1
|
Zheng L, Liu L, Zhu W, Ding Y, Wu F. Predicting enhancer-promoter interaction based on epigenomic signals. Front Genet 2023; 14:1133775. [PMID: 37144127 PMCID: PMC10151517 DOI: 10.3389/fgene.2023.1133775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: The physical interactions between enhancers and promoters are often involved in gene transcriptional regulation. High tissue-specific enhancer-promoter interactions (EPIs) are responsible for the differential expression of genes. Experimental methods are time-consuming and labor-intensive in measuring EPIs. An alternative approach, machine learning, has been widely used to predict EPIs. However, most existing machine learning methods require a large number of functional genomic and epigenomic features as input, which limits the application to different cell lines. Methods: In this paper, we developed a random forest model, HARD (H3K27ac, ATAC-seq, RAD21, and Distance), to predict EPI using only four types of features. Results: Independent tests on a benchmark dataset showed that HARD outperforms other models with the fewest features. Discussion: Our results revealed that chromatin accessibility and the binding of cohesin are important for cell-line-specific EPIs. Furthermore, we trained the HARD model in the GM12878 cell line and performed testing in the HeLa cell line. The cross-cell-lines prediction also performs well, suggesting it has the potential to be applied to other cell lines.
Collapse
Affiliation(s)
- Leqiong Zheng
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
| | - Fangxiang Wu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
2
|
Zheng Y, Shen S, Keleş S. Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D. Genome Biol 2022; 23:222. [PMID: 36253828 PMCID: PMC9575231 DOI: 10.1186/s13059-022-02774-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Single-cell high-throughput chromatin conformation capture methodologies (scHi-C) enable profiling of long-range genomic interactions. However, data from these technologies are prone to technical noise and biases that hinder downstream analysis. We develop a normalization approach, BandNorm, and a deep generative modeling framework, scVI-3D, to account for scHi-C specific biases. In benchmarking experiments, BandNorm yields leading performances in a time and memory efficient manner for cell-type separation, identification of interacting loci, and recovery of cell-type relationships, while scVI-3D exhibits advantages for rare cell types and under high sparsity scenarios. Application of BandNorm coupled with gene-associating domain analysis reveals scRNA-seq validated sub-cell type identification.
Collapse
Affiliation(s)
- Ye Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Siqi Shen
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, USA
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, USA
- Department of Statistics, University of Wisconsin - Madison, Madison, USA
| |
Collapse
|
3
|
Cao Y, Kitanovski S, Hoffmann D. intePareto: an R package for integrative analyses of RNA-Seq and ChIP-Seq data. BMC Genomics 2020; 21:802. [PMID: 33372591 PMCID: PMC7771091 DOI: 10.1186/s12864-020-07205-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA-Seq, the high-throughput sequencing (HT-Seq) of mRNAs, has become an essential tool for characterizing gene expression differences between different cell types and conditions. Gene expression is regulated by several mechanisms, including epigenetically by post-translational histone modifications which can be assessed by ChIP-Seq (Chromatin Immuno-Precipitation Sequencing). As more and more biological samples are analyzed by the combination of ChIP-Seq and RNA-Seq, the integrated analysis of the corresponding data sets becomes, theoretically, a unique option to study gene regulation. However, technically such analyses are still in their infancy. RESULTS Here we introduce intePareto, a computational tool for the integrative analysis of RNA-Seq and ChIP-Seq data. With intePareto we match RNA-Seq and ChIP-Seq data at the level of genes, perform differential expression analysis between biological conditions, and prioritize genes with consistent changes in RNA-Seq and ChIP-Seq data using Pareto optimization. CONCLUSION intePareto facilitates comprehensive understanding of high dimensional transcriptomic and epigenomic data. Its superiority to a naive differential gene expression analysis with RNA-Seq and available integrative approach is demonstrated by analyzing a public dataset.
Collapse
Affiliation(s)
- Yingying Cao
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr.2, Essen, 45141, Germany.
