1
|
Piao J, Chen H, Piao X, Cheng Z, Zhao F, Cui R, Li B. Intermittent fasting produces antidepressant-like effects by modulating dopamine D1 receptors in the medial prefrontal cortex. Neurobiol Dis 2025; 211:106931. [PMID: 40311880 DOI: 10.1016/j.nbd.2025.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Nutritional psychiatry has gained increasing attention, particularly in exploring dietary interventions for depression treatment. As a potential non-drug intervention, intermittent fasting (IF) has gradually attracted the interest of researchers, but its specific neurobiological mechanisms in depression remain unclear. The medial prefrontal cortex (mPFC) dopamine D1 receptors (Drd1) are significant in stress response and serve as a molecular target for rapid-acting antidepressants. Our previous study indicated that 9-h fasting produces an antidepressant-like effect by modulating dopamine (DA) receptors. However, whether IF produces antidepressant-like effects through actions on DA receptor-mediated mechanisms remains unclear. Here, we investigated the effects of IF on improving depression-like behavior induced by Chronic Unpredictable Mild Stress (CUMS) in mice and explored whether these effects are regulated by Drd1. We found that IF alleviated CUMS-induced depression-like behavior, increased c-Fos expression in the mPFC and hippocampus of CUMS mice, and activated the Drd1-cAMP-PKA-DARPP-32-CREB-BDNF signaling pathway. The antidepressant-like effects of IF were reversed by the Drd1 antagonist SCH23390. Additionally, optogenetic activation of Drd1-expressing neurons in the mPFC improved CUMS-induced depression-like behavior, while optogenetic inhibition suppressed the IF-induced antidepressant-like effects. These findings imply that Drd1 plays a crucial role in the antidepressant-like effects of IF and offer valuable insights into the potential application of IF in clinical depression treatment.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Xinmiao Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Ziqian Cheng
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China; College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China.
| |
Collapse
|
2
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 PMCID: PMC11817889 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
3
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
4
|
Wang J, Zhang C, Jiang T, He Y, Wu Y, Zhou D, Yan J, Zhou Y. CDK5: Insights into its roles in diseases. Mol Biol Rep 2025; 52:145. [PMID: 39836243 DOI: 10.1007/s11033-025-10253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis. This review explores the structure and biological functions of CDK5, highlighting its regulatory roles in disease development through the phosphorylation of diverse substrate proteins. Additionally, we examine the therapeutic potential of CDK5 inhibition, offering novel perspectives for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahui Wang
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, China
| | - Tingting Jiang
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China
| | - Yi He
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China
| | - Yongli Wu
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China
| | - Dongsheng Zhou
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jianguo Yan
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, China.
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, 541199, China.
| | - Yali Zhou
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, China.
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
5
|
Daniels S, El Mansari M, Blier P. AMPA receptors modulate enhanced dopamine neuronal activity induced by the combined administration of venlafaxine and brexpiprazole. Neuropsychopharmacology 2024; 49:2042-2051. [PMID: 39147870 PMCID: PMC11480427 DOI: 10.1038/s41386-024-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Addition of dopamine (DA)/serotonin (5-HT) partial agonists to 5-HT/norepinephrine (NE) reuptake inhibitors are commonly used to enhance the antidepressant response. The simultaneous inhibition of 5-HT and NE transporters with venlafaxine and its combination of brexpiprazole, which blocks the α2-adrenergic autoreceptor on NE terminals, could constitute a superior strategy. Anesthetized rats received venlafaxine and brexpiprazole for 2 and 14 days, then the firing activity of dorsal raphe nucleus 5-HT, locus coeruleus NE, and ventral tegmental area DA neurons were assessed. Net 5-HT and NE neurotransmissions were evaluated by assessing the tonic activation of 5-HT1A, and α1- and α2-adrenergic receptors in the hippocampus. The combination of brexpiprazole with venlafaxine resulted in normalized 5-HT and NE neuron activity, which occurred earlier than that with venlafaxine alone. A significant enhancement of the tonic activation of 5-HT1A receptors and α2-adrenoceptors in the hippocampus was observed following administration of the combination for 14 days. The combination more than doubled the number of DA neurons per electrode descent, after both 2 and 14 days, while this increase was observed only after 14 days of venlafaxine administration. This increase in population activity was prevented by NBQX, an AMPA receptor antagonist. In conclusion, early during administration, the combination of venlafaxine with brexpiprazole normalized firing activity of 5-HT and NE neurons, and increased the population activity of DA neurons through AMPA receptors. In the hippocampus, there was an overall increase in both 5-HT and NE transmissions. These results imply that this strategy could be a rapid-acting approach to treat depression.
Collapse
Affiliation(s)
- Stephen Daniels
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, K1Z 7K4, Ottawa, Canada
| | - Mostafa El Mansari
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, K1Z 7K4, Ottawa, Canada.
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, K1Z 7K4, Ottawa, Canada
| |
Collapse
|
6
|
Zhang M, Liu LY, Xu Y, Wang WZ, Qiu NZ, Zhang FF, Zhang F, Wang XD, Chen W, Xu XY, Gao YF, Chen MH, Li YQ, Zhang HT, Wang H. Imbalance of multiple neurotransmitter pathways leading to depression-like behavior and cognitive dysfunction in the triple transgenic mouse model of Alzheimer disease. Metab Brain Dis 2023; 38:2465-2476. [PMID: 37256468 DOI: 10.1007/s11011-023-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Depression is among the most frequent psychiatric comorbid conditions in Alzheimer disease (AD). However, pharmacotherapy for depressive disorders in AD is still a big challenge, and the data on the efffcacy of current antidepressants used clinically for depressive symptoms in patients with AD remain inconclusive. Here we investigated the mechanism of the interactions between depression and AD, which we believe would aid in the development of pharmacological therapeutics for the comorbidity of depression and AD. Female APP/PS1/Tau triple transgenic (3×Tg-AD) mice at 24 months of age and age- and sex-matched wild-type (WT) mice were used. The shuttle-box passive avoidance test (PAT) were implemented to assess the abilities of learning and memory, and the open field test (OFT) and the tail suspension test (TST) were used to assess depression-like behavior. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used to detect the level of neurotransmitters related to depression in the hippocampus of mice. The data was identified by orthogonal projections to latent structures discriminant analysis (OPLS-DA). Most neurotransmitters exert their effects by binding to the corresponding receptor, so the expression of relative receptors in the hippocampus of mice was detected using Western blot. Compared to WT mice, 3×Tg-AD mice displayed significant cognitive impairment in the PAT and depression-like behavior in the OFT and TST. They also showed significant decreases in the levels of L-tyrosine, norepinephrine, vanillylmandelic acid, 5-hydroxytryptamine, and acetylcholine, in contrast to significant increases in 5-hydroxyindoleacetic acid, L-histidine, L-glutamine, and L-arginine in the hippocampus. Moreover, the expression of the alpha 1a adrenergic receptor (ADRA1A), serotonin 1 A receptor (5HT1A), and γ-aminobutyric acid A receptor subunit alpha-2 (GABRA2) was significantly downregulated in the hippocampus of 3×Tg-AD mice, while histamine H3 receptor (H3R) expression was significantly upregulated. In addition, the ratio of phosphorylated cAMP-response element-binding protein (pCREB) and CREB was significantly decreased in the hippocampus of 3×Tg-AD mice than WT mice. We demonstrated in the present study that aged female 3×Tg-AD mice showed depression-like behavior accompanied with cognitive dysfunction. The complex and diverse mechanism appears not only relevant to the imbalance of multiple neurotransmitter pathways, including the transmitters and receptors of the monoaminergic, GABAergic, histaminergic, and cholinergic systems, but also related to the changes in L-arginine and CREB signaling molecules.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Li-Yuan Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yong Xu
- Taian City Central Hospital, Tai'an, Shandong, 271016, China
| | - Wen-Zhi Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Nian-Zhuang Qiu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Xiao-Dan Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Xiao-Yan Xu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yong-Feng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Mei-Hua Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yu-Qin Li
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, 266073, China.
