1
|
Bai S, Li S, Tang Y, Jia Z, Shang S, Irwin DM, Zhang S, Wang Z. Transcriptome data from the interdigital webs of the Chinese Soft-shell Turtle (Pelodiscus sinensis). Sci Data 2025; 12:806. [PMID: 40382336 PMCID: PMC12085608 DOI: 10.1038/s41597-025-05188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
The interdigital webs of aquatic tetrapods are a key structure evolved for adaptation, which are formed by inhibiting interdigital cell death (ICD). Diverse interdigital morphologies have independently evolved among species, and the regulatory mechanisms responsible for their development are still not fully understood. The Chinese soft-shell turtle (Pelodiscus sinensis) serves as a good research model that exhibits transitional traits from webless to fully webbed. In this study, we collected eight samples of interdigital webs from the fore- and hindlimbs of turtles at embryonic stage 19 (TK19) for RNA sequencing (RNA-seq) analysis. We identified 608 differentially expressed genes (DEGs). Whole-mount in situ hybridization (WISH) and real-time quantitative PCR (RT-qPCR) of representative genes confirmed the accuracy of the transcriptomic results. These findings not only provide new perspectives and data to support comparative studies of adaptive convergent evolution in aquatic animals but also enhance our understanding of the mechanisms underlying tetrapod limb morphogenesis. Furthermore, these results provide potential molecular targets for research on the plasticity of programmed cell death or senescence.
Collapse
Affiliation(s)
- Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shanshan Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yining Tang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqiu Jia
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Sémon M, Mouginot M, Peltier M, Corneloup C, Veber P, Guéguen L, Pantalacci S. Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation. Nat Commun 2025; 16:768. [PMID: 39824799 PMCID: PMC11742040 DOI: 10.1038/s41467-025-55826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
Mice have evolved a new dental plan with two additional cusps on the upper molar, while hamsters were retaining the ancestral plan. By comparing the dynamics of molar development with transcriptome time series, we found at least three early changes in mouse upper molar development. Together, they redirect spatio-temporal dynamics to ultimately form two additional cusps. The mouse lower molar has undergone much more limited phenotypic evolution. Nevertheless, its developmental trajectory evolved as much as that of the upper molar and co-evolved with it. Among the coevolving changes, some are clearly involved in the new upper molar phenotype. We found a similar level of coevolution in bat limbs. In conclusion, our study reveals how serial organ morphology has adapted through organ-specific developmental changes, as expected, but also through shared changes that have organ-specific effects on the final phenotype. This highlights the important role of developmental system drift in one organ to accommodate adaptation in another.
Collapse
Affiliation(s)
- Marie Sémon
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Marion Mouginot
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Manon Peltier
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Claudine Corneloup
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Philippe Veber
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Sophie Pantalacci
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| |
Collapse
|
3
|
Orkney A, Boerma DB, Hedrick BP. Evolutionary integration of forelimb and hindlimb proportions within the bat wing membrane inhibits ecological adaptation. Nat Ecol Evol 2025; 9:111-123. [PMID: 39487310 DOI: 10.1038/s41559-024-02572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
Bats and birds are defined by their convergent evolution of flight, hypothesized to require the modular decoupling of wing and leg evolution. Although a wealth of evidence supports this interpretation in birds, there has been no systematic attempt to identify modular organization in the bat limb skeleton. Here we present a phylogenetically representative and ecologically diverse collection of limb skeletal measurements from 111 extant bat species. We compare this dataset with a compendium of 149 bird species, known to exhibit modular evolution and anatomically regionalized skeletal adaptation. We demonstrate that, in contrast to birds, morphological diversification across crown bats is associated with strong trait integration both within and between the forelimb and hindlimb. Different regions of the bat limb skeleton adapt to accommodate variation in distinct ecological activities, with flight-style variety accommodated by adaptation of the distal wing, while the thumb and hindlimb play an important role facilitating adaptive responses to variation in roosting habits. We suggest that the wing membrane enforces evolutionary integration across the bat skeleton, highlighting that the evolution of the bat thumb is less correlated with the evolution of other limb bone proportions. We propose that strong limb integration inhibits bat adaptive responses, explaining their lower rates of phenotypic evolution and relatively homogeneous evolutionary dynamics in contrast to birds. Powered flight, enabled by the membranous wing, is therefore not only a key bat innovation but their defining inhibition.
Collapse
Affiliation(s)
- Andrew Orkney
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| | - David B Boerma
- Department of Biology, Dyson College of Arts and Sciences, Pace University, New York, NY, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Brandon P Hedrick
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Mosby L, Bowen A, Hadjivasiliou Z. Morphogens in the evolution of size, shape and patterning. Development 2024; 151:dev202412. [PMID: 39302048 PMCID: PMC7616732 DOI: 10.1242/dev.202412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Much of the striking diversity of life on Earth has arisen from variations in the way that the same molecules and networks operate during development to shape and pattern tissues and organs into different morphologies. However, we still understand very little about the potential for diversification exhibited by different, highly conserved mechanisms during evolution, or, conversely, the constraints that they place on evolution. With the aim of steering the field in new directions, we focus on morphogen-mediated patterning and growth as a case study to demonstrate how conserved developmental mechanisms can adapt during evolution to drive morphological diversification and optimise functionality, and to illustrate how evolution algorithms and computational tools can be used alongside experiments to provide insights into how these conserved mechanisms can evolve. We first introduce key conserved properties of morphogen-driven patterning mechanisms, before summarising comparative studies that exemplify how changes in the spatiotemporal expression and signalling levels of morphogens impact the diversification of organ size, shape and patterning in nature. Finally, we detail how theoretical frameworks can be used in conjunction with experiments to probe the role of morphogen-driven patterning mechanisms in evolution. We conclude that morphogen-mediated patterning is an excellent model system and offers a generally applicable framework to investigate the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- L.S. Mosby
- The Francis Crick Institute: Mathematical and Physical Biology Laboratory, 1 Midland Road, London, NW1 1AT, UK
- University College London: Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 19 Gordon Street, London, WC1H 0AH, UK
| | - A.E. Bowen
- The Francis Crick Institute: Mathematical and Physical Biology Laboratory, 1 Midland Road, London, NW1 1AT, UK
- University College London: Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK
| | - Z. Hadjivasiliou
- The Francis Crick Institute: Mathematical and Physical Biology Laboratory, 1 Midland Road, London, NW1 1AT, UK
- University College London: Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 19 Gordon Street, London, WC1H 0AH, UK
| |
Collapse
|
5
|
Gavazzi LM, Nair M, Suydam R, Usip S, Thewissen JGM, Cooper LN. Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (Delphinapterus leucas). Dev Dyn 2024; 253:859-874. [PMID: 38494595 PMCID: PMC11656686 DOI: 10.1002/dvdy.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.