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr.2, Essen, 45141, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr.2, Essen, 45141, Germany
| |
Collapse
|
4
|
Lee C, Wang K, Qin T, Sartor MA. Testing Proximity of Genomic Regions to Transcription Start Sites and Enhancers Complements Gene Set Enrichment Testing. Front Genet 2020; 11:199. [PMID: 32211031 PMCID: PMC7069355 DOI: 10.3389/fgene.2020.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Large sets of genomic regions are generated by the initial analysis of various genome-wide sequencing data, such as ChIP-seq and ATAC-seq experiments. Gene set enrichment (GSE) methods are commonly employed to determine the pathways associated with them. Given the pathways and other gene sets (e.g., GO terms) of significance, it is of great interest to know the extent to which each is driven by binding near transcription start sites (TSS) or near enhancers. Currently, no tool performs such an analysis. Here, we present a method that addresses this question to complement GSE methods for genomic regions. Specifically, the new method tests whether the genomic regions in a gene set are significantly closer to a TSS (or to an enhancer) than expected by chance given the total list of genomic regions, using a non-parametric test. Combining the results from a GSE test with our novel method provides additional information regarding the mode of regulation of each pathway, and additional evidence that the pathway is truly enriched. We illustrate our new method with a large set of ENCODE ChIP-seq data, using the chipenrich Bioconductor package. The results show that our method is a powerful complementary approach to help researchers interpret large sets of genomic regions.
Collapse
Affiliation(s)
- Christopher Lee
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. [Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin]. Mol Biol (Mosk) 2020; 53:1038-1048. [PMID: 31876282 DOI: 10.1134/s0026898419060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.
Collapse
Affiliation(s)
- E V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - Y S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - O I Kulaeva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - N Clauvelin
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Y V Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - W K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - V M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA.,Faculty of Biology, Moscow State University, Moscow, 119991 Russia.,
| |
Collapse
|
6
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin. Mol Biol 2019. [DOI: 10.1134/s002689331906013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nikolenko JV, Krasnov AN, Vorobyeva NE. The SWI/SNF Chromatin Remodeling Complex Is Involved in Spatial Organization of the ftz-f1 Gene Locus. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
The anti-cancer drugs curaxins target spatial genome organization. Nat Commun 2019; 10:1441. [PMID: 30926878 PMCID: PMC6441033 DOI: 10.1038/s41467-019-09500-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Recently we characterized a class of anti-cancer agents (curaxins) that disturbs DNA/histone interactions within nucleosomes. Here, using a combination of genomic and in vitro approaches, we demonstrate that curaxins strongly affect spatial genome organization and compromise enhancer-promoter communication, which is necessary for the expression of several oncogenes, including MYC. We further show that curaxins selectively inhibit enhancer-regulated transcription of chromatinized templates in cell-free conditions. Genomic studies also suggest that curaxins induce partial depletion of CTCF from its binding sites, which contributes to the observed changes in genome topology. Thus, curaxins can be classified as epigenetic drugs that target the 3D genome organization. Curaxins are a recently discovered class of anti-cancer agents that disturbs DNA/histone interactions within. Here the authors provide evidence that curaxins affect the spatial genome organization and compromise enhancer-promoter communication necessary for expression of several oncogenes, including MYC.
Collapse
|
9
|
Feng ZX, Li QZ, Meng JJ. Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines. J Theor Biol 2018; 445:136-150. [PMID: 29476833 DOI: 10.1016/j.jtbi.2018.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Abstract
The enhancer-promoter interactions (EPIs) with strong tissue-specificity play an important role in cis-regulatory mechanism of human cell lines. However, it still remains a challenging work to predict these interactions so far. Due to that these interactions are regulated by the cooperativeness of diverse functional genomic signatures, DNA spatial structure and DNA sequence elements. In this paper, by adding DNA structure properties and transcription factor binding motifs, we presented an improved computational method to predict EPIs in human cell lines. In comparison with the results of other group on the same datasets, our best accuracies by cross-validation test were about 15%-24% higher in the same cell lines, and the accuracies by independent test were about 11%-15% higher in new cell lines. Meanwhile, we found that transcription factor binding motifs and DNA structure properties have important information that would largely determine long range EPIs prediction. From the distribution comparisons, we also found their distinct differences between interacting and non-interacting sets in each cell line. Then, the correlation analysis and network models for relationships among top-ranked functional genomic signatures indicated that diverse genomic signatures would cooperatively establish a complex regulatory network to facilitate long range EPIs. The experimental results provided additional insights about the roles of DNA intrinsic properties and functional genomic signatures in EPIs prediction.