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| |
Collapse
|
7
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN inhibits dopamine D1 receptor-mediated seizure activity via DARPP-32 serine 97 dephosphorylation in the mouse hippocampus. Neuropharmacology 2023; 228:109462. [PMID: 36792029 DOI: 10.1016/j.neuropharm.2023.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Dopamine plays a central role in the regulation of psychomotor functions in the brain. Furthermore, the dopaminergic system is involved in the ictogenesis in human patients and animal models of epilepsy. Dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32) plays an important role in the regulation of interactions between dopamine and glutamate receptors in neurons. Indeed, SKF 83822 (a specific D1 receptor agonist) facilitates DARPP-32-mediated protein phosphatase 1 (PP1) inhibition leading to the increase in phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR), which potentiates channel activities and currents and thereby generates seizure activity. In the present study, we found that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN), a selective phosphatase for serine (S) residues, attenuated seizure susceptibility in response to SKF 83822 by dephosphorylating DARPP-32 S97 site. Similarly, inhibition of DARPP-32 S97 phosphorylation by 2-[4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazole-1-yl]acetic acid (TMCB; a selective casein kinase 2 inhibitor) attenuated SKF 83822-induced seizure activity. These inhibitory effects of PLPP/CIN and TMCB were relevant to the regulations of DARPP-32-PP1-AMPAR signaling pathway. Therefore, our findings suggest that PLPP/CIN may be a modulator in dopaminergic neurotransmission as well as glutamatergic systems, and that the PLPP/CIN-mediated DARPP-32 regulation may be one of the potential therapeutic targets for medication of seizure or epilepsy induced by D1 receptor hyperactivation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
8
|
Halaris A, Cook J. The Glutamatergic System in Treatment-Resistant Depression and Comparative Effectiveness of Ketamine and Esketamine: Role of Inflammation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:487-512. [PMID: 36949323 DOI: 10.1007/978-981-19-7376-5_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The glutamatergic system is the primary excitatory pathway within the CNS and is responsible for cognition, memory, learning, emotion, and mood. Because of its significant importance in widespread nervous system function, it is tightly regulated through multiple mechanisms, such as glutamate recycling, microglial interactions, and inflammatory pathways. Imbalance within the glutamatergic system has been implicated in a wide range of pathological conditions including neurodegenerative conditions, neuromuscular conditions, and mood disorders including depression. Major depressive disorder (MDD) is the most common mood disorder worldwide, has a high prevalence rate, and afflicts approximately 280 million people. While there are numerous treatments for the disease, 30-40% of patients are unresponsive to treatment and deemed treatment resistant; approximately another third experience only partial improvement (World Health Organization, Depression fact sheet [Internet], 2020). Esketamine, the S-enantiomer of ketamine, was approved by the Food and Drug Administration for treatment-resistant depression (TRD) in 2019 and has offered new hope to patients. It is the first treatment targeting the glutamatergic system through a complex mechanism. Numerous studies have implicated imbalance in the glutamatergic system in depression and treatment resistance. Esketamine and ketamine principally work through inhibition of the NMDA receptor, though more recent studies have implicated numerous other mechanisms mediating the antidepressant efficacy of these agents. These mechanisms include increase in brain-derived neurotrophic factor (BDNF), activation of mammalian target of the rapamycin complex (mTORC), and reduction in inflammation. Esketamine and ketamine have been shown to decrease inflammation in numerous ways principally through reducing pro-inflammatory cytokines (e.g., TNF-α, IL-6) (Loix et al., Acta Anaesthesiol Belg 62(1):47-58, 2011; Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021). This anti-inflammatory effect has also been shown to be involved in the antidepressive properties of both ketamine and esketamine (Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021).
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - John Cook
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
9
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
10
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN-mediated DARPP-32 serine 97 dephosphorylation delays the seizure onset in response to kainic acid in the mouse hippocampus. Neuropharmacology 2022; 219:109238. [PMID: 36055413 DOI: 10.1016/j.neuropharm.2022.109238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32)-mediated protein phosphatase 1 (PP1) inhibition leads to the increase in phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR), which potentiates channel activity and current and thereby may facilitate seizure activity. In the present study, we found that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) transiently dephosphorylated DARPP-32 serine (S) 97 site in the early time window, and casein kinase 2 (CK2) subsequently phosphorylated this site in the later time points after kainic acid (KA) injection, which increased the latency of seizure onset in response to KA, but exacerbated the intensity (severity), duration and progression of seizures. TMCB (a CK2 inhibitor) delayed the seizure onset in response to KA, concomitant with the reduced DARPP-32 S97 phosphorylation. Therefore, our findings suggest that PLPP/CIN may play an important role in the latency of seizure onset via DARPP-32-PP1-AMPAR signaling pathway, and may be one of the potential therapeutic targets for medication of seizure or epilepsy.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
11
|
Mao LM, Mathur N, Wang JQ. Downregulation of surface AMPA receptor expression in the striatum following prolonged social isolation, a role of mGlu5 receptors. IBRO Neurosci Rep 2022; 13:22-30. [PMID: 35711245 PMCID: PMC9193854 DOI: 10.1016/j.ibneur.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022] Open
Abstract
Major depressive disorder is a common and serious mood illness. The molecular mechanisms underlying the pathogenesis and symptomatology of depression are poorly understood at present. Multiple neurotransmitter systems are believed to be implicated in depression. Increasing evidence supports glutamatergic transmission as a critical element in depression and antidepressant activity. In this study, we investigated adaptive changes in expression of AMPA receptors in a key limbic reward structure, the striatum, in response to an anhedonic model of depression. Prolonged social isolation in adult rats caused anhedonic/depression- and anxiety-like behavior. In these depressed rats, surface levels of AMPA receptors, mainly GluA1 and GluA3 subunits, were reduced in the nucleus accumbens (NAc). Surface GluA1/A3 expression was also reduced in the caudate putamen (CPu) following chronic social isolation. No change was observed in expression of presynaptic synaptophysin, postsynaptic density-95, and dendritic microtubule-associated protein 2 in the striatum. Noticeably, chronic treatment with the metabotropic glutamate (mGlu) receptor 5 antagonist MTEP reversed the reduction of AMPA receptors in the NAc and CPu. MTEP also prevented depression- and anxiety-like behavior induced by social isolation. These data indicate that adulthood prolonged social isolation induces the adaptive downregulation of GluA1/A3-containing AMPA receptor expression in the limbic striatum. mGlu5 receptor activity is linked to this downregulation, and antagonism of mGlu5 receptors produces an antidepressant effect in this anhedonic model of depression.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
- ANOVA, analysis of variance
- Antidepressant
- CDH2, Cadherin-2
- CPu, caudate putamen
- Caudate putamen
- GluA1
- MAP-2, microtubule-associated protein 2
- MTEP
- MTEP, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine
- Metabotropic glutamate receptor
- NAc, nucleus accumbens
- NCAD, neural cadherin
- Nucleus accumbens
- PFC, prefrontal cortex
- PSD-95, postsynaptic density-95
- Social isolation
- mGlu, metabotropic glutamate
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nirav Mathur
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA,Correspondence to: Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA.
| |
Collapse
|
12
|
Shin J, Lee J, Choi J, Ahn BT, Jang SC, You SW, Koh DY, Maeng S, Cha SY. Rapid-Onset Antidepressant-Like Effect of Nelumbinis semen in Social Hierarchy Stress Model of Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6897359. [PMID: 35677378 PMCID: PMC9168086 DOI: 10.1155/2022/6897359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Depression is a disease with increasing prevalence worldwide, and it is necessary to develop a therapeutic agent with better efficacy than existing antidepressant drugs. Antidepressants that act on the glutamatergic nervous system, such as ketamine, have a rapid-onset antidepressant effect and are effective against treatment-resistant depression. However, because of the addictive potential of ketamine, alternative substances without psychological side effects are recommended. In particular, many natural compounds have been tested for their antidepressant effects. The antidepressant effects of Nelumbinis semen (NS) have been tested in many studies, along with the various actions of NS on the glutamatergic system. Thus, it was expected that NS might have a rapid-onset antidepressant effect. To test the antidepressant potential, despair and anhedonic behaviors were measured after administering NS to mice exposed to social hierarchy stress (SHS), and biochemical changes in the prefrontal cortex and hippocampus were analyzed. NS reduced despair-like responses in the forced swim test and tail suspension test. Mice exposed to SHS showed depression-like responses such as increased despair, reduced hedonia, and an anxiety-like response in the novelty suppressed feeding test. NS, but not fluoxetine, improved those depression-like behaviors after acute treatment, and NBQX, an AMPA receptor blocker, inhibited the antidepressant-like effects of NS. The antidepressant-like effect of NS was related to enhanced phosphorylation of mTOR in the prefrontal cortex and dephosphorylation of GluR1 S845 in the hippocampus. Since NS has shown antidepressant-like potential in a preclinical model, it may be considered as a candidate for the development of antidepressants in the future.
Collapse
Affiliation(s)
- Jihwan Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Jeonghun Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Junhyuk Choi
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Byung-Taek Ahn
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Sang Chul Jang
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Seung-Won You
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Do-Yeon Koh
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
- AgeTech-Service Convergence Major, Graduated School of East-West Medical Science, Kyung Hee University, Young-in 17104, Republic of Korea
| | - Seung-Yun Cha
- Graduate School of East-West Medical Science, Kyung Hee University, Yong-in 17104, Republic of Korea
| |
Collapse
|
13
|
Abstract
N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are excitatory neurotransmission receptors of the central nervous system and play vital roles in synaptic plasticity. Although not fully elucidated, visceral hypersensitivity is one of the most well-characterized pathophysiologic abnormalities of functional gastrointestinal diseases and appears to be associated with increased synaptic plasticity. In this study, we review the updated findings on the physiology of NMDARs and AMPARs and their relation to visceral hypersensitivity, which propose directions for future research in this field with evolving importance.
Collapse
|
14
|
Lie E, Yeo Y, Lee EJ, Shin W, Kim K, Han KA, Yang E, Choi TY, Bae M, Lee S, Um SM, Choi SY, Kim H, Ko J, Kim E. SALM4 negatively regulates NMDA receptor function and fear memory consolidation. Commun Biol 2021; 4:1138. [PMID: 34588597 PMCID: PMC8481232 DOI: 10.1038/s42003-021-02656-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).
