1
|
Roger M, Leone P, Blackburn NJ, Horrell S, Chicano TM, Biaso F, Giudici-Orticoni MT, Abriata LA, Hura GL, Hough MA, Sciara G, Ilbert M. Beyond the coupled distortion model: structural analysis of the single domain cupredoxin AcoP, a green mononuclear copper centre with original features. Dalton Trans 2024; 53:1794-1808. [PMID: 38170898 PMCID: PMC10804444 DOI: 10.1039/d3dt03372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Cupredoxins are widely occurring copper-binding proteins with a typical Greek-key beta barrel fold. They are generally described as electron carriers that rely on a T1 copper centre coordinated by four ligands provided by the folded polypeptide. The discovery of novel cupredoxins demonstrates the high diversity of this family, with variations in terms of copper-binding ligands, copper centre geometry, redox potential, as well as biological function. AcoP is a periplasmic cupredoxin belonging to the iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans. AcoP presents original features, including high resistance to acidic pH and a constrained green-type copper centre of high redox potential. To understand the unique properties of AcoP, we undertook structural and biophysical characterization of wild-type AcoP and of two Cu-ligand mutants (H166A and M171A). The crystallographic structures, including native reduced AcoP at 1.65 Å resolution, unveil a typical cupredoxin fold. The presence of extended loops, never observed in previously characterized cupredoxins, might account for the interaction of AcoP with physiological partners. The Cu-ligand distances, determined by both X-ray diffraction and EXAFS, show that the AcoP metal centre seems to present both T1 and T1.5 features, in turn suggesting that AcoP might not fit well to the coupled distortion model. The crystal structures of two AcoP mutants confirm that the active centre of AcoP is highly constrained. Comparative analysis with other cupredoxins of known structures, suggests that in AcoP the second coordination sphere might be an important determinant of active centre rigidity due to the presence of an extensive hydrogen bond network. Finally, we show that other cupredoxins do not perfectly follow the coupled distortion model as well, raising the suspicion that further alternative models to describe copper centre geometries need to be developed, while the importance of rack-induced contributions should not be underestimated.
Collapse
Affiliation(s)
- Magali Roger
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Philippe Leone
- CNRS, Aix-Marseille University, Laboratoire d'Ingénierie des Systèmes Macromoléculaires, LISM UMR7255, 13009 Marseille, France
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Sam Horrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Tadeo Moreno Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Frédéric Biaso
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Marie-Thérèse Giudici-Orticoni
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Giuliano Sciara
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
- Aix Marseille Univ, INRAE, BBF UMR1163, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Marianne Ilbert
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, BIP UMR 7281, Mediterranean Institute of Microbiology, 13009 Marseille, France.
| |
Collapse
|
2
|
Sharma P, Maklashina E, Voehler M, Balintova S, Dvorakova S, Kraus M, Hadrava Vanova K, Nahacka Z, Zobalova R, Boukalova S, Cunatova K, Mracek T, Ghayee HK, Pacak K, Rohlena J, Neuzil J, Cecchini G, Iverson TM. Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners. Nat Commun 2024; 15:473. [PMID: 38212624 PMCID: PMC10784507 DOI: 10.1038/s41467-023-44563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Markus Voehler
- Department of Chemistry Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA
| | - Sona Balintova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Michal Kraus
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Katerina Hadrava Vanova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Kristyna Cunatova
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida College of Medicine and Malcom Randall, VA Medical Center, Gainesville, FL, 32608, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic.
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, 4222, Australia.
- 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
4
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082 DOI: 10.5483/bmbrep.2023-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 02/11/2025] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
5
|
Lee CH, Lin DJ, Pan HR, Wu J, Liu HK, Hsu HF. Reversible Conversion of Disulfide/Dithiolate Occurring at a Vanadium(IV) Center: A Biomimetic System for Redox Exchange in Vanabin. Inorg Chem 2022; 61:19882-19889. [PMID: 36441974 DOI: 10.1021/acs.inorgchem.2c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ascidians use a class of cysteine-rich proteins generally referred to as vanabins to reduce vanadium ions, one of the many biological processes that involve the redox conversion between disulfide and dithiolate mediated by transition-metal ions. To further understand the nature of disulfide/dithiolate exchange facilitated by a vanadium center, we report herein a six-coordinate non-oxido VIV complex containing an unbound disulfide moiety, [VIV(PS3″)(PS1″S-S)] (1) (PS3″ = [P(C6H3-3-Me3Si-2-S)3]3-, where PS1″S-S is a disulfide form of PS3″). Complex 1 is obtained from a reaction of previously reported [VV(PS3″)(PS2″SH)] (2) (PS2″SH = [P(C6H3-3-Me3Si-2-SH)(C6H3-3-Me3Si-2-S)2] with TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) via hydrogen atom transfer. Importantly, complex 1 can be reduced by two electrons to form an eight-coordinate VIV complex, [VIV(PS3″)2]2- (4). The reaction can be reversed through a two-electron oxidation process to regenerate complex 1. The redox pathways both proceed through a common intermediate, [V(PS3″)2]- (3), that has been previously reported as a resonance form of VV-dithiolate and a VIV-(thiolate)(thiyl-radical) species. This work demonstrates an unprecedented example of reversible disulfide/dithiolate interconversion mediated by a VIV center, as well as provides insights into understanding the function of VV reductases in vanabins.
Collapse
Affiliation(s)
- Cheng-Hsun Lee
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ding-Jyun Lin
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Ruei Pan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - John Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Mitochondrial COA7 is a heme-binding protein with disulfide reductase activity, which acts in the early stages of complex IV assembly. Proc Natl Acad Sci U S A 2022; 119:2110357119. [PMID: 35210360 PMCID: PMC8892353 DOI: 10.1073/pnas.2110357119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Assembly factors play key roles in the biogenesis of mitochondrial protein complexes, regulating their stabilities, activities, and incorporation of essential cofactors. Cytochrome c oxidase assembly factor 7 (COA7) is a metazoan-specific assembly factor, the absence or mutation of which in humans accompanies complex IV assembly defects and neurological conditions. Here, we report the crystal structure of COA7 to 2.4 Å resolution, revealing a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats. COA7 binds heme with micromolar affinity, even though the protein structure does not resemble previously characterized heme-binding proteins. The heme-bound COA7 can redox cycle between oxidation states Fe(II) and Fe(III) and shows disulfide reductase activity toward copper binding assembly factors. We propose that COA7 functions to facilitate the biogenesis of the binuclear copper site (CuA) of complex IV. Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.