Collapse
Affiliation(s)
- Zhen-Xing Feng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Jian-Jun Meng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
10
|
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3737828. [PMID: 28605766 PMCID: PMC5467550 DOI: 10.1093/database/bax028] [Citation(s) in RCA: 775] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. Database URL:http://www.genecards.org/
Collapse
Affiliation(s)
- Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Nudel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Rappaport
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbar Plaschkes
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsippi Iny Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Rosen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asher Kohn
- LifeMap Sciences Inc, Marshfield, MA 02050, USA
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Nizovtseva EV, Clauvelin N, Todolli S, Polikanov YS, Kulaeva OI, Wengrzynek S, Olson WK, Studitsky VM. Nucleosome-free DNA regions differentially affect distant communication in chromatin. Nucleic Acids Res 2017; 45:3059-3067. [PMID: 27940560 PMCID: PMC5389534 DOI: 10.1093/nar/gkw1240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/29/2016] [Indexed: 11/13/2022] Open
Abstract
Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers.
Collapse
Affiliation(s)
- Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Nicolas Clauvelin
- Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Stefjord Todolli
- Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Yury S Polikanov
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Olga I Kulaeva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.,Biology Faculty, Moscow State University, Moscow 119991, Russia
| | - Scott Wengrzynek
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Laboratory of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Nizovtseva EV, Todolli S, Olson WK, Studitsky VM. Towards quantitative analysis of gene regulation by enhancers. Epigenomics 2017; 9:1219-1231. [PMID: 28799793 DOI: 10.2217/epi-2017-0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Enhancers are regulatory DNA sequences that can activate transcription over large distances. Recent studies have revealed the widespread role of distant activation in eukaryotic gene regulation and in the development of various human diseases, including cancer. Here we review recent progress in the field, focusing on new experimental and computational approaches that quantify the role of chromatin structure and dynamics during enhancer-promoter interactions in vitro and in vivo.
Collapse
Affiliation(s)
- Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Stefjord Todolli
- Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Biology Faculty, Moscow State University, Moscow 119991, Russia.,Laboratory of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Feng ZX, Li QZ. Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions. Genomics 2017; 109:341-352. [PMID: 28579514 DOI: 10.1016/j.ygeno.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023]
Abstract
Enhancer-promoter interaction (EPI) is an important cis-regulatory mechanism in the regulation of tissue-specific gene expression. However, it still has limitation to precisely identity these interactions so far. In this paper, using diverse genomic features for various regulatory regions, we presented a computational approach to predict EPIs with improved accuracies. Meanwhile, we comprehensively studied more potential regulatory factors that are important to EPIs prediction, such as nucleosome occupancy, enhancer RNA; and found the cell line-specificity and region-specificity of the contributions of diverse regulatory signatures. By adding genomic signatures of segmented regulatory regions, our best accuracies of cross-validation test were about 11%-16% higher than the previous results, indicating the location-specificity of genomic signatures in a regulatory region for predicting EPIs. Additionally, more training samples and related features can provide reliable performances in new cell lines. Consequently, our study provided additional insights into the roles of diverse signature features for predicting long-range EPIs.
Collapse
Affiliation(s)
- Zhen-Xing Feng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
14
|
Chasman D, Roy S. Inference of cell type specific regulatory networks on mammalian lineages. ACTA ACUST UNITED AC 2017; 2:130-139. [PMID: 29082337 DOI: 10.1016/j.coisb.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcriptional regulatory networks are at the core of establishing cell type specific gene expression programs. In mammalian systems, such regulatory networks are determined by multiple levels of regulation, including by transcription factors, chromatin environment, and three-dimensional organization of the genome. Recent efforts to measure diverse regulatory genomic datasets across multiple cell types and tissues offer unprecedented opportunities to examine the context-specificity and dynamics of regulatory networks at a greater resolution and scale than before. In parallel, numerous computational approaches to analyze these data have emerged that serve as important tools for understanding mammalian cell type specific regulation. In this article, we review recent computational approaches to predict the expression and sequence-based regulators of a gene's expression level and examine long-range gene regulation. We highlight promising approaches, insights gained, and open challenges that need to be overcome to build a comprehensive picture of cell type specific transcriptional regulatory networks.
Collapse
Affiliation(s)
- Deborah Chasman
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715
| | - Sushmita Roy
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715.,Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
15
|
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017; 2017:3737828. [PMID: 28605766 DOI: 10.1093/database/bax028/3737828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 05/26/2023]
Abstract
UNLABELLED A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. DATABASE URL http://www.genecards.org/.