Collapse
Affiliation(s)
- L. M. Gavazzi
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - M. Nair
- Wright State UniversityDaytonOhioUSA
| | - R. Suydam
- Department of Wildlife ManagementNorth Slope BoroughUtqiaġvikAlaskaUSA
| | - S. Usip
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - J. G. M. Thewissen
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - L. N. Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
6
|
Hieronymus TL, Waugh DA, Ball HC, Vinyard CJ, Galazyuk A, Cooper LN. Comparing age- and bone-related differences in collagen fiber orientation: A case study of bats and laboratory mice using quantitative polarized light microscopy. Anat Rec (Hoboken) 2024; 307:2084-2102. [PMID: 38095113 DOI: 10.1002/ar.25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 05/08/2024]
Abstract
As bones age in most mammals, they typically become more fragile. This state of bone fragility is often associated with more homogenous collagen fiber orientations (CFO). Unlike most mammals, bats maintain mechanically competent bone throughout their lifespans, but little is known of positional and age-related changes in CFO within wing bones. This study tests the hypothesis that age-related changes in CFO in big brown bats (Eptesicus fuscus) differ from those of the standard mammalian model for skeletal aging, the C57BL/6 laboratory mouse. We used data from quantitative polarized light microscopy (qPLM) to compare CFO across the lifespan of long-lived big brown bats and age matched C57BL/6 mice. Eptesicus and C57BL/6 mice displayed idiosyncratic patterns of CFO. Consistent age-related changes were only apparent in the outer cortical bone of Eptesicus, where bone tissue is more longitudinally arranged and more anisotropic in older individuals. Both taxa displayed a ring of more transversely oriented bone tissue surrounding the medullary cavity. In Eptesicus, this tissue represents a greater proportion of the overall cross-section, and is more clearly helically aligned (arranged at 45° to the bone long axis) than similar bone tissue in mice. Bat wing bones displayed a proximodistal gradient in CFO anisotropy and longitudinal orientation in both outer and inner cortical bone compartments. This study lays a methodological foundation for the quantitative evaluation of bone tissue architecture in volant and non-volant mammals that may be expanded in the future.
Collapse
Affiliation(s)
- Tobin Lee Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - David A Waugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Hope C Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
7
|
Giannini NP, Cannell A, Amador LI, Simmons NB. Palaeoatmosphere facilitates a gliding transition to powered flight in the Eocene bat, Onychonycteris finneyi. Commun Biol 2024; 7:365. [PMID: 38532113 PMCID: PMC10966098 DOI: 10.1038/s42003-024-06032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The evolutionary transition to powered flight remains controversial in bats, the only flying mammals. We applied aerodynamic modeling to reconstruct flight in the oldest complete fossil bat, the archaic Onychonycteris finneyi from the early Eocene of North America. Results indicate that Onychonycteris was capable of both gliding and powered flight either in a standard normodense aerial medium or in the hyperdense atmosphere that we estimate for the Eocene from two independent palaeogeochemical proxies. Aerodynamic continuity across a morphological gradient is further demonstrated by modeled intermediate forms with increasing aspect ratio (AR) produced by digital elongation based on chiropteran developmental data. Here a gliding performance gradient emerged of decreasing sink rate with increasing AR that eventually allowed applying available muscle power to achieve level flight using flapping, which is greatly facilitated in hyperdense air. This gradient strongly supports a gliding (trees-down) transition to powered flight in bats.
Collapse
Affiliation(s)
- Norberto P Giannini
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina.
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, NY, USA.
| | - Alan Cannell
- ISIPU - Istituto Italiano di Paleontologia Umana, Rome, Italy
- Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, Brasil
| | - Lucila I Amador
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, Tucumán, Argentina
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, NY, USA
| |
Collapse
|
8
|
Toledo KS, Peracchi AL, Nogueira MR. Morphological variation of the brachial plexus in four phyllostomid bat species (Chiroptera, Phyllostomidae). Anat Rec (Hoboken) 2023; 306:2729-2750. [PMID: 35112505 DOI: 10.1002/ar.24874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/08/2022]
Abstract
Despite the remarkable morphological modifications that occurred in the thoracic limbs of bats, information about the brachial plexus in this group is still scarce. The present study aimed to describe the origin, structure, and distribution of these peripheral nerves in four Phyllostomidae species. Both antimeres of six Artibeus lituratus, five Desmodus rotundus, seven Glossophaga soricina, and five Phyllostomus hastatus-all adult males from the Adriano Lúcio Peracchi Collection (UFRRJ)-were dissected. After complete exposure of the structure, we found that the brachial plexus of D. rotundus and P. hastatus is formed by the same roots (C5-T1), whereas the fourth cervical spinal nerve and the second thoracic spinal nerve are present in G. soricina (C4-T1) and A. lituratus (C5-T2), respectively. There was intraspecific variation and asymmetry in the origin of the structure and the combinations of nerve segments forming terminal branches. The distribution to the target muscles and patagium, however, was not subject to significant variation in our sample. Data presented here support the presence of two prevailing conditions in distribution of nerves to the bat muscles, and the innervation of the membranes seems to be explained by embryogenesis. Although the brachial plexus in phyllostomid bats is similar to that of other terrestrial Laurasiatheria, aspects identified in these bats, apparently unique to Chiroptera, may be related to anatomical changes in the thoracic limbs functionally linked to flight.
Collapse
Affiliation(s)
- Karen Santos Toledo
- Laboratory of Mastozoology, Biological and Health Sciences Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
- Environmental Scientific Photography Nucleus - BioCenas, Laboratory of Radioecology and Global Change, Biology Institute Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Lúcio Peracchi
- Laboratory of Mastozoology, Biological and Health Sciences Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Rodrigues Nogueira
- Laboratory of Mastozoology, Biological and Health Sciences Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Poopalasundaram S, Richardson J, Graham A. Key separable events in the remodelling of the pharyngeal arches. J Anat 2023; 243:100-109. [PMID: 36815518 PMCID: PMC10273329 DOI: 10.1111/joa.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The pharyngeal arches are a series of bulges on the lateral surface of the embryonic head. They are a defining feature of the most conserved, the phylotypic, stage of vertebrate development. In many vertebrate clades, the segmental arrangement of the pharyngeal arches is translated into the iterative anatomy of the gill arches. However, in amniotes the pharyngeal arches undergo a rearrangement during development and the segmental organisation of the pharynx is lost. This remodelling involves the expansion of the second arch which comes to overlie the more posterior arches. A transient sinus forms between the expanded second arch and the posterior arches, that is then lost, and the posterior arches are internalised. The morphogenesis of the second arch has been viewed as being central to this remodelling. Yet little is known about this process. Therefore, in this study, we have characterised the development of the second arch. We show that as the second arch expands, its posterior margin forms a leading edge and that the mesenchymal cells subjacent to this are in an elevated proliferative state. We further show that the posterior marginal epithelium is the site of expression of three key developmental signalling molecules: BMP7, FGF8 and SHH, and that their expression continues throughout the period of expansion. Using a novel approach, we have been able to simultaneously inhibit these three pathways, and we find that when this is done the second arch fails to establish its caudal projection and that there is a loss of proliferation in the posterior mesenchymal cells of the second arch. We have further used this manipulation to ask if the internalisation of the posterior arches is dependent upon the expansion of the second arch. We find that it is not-the posterior arches are still internalised when the expansion of the second arch is curtailed. We further show that while the collapse of the sinus is dependent upon thyroid hormone signalling, that this is not the case for the internalisation of the posterior pouches. Thus, the internalisation of the posterior arches is not dependent on the expansion of the second arch or on the collapse of the sinus. Finally, we show that the termination of expansion of the second arch correlates with a burst of morphogenetic cell death suggesting a mechanism for ending this. Thus, while it has long been thought that it is the morphogenesis of the second arch that drives the remodelling of the pharyngeal arches, we show that this is not the case. Rather the remodelling of the pharyngeal arches is a composite process that can split into contemporaneous but separate events: the expansion of the second arch, the internalisation of the posterior arches and the collapse of the sinus.