Collapse
Affiliation(s)
- Eunkyung Lie
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.255168.d0000 0001 0671 5021Department of Chemistry, Dongguk University, Seoul, 04620 Korea
| | - Yeji Yeo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Eun-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| | - Wangyong Shin
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyungdeok Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyung Ah Han
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Esther Yang
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Tae-Yong Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Mihyun Bae
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Suho Lee
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Seung Min Um
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Se-Young Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Hyun Kim
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Jaewon Ko
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Eunjoon Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| |
Collapse
|
15
|
Cocaine-seeking behaviour is differentially expressed in male and female mice exposed to maternal separation and is associated with alterations in AMPA receptors subunits in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110262. [PMID: 33497752 DOI: 10.1016/j.pnpbp.2021.110262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
According with clinical data, women evolve differently from drug use to drug abuse. Among drugs of abuse, cocaine is the most consumed psychostimulant. Animal studies demonstrated that females show increased motivation to seek cocaine during the self-administration paradigm (SA) than males. Moreover, suffering childhood adversity or major depressive disorder are two factors that could increase the predisposition to suffer cocaine addiction. Maternal separation with early weaning (MSEW) is an animal model that allows examining the impact of early-life stress on cocaine abuse. In this study, we aimed to explore changes in MSEW-induced cocaine-seeking motivation to determine potential associations between despair-like behaviour and cocaine-seeking. We also evaluated possible alterations in the AMPA receptors (AMPArs) composition in the medial prefrontal cortex (mPFC) of these mice. We exposed mice to MSEW and the behavioural tests were performed during adulthood. Moreover, GluA1, GluA2 mRNA and protein expression were evaluated in the mPFC. Results show higher cocaine-seeking in standard nest females, as well as an increase in GluA1 and GluA2 protein expression. Moreover, MSEW induces downregulation of Gria2 and increases the Gria1/Gria2 ratio, only in male mice. In conclusion, female mice show different composition of the AMPA receptor in the mPFC and MSEW alters the glutamatergic system in the mPFC of male mice.
Collapse
|
16
|
Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Arias-Sandoval E, Salamone JD, Correa M. Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology (Berl) 2021; 238:3357-3373. [PMID: 34498115 PMCID: PMC8629809 DOI: 10.1007/s00213-021-05950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Motivational symptoms such as anergia, fatigue, and reduced exertion of effort are seen in depressed people. To model this, nucleus accumbens (Nacb) dopamine (DA) depletions are used to induce a low-effort bias in rodents tested on effort-based decision-making. We evaluated the effect of the catecholamine uptake blocker bupropion on its own, and after administration of tetrabenazine (TBZ), which blocks vesicular storage, depletes DA, and induces depressive symptoms in humans. Male CD1 mice were tested on a 3-choice-T-maze task that assessed preference between a reinforcer involving voluntary physical activity (running wheel, RW) vs. sedentary activities (sweet food pellet intake or a neutral non-social odor). Mice also were tested on the forced swim test (FST), two anxiety-related measures (dark-light box (DL), and elevated plus maze (EPM)). Expression of phosphorylated DARPP-32 (Thr34 and Thr75) was evaluated by immunohistochemistry as a marker of DA-related signal transduction. Bupropion increased selection of RW activity on the T-maze. TBZ reduced time running, but increased time-consuming sucrose, indicating an induction of a low-effort bias, but not an effect on primary sucrose motivation. In the FST, bupropion reduced immobility, increasing swimming and climbing, and TBZ produced the opposite effects. Bupropion reversed the effects of TBZ on the T-maze and the FST, and also on pDARPP32-Thr34 expression in Nacb core. None of these manipulations affected anxiety-related parameters. Thus, bupropion improved active behaviors, which were negatively motivated in the FST, and active behaviors that were positively motivated in the T-maze task, which has implications for using catecholamine uptake inhibitors for treating anergia and fatigue-like symptoms.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - Edgar Arias-Sandoval
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269-1020 USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
| |
Collapse
|
17
|
London E, Wester JC, Bloyd M, Bettencourt S, McBain CJ, Stratakis CA. Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation. JCI Insight 2020; 5:141670. [PMID: 33141766 PMCID: PMC7714411 DOI: 10.1172/jci.insight.141670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The habenula (Hb) is a bilateral, evolutionarily conserved epithalamic structure connecting forebrain and midbrain structures that has gained attention for its roles in depression, addiction, rewards processing, and motivation. Of its 2 major subdivisions, the medial Hb (MHb) and lateral Hb (LHb), MHb circuitry and function are poorly understood relative to those of the LHb. Prkar2a codes for cAMP-dependent protein kinase (PKA) regulatory subunit IIα (RIIα), a component of the PKA holoenzyme at the center of one of the major cell-signaling pathways conserved across systems and species. Type 2 regulatory subunits (RIIα, RIIβ) determine the subcellular localization of PKA, and unlike other PKA subunits, Prkar2a has minimal brain expression except in the MHb. We previously showed that RIIα-knockout (RIIα-KO) mice resist diet-induced obesity. In the present study, we report that RIIα-KO mice have decreased consumption of palatable, “rewarding” foods and increased motivation for voluntary exercise. Prkar2a deficiency led to decreased habenular PKA enzymatic activity and impaired dendritic localization of PKA catalytic subunits in MHb neurons. Reexpression of Prkar2a in the Hb rescued this phenotype, confirming differential roles for Prkar2a in regulating the drives for palatable foods and voluntary exercise. Our findings show that in the MHb decreased PKA signaling and dendritic PKA activity decrease motivation for palatable foods, while enhancing the motivation for exercise, a desirable combination of behaviors. Decreased habenular PKA signaling and altered localization of PKA catalytic subunits in medial habenula dendrites caused by Prkar2a deletion led to increased voluntary running and decreased sucrose solution intake in mice.
Collapse
Affiliation(s)
| | - Jason C Wester
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | | | | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
18
|
Belzeaux R, Gorgievski V, Fiori LM, Lopez JP, Grenier J, Lin R, Nagy C, Ibrahim EC, Gascon E, Courtet P, Richard-Devantoy S, Berlim M, Chachamovich E, Théroux JF, Dumas S, Giros B, Rotzinger S, Soares CN, Foster JA, Mechawar N, Tall GG, Tzavara ET, Kennedy SH, Turecki G. GPR56/ADGRG1 is associated with response to antidepressant treatment. Nat Commun 2020; 11:1635. [PMID: 32242018 PMCID: PMC7118175 DOI: 10.1038/s41467-020-15423-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
It remains unclear why many patients with depression do not respond to antidepressant treatment. In three cohorts of individuals with depression and treated with serotonin-norepinephrine reuptake inhibitor (N = 424) we show that responders, but not non-responders, display an increase of GPR56 mRNA in the blood. In a small group of subjects we also show that GPR56 is downregulated in the PFC of individuals with depression that died by suicide. In mice, we show that chronic stress-induced Gpr56 downregulation in the blood and prefrontal cortex (PFC), which is accompanied by depression-like behavior, and can be reversed by antidepressant treatment. Gpr56 knockdown in mouse PFC is associated with depressive-like behaviors, executive dysfunction and poor response to antidepressant treatment. GPR56 peptide agonists have antidepressant-like effects and upregulated AKT/GSK3/EIF4 pathways. Our findings uncover a potential role of GPR56 in antidepressant response.
Collapse
Affiliation(s)
- Raoul Belzeaux
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.,Aix-Marseille Univ, AP-HM, CNRS, INT, Inst Neurosci Timone, Hôpital Sainte Marguerite, Pôle de psychiatrie, Marseille, France.,Fondation FondaMental, Créteil, France
| | - Victor Gorgievski
- CNRS (Integrative Neuroscience and Cognition Center, UMR 8002), Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laura M Fiori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Juan Pablo Lopez
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Julien Grenier
- INSERM UMR-S 1124 ERL 3649, Université Paris Descartes, Paris, France
| | - Rixing Lin
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - El Chérif Ibrahim
- Aix-Marseille Univ, AP-HM, CNRS, INT, Inst Neurosci Timone, Hôpital Sainte Marguerite, Pôle de psychiatrie, Marseille, France.,Fondation FondaMental, Créteil, France
| | - Eduardo Gascon
- Aix-Marseille Univ, AP-HM, CNRS, INT, Inst Neurosci Timone, Hôpital Sainte Marguerite, Pôle de psychiatrie, Marseille, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Stéphane Richard-Devantoy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marcelo Berlim
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Eduardo Chachamovich
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jean-François Théroux
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Bruno Giros
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Susan Rotzinger
- Centre for Mental Health, Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Claudio N Soares
- St Michael's Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide Studies, Toronto, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jane A Foster
- Centre for Mental Health, Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Eleni T Tzavara
- Fondation FondaMental, Créteil, France.,CNRS (Integrative Neuroscience and Cognition Center, UMR 8002), Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sidney H Kennedy
- Centre for Mental Health, Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada.,St Michael's Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide Studies, Toronto, ON, Canada
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
mGlu2/3 receptor antagonism: A mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacol Biochem Behav 2020; 190:172854. [DOI: 10.1016/j.pbb.2020.172854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
|
20
|
Quantitative analysis of Gria1, Gria2, Dlg1 and Dlg4 expression levels in hippocampus following forced swim stress in mice. Sci Rep 2019; 9:14060. [PMID: 31575955 PMCID: PMC6773768 DOI: 10.1038/s41598-019-50689-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 01/09/2023] Open
Abstract
AMPA receptors and interacting proteins are importantly involved in mediating stress-dependent plasticity. Previously we reported that GluA1-containing AMPA receptors and their interaction with PDZ-proteins are required for the experience-dependent expression of behavioral despair in the forced swim test. However, it is unclear if the expression of GluA1-containing AMPA receptors is affected by this type of behavior. Here we investigated in wild type mice, whether hippocampal gene or protein levels of GluA1 or associated PDZ proteins is altered following forced swim stress. We show that expression of Dlg4 (the gene coding for PSD-95) was strongly reduced after two days of forced swimming. In contrast, levels of Dlg1, Gria1, and Gria2 (coding for SAP97, GluA1, and GluA2 respectively) were not affected after one or two days of forced swimming. The changes in gene expression largely did not translate to the protein level. These findings indicate a limited acute effect of forced swim stress on the expression of the investigated targets and suggest that the acute involvement of GluA1-containing AMPA receptors tor forced swim behavior is a result of non-genomic mechanisms.