Collapse
Affiliation(s)
- Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Nudel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Rappaport
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbar Plaschkes
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsippi Iny Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Rosen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asher Kohn
- LifeMap Sciences Inc, Marshfield, MA 02050, USA
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Krajewski WA. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Biochem Biophys Rep 2016; 5:492-501. [PMID: 28955857 PMCID: PMC5600426 DOI: 10.1016/j.bbrep.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Evidence is emerging that many diseases result from defects in gene functions, which, in turn, depend on the local chromatin environment of a gene. However, it still remains not fully clear how chromatin activity code is 'translated' to the particular 'activating' or 'repressing' chromatin structural transition. Commonly, chromatin remodeling in vitro was studied using mononucleosomes as a model. However, recent data suggest that structural reorganization of a single mononucleosome is not equal to remodeling of a nucleosome particle under multinucleosomal content - such as, interaction of nucleosomes via flexible histone termini could significantly alter the mode (and the resulting products) of nucleosome structural transitions. It is becoming evident that a nucleosome array does not constitute just a 'polymer' of individual 'canonical' nucleosomes due to multiple inter-nucleosomal interactions which affect nucleosome dynamics and structure. It could be hypothesized, that inter-nucleosomal interactions could act in cooperation with nucleosome inherent dynamics to orchestrate DNA-based processes and promote formation and stabilization of highly-dynamic, accessible structure of a nucleosome array. In the proposed paper we would like to discuss the nucleosome dynamics within the chromatin fiber mainly as it pertains to the roles of the structural changes mediated by inter-nucleosomal interactions.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334 Russia
| |
Collapse
|
17
|
Roy S, Siahpirani AF, Chasman D, Knaack S, Ay F, Stewart R, Wilson M, Sridharan R. A predictive modeling approach for cell line-specific long-range regulatory interactions. Nucleic Acids Res 2015; 43:8694-712. [PMID: 26338778 PMCID: PMC4605315 DOI: 10.1093/nar/gkv865] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 01/28/2023] Open
Abstract
Long range regulatory interactions among distal enhancers and target genes are important for tissue-specific gene expression. Genome-scale identification of these interactions in a cell line-specific manner, especially using the fewest possible datasets, is a significant challenge. We develop a novel computational approach, Regulatory Interaction Prediction for Promoters and Long-range Enhancers (RIPPLE), that integrates published Chromosome Conformation Capture (3C) data sets with a minimal set of regulatory genomic data sets to predict enhancer-promoter interactions in a cell line-specific manner. Our results suggest that CTCF, RAD21, a general transcription factor (TBP) and activating chromatin marks are important determinants of enhancer-promoter interactions. To predict interactions in a new cell line and to generate genome-wide interaction maps, we develop an ensemble version of RIPPLE and apply it to generate interactions in five human cell lines. Computational validation of these predictions using existing ChIA-PET and Hi-C data sets showed that RIPPLE accurately predicts interactions among enhancers and promoters. Enhancer-promoter interactions tend to be organized into subnetworks representing coordinately regulated sets of genes that are enriched for specific biological processes and cis-regulatory elements. Overall, our work provides a systematic approach to predict and interpret enhancer-promoter interactions in a genome-wide cell-type specific manner using a few experimentally tractable measurements.
Collapse
Affiliation(s)
- Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA
| | | | - Deborah Chasman
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA
| | - Sara Knaack
- Wisconsin Institute for Discovery, 330 N. Orchard Street, Madison, WI, USA
| | - Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Michael Wilson
- Genetics & Genome Biology Program, Hospital for Sick Children (SickKids) and Department of Molecular Genetics, University of Toronto,Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Rupa Sridharan
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA Department of Cell and Regenerative biology, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
18
|
Aulakh SS, Veilleux RE, Tang G, Flinn BS. Characterization of a potato activation-tagged mutant, nikku, and its partial revertant. PLANTA 2015; 241:1481-1495. [PMID: 25772042 DOI: 10.1007/s00425-015-2272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
A potato mutant with a strong stress-response phenotype, and a partial mutant revertant, were characterized. Gene expression patterns and DNA cytosine methylation varied between these and wild-type, indicating a role for DNA cytosine methylation changes in the gene expression and visible phenotypes. Morphological and molecular studies were conducted to compare potato cv. Bintje, a Bintje activation-tagged mutant (nikku), and nikku revertant phenotype plants. Morphological studies revealed that nikku plants exhibited an extremely dwarf phenotype, had small hyponastic leaves, were rootless, and infrequently produced small tubers compared to wild-type Bintje. The overall phenotype was suggestive of a constitutive stress response, which was further supported by the greater expression level of several stress-responsive genes in nikku. Unlike the nikku mutant, the revertant exhibited near normal shoot elongation, larger leaves and consistent rooting. The reversion appeared partial, and was not the result of a loss of 35S enhancer copies from the original nikku mutant. Southern blot analyses indicated the presence of a single T-DNA insertion on chromosome 12 in the mutant. Gene expression studies comparing Bintje, nikku and revertant phenotype plants indicated transcriptional activation/repression of several genes flanking both sides of the insertion in the mutant, suggesting that activation tagging had pleiotropic effects in nikku. In contrast, gene expression levels for many, but not all, of the same genes in the revertant were similar to Bintje, indicating some reversion at the gene expression level as well. DNA methylation studies indicated differences in cytosine methylation status of the 35S enhancers between the nikku mutant and its revertant. In addition, global DNA cytosine methylation varied between Bintje, the nikku mutant and the revertant, suggesting involvement in gene expression changes, as well as mutant phenotype.