Collapse
|
7
|
Ekim Kocabey A, Rödel G, Gey U. The antioxidant function of Sco proteins depends on a critical surface-exposed residue. Biochim Biophys Acta Gen Subj 2020; 1865:129781. [PMID: 33171213 DOI: 10.1016/j.bbagen.2020.129781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Besides their role in copper metabolism, Sco proteins from different organisms have been shown to play a defensive role against oxidative stress. In the present study, we set out to identify crucial amino acid residues for the antioxidant activity. METHODS Native and mutated Sco proteins from human, Arabidopsis thaliana and the yeast Kluyveromyces lactis were expressed in the model organism Saccharomyces cerevisiae. The oxidative stress resistance of the respective transformants was determined by growth and lipid peroxidation assays. RESULTS A functionally important site, located 15 amino acids downstream of the well-conserved copper binding CxxxC motif, was identified. Mutational analysis revealed that a positive charge at this position has a detrimental effect on the antioxidant capacity. Bioinformatic analysis predicts that this site is surface-exposed, and according to Co-IP data it is required for binding of proteins that are connected to known antioxidant pathways. CONCLUSION This study shows that the antioxidant capacity of eukaryotic Sco proteins is conserved and depends on the presence of functional site(s) rather than the extent of overall sequence homology. GENERAL SIGNIFICANCE These findings provide an insight into the conserved functional sites of eukaryotic Sco proteins that are crucial for combating oxidative stress. This capacity is probably not due to an enzymatic activity but rather is indirectly mediated by interaction with other proteins.
Collapse
Affiliation(s)
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Uta Gey
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
8
|
What Role Does COA6 Play in Cytochrome C Oxidase Biogenesis: A Metallochaperone or Thiol Oxidoreductase, or Both? Int J Mol Sci 2020; 21:ijms21196983. [PMID: 32977416 PMCID: PMC7582641 DOI: 10.3390/ijms21196983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Complex IV (cytochrome c oxidase; COX) is the terminal complex of the mitochondrial electron transport chain. Copper is essential for COX assembly, activity, and stability, and is incorporated into the dinuclear CuA and mononuclear CuB sites. Multiple assembly factors play roles in the biogenesis of these sites within COX and the failure of this intricate process, such as through mutations to these factors, disrupts COX assembly and activity. Various studies over the last ten years have revealed that the assembly factor COA6, a small intermembrane space-located protein with a twin CX9C motif, plays a role in the biogenesis of the CuA site. However, how COA6 and its copper binding properties contribute to the assembly of this site has been a controversial area of research. In this review, we summarize our current understanding of the molecular mechanisms by which COA6 participates in COX biogenesis.
Collapse
|
9
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
10
|
Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Rep 2020; 29:4114-4126.e5. [PMID: 31851937 PMCID: PMC6946597 DOI: 10.1016/j.celrep.2019.11.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO. Soma et al. reports the solution structure of cytochrome c oxidase assembly factor COA6 and establishes that it functions as a thiol-disulfide oxidoreductase in a relay system that delivers copper to COX2, a copper-containing subunit of the mitochondrial cytochrome c oxidase.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Mandar T Naik
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anna A Roesler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Alok Ghosh
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
12
|
Nickel(II)‐Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic Cycle of Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Bhandari A, Mishra S, Maji RC, Kumar A, Olmstead MM, Patra AK. Nickel(II)‐Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of the Catalytic Cycle of Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2020; 59:9177-9185. [DOI: 10.1002/anie.202001363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Anirban Bhandari
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Saikat Mishra
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Ram Chandra Maji
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| | - Akhilesh Kumar
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | | | - Apurba K. Patra
- Department of Chemistry National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713 209 (WB) India
| |
Collapse
|
14
|
Maghool S, Cooray NDG, Stroud DA, Aragão D, Ryan MT, Maher MJ. Structural and functional characterization of the mitochondrial complex IV assembly factor Coa6. Life Sci Alliance 2019; 2:2/5/e201900458. [PMID: 31515291 PMCID: PMC6743065 DOI: 10.26508/lsa.201900458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023] Open
Abstract
Assembly factors play key roles in the biogenesis of many multi-subunit protein complexes regulating their stability, activity, and the incorporation of essential cofactors. The human assembly factor Coa6 participates in the biogenesis of the CuA site in complex IV (cytochrome c oxidase, COX). Patients with mutations in Coa6 suffer from mitochondrial disease due to complex IV deficiency. Here, we present the crystal structures of human Coa6 and the pathogenic W59CCoa6-mutant protein. These structures show that Coa6 has a 3-helical bundle structure, with the first 2 helices tethered by disulfide bonds, one of which likely provides the copper-binding site. Disulfide-mediated oligomerization of the W59CCoa6 protein provides a structural explanation for the loss-of-function mutation.
Collapse
Affiliation(s)
- Shadi Maghool
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - N Dinesha G Cooray
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - David Aragão
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia,School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia,Correspondence:
| |
Collapse
|
15
|
Nardella MI, Rosato A, Belviso BD, Caliandro R, Natile G, Arnesano F. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione. Int J Mol Sci 2019; 20:ijms20184390. [PMID: 31500118 PMCID: PMC6769983 DOI: 10.3390/ijms20184390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023] Open
Abstract
Cancer cells cope with high oxidative stress levels, characterized by a shift toward the oxidized form (GSSG) of glutathione (GSH) in the redox couple GSSG/2GSH. Under these conditions, the cytosolic copper chaperone Atox1, which delivers Cu(I) to the secretory pathway, gets oxidized, i.e., a disulfide bond is formed between the cysteine residues of the Cu(I)-binding CxxC motif. Switching to the covalently-linked form, sulfur atoms are not able to bind the Cu(I) ion and Atox1 cannot play an antioxidant role. Atox1 has also been implicated in the resistance to platinum chemotherapy. In the presence of excess GSH, the anticancer drug cisplatin binds to Cu(I)-Atox1 but not to the reduced apoprotein. With the aim to investigate the interaction of cisplatin with the disulfide form of the protein, we performed a structural characterization in solution and in the solid state of oxidized human Atox1 and explored its ability to bind cisplatin under conditions mimicking an oxidizing environment. Cisplatin targets a methionine residue of oxidized Atox1; however, in the presence of GSH as reducing agent, the drug binds irreversibly to the protein with ammine ligands trans to Cys12 and Cys15. The results are discussed with reference to the available literature data and a mechanism is proposed connecting platinum drug processing to redox and copper homeostasis.