Collapse
|
21
|
Sasaki K, Iwata N, Ferdousi F, Isoda H. Antidepressant-Like Effect of Ferulic Acid via Promotion of Energy Metabolism Activity. Mol Nutr Food Res 2019; 63:e1900327. [PMID: 31394019 PMCID: PMC6790570 DOI: 10.1002/mnfr.201900327] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Indexed: 11/11/2022]
Abstract
SCOPE Ferulic acid (FA), a natural phenolic phytochemical abundantly present in whole grains, herbs, and dried fruits, exhibits anti-inflammatory, antioxidant, and neuroprotective effects. In the present study, the antidepressant-like effects of FA in male ICR mice using tail suspension test (TST) are investigated and its molecular mechanisms are explored. METHODS AND RESULTS Oral administration of FA at a dose of 5 mg kg-1 for 7 days significantly reduces immobility of mice compared to vehicle-administered control group. Microarray and real-time PCR analyses reveal that FA upregulates the expression of several genes associated with cell survival and proliferation, energy metabolism, and dopamine synthesis in mice limbic system of brain. Interestingly, it is found that FA, unlike antidepressant drug bupropion, strongly promotes energy metabolism. Additionally, FA increases catecholamine (dopamine and noradrenaline), brain-derived neurotrophic factor, and ATP levels, and decreases glycogen levels in the limbic system of the mice brain. CONCLUSION The research provides the first evidence that FA enhances energy production, which can be the underlying mechanism of the antidepressant-like effects of FA observed in this study.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
- Interdisciplinary Research Center for Catalytic ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)AIST Tsukuba Central 5‐2TsukubaIbaraki305–8565Japan
- Faculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8571Japan
| | - Nozomu Iwata
- School of Integrative and Global Majors (SIGMA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8577Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
- Interdisciplinary Research Center for Catalytic ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)AIST Tsukuba Central 5‐2TsukubaIbaraki305–8565Japan
- Faculty of Life and Environmental SciencesUniversity of TsukubaJapan1‐1‐1 TennodaiTsukubaIbaraki305–8572Japan
| |
Collapse
|
22
|
Brito V, Giralt A, Masana M, Royes A, Espina M, Sieiro E, Alberch J, Castañé A, Girault JA, Ginés S. Cyclin-Dependent Kinase 5 Dysfunction Contributes to Depressive-like Behaviors in Huntington's Disease by Altering the DARPP-32 Phosphorylation Status in the Nucleus Accumbens. Biol Psychiatry 2019; 86:196-207. [PMID: 31060804 DOI: 10.1016/j.biopsych.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Depression is the most common psychiatric condition in Huntington's disease (HD), with rates more than twice those found in the general population. At the present time, there is no established molecular evidence to use as a basis for depression treatment in HD. Indeed, in some patients, classic antidepressant drugs exacerbate chorea or anxiety. Cyclin-dependent kinase 5 (Cdk5) has been involved in processes associated with anxiety and depression. This study evaluated the involvement of Cdk5 in the development and prevalence of depressive-like behaviors in HD and aimed to validate Cdk5 as a target for depression treatment. METHODS We evaluated the impact of pharmacological inhibition of Cdk5 in depressive-like and anxiety-like behaviors in Hdh+/Q111 knock-in mutant mice by using a battery of behavioral tests. Biochemical and morphological studies were performed to define the molecular mechanisms acting downstream of Cdk5 activation. A double huntingtin/DARPP-32 (dopamine- and cAMP-regulated phosphoprotein 32) knock-in mutant mouse was generated to analyze the role of DARPP-32 in HD depression. RESULTS We found that Hdh+/Q111 mutant mice exhibited depressive-like, but not anxiety-like, behaviors starting at 2 months of age. Cdk5 inhibition by roscovitine infusion prevented depressive-like behavior and reduced DARPP-32 phosphorylation at Thr75 in the nucleus accumbens. Hdh+/Q111 mice heterozygous for DARPP-32 Thr75Ala point mutation were resistant to depressive-like behaviors. We identified β-adducin phosphorylation as a Cdk5 downstream mechanism potentially mediating structural spine plasticity changes in the nucleus accumbens and depressive-like behavior. CONCLUSIONS These results point to Cdk5 in the nucleus accumbens as a critical contributor to depressive-like behaviors in HD mice by altering DARPP-32/β-adducin signaling and disrupting the dendritic spine cytoskeleton.
Collapse
Affiliation(s)
- Veronica Brito
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Albert Giralt
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mercè Masana
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Aida Royes
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Marc Espina
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Esther Sieiro
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Alberch
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Anna Castañé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France; Sorbonne Université, Paris, France; Institut du Fer a Moulin, Paris, France
| | - Silvia Ginés
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.
| |
Collapse
|
23
|
Lee CW, Chen YJ, Wu HF, Chung YJ, Lee YC, Li CT, Lin HC. Ketamine ameliorates severe traumatic event-induced antidepressant-resistant depression in a rat model through ERK activation. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:102-113. [PMID: 30940482 DOI: 10.1016/j.pnpbp.2019.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Treatment-resistant depression (TRD) is a major public health issue, as it is common for patients with depression to fail to respond to adequate trials of antidepressants. However, a well-established animal model of TRD is still warranted. The present study focused on selective serotonin reuptake inhibitor (SSRI) resistance, and aimed to investigate whether higher levels of traumatic stress caused by greater numbers of foot-shocks may lead to severe depression and to examine the feasibility of this as an animal model of SSRI-resistant depression. To reveal the correlation between traumatic stress and severe depression, rats received 3, 6 and 10 tone (conditioned stimulus, CS)-shock (unconditioned stimulus, US) pairings to mimic mild, moderate, and severe traumatic events, and subsequent depressive-like behaviors and protein immunocontents were analyzed. The antidepressant efficacy was assessed for ketamine and SSRI (i.e., fluoxetine) treatment. We found that only the severe stress group presented depressive-like behaviors. Phosphorylation of extracellular signal-regulated kinases (ERKs) was decreased in the amygdala and prefrontal cortex (PFC). The immunocontents of GluA1 and PSD 95 were increased in the amygdala and decreased in the PFC. Moreover, the glutamate-related abnormalities in the amygdala and PFC were normalized by single-dose (10 mg/kg, i.p.) ketamine treatment. In contrast, the depressive-like behaviors were not reversed by 28 days of fluoxetine treatment (10 mg/kg, i.p.) in the severe stress group. Our data demonstrated that high levels of traumatic stress could lead to SSRI-resistant depressive symptoms through impacts on the glutamatergic system, and that this rat model has the potential to be a feasible animal model of SSRI-resistant depression.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Instiutes, Taiwan
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Optometry, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Instiutes, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Instiutes, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
24
|
Sen S, Parishar P, Pundir AS, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol 2019; 527:1801-1836. [PMID: 30697741 DOI: 10.1002/cne.24649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/27/2023]
Abstract
Birds of the family Corvidae which includes diverse species such as crows, rooks, ravens, magpies, jays, and jackdaws are known for their amazing abilities at problem-solving. Since the catecholaminergic system, especially the neurotransmitter dopamine, plays a role in cognition, we decided to study the distribution of tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines in the brain of house crows (Corvus splendens). We also studied the expression of DARPP-32 (dopamine and cAMP-regulated phosphoprotein), which is expressed in dopaminoceptive neurons. Our results demonstrated that as in other avian species, the expression of both TH and DARPP-32 was highest in the house crow striatum. The caudolateral nidopallium (NCL, the avian analogue of the mammalian prefrontal cortex) could be differentiated from the surrounding pallial regions based on a larger number of TH-positive "baskets" of fibers around neurons in this region and greater intensity of DARPP-32 staining in the neuropil in this region. House crows also possessed distinct nuclei in their brains which corresponded to song control regions in other songbirds. Whereas immunoreactivity for TH was higher in the vocal control region Area X compared to the surrounding MSt (medial striatum) in house crows, staining in RA and HVC was not as prominent. Furthermore, the arcopallial song control regions RA (nucleus robustus arcopallialis) and AId (intermediate arcopallium) were strikingly negative for DARPP-32 staining, in contrast to the surrounding arcopallium. Patterns of immunoreactivity for TH and DARPP-32 in "limbic" areas such as the hippocampus, septum, and extended amygdala have also been described.