Collapse
|
19
|
Clauvelin N, Lo P, Kulaeva OI, Nizovtseva EV, Diaz-Montes J, Zola J, Parashar M, Studitsky VM, Olson WK. Nucleosome positioning and composition modulate in silico chromatin flexibility. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064112. [PMID: 25564155 PMCID: PMC4492108 DOI: 10.1088/0953-8984/27/6/064112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and that care must be taken in the choice of models used to interpret the experimental properties of long chromatin fibers.
Collapse
Affiliation(s)
- N Clauvelin
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Giovan SM, Scharein RG, Hanke A, Levene SD. Free-energy calculations for semi-flexible macromolecules: applications to DNA knotting and looping. J Chem Phys 2014; 141:174902. [PMID: 25381542 PMCID: PMC4241824 DOI: 10.1063/1.4900657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/18/2014] [Indexed: 12/16/2022] Open
Abstract
We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.
Collapse
Affiliation(s)
- Stefan M Giovan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | - Andreas Hanke
- Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, Texas 78520, USA
| | - Stephen D Levene
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083, USA
| |
Collapse
|
21
|
Matsuoka T, Choul Kim B, Moraes C, Han M, Takayama S. Micro- and nanofluidic technologies for epigenetic profiling. BIOMICROFLUIDICS 2013; 7:41301. [PMID: 23964309 PMCID: PMC3739826 DOI: 10.1063/1.4816835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/26/2013] [Indexed: 05/10/2023]
Abstract
This short review provides an overview of the impact micro- and nanotechnologies can make in studying epigenetic structures. The importance of mapping histone modifications on chromatin prompts us to highlight the complexities and challenges associated with histone mapping, as compared to DNA sequencing. First, the histone code comprised over 30 variations, compared to 4 nucleotides for DNA. Second, whereas DNA can be amplified using polymerase chain reaction, chromatin cannot be amplified, creating challenges in obtaining sufficient material for analysis. Third, while every person has only a single genome, there exist multiple epigenomes in cells of different types and origins. Finally, we summarize existing technologies for performing these types of analyses. Although there are still relatively few examples of micro- and nanofluidic technologies for chromatin analysis, the unique advantages of using such technologies to address inherent challenges in epigenetic studies, such as limited sample material, complex readouts, and the need for high-content screens, make this an area of significant growth and opportunity.
Collapse
Affiliation(s)
- Toshiki Matsuoka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Enhancers are regulatory DNA sequences that activate transcription over long distances. Recent studies revealed a widespread role of distant activation in eukaryotic gene regulation and in development of various human diseases, including cancer. Genomic and gene-targeted studies of enhancer action revealed novel mechanisms of transcriptional activation over a distance. They include formation of stable, inactive DNA-protein complexes at the enhancer and target promoter before activation, facilitated distant communication by looping of the spacer chromatin-covered DNA, and promoter activation by mechanisms that are different from classic recruiting. These studies suggest the similarity between the looping mechanisms involved in enhancer action on DNA in bacteria and in chromatin of higher organisms.