Collapse
Affiliation(s)
- Maria I Nardella
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - Benny D Belviso
- Institute of Crystallography, CNR, via Amendola, 122/o, 70126 Bari, Italy
| | - Rocco Caliandro
- Institute of Crystallography, CNR, via Amendola, 122/o, 70126 Bari, Italy
| | - Giovanni Natile
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
16
|
Llases ME, Lisa MN, Morgada MN, Giannini E, Alzari PM, Vila AJ. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu A assembly in Cytochrome c Oxidase. FEBS J 2019; 287:749-762. [PMID: 31348612 DOI: 10.1111/febs.15016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
The assembly of the CuA site in Cytochrome c Oxidase (COX) is a critical step for aerobic respiration in COX-dependent organisms. Several gene products have been associated with the assembly of this copper site, the most conserved of them belonging to the Sco family of proteins, which have been shown to perform different roles in different organisms. Plants express two orthologs of Sco proteins: Hcc1 and Hcc2. Hcc1 is known to be essential for plant development and for COX maturation, but its precise function has not been addressed until now. Here, we report the biochemical, structural and functional characterization of Arabidopsis thaliana Hcc1 protein (here renamed Sco1). We solved the crystal structure of the Cu+1 -bound soluble domain of this protein, revealing a tri coordinated environment involving a CxxxCxn H motif. We show that AtSco1 is able to work as a copper metallochaperone, inserting two Cu+1 ions into the CuA site in a model of CoxII. We also show that AtSco1 does not act as a thiol-disulfide oxido-reductase. Overall, this information sheds new light on the biochemistry of Sco proteins, highlighting the diversity of functions among them despite their high structural similarities. DATABASE: PDB entry 6N5U (Crystal structure of Arabidopsis thaliana ScoI with copper bound).
Collapse
Affiliation(s)
- María-Eugenia Llases
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET-UNR), Rosario, Argentina
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET-UNR), Rosario, Argentina.,Plataforma de Biología Estructural y Metabolómica (PLABEM), Rosario, Argentina
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET-UNR), Rosario, Argentina.,Area Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | - Estefanía Giannini
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET-UNR), Rosario, Argentina
| | - Pedro M Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET-UNR), Rosario, Argentina.,Plataforma de Biología Estructural y Metabolómica (PLABEM), Rosario, Argentina.,Area Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| |
Collapse
|
17
|
Canonica F, Klose D, Ledermann R, Sauer MM, Abicht HK, Quade N, Gossert AD, Chesnov S, Fischer HM, Jeschke G, Hennecke H, Glockshuber R. Structural basis and mechanism for metallochaperone-assisted assembly of the Cu A center in cytochrome oxidase. SCIENCE ADVANCES 2019; 5:eaaw8478. [PMID: 31392273 PMCID: PMC6669012 DOI: 10.1126/sciadv.aaw8478] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms underlying the biogenesis of the structurally unique, binuclear Cu1.5+•Cu1.5+ redox center (CuA) on subunit II (CoxB) of cytochrome oxidases have been a long-standing mystery. Here, we reconstituted the CoxB•CuA center in vitro from apo-CoxB and the holo-forms of the copper transfer chaperones ScoI and PcuC. A previously unknown, highly stable ScoI•Cu2+•CoxB complex was shown to be rapidly formed as the first intermediate in the pathway. Moreover, our structural data revealed that PcuC has two copper-binding sites, one each for Cu1+ and Cu2+, and that only PcuC•Cu1+•Cu2+ can release CoxB•Cu2+ from the ScoI•Cu2+•CoxB complex. The CoxB•CuA center was then formed quantitatively by transfer of Cu1+ from a second equivalent of PcuC•Cu1+•Cu2+ to CoxB•Cu2+. This metalation pathway is consistent with all available in vivo data and identifies the sources of the Cu ions required for CuA center formation and the order of their delivery to CoxB.
Collapse
Affiliation(s)
- Fabia Canonica
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Maximilian M. Sauer
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Helge K. Abicht
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nick Quade
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Alvar D. Gossert
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Serge Chesnov
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | | | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Petrov AI, Dergachev VD. Palladium(II) Ion Mediated Disulfide/Thiolate Interconversion: Predicting the Disulfide Group State from First Principles. J Phys Chem A 2019; 123:4873-4882. [PMID: 31117586 DOI: 10.1021/acs.jpca.9b00740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Different reactivity of homologous disulfides toward Pd2+ was previously reported: stepwise complexation to Pd2+ for l-cystine and cystamine ligands, while for dl-homocystine and 3,3'-dithiodipropionic acid, disulfide's disproportionation toward thiolate and sulfinic acid complexes is observed. The disulfide/thiolate interconversion of four different disulfide ligands in the presence of nonredox metal cation Pd2+ in aqueous solution has been computationally investigated. We see this different reactivity in different capacities of considered homologous disulfides to stabilize forming S,S'-binuclear complexes, which are believed to be key intermediates toward interconversion products. We thus devise a theoretical model that rationalizes experimentally observed phenomenon of disulfides different reactivity toward nonredox transition metal cation Pd2+.
Collapse
Affiliation(s)
- Alexander I Petrov
- Institute of Chemistry and Chemical Technology SB RAS , Federal Research Center "Krasnoyarsk Science Center SB RAS" , Krasnoyarsk 660014 , Russian Federation
| | - Vsevolod D Dergachev
- Department of Chemistry , University of Nevada , Reno 89557 , United States.,Institute of Informatics and Telecommunications , Siberian State Aerospace University , Krasnoyarsk 660014 , Russian Federation
| |
Collapse
|
19
|
Ekim Kocabey A, Kost L, Gehlhar M, Rödel G, Gey U. Mitochondrial Sco proteins are involved in oxidative stress defense. Redox Biol 2018; 21:101079. [PMID: 30593977 PMCID: PMC6307045 DOI: 10.1016/j.redox.2018.101079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Members of the evolutionary conserved Sco protein family have been intensively studied regarding their role in the assembly of the mitochondrial cytochrome c oxidase. However, experimental and structural data, specifically the presence of a thioredoxin-like fold, suggest that Sco proteins may also play a role in redox homeostasis. In our study, we addressed this putative function of Sco proteins using Saccharomyces cerevisiae as a model system. Like many eukaryotes, this yeast possesses two SCO homologs (SCO1 and SCO2). Mutants bearing a deletion of either of the two genes are not affected in their growth under oxidative stress. However, the concomitant deletion of the SOD1 gene encoding the superoxide dismutase 1 resulted in a distinct phenotype: double deletion strains lacking SCO1 or SCO2 and SOD1 are highly sensitive to oxidative stress and show dramatically increased ROS levels. The respiratory competent double deletion strain Δsco2Δsod1 paved the way to investigate the putative antioxidant function of SCO homologs apart from their role in respiration by complementation analysis. Sco homologs from Drosophila, Arabidopsis, human and two other yeast species were integrated into the genome of the double deletion mutant and the transformants were analyzed for their growth under oxidative stress. Interestingly, all homologs except for Kluyveromyces lactis K07152 and Arabidopsis thaliana HCC1 were able to complement the phenotype, indicating their role in oxidative stress defense. We further applied this complementation-based system to investigate whether pathogenic point mutations affect the putative antioxidant role of hSco2. Surprisingly, all of the mutant alleles failed to restore the ROS-sensitivity of the Δsco2Δsod1 strain. In conclusion, our data not only provide clear evidence for the function of Sco proteins in oxidative stress defense but also offer a valuable tool to investigate this role for other homologous proteins. Concomitant deletion of SCO and SOD1 leads to a high ROS sensitivity. SCO homologs from higher organisms can rescue the oxidative stress sensitive phenotype of the double deletion mutant. Pathogenic human Sco2 mutations affect the antioxidant function of the protein. The role of the Sco proteins in oxidative stress defense is discussed.