Collapse
Affiliation(s)
- Shankhamala Sen
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Pooja Parishar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Arvind Singh Pundir
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States.,Department of Ophthalmology, University of Tennessee, Memphis, Tennessee, United States
| | - Soumya Iyengar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| |
Collapse
|
25
|
Alamo C, García-Garcia P, Lopez-Muñoz F, Zaragozá C. Tianeptine, an atypical pharmacological approach to depression. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2019; 12:170-186. [PMID: 30612921 DOI: 10.1016/j.rpsm.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
The introduction of the first antidepressants in the 50s of the 20th century radically changed the treatment of depression, while providing information on pathophysiological aspects of this disease. New antidepressants drugs (agomelatine, tianeptine, vortioxetine) are providing data that give rise to pathophysiological hypotheses of depression that differ from the classic monoaminergic theory. In this sense, tianeptina, an atypical drug by its mechanism of differential action, contributes to clarify that in depression there is more than monoamines. Thus, tianeptine does not modify the rate of extracellular serotonin, so it does not increase or decrease the reuptake of serotonin. Chronic administration of tianeptine does not alter the density or affinity of more than a hundred classical receptors related to depression. Recently, a weak action of tianeptine on Mu opioid receptors has been described that could explain the release of dopamine in the limbic system and its participation in the modulation of glutamatergic mechanisms. These mechanisms support the hypothesis of the possible mechanism of action of this antidepressant. Tianeptine is an antidepressant, with anxiolytic properties, that can improve somatic symptoms. Tianeptine as a glutamatergic modulator, among other mechanisms, allows us to approach depression from a different point of view than other antidepressants.
Collapse
Affiliation(s)
- Cecilio Alamo
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, España.
| | - Pilar García-Garcia
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | - Francisco Lopez-Muñoz
- Facultad de Ciencias de la Salud, Universidad Camilo José Cela, Villanueva de la Cañada, Madrid, España; Unidad de Neuropsicofarmacología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, España
| | - Cristina Zaragozá
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| |
Collapse
|
26
|
Witkin JM, Martin AE, Golani LK, Xu NZ, Smith JL. Rapid-acting antidepressants. ADVANCES IN PHARMACOLOGY 2019; 86:47-96. [DOI: 10.1016/bs.apha.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Park MJ, Seo BA, Lee B, Shin HS, Kang MG. Stress-induced changes in social dominance are scaled by AMPA-type glutamate receptor phosphorylation in the medial prefrontal cortex. Sci Rep 2018; 8:15008. [PMID: 30301947 PMCID: PMC6177388 DOI: 10.1038/s41598-018-33410-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
The establishment and maintenance of social dominance are critical for social stability and the survival and health of individual animals. Stress lead to depression and a decrease in the social status of depressed persons is a risk factor for suicide. Therefore, we explored the mechanistic and behavioral links among stress, depression, and social dominance and found that mice subjected to chronic restraint stress (CRS), an animal model of stress-induced depression, showed decreased social dominance as measured by a dominance tube test. Importantly, this submissive behavior was occluded by the antidepressant, fluoxetine, a selective serotonin reuptake inhibitor. It is known that social dominance is controlled by synaptic efficacy in the medial prefrontal cortex (mPFC) and that AMPA-type glutamate receptor (AMPA-R) is a key molecule for synaptic efficacy. We found that the phosphorylation on AMPA-R was bidirectionally changed by CRS and fluoxetine in the mPFC of mice with CRS. Moreover, we found a strong correlation between social dominance and AMPA-R phosphorylation that regulates synaptic efficacy by modulating the synaptic targeting of AMPA-R. Our correlational analysis of the behavior and biochemistry of the CRS model suggests that AMPA-R phosphorylation in the mPFC may serve as a biomarker of social dominance related to stress.
Collapse
Affiliation(s)
- Min-Jung Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bo Am Seo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Myoung-Goo Kang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
28
|
Effects of social defeat stress on dopamine D2 receptor isoforms and proteins involved in intracellular trafficking. Behav Brain Funct 2018; 14:16. [PMID: 30296947 PMCID: PMC6176509 DOI: 10.1186/s12993-018-0148-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background Chronic social defeat stress induces depression and anxiety-like behaviors in rodents and also responsible for differentiating defeated animals into stress susceptible and resilient groups. The present study investigated the effects of social defeat stress on a variety of behavioral parameters like social behavior, spatial learning and memory and anxiety like behaviors. Additionally, the levels of various dopaminergic markers, including the long and short form of the D2 receptor, and total and phosphorylated dopamine and cyclic adenosine 3′,5′-monophosphate regulated phosphoprotein-32, and proteins involved in intracellular trafficking were assessed in several key brain regions in young adult mice. Methods Mouse model of chronic social defeat was established by resident-intruder paradigm, and to evaluate the effect of chronic social defeat, mice were subjected to behavioral tests like spontaneous locomotor activity, elevated plus maze (EPM), social interaction and Morris water maze tests. Results Mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. The susceptible group exhibited greater decreases in time spent in the open and closed arms compared to the control group on the EPM. In the social interaction test, the susceptible group showed greater increases in submissive and neutral behaviors and greater decreases in social behaviors relative to baseline compared to the control group. Furthermore, increased expression of D2L, D2S, Rab4, and G protein-coupled receptor associated sorting protein-1 was observed in the amygdala of the susceptible group compared to the control group. Conclusion These findings suggest that social defeat stress induce anxiety-like and altered social interacting behaviors, and changes in dopaminergic markers and intracellular trafficking-related proteins. Electronic supplementary material The online version of this article (10.1186/s12993-018-0148-5) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Neis VB, Bettio LB, Moretti M, Rosa PB, Olescowicz G, Fraga DB, Gonçalves FM, Freitas AE, Heinrich IA, Lopes MW, Leal RB, Rodrigues ALS. Single administration of agmatine reverses the depressive-like behavior induced by corticosterone in mice: Comparison with ketamine and fluoxetine. Pharmacol Biochem Behav 2018; 173:44-50. [DOI: 10.1016/j.pbb.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
|
30
|
Apazoglou K, Farley S, Gorgievski V, Belzeaux R, Lopez JP, Grenier J, Ibrahim EC, El Khoury MA, Tse YC, Mongredien R, Barbé A, de Macedo CEA, Jaworski W, Bochereau A, Orrico A, Isingrini E, Guinaudie C, Mikasova L, Louis F, Gautron S, Groc L, Massaad C, Yildirim F, Vialou V, Dumas S, Marti F, Mechawar N, Morice E, Wong TP, Caboche J, Turecki G, Giros B, Tzavara ET. Antidepressive effects of targeting ELK-1 signal transduction. Nat Med 2018; 24:591-597. [DOI: 10.1038/s41591-018-0011-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
|
31
|
Fluoxetine, not donepezil, reverses anhedonia, cognitive dysfunctions and hippocampal proteome changes during repeated social defeat exposure. Eur Neuropsychopharmacol 2018; 28:195-210. [PMID: 29174946 DOI: 10.1016/j.euroneuro.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/17/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
While anhedonia is considered a core symptom of major depressive disorder (MDD), less attention has been paid to cognitive dysfunctions. We evaluated the behavioural and molecular effects of a selective serotonin re-uptake inhibitor (SSRI, fluoxetine) and an acetylcholinesterase inhibitor (AChEI, donepezil) on emotional-cognitive endophenotypes of depression and the hippocampal proteome. A chronic social defeat (SD) procedure was followed up by "reminder" sessions of direct and indirect SD. Anhedonia-related behaviour was assessed longitudinally by intracranial self-stimulation (ICSS). Cognitive dysfunction was analysed by an object recognition test (ORT) and extinction of fear memory. Tandem mass spectrometry (MSE) and protein-protein-interaction (PPI) network modelling were used to characterise the underlying biological processes of SD and SSRI/AChEI treatment. Independent selected reaction monitoring (SRM) was conducted for molecular validation. Repeated SD resulted in a stable increase of anhedonia-like behaviour as measured by ICSS. Fluoxetine treatment reversed this phenotype, whereas donepezil showed no effect. Fluoxetine improved recognition memory and inhibitory learning in a stressor-related context, whereas donepezil only improved fear extinction. MSE and PPI network analysis highlighted functional SD stress-related hippocampal proteome changes including reduced glutamatergic neurotransmission and learning processes, which were reversed by fluoxetine, but not by donepezil. SRM validation of molecular key players involved in these pathways confirmed the hypothesis that fluoxetine acts via increased AMPA receptor signalling and Ca2+-mediated neuroplasticity in the amelioration of stress-impaired reward processing and memory consolidation. Our study highlights molecular mediators of SD stress reversed by SSRI treatment, identifying potential viable future targets to improve cognitive dysfunctions in MDD patients.