Collapse
Affiliation(s)
| | - Jo Richardson
- Centre for Developmental Neurobiology, King's College LondonLondonUK
- School of Life SciencesUniversity of SussexBrightonUK
| | - Anthony Graham
- Centre for Developmental Neurobiology, King's College LondonLondonUK
| |
Collapse
|
10
|
Anthwal N, Urban DJ, Sadier A, Takenaka R, Spiro S, Simmons N, Behringer RR, Cretekos CJ, Rasweiler JJ, Sears KE. Insights into the formation and diversification of a novel chiropteran wing membrane from embryonic development. BMC Biol 2023; 21:101. [PMID: 37143038 PMCID: PMC10161559 DOI: 10.1186/s12915-023-01598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Through the evolution of novel wing structures, bats (Order Chiroptera) became the only mammalian group to achieve powered flight. This achievement preceded the massive adaptive radiation of bats into diverse ecological niches. We investigate some of the developmental processes that underlie the origin and subsequent diversification of one of the novel membranes of the bat wing: the plagiopatagium, which connects the fore- and hind limb in all bat species. RESULTS Our results suggest that the plagiopatagium initially arises through novel outgrowths from the body flank that subsequently merge with the limbs to generate the wing airfoil. Our findings further suggest that this merging process, which is highly conserved across bats, occurs through modulation of the programs controlling the development of the periderm of the epidermal epithelium. Finally, our results suggest that the shape of the plagiopatagium begins to diversify in bats only after this merging has occurred. CONCLUSIONS This study demonstrates how focusing on the evolution of cellular processes can inform an understanding of the developmental factors shaping the evolution of novel, highly adaptive structures.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Daniel J Urban
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA
| | - Risa Takenaka
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Nancy Simmons
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, New York, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA.
| |
Collapse
|
11
|
Feigin CY, Moreno JA, Ramos R, Mereby SA, Alivisatos A, Wang W, van Amerongen R, Camacho J, Rasweiler JJ, Behringer RR, Ostrow B, Plikus MV, Mallarino R. Convergent deployment of ancestral functions during the evolution of mammalian flight membranes. SCIENCE ADVANCES 2023; 9:eade7511. [PMID: 36961889 PMCID: PMC10038344 DOI: 10.1126/sciadv.ade7511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 05/20/2023]
Abstract
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Collapse
Affiliation(s)
- Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jorge A. Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Sarah A. Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ares Alivisatos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wei Wang
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Renée van Amerongen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - John J. Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bruce Ostrow
- Department of Biology, Grand Valley State University, Allendale, MI 49401, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Nojiri T, Werneburg I, Tu VT, Fukui D, Takechi M, Iseki S, Furutera T, Koyabu D. Timing of organogenesis underscores the evolution of neonatal life histories and powered flight in bats. Proc Biol Sci 2023; 290:20221928. [PMID: 36629110 PMCID: PMC9832570 DOI: 10.1098/rspb.2022.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Bats have undergone one of the most drastic limb innovations in vertebrate history, associated with the evolution of powered flight. Knowledge of the genetic basis of limb organogenesis in bats has increased but little has been documented regarding the differences between limb organogenesis in bats and that of other vertebrates. We conducted embryological comparisons of the timelines of limb organogenesis in 24 bat species and 72 non-bat amniotes. In bats, the time invested for forelimb organogenesis has been considerably extended and the appearance timing of the forelimb ridge has been significantly accelerated, whereas the timing of the finger and first appearance of the claw development has been delayed, facilitating the enlargement of the manus. Furthermore, we discovered that bats initiate the development of their hindlimbs earlier than their forelimbs compared with other placentals. Bat neonates are known to be able to cling continuously with their well-developed foot to the maternal bodies or habitat substrates soon after birth. We suggest that this unique life history of neonates, which possibly coevolved with powered flight, has driven the accelerated development of the hindlimb and precocious foot.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Graduate School of Environmental Science, Hokkaido University, North 11, West 10, Sapporo 060-0811, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Eberhard Karls Universität, Sigwartstraße 10, D-72076 Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Hölderlinstraße 12, 72074 Tübingen, Germany
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, No. 18, Hoang Quac Viet road, Cau Giay district, Hanoi, Vietnam
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 9-61, Yamabe-Higashimachi, Furano, Hokkaido 079-1563, Japan
| | - Masaki Takechi
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sachiko Iseki
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Toshiko Furutera
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Daisuke Koyabu
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan
| |
Collapse
|
13
|
Ono SF, Cordeiro IR, Kishida O, Ochi H, Tanaka M. Air-breathing behavior underlies the cell death in limbs of Rana pirica tadpoles. ZOOLOGICAL LETTERS 2023; 9:2. [PMID: 36624534 PMCID: PMC9830891 DOI: 10.1186/s40851-022-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Amphibians shape their limbs by differential outgrowth of digits and interdigital regions. In contrast, amniotes employ cell death, an additional developmental system, to determine the final shape of limbs. Previous work has shown that high oxygen availability is correlated with the induction of cell death in developing limbs. Given the diversity of life histories of amphibians, it is conceivable that some amphibians are exposed to a high-oxygen environment during the tadpole phase and exhibit cell death in their limbs. Here, we examined whether air-breathing behavior underlies the cell death in limbs of aquatic tadpoles of the frog species Rana pirica. Our experimental approach revealed that R. pirica tadpoles exhibit cell death in their limbs that is likely to be induced by oxidative stress associated with their frequent air-breathing behavior.
Collapse
Affiliation(s)
- Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido, 053-0035, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
14
|
Sun L, Rong X, Liu X, Yu Z, Zhang Q, Ren W, Yang G, Xu S. Evolutionary genetics of flipper forelimb and hindlimb loss from limb development-related genes in cetaceans. BMC Genomics 2022; 23:797. [DOI: 10.1186/s12864-022-09024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood.
Results
In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer—ZRS in cetaceans—was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals.
Conclusions
We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.
Collapse
|
15
|
Mongle CS, Nesbitt A, Machado FA, Smaers JB, Turner AH, Grine FE, Uyeda JC. A common mechanism drives the alignment between the micro- and macroevolution of primate molars. Evolution 2022; 76:2975-2985. [PMID: 36005286 DOI: 10.1111/evo.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits.
