here joins 14 residues of a heme binding sequence from a structured diheme-four-alpha-helical bundle (HP1), with 24 residues of a membrane-spanning LP domain from the natural four-alpha-helical M2 channel of the influenza virus, through a flexible linking sequence (GGNG) to make a 42 amino acid peptide. The individual AP1 helices (without connecting loops) assemble in detergent into four-alpha-helical bundles as observed by analytical ultracentrifugation. The helices are oriented parallel as indicated by interactions typical of adjacent hemes. AP1 orients vectorially at nonpolar-polar interfaces and readily incorporates into phospholipid vesicles with >97% efficiency, although most probably without vectorial bias. Mono- and diheme-AP1 in membranes enhance functional elements well established in related HP analogues. These include strong redox charge coupling of heme with interior glutamates and internal electric field effects eliciting a remarkable 160 mV splitting of the redox potentials of adjacent hemes that leads to differential heme binding affinities. The AP maquette variants, AP2 and AP3, removed heme-ligating histidines from the HP domain and included heme-ligating histidines in LP domains by selecting the b(H) heme binding sequence from the membrane-spanning d-helix of respiratory cytochrome bc(1). These represent the first examples of AP maquettes with heme and bacteriochlorophyll binding sites located within the LP domains.
Collapse
Affiliation(s)
- Bohdana M Discher
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ghosh D, Pecoraro VL. Probing metal-protein interactions using a de novo design approach. Curr Opin Chem Biol 2005; 9:97-103. [PMID: 15811792 DOI: 10.1016/j.cbpa.2005.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
De novo design of metalloproteins provides a valuable tool for understanding the structural constraints and functional attributes of natural biological systems using first principles. This review focuses on recent research aimed primarily at probing the subtle interactions between metals and proteins in designed systems. Considerable attention has focussed on redefining novel design methods used in mimicking natural hemeproteins, mononuclear and dinuclear metallopeptides and functional biological electron-transfer proteins. The present results indicate that the field of metalloprotein design is contributing significantly to the understanding of metals in biology.
Collapse
Affiliation(s)
- Debdip Ghosh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
43
|
Calhoun JR, Nastri F, Maglio O, Pavone V, Lombardi A, DeGrado WF. Artificial diiron proteins: from structure to function. Biopolymers 2005; 80:264-78. [PMID: 15700297 DOI: 10.1002/bip.20230] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
De novo protein design provides an attractive approach for the construction of models to probe the features required for the function of complex metalloproteins. These minimal models contain the essential elements believed necessary for activity of the protein. In this article, we summarize the design, structure determination, and functional properties of a family of artificial diiron proteins.
Collapse
Affiliation(s)
- Jennifer R Calhoun
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Albrecht T, Li W, Ulstrup J, Haehnel W, Hildebrandt P. Electrochemical and Spectroscopic Investigations of Immobilized De Novo Designed Heme Proteins on Metal Electrodes. Chemphyschem 2005; 6:961-70. [PMID: 15884083 DOI: 10.1002/cphc.200400597] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme configuration. The proteins possess different binding domains on the top surfaces of the bundles to allow for electrostatic, covalent, and hydrophobic binding to metal electrodes. Electrostatic immobilization was achieved for proteins with lysine-rich binding domains (MOP-P) that adsorb to electrodes covered by self-assembled monolayers of mercaptopropionic acid, whereas cysteamine-based monolayers were employed for covalent attachment of proteins with cysteine residues in the binding domain (MOP-C). Immobilized proteins were studied by surface-enhanced resonance Raman (SERR) spectroscopy and electrochemical methods. For all proteins, immobilization causes a decrease in protein stability and a loosening of the helix packing, as reflected by a partial dissociation of a histidine ligand in the ferrous state and very low redox potentials. For the covalently attached MOP-C, the overall interfacial redox process involves the coupling of electron transfer and heme ligand dissociation, which was analyzed by time-resolved SERR spectroscopy. Electron transfer was found to be significantly slower for the mono-histidine-coordinated than for the bis-histidine-coordinated heme. For the latter, the formal heterogeneous electron-transfer rate constant of 13 s(-1) is similar to those reported for natural heme proteins with comparable electron-transfer distances, which indicates that covalently bound synthetic heme proteins provide efficient electronic communication with a metal electrode as a prerequisite for potential biotechnological applications.