Collapse
|
23
|
Olson WK, Clauvelin N, Colasanti AV, Singh G, Zheng G. Insights into Gene Expression and Packaging from Computer Simulations. Biophys Rev 2012; 4:171-178. [PMID: 23139731 DOI: 10.1007/s12551-012-0093-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Within the nucleus of each cell lies DNA - an unfathomably long, twisted, and intricately coiled molecule - segments of which make up the genes that provide the instructions that a cell needs to operate. As we near the 60(th) anniversary of the discovery of the DNA double helix, crucial questions remain about how the physical arrangement of the DNA in cells affects how genes work. For example, how a cell stores the genetic information inside the nucleus is complicated by the necessity of maintaining accessibility to DNA for genetic processing. In order to gain insight into the roles played by various proteins in reading and compacting the genome, we have developed new methodologies to simulate the dynamic, three-dimensional structures of long, fluctuating, protein-decorated strands of DNA. Our a priori approach to the problem allows us to determine the effects of individual proteins and their chemical modifications on overall DNA structure and function. Here we present our recent treatment of the communication between regulatory proteins attached to precisely constructed stretches of chromatin. Our simulations account for the enhancement in communication detected experimentally on chromatin compared to protein-free DNA of the same chain length as well as the critical roles played by the cationic 'tails' of the histone proteins in this signaling. The states of chromatin captured in the simulations offer new insights into the ways that the DNA, histones, and regulatory proteins contribute to long-range communication along the genome.
Collapse
Affiliation(s)
- Wilma K Olson
- Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
24
|
Kulaeva OI, Zheng G, Polikanov YS, Colasanti AV, Clauvelin N, Mukhopadhyay S, Sengupta AM, Studitsky VM, Olson WK. Internucleosomal interactions mediated by histone tails allow distant communication in chromatin. J Biol Chem 2012; 287:20248-57. [PMID: 22518845 DOI: 10.1074/jbc.m111.333104] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Action across long distances on chromatin is a hallmark of eukaryotic transcriptional regulation. Although chromatin structure per se can support long-range interactions, the mechanisms of efficient communication between widely spaced DNA modules in chromatin remain a mystery. The molecular simulations described herein suggest that transient binary internucleosomal interactions can mediate distant communication in chromatin. Electrostatic interactions between the N-terminal tails of the core histones and DNA enhance the computed probability of juxtaposition of sites that lie far apart along the DNA sequence. Experimental analysis of the rates of communication in chromatin constructs confirms that long-distance communication occurs efficiently and independently of distance on tail-containing, but not on tailless, chromatin. Taken together, our data suggest that internucleosomal interactions involving the histone tails are essential for highly efficient, long-range communication between regulatory elements and their targets in eukaryotic genomes.
Collapse
Affiliation(s)
- Olga I Kulaeva
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chakraborty SA, Simpson RT, Grigoryev SA. A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes. PLoS One 2011; 6:e24835. [PMID: 21949764 PMCID: PMC3174977 DOI: 10.1371/journal.pone.0024835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.
Collapse
Affiliation(s)
- Sangita A. Chakraborty
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (SAC); (SAG)
| | - Robert T. Simpson
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sergei A. Grigoryev
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: (SAC); (SAG)
| |
Collapse
|
26
|
Murugan R. Theory on the dynamic memory in the transcription-factor-mediated transcription activation. Phys Rev E 2011; 83:041926. [PMID: 21599218 DOI: 10.1103/physreve.83.041926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Indexed: 11/07/2022]
Abstract
We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τ(L)≫max(τ(R),τ(E)), (b) τ(LT)≫τ(T), and (c) τ(I)≥(τ(EL)+τ(TR)) where τ(L) is the average time required for the looping-mediated spatial interactions of enhancer-transcription-factor complex with the corresponding promoter--RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τ(R),τ(E)) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τ(LT) is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τ(T) is the time required to generate a complete transcript, τ(I) is the transcription initiation time, τ(EL) is the elongation time, and τ(TR) is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.
Collapse
Affiliation(s)
- R Murugan
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India.