Collapse
Affiliation(s)
- Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Division of Anthropology, American Museum of Natural History, New York, New York, 10024.,Turkana Basin Institute, Stony Brook University, Stony Brook, New York, 11794
| | - Allison Nesbitt
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - Fabio A Machado
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| |
Collapse
|
16
|
Gene expression changes during the evolution of the tetrapod limb. Biol Futur 2022; 73:411-426. [PMID: 36355308 DOI: 10.1007/s42977-022-00136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Major changes in the vertebrate anatomy have preceded the conquest of land by the members of this taxon, and continuous changes in limb shape and use have occurred during the later radiation of tetrapods. While the main, conserved mechanisms of limb development have been discerned over the past century using a combination of classical embryological and molecular methods, only recent advances made it possible to identify and study the regulatory changes that have contributed to the evolution of the tetrapod appendage. These advances include the expansion of the model repertoire from traditional genetic model species to non-conventional ones, a proliferation of predictive mathematical models that describe gene interactions, an explosion in genomic data and the development of high-throughput methodologies. These revolutionary innovations make it possible to identify specific mutations that are behind specific transitions in limb evolution. Also, as we continue to apply them to more and more extant species, we can expect to gain a fine-grained view of this evolutionary transition that has been so consequential for our species as well.
Collapse
|
17
|
Chavez DE, Gronau I, Hains T, Dikow RB, Frandsen PB, Figueiró HV, Garcez FS, Tchaicka L, de Paula RC, Rodrigues FHG, Jorge RSP, Lima ES, Songsasen N, Johnson WE, Eizirik E, Koepfli KP, Wayne RK. Comparative genomics uncovers the evolutionary history, demography, and molecular adaptations of South American canids. Proc Natl Acad Sci U S A 2022; 119:e2205986119. [PMID: 35969758 PMCID: PMC9407222 DOI: 10.1073/pnas.2205986119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.
Collapse
Affiliation(s)
- Daniel E. Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
- Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Reichman University, Herzliya 46150, Israel
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560
| | - Paul B. Frandsen
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Henrique V. Figueiró
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Fabrício S. Garcez
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ligia Tchaicka
- Rede de Biodiversidade e Biotecnologia da Amazônia, Curso de Pós-Graduação em Recursos Aquáticos e Pesca, Universidade Estadual do Maranhão, São Luis, 2016-8100, Brazil
| | - Rogério C. de Paula
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Instituto Chico Mendes de Conservação da Biodiversidade, 12952-011, Atibaia, Brazil
| | - Flávio H. G. Rodrigues
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo S. P. Jorge
- Centro Nacional de Avaliação da Biodiversidade e de Pesquisa e Conservação do Cerrado, Instituto Chico Mendes de Conservação da Biodiversidade, Brasilia, 70670-350, Brazil
| | - Edson S. Lima
- Private address, Nova Xavantina, MT, 78690-000, Brazil
| | - Nucharin Songsasen
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
| | - Warren E. Johnson
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
- Instituto Pró-Carnívoros, Atibaia, 12945-010, Brazil
- Instituto Nacional de Ciência e Tecnologia em Ecologia Evolução Conservação da Biodiverside, Universidade Federal de GoiásGoiânia, 74690-900, Brazil
| | - Klaus-Peter Koepfli
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
18
|
Halley AC, Baldwin MKL, Cooke DF, Englund M, Pineda CR, Schmid T, Yartsev MM, Krubitzer L. Coevolution of motor cortex and behavioral specializations associated with flight and echolocation in bats. Curr Biol 2022; 32:2935-2941.e3. [PMID: 35617952 DOI: 10.1016/j.cub.2022.04.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Bats have evolved behavioral specializations that are unique among mammals, including self-propelled flight and echolocation. However, areas of motor cortex that are critical in the generation and fine control of these unique behaviors have never been fully characterized in any bat species, despite the fact that bats compose ∼25% of extant mammalian species. Using intracortical microstimulation, we examined the organization of motor cortex in Egyptian fruit bats (Rousettus aegyptiacus), a species that has evolved a novel form of tongue-based echolocation.1,2 We found that movement representations include an enlarged tongue region containing discrete subregions devoted to generating distinct tongue movement types, consistent with their behavioral specialization generating active sonar using tongue clicks. This magnification of the tongue in motor cortex is comparable to the enlargement of somatosensory representations in species with sensory specializations.3-5 We also found a novel degree of coactivation between the forelimbs and hindlimbs, both of which are involved in altering the shape and tension of wing membranes during flight. Together, these findings suggest that the organization of motor cortex has coevolved with peripheral morphology in bats to support the unique motor demands of flight and echolocation.
Collapse
Affiliation(s)
- Andrew C Halley
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Mary K L Baldwin
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Dylan F Cooke
- Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive E K9625, Burnaby, BC V5A 1S6, Canada
| | - Mackenzie Englund
- Department of Psychology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA
| | - Tobias Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, MC#3370, Berkeley, CA 94720, USA
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, MC#3370, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
19
|
Howenstine AO, Sadier A, Anthwal N, Lau CL, Sears KE. Non-model systems in mammalian forelimb evo-devo. Curr Opin Genet Dev 2021; 69:65-71. [PMID: 33684847 PMCID: PMC8364859 DOI: 10.1016/j.gde.2021.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/09/2023]
Abstract
Mammal forelimbs are highly diverse, ranging from the elongated wing of a bat to the stout limb of the mole. The mammal forelimb has been a long-standing system for the study of early developmental patterning, proportional variation, shape change, and the reduction of elements. However, most of this work has been performed in mice, which neglects the wide variation present across mammal forelimbs. This review emphasizes the critical role of non-model systems in limb evo-devo and highlights new emerging models and their potential. We discuss the role of gene networks in limb evolution, and touch on functional analyses that lay the groundwork for further developmental studies. Mammal limb evo-devo is a rich field, and here we aim to synthesize the findings of key recent works and the questions to which they lead.
Collapse
Affiliation(s)
- Aidan O Howenstine
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States
| | - Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States; Centre for Craniofacial and Regenerative Biology, King's CollegeLondon, 27th Floor Guy's Tower, London, SE1 9RT, UK
| | - Clive Lf Lau
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, United States.
| |
Collapse
|
20
|
Thirkannad SM, Patil R. The Story of the Hand. Indian J Plast Surg 2021; 54:106-113. [PMID: 34239230 PMCID: PMC8257305 DOI: 10.1055/s-0041-1729771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
This review describes the Story of the Human Hand. It traces the functional needs that led to evolution of the human hand as well as its embryological development. The various in utero stages of formation of the human hand are covered along with a description of the various molecular and genetic factors that control this process.