Collapse
Affiliation(s)
- Tim Albrecht
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium, Sekr. PC 14, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Licini G, Prins LJ, Scrimin P. Oligopeptide Foldamers: From Structure to Function. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400521] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giulia Licini
- University of Padova, Department of Chemical Sciences, and ITM‐CNR, Padova Section, Via Marzolo, 1, 35131 Padova, Italy
| | - Leonard J. Prins
- University of Padova, Department of Chemical Sciences, and ITM‐CNR, Padova Section, Via Marzolo, 1, 35131 Padova, Italy
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, and ITM‐CNR, Padova Section, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
46
|
Abstract
The de novo design of catalytic proteins provides a stringent test of our understanding of enzyme function, while simultaneously laying the groundwork for the design of novel catalysts. Here we describe the design of an O(2)-dependent phenol oxidase whose structure, sequence, and activity are designed from first principles. The protein catalyzes the two-electron oxidation of 4-aminophenol (k(cat)/K(M) = 1,500 M(-1).min(-1)) to the corresponding quinone monoimine by using a diiron cofactor. The catalytic efficiency is sensitive to changes of the size of a methyl group in the protein, illustrating the specificity of the design.
Collapse
Affiliation(s)
- J Kaplan
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
47
|
Wu AJ, Penner-Hahn JE, Pecoraro VL. Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev 2004; 104:903-38. [PMID: 14871145 DOI: 10.1021/cr020627v] [Citation(s) in RCA: 383] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amy J Wu
- Willard H Dow Laboratories, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
48
|
Huang SS, Koder RL, Lewis M, Wand AJ, Dutton PL. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange. Proc Natl Acad Sci U S A 2004; 101:5536-41. [PMID: 15056758 PMCID: PMC397418 DOI: 10.1073/pnas.0306676101] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic heme-binding four-alpha-helix bundles show promise as working model systems, maquettes, for understanding heme cofactor-protein assembly and function in oxidoreductases. Despite successful inclusion of several key functional elements of natural proteins into a family of heme protein maquettes, the lack of 3D structures, due principally to conformational heterogeneity, has prevented them from achieving their full potential. We report here the design and synthesis of HP-1, a disulfide-bridged two-alpha-helix peptide that self-assembles to form an antiparallel twofold symmetric diheme four-alpha-helix bundle protein with a stable conformation on the NMR time-scale. The HP-1 design strategy began with the x-ray crystal structure of the apomaquette L31M, an apomaquette derived from the structurally heterogeneous tetraheme-binding H10H24 prototype. L31M was functionally redesigned to accommodate two hemes ligated to histidines and to retain the strong coupling of heme oxidation-reduction to glutamate acid-base transitions and proton exchange that was characterized in molten globule predecessors. Heme insertion was modeled with angular constraints statistically derived from natural proteins, and the pattern of hydrophobic and hydrophilic residues on each helix was then altered to account for this large structural reorganization. The transition to structured holomaquette involved the alteration of 6 of 31 residues in each of the four identical helices and, unlike our earlier efforts, required no design intermediates. Oxidation-reduction of both hemes displays an unusually low midpoint potential (-248 mV vs. normal hydrogen electrode at pH 9.0), which is strongly coupled to proton binding, as designed.
Collapse
Affiliation(s)
- Steve S Huang
- The Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
49
|
Tshuva EY, Lippard SJ. Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. Chem Rev 2004; 104:987-1012. [PMID: 14871147 DOI: 10.1021/cr020622y] [Citation(s) in RCA: 544] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edit Y Tshuva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
50
|
Calhoun JR, Kono H, Lahr S, Wang W, DeGrado WF, Saven JG. Computational design and characterization of a monomeric helical dinuclear metalloprotein. J Mol Biol 2004; 334:1101-15. [PMID: 14643669 DOI: 10.1016/j.jmb.2003.10.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The de novo design of di-iron proteins is an important step towards understanding the diversity of function among this complex family of metalloenzymes. Previous designs of due ferro (DF) proteins have resulted in tetrameric and dimeric four-helix bundles having crystallographically well-defined structures and active-site geometries. Here, the design and characterization of DFsc, a 114 residue monomeric four-helix bundle, is presented. The backbone was modeled using previous oligomeric structures and appropriate inter-helical turns. The identities of 26 residues were predetermined, including the primary and secondary ligands in the active site, residues involved in active site accessibility, and the gamma beta gamma beta turn between helices 2 and 3. The remaining 88 amino acid residues were determined using statistical computer aided design, which is based upon a recent statistical theory of protein sequences. Rather than sampling sequences, the theory directly provides the site-specific amino acid probabilities, which are then used to guide sequence design. The resulting sequence (DFsc) expresses well in Escherichia coli and is highly soluble. Sedimentation studies confirm that the protein is monomeric in solution. Circular dichroism spectra are consistent with the helical content of the target structure. The protein is structured in both the apo and the holo forms, with the metal-bound form exhibiting increased stability. DFsc stoichiometrically binds a variety of divalent metal ions, including Zn(II), Co(II), Fe(II), and Mn(II), with micromolar affinities. 15N HSQC NMR spectra of both the apo and Zn(II) proteins reveal excellent dispersion with evidence of a significant structural change upon metal binding. DFsc is then a realization of complete de novo design, where backbone structure, activity, and sequence are specified in the design process.
Collapse
Affiliation(s)
- Jennifer R Calhoun
- Department of Biochemistry and Molecular Biophysics, Johnson Foundation, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|