Collapse
Affiliation(s)
| | - Luise Kost
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Maria Gehlhar
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Uta Gey
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
20
|
Devlin T, Hofman CR, Acevedo ZPV, Kohler KR, Tao L, Britt RD, Hoke KR, Hunsicker-Wang LM. DEPC modification of the Cu A protein from Thermus thermophilus. J Biol Inorg Chem 2018; 24:117-135. [PMID: 30523412 DOI: 10.1007/s00775-018-1632-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
The CuA center is the initial electron acceptor in cytochrome c oxidase, and it consists of two copper ions bridged by two cysteines and ligated by two histidines, a methionine, and a carbonyl in the peptide backbone of a nearby glutamine. The two ligating histidines are of particular interest as they may influence the electronic and redox properties of the metal center. To test for the presence of reactive ligating histidines, a portion of cytochrome c oxidase from the bacteria Thermus thermophilus that contains the CuA site (the TtCuA protein) was treated with the chemical modifier diethyl pyrocarbonate (DEPC) and the reaction followed through UV-visible, circular dichroism, and electron paramagnetic resonance spectroscopies at pH 5.0-9.0. A mutant protein (H40A/H117A) with the non-ligating histidines removed was similarly tested. Introduction of an electron-withdrawing DEPC-modification onto the ligating histidine 157 of TtCuA increased the reduction potential by over 70 mV, as assessed by cyclic voltammetry. Results from both proteins indicate that DEPC reacts with one of the two ligating histidines, modification of a ligating histidine raises the reduction potential of the CuA site, and formation of the DEPC adduct is reversible at room temperature. The existence of the reactive ligating histidine suggests that this residue may play a role in modulating the electronic and redox properties of TtCuA through kinetically-controlled proton exchange with the solvent. Lack of reactivity by the metalloproteins Sco and azurin, both of which contain a mononuclear copper center, indicate that reactivity toward DEPC is not a characteristic of all ligating histidines.
Collapse
Affiliation(s)
- Taylor Devlin
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Cristina R Hofman
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Zachary P V Acevedo
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Kelsey R Kohler
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Lizhi Tao
- Department of Chemistry, University of California at Davis, Davis, CA, 95616, USA
| | - R David Britt
- Department of Chemistry, University of California at Davis, Davis, CA, 95616, USA
| | - Kevin R Hoke
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, 30149, USA
| | | |
Collapse
|
21
|
Abstract
Abstract
Metal ions are essential cofactors required by the proteome of organisms from any kingdom of life to correctly exert their functions. Dedicated cellular import, transport and homeostasis systems assure that the needed metal ion is correctly delivered and inserted into the target proteins and avoid the presence of free metal ions in the cell, preventing oxidative damaging. Among metal ions, in eukaryotic organisms copper and iron are required by proteins involved in absolutely essential functions, such as respiration, oxidative stress protection, catalysis, gene expression regulation. Copper and iron binding proteins are localized in essentially all cellular compartments. Copper is physiologically present mainly as individual metal ion. Iron can be present both as individual metal ion or as part of cofactors, such as hemes and iron-sulfur (Fe-S) clusters. Both metal ions are characterized by the ability to cycle between different oxidation states, which enable them to catalyze redox reactions and to participate in electron transfer processes. Here we describe in detail the main processes responsible for the trafficking of copper and iron sulfur clusters, with particular interest for the structural aspects of the maturation of copper and iron-sulfur-binding proteins.
Collapse
|
22
|
Lopez LC, Mukhitov N, Handley LD, Hamme CS, Hofman CR, Euers L, McKinney JR, Piers AD, Wadler E, Hunsicker-Wang LM. Characterization and effect of metal ions on the formation of the Thermus thermophilus Sco mixed disulfide intermediate. Protein Sci 2018; 27:1942-1954. [PMID: 30168216 DOI: 10.1002/pro.3502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022]
Abstract
The Sco protein from Thermus thermophilus has previously been shown to perform a disulfide bond reduction in the CuA protein from T. thermophilus, which is a soluble protein engineered from subunit II of cytochrome ba 3 oxidase that lacks the transmembrane helix. The native cysteines on TtSco and TtCuA were mutated to serine residues to probe the reactivities of the individual cysteines. Conjugation of TNB to the remaining cysteine in TtCuA and subsequent release upon incubation with the complementary TtSco protein demonstrated the formation of the mixed disulfide intermediate. The cysteine of TtSco that attacks the disulfide bond in the target TtCuA protein was determined to be TtSco Cysteine 49. This cysteine is likely more reactive than Cysteine 53 due to a higher degree of solvent exposure. Removal of the metal binding histidine, His 139, does not change MDI formation. However, altering the arginine adjacent to the reactive cysteine in Sco (Arginine 48) does alter the formation of the MDI. Binding of Cu2+ or Cu+ to TtSco prior to reaction with TtCuA was found to preclude formation of the mixed disulfide intermediate. These results shed light on a mechanism of disulfide bond reduction by the TtSco protein and may point to a possible role of metal binding in regulating the activity. IMPORTANCE: The function of Sco is at the center of many studies. The disulfide bond reduction in CuA by Sco is investigated herein and the effect of metal ions on the ability to reduce and form a mixed disulfide intermediate are also probed.
Collapse
Affiliation(s)
- Liezelle C Lopez
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,Baylor School of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Nikita Mukhitov
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Lindsey D Handley
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,ThoughtSTEM, San Diego, California, 92108
| | - Cristina S Hamme
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,Lone Star Family Health Center, Conroe, Texas, 77034
| | - Cristina R Hofman
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200
| | - Lindsay Euers
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,Houston Methodist Hospital, Houston, Texas, 77303
| | - Jennifer R McKinney
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,Department of Maternal Fetal Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77004
| | - Amani D Piers
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,Department of Psychology, Drexel University, Philadelphia, Pennsylvania, 19104
| | - Ellen Wadler
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200.,University of Texas Health Science Center Houston School of Public Health, Houston, Texas, 77030
| | - Laura M Hunsicker-Wang
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas, 78212-7200
| |
Collapse
|
23
|
Trasnea PI, Andrei A, Marckmann D, Utz M, Khalfaoui-Hassani B, Selamoglu N, Daldal F, Koch HG. A Copper Relay System Involving Two Periplasmic Chaperones Drives cbb 3-Type Cytochrome c Oxidase Biogenesis in Rhodobacter capsulatus. ACS Chem Biol 2018; 13:1388-1397. [PMID: 29613755 DOI: 10.1021/acschembio.8b00293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PccA and SenC are periplasmic copper chaperones required for the biogenesis of cbb3-type cytochrome c oxidase ( cbb3-Cox) in Rhodobacter capsulatus at physiological Cu concentrations. However, both proteins are dispensable for cbb3-Cox assembly when the external Cu concentration is high. PccA and SenC bind Cu using Met and His residues and Cys and His residues as ligands, respectively, and both proteins form a complex during cbb3-Cox biogenesis. SenC also interacts directly with cbb3-Cox, as shown by chemical cross-linking. Here we determined the periplasmic concentrations of both proteins in vivo and analyzed their Cu binding stoichiometries and their Cu(I) and Cu(II) binding affinity constants ( KD) in vitro. Our data show that both proteins bind a single Cu atom with high affinity. In vitro Cu transfer assays demonstrate Cu transfer both from PccA to SenC and from SenC to PccA at similar levels. We conclude that PccA and SenC constitute a Cu relay system that facilitates Cu delivery to cbb3-Cox.