Collapse
Affiliation(s)
- Sunil M. Thirkannad
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| | - Rahul Patil
- Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
| |
Collapse
|
21
|
Nojiri T, Fukui D, Werneburg I, Saitoh T, Endo H, Koyabu D. Embryonic staging of bats with special reference to Vespertilio sinensis and its cochlear development. Dev Dyn 2021; 250:1140-1159. [PMID: 33683772 DOI: 10.1002/dvdy.325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND How bats deviate heterochronically from other mammals remains largely unresolved, reflecting the lack of a quantitative staging framework allowing comparison among species. The standard event system (SES) is an embryonic staging system allowing quantitative detection of interspecific developmental variations. Here, the first SES-based staging system for bats, using Asian parti-colored bat (Vespertilio sinensis) is introduced. General aspects of normal embryonic development and the three-dimensional development of the bat cochlea were described for the first time. Recoding the embryonic staging tables of 18 previously reported bat species and Mus musculus into the SES system, quantitative developmental comparisons were performed. RESULTS It was found that limb bud development of V. sinensis is relatively late among 19 bat species and late limb development is a shared trait of vespertilionid bats. The inner ear cochlear canal forms before the semicircular canal in V. sinensis while the cochlear canal forms after the semicircular canal in non-volant mammals. CONCLUSIONS The present approach using the SES system provides a powerful framework to detect the peculiarities of bat development. Incorporating the timing of gene expression patterns into the SES framework will further contribute to the understanding of the evolution of specialized features in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Furano, Hokkaido, Japan
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Paleoenvironment an der Eberhard Karls Universität, Tübingen, Germany.,Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Takashi Saitoh
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Sadier A, Urban DJ, Anthwal N, Howenstine AO, Sinha I, Sears KE. Making a bat: The developmental basis of bat evolution. Genet Mol Biol 2021; 43:e20190146. [PMID: 33576369 PMCID: PMC7879332 DOI: 10.1590/1678-4685-gmb-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/11/2020] [Indexed: 11/28/2022] Open
Abstract
Bats are incredibly diverse, both morphologically and taxonomically. Bats are the only mammalian group to have achieved powered flight, an adaptation that is hypothesized to have allowed them to colonize various and diverse ecological niches. However, the lack of fossils capturing the transition from terrestrial mammal to volant chiropteran has obscured much of our understanding of bat evolution. Over the last 20 years, the emergence of evo-devo in non-model species has started to fill this gap by uncovering some developmental mechanisms at the origin of bat diversification. In this review, we highlight key aspects of studies that have used bats as a model for morphological adaptations, diversification during adaptive radiations, and morphological novelty. To do so, we review current and ongoing studies on bat evolution. We first investigate morphological specialization by reviewing current knowledge about wing and face evolution. Then, we explore the mechanisms behind adaptive diversification in various ecological contexts using vision and dentition. Finally, we highlight the emerging work into morphological novelties using bat wing membranes.
Collapse
Affiliation(s)
- Alexa Sadier
- University of California at Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, USA
| | - Daniel J Urban
- University of California at Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, USA.,American Museum of Natural History, Department of Mammalogy, New York, USA
| | - Neal Anthwal
- University of California at Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, USA
| | - Aidan O Howenstine
- University of California at Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, USA
| | - Ishani Sinha
- University of California at Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, USA
| | - Karen E Sears
- University of California at Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, USA
| |
Collapse
|
23
|
Montero JA, Lorda-Diez CI, Hurle JM. Confluence of Cellular Degradation Pathways During Interdigital Tissue Remodeling in Embryonic Tetrapods. Front Cell Dev Biol 2020; 8:593761. [PMID: 33195267 PMCID: PMC7644521 DOI: 10.3389/fcell.2020.593761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Digits develop in the distal part of the embryonic limb primordium as radial prechondrogenic condensations separated by undifferentiated mesoderm. In a short time interval the interdigital mesoderm undergoes massive degeneration to determine the formation of free digits. This fascinating process has often been considered as an altruistic cell suicide that is evolutionarily-regulated in species with different degrees of digit webbing. Initial descriptions of interdigit remodeling considered lysosomes as the primary cause of the degenerative process. However, the functional significance of lysosomes lost interest among researcher and was displaced to a secondary role because the introduction of the term apoptosis. Accumulating evidence in recent decades has revealed that, far from being a unique method of embryonic cell death, apoptosis is only one among several redundant dying mechanisms accounting for the elimination of tissues during embryonic development. Developmental cell senescence has emerged in the last decade as a primary factor implicated in interdigit remodeling. Our review proposes that cell senescence is the biological process identified by vital staining in embryonic models and implicates lysosomes in programmed cell death. We review major structural changes associated with interdigit remodeling that may be driven by cell senescence. Furthermore, the identification of cell senescence lacking tissue degeneration, associated with the maturation of the digit tendons at the same stages of interdigital remodeling, allowed us to distinguish between two functionally distinct types of embryonic cell senescence, “constructive” and “destructive.”
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| |
Collapse
|
24
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
25
|
Affiliation(s)
- Sophia C. Anderson
- School of Biology University of St Andrews Sir Harold Mitchell BuildingGreenside Place St AndrewsKY16 9THUK
| | - Graeme D. Ruxton
- School of Biology University of St Andrews Sir Harold Mitchell BuildingGreenside Place St AndrewsKY16 9THUK
| |
Collapse
|
26
|
Cordeiro IR, Yu R, Tanaka M. Regulation of the limb shape during the development of the Chinese softshell turtles. Evol Dev 2020; 22:451-462. [PMID: 32906209 PMCID: PMC7757393 DOI: 10.1111/ede.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Interdigital cell death is an important mechanism employed by amniotes to shape their limbs; inhibiting this process leads to the formation of webbed fingers, as seen in bats and ducks. The Chinese softshell turtle Pelodiscus sinensis (Reptilia: Testudines: Trionychidae) has a distinctive limb morphology: the anterior side of the limbs has partially webbed fingers with claw‐like protrusions, while the posterior fingers are completely enclosed in webbings. Here, P. sinensis embryos were investigated to gain insights on the evolution of limb‐shaping mechanisms in amniotes. We found cell death and cell senescence in their interdigital webbings. Spatial or temporal modulation of these processes were correlated with the appearance of indentations in the webbings, but not a complete regression of this tissue. No differences in interdigital cell proliferation were found. In subsequent stages, differential growth of the finger cartilages led to a major difference in limb shape. While no asymmetry in bone morphogenetic protein signaling was evident during interdigital cell death stages, some components of this pathway were expressed exclusively in the clawed digit tips, which also had earlier ossification. In addition, a delay and/or truncation in the chondrogenesis of the posterior digits was found in comparison with the anterior digits of P. sinensis, and also when compared with the previously published pattern of digit skeletogenesis of turtles without posterior webbings. In conclusion, modulation of cell death, as well as a heterochrony in digit chondrogenesis, may contribute to the formation of the unique limbs of the Chinese softshell turtles. Cell death and senescence shape the interdigital webbings of Pelodiscus sinensis. Delayed chondrogenesis/ossification and truncated tips are found in posterior digits, as well as differential expression of bone morphogenetic proteins and Msh homeobox 1 transcription factors.
Collapse
Affiliation(s)
- Ingrid R Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
27
|
Montero JA, Lorda-Diez CI, Sanchez-Fernandez C, Hurle JM. Cell death in the developing vertebrate limb: A locally regulated mechanism contributing to musculoskeletal tissue morphogenesis and differentiation. Dev Dyn 2020; 250:1236-1247. [PMID: 32798262 PMCID: PMC8451844 DOI: 10.1002/dvdy.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate. We examine the functions of cell death in the formation and growth of the limb primordia. We analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process and the absence of defined genetic program in their regulation we propose that cell death is a consequence of the tissue building strategy employed by the embryo regulated by epigenetic factors .