| |
Collapse
|
27
|
Pan Y, Tsai CJ, Ma B, Nussinov R. Mechanisms of transcription factor selectivity. Trends Genet 2010; 26:75-83. [PMID: 20074831 PMCID: PMC7316385 DOI: 10.1016/j.tig.2009.12.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
The initiation of transcription is regulated by transcription factors (TFs) binding to DNA response elements (REs). How do TFs recognize specific binding sites among the many similar ones available in the genome? Recent research has illustrated that even a single nucleotide substitution can alter the selective binding of TFs to coregulators, that prior binding events can lead to selective DNA binding, and that selectivity is influenced by the availability of binding sites in the genome. Here, we combine structural insights with recent genomics screens to address the problem of TF-DNA interaction specificity. The emerging picture of selective binding site sequence recognition and TF activation involves three major factors: the cellular network, protein and DNA as dynamic conformational ensembles and the tight packing of multiple TFs and coregulators on stretches of regulatory DNA. The classification of TF recognition mechanisms based on these factors impacts our understanding of how transcription initiation is regulated.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
28
|
Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc Natl Acad Sci U S A 2009; 106:13317-22. [PMID: 19651606 DOI: 10.1073/pnas.0903280106] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The architecture of the chromatin fiber, which determines DNA accessibility for transcription and other template-directed biological processes, remains unknown. Here we investigate the internal organization of the 30-nm chromatin fiber, combining Monte Carlo simulations of nucleosome chain folding with EM-assisted nucleosome interaction capture (EMANIC). We show that at physiological concentrations of monovalent ions, linker histones lead to a tight 2-start zigzag dominated by interactions between alternate nucleosomes (i +/- 2) and sealed by histone N-tails. Divalent ions further compact the fiber by promoting bending in some linker DNAs and hence raising sequential nucleosome interactions (i +/- 1). Remarkably, both straight and bent linker DNA conformations are retained in the fully compact chromatin fiber as inferred from both EMANIC and modeling. This conformational variability is energetically favorable as it helps accommodate DNA crossings within the fiber axis. Our results thus show that the 2-start zigzag topology and the type of linker DNA bending that defines solenoid models may be simultaneously present in a structurally heteromorphic chromatin fiber with uniform 30 nm diameter. Our data also suggest that dynamic linker DNA bending by linker histones and divalent cations in vivo may mediate the transition between tight nucleosome packing within discrete 30-nm fibers and self-associated higher-order chromosomal forms.
Collapse
|
29
|
Studitsky VM. Mechanisms of distant enhancer action on DNA and in chromatin. Mol Biol 2009. [DOI: 10.1134/s0026893309020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Wan S, Wu J, Zhang Z, Sun X, Lv Y, Gao C, Ning Y, Ma J, Guo Y, Zhang Q, Zheng X, Zhang C, Ma Z, Lu T. Activation tagging, an efficient tool for functional analysis of the rice genome. PLANT MOLECULAR BIOLOGY 2009; 69:69-80. [PMID: 18830797 DOI: 10.1007/s11103-008-9406-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 09/17/2008] [Indexed: 05/19/2023]
Abstract
Over the past 6 years, we have generated about 50,000 individual transgenic rice plants by an Agrobacterium-mediated transformation approach with the pER38 activation tagging vector. The vector contains tandemly arranged double 35S enhancers next to the right border of T-DNA. Expression analysis by reverse transcription-PCR indicates that the activation efficiency is high if the genes are located within 7 kb of the inserted double 35S enhancers. Comparative field phenotyping of part of the activation tagging and enhancer trapping populations in two generations (6,000 and 6,400 lines, respectively, in the T(0) generation, and 36,000 and 32,000 lines, respectively, in the T(1) generation) identified about four hundred dominant mutants. Characterization of a dominant mutant with a large leaf angle (M107) suggests that this mutant phenotype is caused by enhanced expression of CYP724B1/D11. The activation tagging pool described in this paper is a valuable alternative tool for functional analysis of the rice genome.
Collapse
Affiliation(s)
- Shuyan Wan
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Regulation of many biological processes in eukaryotes involves distant communication between the regulatory DNA sequences (e.g., enhancers) and their targets over the DNA regions organized in chromatin. However previously developed methods for analysis of communication in chromatin in vitro are artifact-prone and/or do not allow analysis of communication on physiologically relevant, saturated arrays of nucleosomes. Here we describe a method for quantitative analysis of the rate of distant communication in cis on saturated arrays of nucleosomes capable of forming the 30-nm chromatin fibers in vitro.