Collapse
|
32
|
Partial inhibition of catecholamine activity and enhanced responsiveness to NMDA after sustained administration of vortioxetine. Neuropharmacology 2018; 128:425-432. [DOI: 10.1016/j.neuropharm.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
|
33
|
Sasaki K, Othman MB, Demura M, Watanabe M, Isoda H. Modulation of Neurogenesis through the Promotion of Energy Production Activity Is behind the Antidepressant-Like Effect of Colonial Green Alga, Botryococcus braunii. Front Physiol 2017; 8:900. [PMID: 29176952 PMCID: PMC5686089 DOI: 10.3389/fphys.2017.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Algae have been recognized as important resources providing functional components due to their capacity to exert beneficial effects on health. Therefore, there is increasing interest in investigating the biological activity of algae. In this study, we evaluated the antidepressant-like effect of the administration of 100 mg/kg/day of the ethanol extract of colonial green alga Botryococcus braunii (EEB) for 14 consecutive days in the forced swimming test (FST)-induced depression in imprinting control region (ICR) mice. Imipramine, a commercial antidepressant drug, was used as a positive control. In addition, we investigated the molecular mechanisms underlying the effect of EEB by measuring ATP production and by assessing any change in gene expression at the end of the treatment using real-time polymerase chain reaction (PCR) and microarray assays. We showed that the immobility time in the water-administered control (FST stress) group gradually increased from day 1 to day 14. However, treatment with EEB caused a significant decrease of immobility time in the FST compared with that in the FST stress group. Microarray and real-time PCR results revealed that EEB treatment induced variation in the expression of several genes associated with neurogenesis, energy metabolism, and dopamine synthesis. Interestingly, we revealed that only EEB treatment enhanced the promotion of energy production, while treatment with imipramine was ineffective. Our study provides the first evidence that B. braunii enhances energy production, which may contribute to the modulation of neurogenesis and to the enhancement of dopaminergic function, in turn potentially underlying the antistress- and antidepressant-like effects that we observed.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mahmoud B Othman
- Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Japan
| | - Mikihide Demura
- Algal Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan
| | - Makoto Watanabe
- Algal Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Zhang MQ, Li R, Wang YQ, Huang ZL. Neural Plasticity Is Involved in Physiological Sleep, Depressive Sleep Disturbances, and Antidepressant Treatments. Neural Plast 2017; 2017:5870735. [PMID: 29181202 PMCID: PMC5664320 DOI: 10.1155/2017/5870735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022] Open
Abstract
Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families, and society. The associated and recurring sleep disturbances further reduce patient's quality of life. However, therapeutic sleep deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression. Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yi-Qun Wang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Alboni S, van Dijk RM, Poggini S, Milior G, Perrotta M, Drenth T, Brunello N, Wolfer DP, Limatola C, Amrein I, Cirulli F, Maggi L, Branchi I. Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Mol Psychiatry 2017; 22:552-561. [PMID: 26645631 PMCID: PMC5378807 DOI: 10.1038/mp.2015.142] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/18/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) represent the most common treatment for major depression. However, their efficacy is variable and incomplete. In order to elucidate the cause of such incomplete efficacy, we explored the hypothesis positing that SSRIs may not affect mood per se but, by enhancing neural plasticity, render the individual more susceptible to the influence of the environment. Consequently, SSRI administration in a favorable environment promotes a reduction of symptoms, whereas in a stressful environment leads to a worse prognosis. To test such hypothesis, we exposed C57BL/6 mice to chronic stress in order to induce a depression-like phenotype and, subsequently, to fluoxetine treatment (21 days), while being exposed to either an enriched or a stressful condition. We measured the most commonly investigated molecular, cellular and behavioral endophenotypes of depression and SSRI outcome, including depression-like behavior, neurogenesis, brain-derived neurotrophic factor levels, hypothalamic-pituitary-adrenal axis activity and long-term potentiation. Results showed that, in line with our hypothesis, the endophenotypes investigated were affected by the treatment according to the quality of the living environment. In particular, mice treated with fluoxetine in an enriched condition overall improved their depression-like phenotype compared with controls, whereas those treated in a stressful condition showed a distinct worsening. Our findings suggest that the effects of SSRI on the depression- like phenotype is not determined by the drug per se but is induced by the drug and driven by the environment. These findings may be helpful to explain variable effects of SSRI found in clinical practice and to device strategies aimed at enhancing their efficacy by means of controlling environmental conditions.
Collapse
Affiliation(s)
- S Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - R M van Dijk
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - S Poggini
- Department of Cell Biology and Neurosciences, Section of Behavioural Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - G Milior
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | - T Drenth
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - N Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - D P Wolfer
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - C Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy,IRCCS Neuromed, Pozzilli IS, Italy
| | - I Amrein
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - F Cirulli
- Department of Cell Biology and Neurosciences, Section of Behavioural Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - L Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - I Branchi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Department of Cell Biology and Neurosciences, Section of Behavioural Neurosciences, Istituto Superiore di Sanità, Rome, Italy,Section of Behavioural Neurosciences, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy. E-mail:
| |
Collapse
|
36
|
Chan SY, Matthews E, Burnet PWJ. ON or OFF?: Modulating the N-Methyl-D-Aspartate Receptor in Major Depression. Front Mol Neurosci 2017; 9:169. [PMID: 28133445 PMCID: PMC5233677 DOI: 10.3389/fnmol.2016.00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Since the discovery that a single dose of ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, had rapid and long-lasting antidepressant effects, there has been increased interest in using NMDAR modulators in the pharmacotherapy of depression. Ketamine's efficacy seems to imply that depression is a disorder of NMDAR hyperfunctionality. However, studies showing that not all NMDAR antagonists are able to act as antidepressants challenge this notion. Furthermore, NMDAR co-agonists have also been gaining attention as possible treatments. Co-agonists such as D-serine and sarcosine have shown efficacy in both pre-clinical models and human trials. This raises the question of how both NMDAR antagonists and agonists are able to have converging behavioral effects. Here we critically review the evidence and proposed therapeutic mechanisms for both NMDAR antagonists and agonists, and collate several theories on how both activation and inhibition of NMDARs appear to have antidepressant effects.
Collapse
Affiliation(s)
- Shi Yu Chan
- Department of Psychiatry, Warneford Hospital, University of Oxford Oxford, UK
| | | | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford Oxford, UK
| |
Collapse
|
37
|
Harris JJ, Reynell C. How do antidepressants influence the BOLD signal in the developing brain? Dev Cogn Neurosci 2016; 25:45-57. [PMID: 28089656 PMCID: PMC6987820 DOI: 10.1016/j.dcn.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons – adolescent versus adult, depressed versus healthy, medicated versus non-medicated – rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.
Collapse
Affiliation(s)
- Julia J Harris
- Life Sciences Department, Imperial College London, SW7 2AZ, UK; Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| | - Clare Reynell
- Département de Neurosciences, Université de Montréal, H3C 3J7, Canada.
| |
Collapse
|
38
|
Iñiguez SD, Aubry A, Riggs LM, Alipio JB, Zanca RM, Flores-Ramirez FJ, Hernandez MA, Nieto SJ, Musheyev D, Serrano PA. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice. Neurobiol Stress 2016; 5:54-64. [PMID: 27981196 PMCID: PMC5154707 DOI: 10.1016/j.ynstr.2016.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus - a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Antonio Aubry
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Lace M. Riggs
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Jason B. Alipio
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | | | - Francisco J. Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
| | - Mirella A. Hernandez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Steven J. Nieto
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - David Musheyev
- Department of Psychology, Hunter College, New York, NY, 10065, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
39
|
Yoshimura Y, Ishikawa C, Kasegai H, Masuda T, Yoshikawa M, Shiga T. Roles of 5-HT 1A receptor in the expression of AMPA receptor and BDNF in developing mouse cortical neurons. Neurosci Res 2016; 115:13-20. [PMID: 27702575 DOI: 10.1016/j.neures.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
The possible interactions between serotonergic and glutamatergic systems during neural development and under the pathogenesis of depression remain unclear. We now investigated roles of 5-HT1A receptor in the mRNA expression of AMPA receptor subunits (GluR1 and GluR2) and brain-derived neurotrophic factor (BDNF) using primary culture of cerebral cortex of mouse embryos. Neurons at embryonic day 18 were cultured for 3days or 14days and then treated with 5-HT1A receptor agonist (8-OH-DPAT) for 3h or 24h. In neurons cultured for 3 days, 8-OH-DPAT treatment for both 3h and 24h increased the mRNA levels of BDNF and GluR1, but not GluR2. In neurons cultured for 14 days, however, 8-OH-DPAT had no effects on these mRNA levels. Next, we examined in vivo roles of 5-HT1A receptor by administration of 8-OH-DPAT to newborn mice. Twenty-four hours after the oral administration of 8-OH-DPAT, the mRNA expression of BDNF was decreased in the frontal cortex, but had no effects on the mRNA expression of GluR1 and GluR2. Taken together, the present study suggests that 5-HT1A receptor activation modulates mRNA expression of AMPA receptor subunit and BDNF in cortical neurons, and the effects are different between in vitro and in vivo.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Chihiro Ishikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Haruki Kasegai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Tomoyuki Masuda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo 173-8610, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| |
Collapse
|
40
|
Lentinan produces a robust antidepressant-like effect via enhancing the prefrontal Dectin-1/AMPA receptor signaling pathway. Behav Brain Res 2016; 317:263-271. [PMID: 27693847 DOI: 10.1016/j.bbr.2016.09.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Lentinan (LNT) is an immune regulator and its potential and mechanism for the treatment of mood disorder is of our interest. Dectin-1 is a β-glucan (including LNT) receptor that regulates immune functions in many immune cell types. Cumulative evidence has suggested that the glutamatergic system seems to play an important role in the treatment of depression. Here, we studied the antidepressant-like effects of LNT and its therapeutical target in regulating the functions of AMPA receptors. We found that 60min treatment with LNT leads to a significant antidepressant-like effect in the tail suspension test (TST) and the forced swim test (FST) in mice. The antidepressant-like effects of LNT in TST and FST remained after 1day or 5days of injections. Additionally, LNT did not show a hyperactive effect in the open field test. Dectin-1 receptor levels were increased after LNT treatment for 5days and the specific Dectin-1 inhibitor laminarin was able to block the antidepressant-like effects of LNT. After 5days of treatment, LNT enhanced p-GluR1 (S845) in the prefrontal cortex (PFC); however, the total GluR1, GluR2, and GluR3 expression levels remained unchanged. We also found that the AMPA-specific blocker GYKI 52466 was able to block the antidepressant-like effects of LNT. This study identified LNT as a novel antidepressant with clinical potential and a new antidepressant mechanism for regulating prefrontal Dectin-1/AMPA receptor signaling.