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | | | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
28
|
Cordeiro IR, Tanaka M. Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. Bioessays 2020; 42:e2000025. [DOI: 10.1002/bies.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| |
Collapse
|
29
|
Tokita M, Matsushita H, Asakura Y. Developmental mechanisms underlying webbed foot morphological diversity in waterbirds. Sci Rep 2020; 10:8028. [PMID: 32415088 PMCID: PMC7229147 DOI: 10.1038/s41598-020-64786-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
The webbed feet of waterbirds are morphologically diverse and classified into four types: the palmate foot, semipalmate foot, totipalmate foot, and lobate foot. To understand the developmental mechanisms underlying this morphological diversity, we conducted a series of comparative analyses. Ancestral state reconstruction based on phylogeny assumed that the lobate feet possessed by the common coot and little grebe arose independently, perhaps through distinct developmental mechanisms. Gremlin1, which encodes a bone morphogenetic protein (BMP) antagonist and inhibits interdigital cell death (ICD) in the foot plate of avian embryos, remained expressed in the interdigital tissues of webbed feet in the duck, common coot, little grebe, and great cormorant. Differences in Gremlin1 expression pattern and proliferating cell distribution pattern in the toe tissues of the common coot and little grebe support the convergent evolution of lobate feet. In the totipalmate-footed great cormorant, Gremlin1 was expressed in all interdigital tissues at St. 31, but its expression disappeared except along the toes by St. 33. The webbing of the cormorant's totipalmate foot and duck's palmate foot may have risen from distinct developmental mechanisms.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Hiroya Matsushita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
- Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), 10-3 Midori-machi, Tachikawa, Tokyo, 190-8518, Japan
| | - Yuya Asakura
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan
| |
Collapse
|
30
|
Cordeiro IR, Kabashima K, Ochi H, Munakata K, Nishimori C, Laslo M, Hanken J, Tanaka M. Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning. Dev Cell 2019; 50:155-166.e4. [PMID: 31204171 DOI: 10.1016/j.devcel.2019.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 01/04/2023]
Abstract
Amphibians form fingers without webbing by differential growth between digital and interdigital regions. Amniotes, however, employ interdigital cell death (ICD), an additional mechanism that contributes to a greater variation of limb shapes. Here, we investigate the role of environmental oxygen in the evolution of ICD in tetrapods. While cell death is restricted to the limb margin in amphibians with aquatic tadpoles, Eleutherodactylus coqui, a frog with terrestrial-direct-developing eggs, has cell death in the interdigital region. Chicken requires sufficient oxygen and reactive oxygen species to induce cell death, with the oxygen tension profile itself being distinct between the limbs of chicken and Xenopus laevis frogs. Notably, increasing blood vessel density in X. laevis limbs, as well as incubating tadpoles under high oxygen levels, induces ICD. We propose that the oxygen available to terrestrial eggs was an ecological feature crucial for the evolution of ICD, made possible by conserved autopod-patterning mechanisms.
Collapse
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kaori Kabashima
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Keijiro Munakata
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Chika Nishimori
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
31
|
Al-Qattan MM. A Review of the Genetics and Pathogenesis of Syndactyly in Humans and Experimental Animals: A 3-Step Pathway of Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9652649. [PMID: 31637260 PMCID: PMC6766129 DOI: 10.1155/2019/9652649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Embryology of normal web space creation and the genetics of syndactyly in humans and experimental animals are well described in the literature. In this review, the author offers a 3-step pathway of pathogenesis for syndactyly. The first step is initiated either by the overactivation of the WNT canonical pathway or the suppression of the Bone Morphogenetic Protein (BMP) canonical pathway. This leads to an overexpression of Fibroblast Growth Factor 8 (FGF8). The final step is the suppression of retinoic acid in the interdigital mesenchyme leading to suppression of both apoptosis and extracellular matrix (ECM) degradation, resulting in syndactyly.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Professor of Hand Surgery, King Saud University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Al-Qattan MM, Alkuraya FS. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A 2018; 179:266-279. [PMID: 30569497 DOI: 10.1002/ajmg.a.60694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Cenani-Lenz (C-L) syndrome is characterized by oligosyndactyly, metacarpal synostosis, phalangeal disorganization, and other variable facial and systemic features. Most cases are caused by homozygous and compound heterozygous missense and splice mutations of the LRP4 gene. Currently, the syndrome carries one OMIM number (212780). However, C-L syndrome-like phenotypes as well as other syndactyly disorders with or without metacarpal synostosis/phalangeal disorganization are also known to be associated with specific LRP4 mutations, adenomatous polyposis coli (APC) truncating mutations, genomic rearrangements of the GREM1-FMN1 locus, as well as FMN1 mutations. Surprisingly, patients with C-L syndrome-like phenotype caused by APC truncating mutations have no polyposis despite the increased levels of β catenin. The LRP4 and APC proteins act on the WNT (wingless-type integration site family) canonical pathway, whereas the GREM-1 and FMN1 proteins act on the bone morphogenetic protein (BMP) pathway. In this review, we discuss the different mutations associated with C-L syndrome, classify its clinical features, review familial adenomatous polyposis caused by truncating APC mutations and compare these mutations to the splicing APC mutation associated with syndactyly, and finally, explore the pathophysiology through a review of the cross talks between the WNT canonical and the BMP antagonistic pathways.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia.,Division of Plastic Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Bosch PJ, Fuller LC, Weiner JA. An essential role for the nuclear protein Akirin2 in mouse limb interdigital tissue regression. Sci Rep 2018; 8:12240. [PMID: 30116001 PMCID: PMC6095873 DOI: 10.1038/s41598-018-30801-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The regulation of interdigital tissue regression requires the interplay of multiple spatiotemporally-controlled morphogen gradients to ensure proper limb formation and release of individual digits. Disruption to this process can lead to a number of limb abnormalities, including syndactyly. Akirins are highly conserved nuclear proteins that are known to interact with chromatin remodelling machinery at gene enhancers. In mammals, the analogue Akirin2 is essential for embryonic development and critical for a wide variety of roles in immune function, meiosis, myogenesis and brain development. Here we report a critical role for Akirin2 in the regulation of interdigital tissue regression in the mouse limb. Knockout of Akirin2 in limb epithelium leads to a loss of interdigital cell death and an increase in cell proliferation, resulting in retention of the interdigital web and soft-tissue syndactyly. This is associated with perdurance of Fgf8 expression in the ectoderm overlying the interdigital space. Our study supports a mechanism whereby Akirin2 is required for the downregulation of Fgf8 from the apical ectodermal ridge (AER) during limb development, and implies its requirement in signalling between interdigital mesenchymal cells and the AER.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Usui K, Tokita M. Creating diversity in mammalian facial morphology: a review of potential developmental mechanisms. EvoDevo 2018; 9:15. [PMID: 29946416 PMCID: PMC6003202 DOI: 10.1186/s13227-018-0103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofacial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline cleft in some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of the facial primordium (the facial processes) at the early stages of embryogenesis.