Collapse
Affiliation(s)
- Petru-Iulian Trasnea
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Bahia Khalfaoui-Hassani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
24
|
Hussain S, Andrews D, Hill BC. Using Tryptophan Mutants To Probe the Structural and Functional Status of BsSCO, a Copper Binding, Cytochrome c Oxidase Assembly Protein from Bacillus subtilis. Biochemistry 2017; 56:6355-6367. [DOI: 10.1021/acs.biochem.7b00833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shina Hussain
- Department
of Biomedical and Molecular Sciences and ‡Protein Function Discovery Group, Queen’s University, Kingston, ON K7L
3N6, Canada
| | - Diann Andrews
- Department
of Biomedical and Molecular Sciences and ‡Protein Function Discovery Group, Queen’s University, Kingston, ON K7L
3N6, Canada
| | - Bruce C. Hill
- Department
of Biomedical and Molecular Sciences and ‡Protein Function Discovery Group, Queen’s University, Kingston, ON K7L
3N6, Canada
| |
Collapse
|
25
|
Jett KA, Leary SC. Building the Cu A site of cytochrome c oxidase: A complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J Biol Chem 2017; 293:4644-4652. [PMID: 28972150 DOI: 10.1074/jbc.r117.816132] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase (COX) was initially purified more than 70 years ago. A tremendous amount of insight into its structure and function has since been gleaned from biochemical, biophysical, genetic, and molecular studies. As a result, we now appreciate that COX relies on its redox-active metal centers (heme a and a3, CuA and CuB) to reduce oxygen and pump protons in a reaction essential for most eukaryotic life. Questions persist, however, about how individual structural subunits are assembled into a functional holoenzyme. Here, we focus on what is known and what remains to be learned about the accessory proteins that facilitate CuA site maturation.
Collapse
Affiliation(s)
- Kimberly A Jett
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
26
|
Jia H, Ma M, Zhai N, Liu Z, Wang H, Guo X, Xu B. Roles of a mitochondrial AccSCO2 gene from Apis cerana cerana in oxidative stress responses. J Inorg Biochem 2017; 175:9-19. [PMID: 28689066 DOI: 10.1016/j.jinorgbio.2017.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 01/25/2023]
Abstract
In eukaryotes, cytochrome c oxidase (COX) is a multimeric protein complex that is the last enzyme in the respiratory electron transport chain of mitochondria. Syntheses of cytochrome c oxidase (SCO) proteins are copper-donor chaperones involved in metalation of the CuA redox center of COX. However, its other precise actions are not yet understood. Here, we report the characterization of AccSCO2 from Apis cerana cerana (Acc). Our data showed that AccSCO2 expression was induced by cold (4°C), CdCl2, HgCl2, ultraviolet (UV) light, and H2O2 and was inhibited by different pesticide treatments. In addition, a disc diffusion assay of recombinant AccSCO2, AccSCO2-R1, and AccSCO2-R2 proteins showed that they played a functional role in protecting cells from oxidative stress involved in copper-dependent manner. Further, following knockdown of AccSCO2 in A. cerana cerana using RNA interference (RNAi), the expression levels of most antioxidant genes (AccGSTD, AccGSTO1, AccGSTS4, AccSOD1, AccSOD2, etc.) were significantly decreased in the AccSCO2-silenced bees compared with the control bees. Moreover, the antioxidant enzymatic activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were all lower in the silenced bees than in the control bees. Finally, the in vivo activity of COX was measured after AccSCO2 knockdown, which revealed a strong reduction in COX activity in the silenced bees. Thus, we hypothesize that AccSCO2 plays important roles in cellular stress responses and anti-oxidative processes, which help to regulate the production of mitochondrial reactive oxygen species and/or the impairment of mitochondrial activity under oxidative stress.
Collapse
Affiliation(s)
- Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Manli Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
27
|
Li L, Guo W, Wu K, Wu X, Zhao L, Zhao Y, Luo Q, Wang Y, Liu Y, Zhang Q, Wang F. A comparative study on the interactions of human copper chaperone Cox17 with anticancer organoruthenium(II) complexes and cisplatin by mass spectrometry. J Inorg Biochem 2016; 161:99-106. [PMID: 27235272 DOI: 10.1016/j.jinorgbio.2016.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
Herein we report investigation of the interactions between anticancer organoruthenium complexes, [(η(6)-arene)Ru(en)(Cl)]PF6 (en=ethylenediamine, arene=p-cymene (1) or biphenyl (2)), and the human copper chaperone protein Cox17 by mass spectrometry with cisplatin as a reference. The electrospray ionization mass spectrometry (ESI-MS) results indicate much weaker binding of the ruthenium complexes than that of cisplatin to apo-Cox172s-s, the functional state of Cox17. Up to tetra-platinated Cox17 adducts were identified while only mono-ruthenated and a little amount of di-ruthenated Cox17 adducts were detected even for the reactions with 10-fold excess of the Ru complexes. However, ESI-MS analysis coupled with liquid chromatography of tryptic digests of metalated proteins identified only three platination sites as Met4, Cys27 and His47 residues, possibly due to the lower abundance or facile dissociation of Pt bindings at other sites. Complexes 1 and 2 were found to bind to the same three residues with Met4 as the major site. Inductively coupled plasma mass spectrometry results revealed that ~7mol Pt binding to 1mol apo-Cox172s-s molecules, compared to only 0.17 (1) and 0.10 (2) mol Ru to 1mol apo-Cox172s-s. This is in line with the circular dichroism results that much larger unfolding extent of α-helix of apo-Cox172s-s was observed upon cisplatin binding than that upon organoruthenium bindings. These results collectively indicate that Cox17 might not participate in the action of these anticancer organoruthenium complexes, and further verify the distinct anticancer mechanism of the organoruthenium(II) complexes from cisplatin.