Collapse
|
41
|
Fitzpatrick CM, Larsen M, Madsen LH, Caballero-Puntiverio M, Pickering DS, Clausen RP, Andreasen JT. Positive allosteric modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors differentially modulates the behavioural effects of citalopram in mouse models of antidepressant and anxiolytic action. Behav Pharmacol 2016; 27:549-55. [DOI: 10.1097/fbp.0000000000000243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Kim S, Pick JE, Abera S, Khatri L, Ferreira DDP, Sathler MF, Morison SL, Hofmann F, Ziff EB. Brain region-specific effects of cGMP-dependent kinase II knockout on AMPA receptor trafficking and animal behavior. ACTA ACUST UNITED AC 2016; 23:435-41. [PMID: 27421896 PMCID: PMC4947234 DOI: 10.1101/lm.042960.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022]
Abstract
Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO hippocampus is increased as a functional compensation for gene deletion, while such compensation is absent in the prefrontal cortex. Thus, there are brain region-specific effects of cGKII KO on AMPAR trafficking, which could affect animal behavior. Here, we show that GluA1 phosphorylation levels differ in various brain regions, and specific behaviors are altered according to region-specific changes in GluA1 phosphorylation. Moreover, we identified distinct regulations of phosphatases in different brain regions, leading to regional heterogeneity of GluA1 phosphorylation in the KO brain. Our work demonstrates region-specific changes in GluA1 phosphorylation in cGKII KO mice and corresponding effects on cognitive performance. We also reveal distinct regulation of phosphatases in different brain region in which region-specific effects of kinase gene KO arise and can selectively alter animal behavior.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Joseph E Pick
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Sinedu Abera
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Danielle D P Ferreira
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA Department of Pharmacology and Physiology, Fluminense Federal University, Niteroi 24210-130, Brazil
| | - Matheus F Sathler
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA Department of Pharmacology and Physiology, Fluminense Federal University, Niteroi 24210-130, Brazil
| | - Sage L Morison
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA Center for Neural Science, New York University, New York 10012, USA
| | - Franz Hofmann
- Technical University of Munich, Munich 80802, Germany
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| |
Collapse
|
43
|
Bidel F, Di Poi C, Budzinski H, Pardon P, Callewaert W, Arini A, Basu N, Dickel L, Bellanger C, Jozet-Alves C. The antidepressant venlafaxine may act as a neurodevelopmental toxicant in cuttlefish ( Sepia officinalis ). Neurotoxicology 2016; 55:142-153. [DOI: 10.1016/j.neuro.2016.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
|
44
|
Bao H, Ran P, Zhu M, Sun L, Li B, Hou Y, Nie J, Shan L, Li H, Zheng S, Xu X, Xiao C, Du J. The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates The Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake. Sci Rep 2016; 6:28395. [PMID: 27329257 PMCID: PMC4916609 DOI: 10.1038/srep28395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
Proteo-β-glucan from Maitake (PGM) is a strong immune regulator, and its receptor is called Dectin-1. Cumulative evidence suggests that AMPA receptors are important for the treatment of depression. Here, we report that PGM treatment leads to a significant antidepressant effect in the tail suspension test and forced swim test after sixty minutes of treatment in mice. After five consecutive days of PGM treatment, this antidepressant effect remained. PGM treatment did not show a hyperactive effect in the open field test. PGM significantly enhanced the expression of its receptor Dectin-1, as well as p-GluA1(S845) and GluA1, but not GluA2 or GluA3 in the prefrontal cortex (PFC) after five days of treatment. The Dectin-1 inhibitor Laminarin was able to block the antidepressant effect of PGM. At the synapses of PFC, PGM treatment significantly up-regulated the p-GluA1(S845), GluA1, GluA2, and GluA3 levels. Moreover, PGM’s antidepressant effects and the increase of p-GluA1(S845)/GluA1 lasted for 3 days after stopping treatment. The AMPA-specific antagonist GYKI 52466 was able to block the antidepressant effect of PGM. This study identified PGM as a novel antidepressant with clinical potential and a new antidepressant mechanism for regulating prefrontal Dectin-1/AMPA receptor signalling.
Collapse
Affiliation(s)
- Hongkun Bao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Pengzhan Ran
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Ming Zhu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Lijuan Sun
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Bai Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Yangyang Hou
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Jun Nie
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Liping Shan
- Beijing Gragen Biotechnology Co. Ltd., Beijing, P. R. China
| | - Hongliang Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Shangyong Zheng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Chunjie Xiao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Jing Du
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| |
Collapse
|
45
|
Liu KH, Yang ST, Lin YK, Lin JW, Lee YH, Wang JY, Hu CJ, Lin EY, Chen SM, Then CK, Shen SC. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget 2016; 6:5088-101. [PMID: 25671301 PMCID: PMC4467135 DOI: 10.18632/oncotarget.3243] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 12/24/2022] Open
Abstract
The efficacy of glioblastoma chemotherapy is not satisfactory; therefore, a new medication is expected to improve outcomes. As much evidence shows that antidepressants decrease cancer incidence and improve patients' quality of life, we therefore attempted to explore the potential for fluoxetine to be used to treat GBM and its possible underlying mechanism. The expression level of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) was determined using immunohistochemical staining and PCR analysis. The mechanism of fluoxetine-induced apoptosis of gliomas was elucidated. Computer modeling and a binding assay were conducted to investigate the interaction of fluoxetine with the AMPAR. The therapeutic effect of fluoxetine was evaluated using an animal model. We found that fluoxetine directly bound to AMPAR, thus inducing transmembrane Ca2+ influx. The rise in the intracellular calcium concentration ([Ca2+]i) causes mitochondrial Ca2+ overload, thereby triggering apoptosis. AMPARs are excessively expressed in glioma tissues, suggesting that fluoxetine specifically executes glioma cells. Our in vivo study revealed that fluoxetine suppressed the growth of glioblastomas in brains of Nu/Nu mice, an effect similar to that produced by temozolomide. Our preclinical studies suggest fluoxetine, a commonly used antidepressant, might be selectively toxic to gliomas and could provide a new approach for managing this disease.
Collapse
Affiliation(s)
- Kao-Hui Liu
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Shun-Tai Yang
- Taipei Medical University-Shuang Ho Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Yen-Kuang Lin
- Taipei Medical University, Biostatistics Center, Taipei, Taiwan
| | - Jia-Wei Lin
- Taipei Medical University-Shuang Ho Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Yi-Hsuan Lee
- National Yang-Ming University, Department and Institute of Physiology, Taipei, Taiwan
| | - Jia-Yi Wang
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Taipei Medical University, College of Medicine, School of Medicine, Department of Physiology, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Medical University-Shuang Ho Hospital, School of Medicine, Department of Neurology, Taipei, Taiwan
| | - En-Yuan Lin
- Taipei Medical University Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Shu-Mei Chen
- Taipei Medical University-Wan Fang Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Chee-Kin Then
- Taipei Medical University, College of Medicine, School of Medicine, Taipei, Taiwan
| | - Shing-Chuan Shen
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan
| |
Collapse
|
46
|
Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, L-DOPA Responsivity, and Glutamatergic Neurotransmission. J Neurosci 2016; 35:14057-69. [PMID: 26468205 DOI: 10.1523/jneurosci.1312-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by l-DOPA relieves symptoms of PD but causes dyskinesia. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in experimental Parkinsonism and l-DOPA responses has been neglected. Here, we report that TAAR1 knock-out (KO) mice show a reduced loss of dopaminergic markers in response to intrastriatal 6-OHDA administration compared with wild-type (WT) littermates. In contrast, the TAAR1 agonist RO5166017 aggravated degeneration induced by intrastriatal 6-OHDA in WT mice. Subchronic l-DOPA treatment of TAAR1 KO mice unilaterally lesioned with 6-OHDA in the medial forebrain bundle resulted in more pronounced rotational behavior and dyskinesia than in their WT counterparts. The enhanced behavioral sensitization to l-DOPA in TAAR1 KO mice was paralleled by increased phosphorylation of striatal GluA1 subunits of AMPA receptors. Conversely, RO5166017 counteracted both l-DOPA-induced rotation and dyskinesia as well as AMPA receptor phosphorylation. Underpinning a role for TAAR1 receptors in modulating glutamate neurotransmission, intrastriatal application of RO5166017 prevented the increase of evoked corticostriatal glutamate release provoked by dopamine deficiency after 6-OHDA-lesions or conditional KO of Nurr1. Finally, inhibition of corticostriatal glutamate release by TAAR1 showed mechanistic similarities to that effected by activation of dopamine D2 receptors. These data unveil a role for TAAR1 in modulating the degeneration of dopaminergic neurons, the behavioral response to l-DOPA, and presynaptic and postsynaptic glutamate neurotransmission in the striatum, supporting their relevance to the pathophysiology and, potentially, management of PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by l-DOPA relieves symptoms of PD but causes severe side effects. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in PD and l-DOPA responses has been neglected. Here, we report that TAAR1 potentiates the degeneration of dopaminergic neurons and attenuates the behavioral response to l-DOPA and presynaptic and postsynaptic glutamate neurotransmission in the striatum, supporting the relevance of TAAR1 to the pathophysiology and, potentially, management of PD.