Collapse
Affiliation(s)
- Kaoru Usui
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| |
Collapse
|
35
|
Cooperation of BMP and IHH signaling in interdigital cell fate determination. PLoS One 2018; 13:e0197535. [PMID: 29771958 PMCID: PMC5957397 DOI: 10.1371/journal.pone.0197535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/20/2023] Open
Abstract
The elaborate anatomy of hands and feet is shaped by coordinated formation of digits and regression of the interdigital mesenchyme (IM). A failure of this process causes persistence of interdigital webbing and consequently cutaneous syndactyly. Bone morphogenetic proteins (BMPs) are key inductive factors for interdigital cell death (ICD) in vivo. NOGGIN (NOG) is a major BMP antagonist that can interfere with BMP-induced ICD when applied exogenously, but its in vivo role in this process is unknown. We investigated the physiological role of NOG in ICD and found that Noggin null mice display cutaneous syndactyly and impaired interdigital mesenchyme specification. Failure of webbing regression was caused by lack of cell cycle exit and interdigital apoptosis. Unexpectedly, Noggin null mutants also exhibit increased Indian hedgehog (Ihh) expression within cartilage condensations that leads to aberrant extension of IHH downstream signaling into the interdigital mesenchyme. A converse phenotype with increased apoptosis and reduced cell proliferation was found in the interdigital mesenchyme of Ihh mutant embryos. Our data point towards a novel role for NOG in balancing Ihh expression in the digits impinging on digit-interdigit cross talk. This suggests a so far unrecognized physiological role for IHH in interdigital webbing biology.
Collapse
|
36
|
Greville LJ, Ceballos-Vasquez A, Valdizón-Rodríguez R, Caldwell JR, Faure PA. Wound healing in wing membranes of the Egyptian fruit bat (Rousettus aegyptiacus) and big brown bat (Eptesicus fuscus). J Mammal 2018. [DOI: 10.1093/jmammal/gyy050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lucas J Greville
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | | | | | - John R Caldwell
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Enhancer adoption caused by genomic insertion elicits interdigital Shh expression and syndactyly in mouse. Proc Natl Acad Sci U S A 2017; 115:1021-1026. [PMID: 29255029 PMCID: PMC5798340 DOI: 10.1073/pnas.1713339115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we reexamined an old mouse mutant named Hammer toe (Hm), which arose spontaneously almost a half century ago and exhibits a limb phenotype with webbing. We revealed that a 150-kb noncoding genomic fragment that was originally located in chromosome 14 has been inserted into a genomic region proximal to Sonic hedgehog (Shh), located in chromosome 5. This inserted fragment possesses enhancer activity to induce Shh expression in the interdigital regions in Hm, which in turn down-regulates bone morphogenetic protein signaling and eventually results in syndactyly and web formation. Since the donor fragment residing in chromosome 14 has enhancer activity to induce interdigital gene expression, the Hm mutation appears to be an archetypal case of enhancer adoption. Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm. We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.
Collapse
|
38
|
Sterbing SJ, Moss CF. Comparative analysis of the distribution and morphology of tactile hairs on the wing membrane of four bat species. J Mammal 2017. [DOI: 10.1093/jmammal/gyx146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Sears K, Maier JA, Sadier A, Sorensen D, Urban DJ. Timing the developmental origins of mammalian limb diversity. Genesis 2017; 56. [PMID: 29095555 DOI: 10.1002/dvg.23079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/31/2022]
Abstract
Mammals have highly diverse limbs that have contributed to their occupation of almost every niche. Researchers have long been investigating the development of these diverse limbs, with the goals of identifying developmental processes and potential biases that shape mammalian limb diversity. To date, researchers have used techniques ranging from the genomic to the anatomic to investigate the developmental processes shaping the limb morphology of mammals from five orders (Marsupialia, Chiroptera, Rodentia, Cetartiodactyla, and Perissodactyla). Results of these studies suggest that the differential expression of genes controlling diverse cellular processes underlies mammalian limb diversity. Results also suggest that the earliest development of the limb tends to be conserved among mammalian species, while later limb development tends to be more variable. This research has established the mammalian limb as a model system for evolutionary developmental biology, and set the stage for more in-depth, cross-disciplinary research into the genetic controls, tissue-level cellular behaviors, and selective pressures that have driven the developmental evolution of mammalian limbs. Ideally, these studies will be performed in a diverse suite of mammalian species within a comparative, phylogenetic framework.
Collapse
Affiliation(s)
- Karen Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California, 90095
| | - Jennifer A Maier
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California, 90095
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California, 90095
| | - Daniel Sorensen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Daniel J Urban
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California, 90095.,Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801.,Department of Mammalogy, American Museum of Natural History, New York, New York, 10024
| |
Collapse
|
40
|
Cooper LN, Sears KE, Armfield BA, Kala B, Hubler M, Thewissen JGM. Review and experimental evaluation of the embryonic development and evolutionary history of flipper development and hyperphalangy in dolphins (Cetacea: Mammalia). Genesis 2017; 56. [DOI: 10.1002/dvg.23076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lisa Noelle Cooper
- Department of Anatomy and NeurobiologyNEOMEDRootstown OH44272‐0095
- Department of Anatomy and NeurobiologyMusculoskeletal Biology Research Group at NEOMEDRootstown OH44272‐0095
| | - Karen E. Sears
- Department of Animal BiologyUniversity of IllinoisUrbana IL61801
- University of Illinois, Institute for Genomic BiologyUrbana IL61801
| | - Brooke A. Armfield
- Molecular Genetics and MicrobiologyUniversity of FloridaGainesville FL32610
| | - Bhavneet Kala
- Department of Anatomy and NeurobiologyNEOMEDRootstown OH44272‐0095
| | - Merla Hubler
- Department of Animal BiologyUniversity of IllinoisUrbana IL61801
| | | |
Collapse
|
41
|
Paksuz EP, Hayretdağ S, Olgun K. Prenatal development in greater mouse-eared bat, Myotis myotis
(Borkhausen, 1797) (Chiroptera, Vespertilionidae). Anat Histol Embryol 2017; 46:563-571. [DOI: 10.1111/ahe.12310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
- E. P. Paksuz
- Department of Mathematics and Science Education; Faculty of Education; Trakya University; Edirne Turkey
| | - S. Hayretdağ
- Department of Biology; Faculty of Arts and Sciences; Çanakkale Onsekiz Mart University; Çanakkale Turkey
| | - K. Olgun
- Department of Biology; Faculty of Arts and Sciences; Adnan Menderes University; Aydın Turkey
| |
Collapse
|
42
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
43
|
Maier JA, Rivas-Astroza M, Deng J, Dowling A, Oboikovitz P, Cao X, Behringer RR, Cretekos CJ, Rasweiler JJ, Zhong S, Sears KE. Transcriptomic insights into the genetic basis of mammalian limb diversity. BMC Evol Biol 2017; 17:86. [PMID: 28335721 PMCID: PMC5364624 DOI: 10.1186/s12862-017-0902-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
Background From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. Results We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Conclusions Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0902-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer A Maier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Marcelo Rivas-Astroza
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jenny Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Anna Dowling
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Paige Oboikovitz
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Chris J Cretekos
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209, USA
| | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University Downstate Medical Center, 450 Clarkson, Avenue, Brooklyn, NY, 11203, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Karen E Sears
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
44
|
Wang B, Wang W, Ni F. Classification of Congenital Deformities of Hands and Upper Limbs and Selection of Surgery Timing. Plast Reconstr Surg 2017. [DOI: 10.1007/978-981-10-5101-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Sterbing-D'Angelo SJ, Chadha M, Marshall KL, Moss CF. Functional role of airflow-sensing hairs on the bat wing. J Neurophysiol 2016; 117:705-712. [PMID: 27852729 DOI: 10.1152/jn.00261.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/15/2016] [Indexed: 11/22/2022] Open
Abstract
The wing membrane of the big brown bat (Eptesicus fuscus) is covered by a sparse grid of microscopic hairs. We showed previously that various tactile receptors (e.g., lanceolate endings and Merkel cell neurite complexes) are associated with wing-hair follicles. Furthermore, we found that depilation of these hairs decreased the maneuverability of bats in flight. In the present study, we investigated whether somatosensory signals arising from the hairs carry information about airflow parameters. Neural responses to calibrated air puffs on the wing were recorded from primary somatosensory cortex of E. fuscus Single units showed sparse, phasic, and consistently timed spikes that were insensitive to air-puff duration and magnitude. The neurons discriminated airflow from different directions, and a majority responded with highest firing rates to reverse airflow from the trailing toward the leading edge of the dorsal wing. Reverse airflow, caused by vortices, occurs commonly in slowly flying bats. Hence, the present findings suggest that cortical neurons are specialized to monitor reverse airflow, indicating laminar airflow disruption (vorticity) that potentially destabilizes flight and leads to stall. NEW & NOTEWORTHY Bat wings are adaptive airfoils that enable demanding flight maneuvers. The bat wing is sparsely covered with sensory hairs, and wing-hair removal results in reduced flight maneuverability. Here, we report for the first time single-neuron responses recorded from primary somatosensory cortex to airflow stimulation that varied in amplitude, duration, and direction. The neurons show high sensitivity to the directionality of airflow and might act as stall detectors.