Collapse
Affiliation(s)
- Lijie Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, PR China
| | - Wei Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xuelei Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Linhong Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qingwu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, PR China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
28
|
Trasnea PI, Utz M, Khalfaoui-Hassani B, Lagies S, Daldal F, Koch HG. Cooperation between two periplasmic copper chaperones is required for full activity of the cbb3 -type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus. Mol Microbiol 2016; 100:345-61. [PMID: 26718481 DOI: 10.1111/mmi.13321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
Abstract
Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, such as respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In this study, we analyzed Cu delivery to the cbb3 -type cytochrome c oxidase (cbb3 -Cox) of Rhodobacter capsulatus. We identified the PCuA C-like periplasmic chaperone PccA and analyzed its contribution to cbb3 -Cox assembly. Our data demonstrate that PccA is a Cu-binding protein with a preference for Cu(I), which is required for efficient cbb3 -Cox assembly, in particular, at low Cu concentrations. By using in vivo and in vitro cross-linking, we show that PccA forms a complex with the Sco1-homologue SenC. This complex is stabilized in the absence of the cbb3 -Cox-specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. These data demonstrate that the interplay between PccA and SenC not only is required for Cu delivery during cbb3 -Cox assembly but also regulates Cu homeostasis in R. capsulatus.
Collapse
Affiliation(s)
- Petru-Iulian Trasnea
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany.,Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Marcel Utz
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
| | | | - Simon Lagies
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, 79104, Freiburg, Germany
| |
Collapse
|
29
|
Chakraborty S, Polen MJ, Chacón KN, Wilson TD, Yu Y, Reed J, Nilges MJ, Blackburn NJ, Lu Y. Binuclear Cu(A) Formation in Biosynthetic Models of Cu(A) in Azurin Proceeds via a Novel Cu(Cys)2His Mononuclear Copper Intermediate. Biochemistry 2016; 54:6071-81. [PMID: 26352296 DOI: 10.1021/acs.biochem.5b00659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu(A) is a binuclear electron transfer (ET) center found in cytochrome c oxidases (CcOs), nitrous oxide reductases (N₂ORs), and nitric oxide reductase (NOR). In these proteins, the Cu(A) centers facilitate efficient ET (kET > 10⁴s⁻¹) under low thermodynamic driving forces (10-90 mV). While the structure and functional properties of Cu(A) are well understood, a detailed mechanism of the incorporation of copper into the protein and the identity of the intermediates formed during the Cu(A) maturation process are still lacking. Previous studies of the Cu(A) assembly mechanism in vitro using a biosynthetic model Cu(A) center in azurin (Cu(A)Az) identified a novel intermediate X (Ix) during reconstitution of the binuclear site. However, because of the instability of Ix and the coexistence of other Cu centers, such as Cu(A)' and type 1 copper centers, the identity of this intermediate could not be established. Here, we report the mechanism of Cu(A) assembly using variants of Glu114XCuAAz (X = Gly, Ala, Leu, or Gln), the backbone carbonyl of which acts as a ligand to the Cu(A) site, with a major focus on characterization of the novel intermediate Ix. We show that Cu(A) assembly in these variants proceeds through several types of Cu centers, such as mononuclear red type 2 Cu, the novel intermediate Ix, and blue type 1 Cu. Our results show that the backbone flexibility of the Glu114 residue is an important factor in determining the rates of T2Cu → Ix formation, suggesting that Cu(A) formation is facilitated by swinging of the ligand loop, which internalizes the T2Cu capture complex to the protein interior. The kinetic data further suggest that the nature of the Glu114 side chain influences the time scales on which these intermediates are formed, the wavelengths of the absorption peaks, and how cleanly one intermediate is converted to another. Through careful understanding of these mechanisms and optimization of the conditions, we have obtained Ix in ∼80-85% population in these variants, which allowed us to employ ultraviolet-visible, electron paramagnetic resonance, and extended X-ray absorption fine structure spectroscopic techniques to identify the Ix as a mononuclear Cu(Cys)(2)(His) complex. Because some of the intermediates have been proposed to be involved in the assembly of native Cu(A), these results shed light on the structural features of the important intermediates and mechanism of Cu(A) formation.
Collapse
Affiliation(s)
- Saumen Chakraborty
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Michael J Polen
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Kelly N Chacón
- Institute of Environmental Health, Oregon Health & Sciences University , Portland, Oregon 97239, United States
| | - Tiffany D Wilson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Julian Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mark J Nilges
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ninian J Blackburn
- Institute of Environmental Health, Oregon Health & Sciences University , Portland, Oregon 97239, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase. Proc Natl Acad Sci U S A 2015; 112:11771-6. [PMID: 26351686 DOI: 10.1073/pnas.1505056112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maturation of cytochrome oxidases is a complex process requiring assembly of several subunits and adequate uptake of the metal cofactors. Two orthologous Sco proteins (Sco1 and Sco2) are essential for the correct assembly of the dicopper CuA site in the human oxidase, but their function is not fully understood. Here, we report an in vitro biochemical study that shows that Sco1 is a metallochaperone that selectively transfers Cu(I) ions based on loop recognition, whereas Sco2 is a copper-dependent thiol reductase of the cysteine ligands in the oxidase. Copper binding to Sco2 is essential to elicit its redox function and as a guardian of the reduced state of its own cysteine residues in the oxidizing environment of the mitochondrial intermembrane space (IMS). These results provide a detailed molecular mechanism for CuA assembly, suggesting that copper and redox homeostasis are intimately linked in the mitochondrion.
Collapse
|
31
|
Dash BP, Alles M, Bundschuh FA, Richter OMH, Ludwig B. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:202-211. [PMID: 25445316 DOI: 10.1016/j.bbabio.2014.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/27/2022]
Abstract
The biogenesis of the mitochondrial cytochrome c oxidase is a complex process involving the stepwise assembly of its multiple subunits encoded by two genetic systems. Moreover, several chaperones are required to recruit and insert the redox-active metal centers into subunits I and II, two a-type hemes and a total of three copper ions, two of which form the CuA center located in a hydrophilic domain of subunit II. The copper-binding Sco protein(s) have been implicated with the metallation of this site in various model organisms. Here we analyze the role of the two Sco homologues termed ScoA and ScoB, along with two other copper chaperones, on the biogenesis of the cytochrome c oxidase in the bacterium Paracoccus denitrificans by deleting each of the four genes individually or pairwise, followed by assessing the functionality of the assembled oxidase both in intact membranes and in the purified enzyme complex. Copper starvation leads to a drastic decrease of oxidase activity in membranes from strains involving the scoB deletion. This loss is shown to be of dual origin, (i) a severe drop in steady-state oxidase levels in membranes, and (ii) a diminished enzymatic activity of the remaining oxidase complex, traced back to a lower copper content, specifically in the CuA site of the enzyme. Neither of the other proteins addressed here, ScoA or the two PCu proteins, exhibit a direct effect on the metallation of the CuA site in P. denitrificans, but are discussed as potential interaction partners of ScoB.