Collapse
Affiliation(s)
- Yury S. Polikanov
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Tchurikov NA, Kretova OV, Moiseeva ED, Sosin DV. Evidence for RNA synthesis in the intergenic region between enhancer and promoter and its inhibition by insulators in Drosophila melanogaster. Nucleic Acids Res 2008; 37:111-22. [PMID: 19022852 PMCID: PMC2615631 DOI: 10.1093/nar/gkn926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Uncovering the nature of communication between enhancers, promoters and insulators is important for understanding the fundamental mechanisms that ensure appropriate gene expression levels. Here we describe an approach employing transient expression of genetic luciferase reporter gene constructs with quantitative RT–PCR analysis of transcription between an enhancer and Hsp70 promoter. We tested genetic constructs containing gypsy and/or Fab7 insulators in different orientations, and an enhancer from copia LTR-retroelement [(enh)copia]. A single gypsy or Fab7 insulator inserted between the promoter and enhancer in any polarity reduced enhancer action. A pair of insulators flanking the gene in any orientation exhibited increased insulation activity. We detected promoter-independent synthesis of non-coding RNA in the intergenic region of the constructs, which was induced by the enhancer in both directions and repressed by a single insulator or a pair of insulators. These results highlight the involvement of RNA-tracking mechanisms in the communications between enhancers and promoters, which are inhibited by insulators.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Genome Organization, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
33
|
Chavanas S, Adoue V, Méchin MC, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 2008; 3:e3408. [PMID: 18923650 PMCID: PMC2566589 DOI: 10.1371/journal.pone.0003408] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.
Collapse
Affiliation(s)
- Stéphane Chavanas
- UMR 5165, CNRS-Toulouse III University, CHU Purpan, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Direct comparison of hepatocyte-specific expression cassettes following adenoviral and nonviral hydrodynamic gene transfer. Gene Ther 2008; 15:594-603. [PMID: 18288213 DOI: 10.1038/sj.gt.3303096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatocytes are a key target for treatment of inborn errors of metabolism, dyslipidemia and coagulation disorders. The development of potent expression cassettes is a critical target to improve the therapeutic index of gene transfer vectors. Here we evaluated 22 hepatocyte-specific expression cassettes containing a human apo A-I transgene following hydrodynamic transfer of plasmids or adenoviral transfer with E1E3E4-deleted vectors in C57BL/6 mice. The DC172 promoter consisting of a 890 bp human alpha(1)-antitrypsin promoter and two copies of the 160 bp alpha(1)-microglobulin enhancer results in superior expression levels compared to constructs containing the 1.5 kb human alpha(1)-antitrypsin promoter, the 790 bp synthetic liver-specific promoter or the DC190 promoter containing a 520 bp human albumin promoter and two copies of the 99 bp prothrombin enhancer. The most potent expression cassette consists of the DC172 promoter upstream of the transgene and two copies of the hepatic control region-1. Minicircles containing this expression cassette induce persistent physiological human apo A-I or human factor IX levels after hydrodynamic transfer. In conclusion, in this comparative study of 22 hepatocyte-specific expression cassettes, the DC172 promoter in combination with two copies of the hepatic control region-1 induces the highest expression levels following hydrodynamic and adenoviral transfer.
Collapse
|
35
|
Polikanov YS, Bondarenko VA, Tchernaenko V, Jiang YI, Lutter LC, Vologodskii A, Studitsky VM. Probability of the site juxtaposition determines the rate of protein-mediated DNA looping. Biophys J 2007; 93:2726-31. [PMID: 17573434 PMCID: PMC1989718 DOI: 10.1529/biophysj.107.111245] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/13/2007] [Indexed: 11/18/2022] Open
Abstract
Numerous biological processes are regulated by DNA elements that communicate with their targets over a distance via formation of protein-bridged DNA loops. One of the first questions arising in studies of DNA looping is whether the rate of loop formation is limited by diffusion of the DNA sites. We addressed this question by comparing the in vitro measured rates of transcription initiation in the NtrC-glnAp2 enhancer-dependent transcription initiation system with predictions of two different theoretical models. The promoter and enhancer were in a 7.6-kb plasmid and separated by 2.5 kb. The measurements were performed for different values of the plasmid superhelix density, from 0 to -0.07. Earlier theoretical analysis, based on the Monte Carlo simulation of DNA conformations, showed that if the rate of loop formation is determined by the equilibrium probability of juxtaposition of the DNA sites, the rate should be approximately 100 times higher in supercoiled than in relaxed DNA. On the other hand, Brownian dynamics simulation showed that if the rate of loop formation is limited by the site diffusion, it should be nearly independent of DNA supercoiling. We found that efficiency of the transcription initiation increases by nearly two orders of magnitude as a result of the corresponding increase of the template supercoiling. This clearly shows that the rate of bridging in the enhancer-promoter system is not limited by diffusion of the DNA sites to one another. We argue that this conclusion derived for the specific system is likely to be valid for the great majority of biological processes involving protein-mediated DNA looping.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and Molecular Biology Research Program, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|