Collapse
Affiliation(s)
- S J Sterbing-D'Angelo
- Institute for Systems Research, University of Maryland, College Park, Maryland; .,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and
| | - M Chadha
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland.,Department of Psychology, University of Maryland, College Park, Maryland.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and
| | - K L Marshall
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - C F Moss
- Institute for Systems Research, University of Maryland, College Park, Maryland.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland.,Department of Psychology, University of Maryland, College Park, Maryland.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
46
|
Young JJ, Tabin CJ. Saunders's framework for understanding limb development as a platform for investigating limb evolution. Dev Biol 2016; 429:401-408. [PMID: 27840200 DOI: 10.1016/j.ydbio.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
Abstract
John W. Saunders, Jr. made seminal discoveries unveiling how chick embryos develop their limbs. He discovered the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the domains of interdigital cell death within the developing limb and determined their function through experimental analysis. These discoveries provided the basis for subsequent molecular understanding of how vertebrate limbs are induced, patterned, and differentiated. These mechanisms are strongly conserved among the vast diversity of tetrapod limbs suggesting that relatively minor changes and tweaks to the molecular cascades are responsible for the diversity observed in nature. Analysis of the pathway systems first identified by Saunders in the context of animals displaying limb reduction show how alterations in these pathways have resulted in multiple mechanisms of limb and digit loss. Other classes of modification to these same patterning systems are seen at the root of other, novel limb morphological alterations and elaborations.
Collapse
Affiliation(s)
- John J Young
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Diogo R, Guinard G, Diaz RE. Dinosaurs, Chameleons, Humans, and Evo-Devo Path: Linking Étienne Geoffroy's Teratology, Waddington's Homeorhesis, Alberch's Logic of "Monsters," and Goldschmidt Hopeful "Monsters". JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:207-229. [PMID: 28422426 DOI: 10.1002/jez.b.22709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Since the rise of evo-devo (evolutionary developmental biology) in the 1980s, few authors have attempted to combine the increasing knowledge obtained from the study of model organisms and human medicine with data from comparative anatomy and evolutionary biology in order to investigate the links between development, pathology, and macroevolution. Fortunately, this situation is slowly changing, with a renewed interest in evolutionary developmental pathology (evo-devo-path) in the past decades, as evidenced by the idea to publish this special, and very timely, issue on "Developmental Evolution in Biomedical Research." As all of us have recently been involved, independently, in works related in some way or another with evolution and developmental anomalies, we decided to join our different perspectives and backgrounds in the present contribution for this special issue. Specifically, we provide a brief historical account on the study of the links between evolution, development, and pathologies, followed by a review of the recent work done by each of us, and then by a general discussion on the broader developmental and macroevolutionary implications of our studies and works recently done by other authors. Our primary aims are to highlight the strength of studying developmental anomalies within an evolutionary framework to understand morphological diversity and disease by connecting the recent work done by us and others with the research done and broader ideas proposed by authors such as Étienne Geoffroy Saint-Hilaire, Waddington, Goldschmidt, Gould, and Per Alberch, among many others to pave the way for further and much needed work regarding abnormal development and macroevolution.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| | - Geoffrey Guinard
- UMR CNRS 5561, Biogéosciences, Université de Bourgogne, Dijon, France
| | - Raul E Diaz
- Department of Biology, La Sierra University, Riverside, California.,Natural History Museum of Los Angeles County, Los Angeles, California
| |
Collapse
|
48
|
Abstract
This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals.
Collapse
|
49
|
Sterbing-D'Angelo SJ, Liu H, Yu M, Moss CF. Morphology and deflection properties of bat wing sensory hairs: scanning electron microscopy, laser scanning vibrometry, and mechanics model. BIOINSPIRATION & BIOMIMETICS 2016; 11:056008. [PMID: 27545727 DOI: 10.1088/1748-3190/11/5/056008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bat wings are highly adaptive airfoils that enable demanding flight maneuvers, which are performed with astonishing robustness under turbulent conditions, and stability at slow flight velocities. The bat wing is sparsely covered with microscopically small, sensory hairs that are associated with tactile receptors. In a previous study we demonstrated that bat wing hairs are involved in sensing airflow for improved flight maneuverability. Here, we report physical measurements of these hairs and their distribution on the wing surface of the big brown bat, Eptesicus fuscus, based on scanning electron microscopy analyses. The wing hairs are strongly tapered, and are found on both the dorsal and ventral wing surfaces. Laser scanning vibrometry tests of 43 hairs from twelve locations across the wing of the big brown bat revealed that their natural frequencies inversely correlate with length and range from 3.7 to 84.5 kHz. Young's modulus of the average wing hair was calculated at 4.4 GPa, which is comparable with rat whiskers or arthropod airflow-sensing hairs.
Collapse
|
50
|
Ball H, Moussa F, Mbimba T, Orman R, Safadi F, Cooper L. Methods and insights from the characterization of osteoprogenitor cells of bats (Mammalia: Chiroptera). Stem Cell Res 2016; 17:54-61. [DOI: 10.1016/j.scr.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 01/14/2023] Open
|