Collapse
Affiliation(s)
| | - Melanie Alles
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Freya Alena Bundschuh
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Oliver-M H Richter
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Bernd Ludwig
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany.
| |
Collapse
|
32
|
Tan SH, Normi YM, Leow ATC, Salleh AB, Karjiban RA, Murad AMA, Mahadi NM, Rahman MBA. A Sco protein among the hypothetical proteins of Bacillus lehensis G1: Its 3D macromolecular structure and association with Cytochrome C Oxidase. BMC STRUCTURAL BIOLOGY 2014; 14:11. [PMID: 24641837 PMCID: PMC3994876 DOI: 10.1186/1472-6807-14-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/14/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND At least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail. RESULTS All HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the βαβαββ core structure of Trx-like proteins as well as three flanking β-sheets, a 310 -helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes. CONCLUSIONS We propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess metallochaperone and redox functions similar to other documented bacterial Sco proteins. It is hoped that this scientific effort will help to spur the search for other physiologically relevant proteins among the so-called "orphan" proteins of any given organism.
Collapse
Affiliation(s)
- Soo Huei Tan
- Center for Enzyme and Microbial Biotechnology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Yahaya M Normi
- Center for Enzyme and Microbial Biotechnology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adam Thean Chor Leow
- Center for Enzyme and Microbial Biotechnology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Abu Bakar Salleh
- Center for Enzyme and Microbial Biotechnology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Roghayeh Abedi Karjiban
- Center for Enzyme and Microbial Biotechnology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, Kajang, Selangor 43000, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Center for Enzyme and Microbial Biotechnology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, Kajang, Selangor 43000, Malaysia
| |
Collapse
|
33
|
Thomas AM, Lin BL, Wasinger EC, Stack TDP. Ligand noninnocence of thiolate/disulfide in dinuclear copper complexes: solvent-dependent redox isomerization and proton-coupled electron transfer. J Am Chem Soc 2013; 135:18912-9. [PMID: 24279864 DOI: 10.1021/ja409603m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper thiolate/disulfide interconversions are related to the functions of several important proteins such as human Sco1, Cu-Zn superoxide dismutase (SOD1), and mammalian zinc-bonded metallothionein. The synthesis and characterization of well-defined synthetic analogues for such interconversions are challenging yet provide important insights into the mechanisms of such redox processes. Solvent-dependent redox isomerization and proton-coupled electron transfer mimicking these interconversions are observed in two structurally related dimeric μ,η(2):η(2)-thiolato Cu(II)Cu(II) complexes by various methods, including X-ray diffraction, XAS, NMR, and UV-vis. Spectroscopic evidence shows that a solvent-dependent equilibrium exists between the dimeric μ-thiolato Cu(II)Cu(II) state and its redox isomeric μ-disulfido Cu(I)Cu(I) form. Complete formation of μ-disulfido Cu(I)Cu(I) complexes, however, only occurs after the addition of 2 equiv of protons, which promote electron transfer from thiolate to Cu(II) and formation of disulfide and Cu(I) via protonation of the coordinating ligand. Proton removal reverses this reaction. The reported unusual reductive protonation/oxidative deprotonation of the metal centers may serve as a new chemical precedent for how related proteins manage Cu ions in living organisms.
Collapse
Affiliation(s)
- Andrew M Thomas
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
34
|
Bourens M, Fontanesi F, Soto IC, Liu J, Barrientos A. Redox and reactive oxygen species regulation of mitochondrial cytochrome C oxidase biogenesis. Antioxid Redox Signal 2013; 19:1940-52. [PMID: 22937827 PMCID: PMC3852343 DOI: 10.1089/ars.2012.4847] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. RECENT ADVANCES Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. CRITICAL ISSUES An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. FUTURE DIRECTIONS Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress.
Collapse
Affiliation(s)
- Myriam Bourens
- 1 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | |
Collapse
|
35
|
Palumaa P. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett 2013; 587:1902-10. [PMID: 23684646 DOI: 10.1016/j.febslet.2013.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Copper chaperones compose a specific class of proteins assuring safe handling and specific delivery of potentially harmful copper ions to a variety of essential copper proteins. Copper chaperones are structurally heterogeneous and can exist in multiple metal-loaded as well as oligomeric forms. Moreover, many copper chaperones can exist in various oxidative states and participate in redox catalysis, connected with their functioning. This review is focused on the analysis of the structural and functional properties of copper chaperones and their partners, which allowed us to define specific regulatory principles in copper metabolism connected with copper-induced conformational control of copper proteins.
Collapse
Affiliation(s)
- Peep Palumaa
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
36
|
Chen YH, Lin TT, Chen HY, Kao CL, Chen HY, Hsu SC, Carey JR, Chiang MY. A simple competition assay to probe pentacopper(I)-thiolato cluster ligand exchange. J Inorg Biochem 2013; 120:24-31. [DOI: 10.1016/j.jinorgbio.2012.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
37
|
Leary SC, Cobine PA, Nishimura T, Verdijk RM, de Krijger R, de Coo R, Tarnopolsky MA, Winge DR, Shoubridge EA. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux. Mol Biol Cell 2013; 24:683-91. [PMID: 23345593 PMCID: PMC3596241 DOI: 10.1091/mbc.e12-09-0705] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of patient tissues and cell lines shows that SCO1 and SCO2 function collaboratively to generate a redox-dependent signal that is transduced from mitochondria to the cytosol by COX19, where it is relayed to ATP7A to regulate the rate of copper efflux from the cell. SCO1 and SCO2 are metallochaperones whose principal function is to add two copper ions to the catalytic core of cytochrome c oxidase (COX). However, affected tissues of SCO1 and SCO2 patients exhibit a combined deficiency in COX activity and total copper content, suggesting additional roles for these proteins in the regulation of cellular copper homeostasis. Here we show that both the redox state of the copper-binding cysteines of SCO1 and the abundance of SCO2 correlate with cellular copper content and that these relationships are perturbed by mutations in SCO1 or SCO2, producing a state of apparent copper overload. The copper deficiency in SCO patient fibroblasts is rescued by knockdown of ATP7A, a trans-Golgi, copper-transporting ATPase that traffics to the plasma membrane during copper overload to promote efflux. To investigate how a signal from SCO1 could be relayed to ATP7A, we examined the abundance and subcellular distribution of several soluble COX assembly factors. We found that COX19 partitions between mitochondria and the cytosol in a copper-dependent manner and that its knockdown partially rescues the copper deficiency in patient cells. These results demonstrate that COX19 is necessary for the transduction of a SCO1-dependent mitochondrial redox signal that regulates ATP7A-mediated cellular copper efflux.