Collapse
|
47
|
Zanca RM, Braren SH, Maloney B, Schrott LM, Luine VN, Serrano PA. Environmental Enrichment Increases Glucocorticoid Receptors and Decreases GluA2 and Protein Kinase M Zeta (PKMζ) Trafficking During Chronic Stress: A Protective Mechanism? Front Behav Neurosci 2015; 9:303. [PMID: 26617502 PMCID: PMC4642137 DOI: 10.3389/fnbeh.2015.00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022] Open
Abstract
Environmental enrichment (EE) housing paradigms have long been shown beneficial for brain function involving neural growth and activity, learning and memory capacity, and for developing stress resiliency. The expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2, which is important for synaptic plasticity and memory, is increased with corticosterone (CORT), undermining synaptic plasticity and memory. Thus, we determined the effect of EE and stress on modulating GluA2 expression in Sprague-Dawley male rats. Several markers were evaluated which include: plasma CORT, the glucocorticoid receptor (GR), GluA2, and the atypical protein kinase M zeta (PKMζ). For 1 week standard-(ST) or EE-housed animals were treated with one of the following four conditions: (1) no stress; (2) acute stress (forced swim test, FST; on day 7); (3) chronic restraint stress (6 h/day for 7 days); and (4) chronic + acute stress (restraint stress 6 h/day for 7 days + FST on day 7). Hippocampi were collected on day 7. Our results show that EE animals had reduced time immobile on the FST across all conditions. After chronic + acute stress EE animals showed increased GR levels with no change in synaptic GluA2/PKMζ. ST-housed animals showed the reverse pattern with decreased GR levels and a significant increase in synaptic GluA2/PKMζ. These results suggest that EE produces an adaptive response to chronic stress allowing for increased GR levels, which lowers neuronal excitability reducing GluA2/PKMζ trafficking. We discuss this EE adaptive response to stress as a potential underlying mechanism that is protective for retaining synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Roseanna M Zanca
- Department of Psychology, Hunter College City University of New York, New York, NY, USA
| | - Stephen H Braren
- Department of Psychology, Hunter College City University of New York, New York, NY, USA
| | - Brigid Maloney
- Department of Psychology, Hunter College City University of New York, New York, NY, USA
| | - Lisa M Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center Shreveport, LA, USA
| | - Victoria N Luine
- Department of Psychology, Hunter College City University of New York, New York, NY, USA ; The Graduate Center of CUNY New York, NY, USA
| | - Peter A Serrano
- Department of Psychology, Hunter College City University of New York, New York, NY, USA ; The Graduate Center of CUNY New York, NY, USA
| |
Collapse
|
48
|
Li B, Hou Y, Zhu M, Bao H, Nie J, Zhang GY, Shan L, Yao Y, Du K, Yang H, Li M, Zheng B, Xu X, Xiao C, Du J. 3'-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway. Int J Neuropsychopharmacol 2015; 19:pyv112. [PMID: 26443809 PMCID: PMC4851261 DOI: 10.1093/ijnp/pyv112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The development of rapid and safe antidepressants for the treatment of major depression is in urgent demand. Converging evidence suggests that glutamatergic signaling seems to play important roles in the pathophysiology of depression. METHODS We studied the antidepressant effects of 3(')-deoxyadenosine (3'-dA, Cordycepin) and the critical role of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in male CD-1 mice via behavioral and biochemical experiments. After 3'-dA treatment, the phosphorylation and synaptic localization of the AMPA receptors GluR1 and GluR2 were determined in the prefrontal cortex (PFC) and hippocampus (HIP). The traditional antidepressant imipramine was applied as a positive control. RESULTS We found that an injection of 3'-dA led to a rapid and robust antidepressant effect, which was significantly faster and stronger than imipramine, after 45min in tail suspension and forced swim tests. This antidepressant effect remained after 5 days of treatment with 3'-dA. Unlike the psycho-stimulants, 3'-dA did not show a hyperactive effect in the open field test. After 45min or 5 days of treatment, 3'-dA enhanced GluR1 S845 phosphorylation in both the PFC and HIP. In addition, after 45min of treatment, 3'-dA significantly up-regulated GluR1 S845 phosphorylation and GluR1, but not GluR2 levels, at the synapses in the PFC. After 5 days of treatment, 3'-dA significantly enhanced GluR1 S845 phosphorylation and GluR1, but not GluR2, at the synapses in the PFC and HIP. Moreover, the AMPA-specific antagonist GYKI 52466 was able to block the rapid antidepressant effects of 3'-dA. CONCLUSION This study identified 3'-dA as a novel rapid antidepressant with clinical potential and multiple beneficial mechanisms, particularly in regulating the prefrontal AMPA receptor signaling pathway.
Collapse
Affiliation(s)
- Bai Li
- *These authors contributed equally to this work
| | | | - Ming Zhu
- *These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | - Jing Du
- #These two authors are co-corresponding authors
| |
Collapse
|
49
|
Stan TL, Sousa VC, Zhang X, Ono M, Svenningsson P. Lurasidone and fluoxetine reduce novelty-induced hypophagia and NMDA receptor subunit and PSD-95 expression in mouse brain. Eur Neuropsychopharmacol 2015; 25:1714-22. [PMID: 26256011 DOI: 10.1016/j.euroneuro.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/17/2015] [Accepted: 07/14/2015] [Indexed: 01/23/2023]
Abstract
Lurasidone, a novel second-generation antipsychotic agent, exerts antidepressant actions in patients suffering from bipolar type I disorder. Lurasidone acts as a high affinity antagonist at multiple monoamine receptors, particularly 5-HT2A, 5-HT7, D2 and α2 receptors, and as a partial agonist at 5-HT1A receptors. Accumulating evidence indicates therapeutic actions by monoaminergic antidepressants are mediated via alterations of glutamate receptor-mediated neurotransmission. Here, we used mice and investigated the effects of chronic oral administration of vehicle, lurasidone (3 or 10mg/kg) or fluoxetine (20mg/kg) in the novelty induced hypophagia test, a behavioral test sensitive to chronic antidepressant treatment. We subsequently performed biochemical analyses on NMDA receptor subunits and associated proteins. Both lurasidone and fluoxetine reduced the latency to feed in the novelty-induced hypophagia test. Western blotting experiments showed that both lurasidone and fluoxetine decreased the total levels of NR1, NR2A and NR2B subunits of NMDA receptors and PSD-95 (PostSynaptic Density-95) in hippocampus and prefrontal cortex. Taken together, these data indicate that antidepressant/anxiolytic-like effects of lurasidone, as well as fluoxetine, could involve reduced NMDA receptor-mediated signal transduction, particularly in pathways regulated by PSD-95, in hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Tiberiu Loredan Stan
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Vasco Cabral Sousa
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | | | - Per Svenningsson
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden.
| |
Collapse
|
50
|
Doboszewska U, Szewczyk B, Sowa-Kućma M, Młyniec K, Rafało A, Ostachowicz B, Lankosz M, Nowak G. Antidepressant activity of fluoxetine in the zinc deficiency model in rats involves the NMDA receptor complex. Behav Brain Res 2015; 287:323-30. [PMID: 25845739 DOI: 10.1016/j.bbr.2015.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 01/28/2023]
Abstract
The zinc deficiency animal model of depression has been proposed; however, it has not been validated in a detailed manner. We have recently shown that depression-like behavior induced by dietary zinc restriction is associated with up-regulation of hippocampal N-methyl-d-aspartate receptor (NMDAR). Here we examined the effects of chronic administration of a selective serotonin reuptake inhibitor, fluoxetine (FLX), on behavioral and biochemical alterations (within NMDAR signaling pathway) induced by zinc deficiency. Male Sprague Dawley rats were fed a zinc adequate diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then, FLX treatment (10mg/kg, i.p.) begun. Following 2 weeks of FLX administration the behavior of the rats was examined in the forced swim test (FST) and the spontaneous locomotor activity test. Twenty four hours later tissue was harvested. The proteins of NMDAR (GluN1, GluN2A and GluN2B) or AMPAR (GluA1) subunits, p-CREB and BDNF in the hippocampus (Western blot) and serum zinc level (TXRF) were examined. Depression-like behavior induced by ZnD in the FST was sensitive to chronic treatment with FLX. ZnD increased levels of GluN1, GluN2A, GluN2B and decreased pS485-GluA1, p-CREB and BDNF proteins. Administration of FLX counteracted the zinc restriction-induced changes in serum zinc level and hippocampal GluN1, GluN2A, GluN2B and p-CREB but not BDNF or pS845-GluA1 protein levels. This finding adds new evidence to the predictive validity of the proposed zinc deficiency model of depression. Antidepressant-like activity of FLX in the zinc deficiency model is associated with NMDAR complex.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | - Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Magdalena Sowa-Kućma
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Katarzyna Młyniec
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Anna Rafało
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, PL 30-059 Kraków, Poland
| | - Marek Lankosz
- Faculty of Physics and Applied Computer Sciences, AGH University of Science and Technology, Mickiewicza 30, PL 30-059 Kraków, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland; Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| |
Collapse
|