Collapse
Affiliation(s)
- Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Blundell KLIM, Wilson MT, Svistunenko DA, Vijgenboom E, Worrall JAR. Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein. Open Biol 2013; 3:120163. [PMID: 23345541 PMCID: PMC3603459 DOI: 10.1098/rsob.120163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (ScoSl) and present a series of experiments that firmly establish a role for ScoSl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δsco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δsco mutant are restored to wild-type levels and are thus independent of ScoSl. A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that ScoSl has at least two targets in S. lividans. We establish that one ScoSl target is the dinuclear CuA domain of CcO and it is the cupric form of ScoSl that is functionally active. The mechanism of cupric ion capture by ScoSl has been investigated, and an important role for a conserved His residue is identified.
Collapse
Affiliation(s)
- Katie L I M Blundell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | | | | | |
Collapse
|
39
|
Blundell KLIM, Wilson MT, Vijgenboom E, Worrall JAR. The role of the Cys-X-X-X-Cys motif on the kinetics of cupric ion loading to the Streptomyces lividans Sco protein. Dalton Trans 2013; 42:10608-16. [DOI: 10.1039/c3dt50540e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
|
41
|
Lohmeyer E, Schröder S, Pawlik G, Trasnea PI, Peters A, Daldal F, Koch HG. The ScoI homologue SenC is a copper binding protein that interacts directly with the cbb₃-type cytochrome oxidase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2005-15. [PMID: 22771512 DOI: 10.1016/j.bbabio.2012.06.621] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/28/2022]
Abstract
Sco proteins are widespread assembly factors for the Cu(A) centre of aa₃-type cytochrome oxidases in eukaryotic and prokaryotic organisms. However, Sco homologues are also found in bacteria like Rhodobacter capsulatus which lack aa₃-type cytochrome oxidases and instead use a cbb₃-type cytochrome oxidase (cbb₃ Cox) without a Cu(A) centre as a terminal oxidase. In the current study, we have analyzed the role of Sco (SenC) during cbb₃ Cox assembly in R. capsulatus. In agreement with earlier works, we found a strong cbb₃ Cox defect in the absence of SenC that impairs the steady-state stability of the CcoN, CcoO and CcoP core subunits, without the accumulation of detectable assembly intermediates. In vivo cross-linking results demonstrate that SenC is in close proximity to the CcoP and CcoH subunits of cbb₃ Cox, suggesting that SenC interacts directly with cbb₃ Cox during its assembly. SenC binds copper and the cbb₃ Cox assembly defect in the absence of SenC can be rescued by the addition of least 0.5μM Cu. Neither copper nor SenC influenced the transcription of the ccoNOQP operon encoding for cbb₃ Cox. Transcription of senC itself was also not influenced by Cu unless the putative Cu-export ATPase CcoI was absent. As CcoI is specifically required for the cbb₃ Cox assembly, these data provide a direct link between Cu delivery to cbb₃ Cox and SenC function.
Collapse
Affiliation(s)
- Eva Lohmeyer
- Institut für Biochemie und Molekularbiologie, ZBMZ, Stefan-Meier-Strasse 17, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
43
|
Wieczorek B, Snelders DJM, Dijkstra HP, Versluis K, Lutz M, Spek AL, Egmond MR, Klein Gebbink RJM, van Koten G. Coordination Chemistry in Water of a Free and a Lipase-Embedded Cationic NCN-Pincer Platinum Center with Neutral and Ionic Triarylphosphines. Organometallics 2012. [DOI: 10.1021/om2010832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Birgit Wieczorek
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Dennis J. M. Snelders
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Harm P. Dijkstra
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | - Robertus J. M. Klein Gebbink
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gerard van Koten
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
44
|
Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J Inorg Biochem 2012; 107:129-43. [DOI: 10.1016/j.jinorgbio.2011.11.024] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/25/2011] [Accepted: 11/15/2011] [Indexed: 01/16/2023]
|
45
|
Thompson AK, Gray J, Liu A, Hosler JP. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:955-64. [PMID: 22248670 DOI: 10.1016/j.bbabio.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/28/2022]
Abstract
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Audie K Thompson
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
46
|
Kanti Paine T, Sheet D, Weyhermüller T, Chaudhuri P. Iron(II)‐Mediated Reductive Cleavage of Disulfide and Diselenide Bonds: Iron(III) Complexes of Mixed
O
,
X
,
O
and
O
,
X
(X = S, Se) Donor Ligands. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Debobrata Sheet
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Thomas Weyhermüller
- Max‐Planck‐Institut für Bioanorganische Chemie, Stiftstrasse 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Phalguni Chaudhuri
- Max‐Planck‐Institut für Bioanorganische Chemie, Stiftstrasse 34–36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
47
|
Konu J, Chivers T, Tuononen HM. Bond Stretching and Redox Behavior in Coinage Metal Complexes of the Dichalcogenide Dianions [(SPh2P)2CEEC(PPh2S)2]2− (E=S, Se): Diradical Character of the Dinuclear Copper(I) Complex (E=S). Chemistry 2011; 17:11844-56. [DOI: 10.1002/chem.201100891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Indexed: 11/11/2022]
|
48
|
Banci L, Bertini I, Cavallaro G, Ciofi-Baffoni S. Seeking the determinants of the elusive functions of Sco proteins. FEBS J 2011; 278:2244-62. [DOI: 10.1111/j.1742-4658.2011.08141.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Mori M, Wang S. Sco proteins are involved in electron transfer processes. J Biol Inorg Chem 2010; 16:391-403. [DOI: 10.1007/s00775-010-0735-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/09/2010] [Indexed: 12/01/2022]
|
50
|
Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal 2010; 13:1403-16. [PMID: 20136502 DOI: 10.1089/ars.2010.3116] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reversible changes in the redox state of cysteine residues represent an important mechanism with which to regulate protein function. In mitochondria, such redox reactions modulate the localization or activity of a group of proteins, most of which function in poorly defined pathways with essential roles in copper delivery to cytochrome c oxidase (COX) during holoenzyme biogenesis. To date, a total of 8 soluble (COX17, COX19, COX23, PET191, CMC1-4) and 3 integral membrane (COX11, SCO1, SCO2) accessory proteins with cysteine-containing domains that reside within the mitochondrial intermembrane space (IMS) have been identified in yeast, all of which have human orthologues. Compelling evidence from studies of COX17, SCO1, and SCO2 argues that regulation of the redox state of their cysteines is integral to their metallochaperone function. Redox also appears to be crucial to the regulation of a SCO-dependent, mitochondrial signaling pathway that modulates the rate of copper efflux from the cell. Here, I review our understanding of redox-dependent modulation of copper delivery to COX and IMS-localized copper-zinc superoxide dismutase (SOD1) during the maturation of each enzyme, and discuss how this in turn may serve to functionally couple mitochondrial copper handling pathways with those localized elsewhere in the cell to regulate cellular copper homeostasis.
Collapse
Affiliation(s)
- Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|