1
|
Eisenson DL, Hisadome Y, Yamada K. Progress in Xenotransplantation: Immunologic Barriers, Advances in Gene Editing, and Successful Tolerance Induction Strategies in Pig-To-Primate Transplantation. Front Immunol 2022; 13:899657. [PMID: 35663933 PMCID: PMC9157571 DOI: 10.3389/fimmu.2022.899657] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Organ transplantation is the most effective treatment for end stage organ failure, but there are not enough organs to meet burgeoning demand. One potential solution to this organ shortage is xenotransplantation using pig tissues. Decades of progress in xenotransplantation, accelerated by the development of rapid genome editing tools, particularly the advent of CRISPR-Cas9 gene editing technologies, have enabled remarkable advances in kidney and heart xenotransplantation in pig-to-nonhuman primates. These breakthroughs in large animal preclinical models laid the foundation for three recent pig-to-human transplants by three different groups: two kidney xenografts in brain dead recipients deemed ineligible for transplant, and one heart xenograft in the first clinical grade study of pig-to-human transplantation. However, despite tremendous progress, recent data including the first clinical case suggest that gene-modification alone will not overcome all xenogeneic immunologic barriers, and thus an active and innovative immunologic strategy is required for successful xenotransplantation. This review highlights xenogeneic immunologic barriers, advances in gene editing, and tolerance-inducing strategies in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
2
|
Fitch ZW, Kang L, Li J, Knechtle SJ, Turek JW, Kirk AD, Markert ML, Kwun J. Introducing thymus for promoting transplantation tolerance. J Allergy Clin Immunol 2022; 150:549-556. [PMID: 35690492 DOI: 10.1016/j.jaci.2022.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Establishing tolerance remains a central, if elusive, goal of transplantation. In solid-organ transplantation, one strategy for inducing tolerance has been cotransplantation of various forms of thymic tissue along with another organ. As one of the biological foundations of central tolerance, thymic tissue carries with it the ability to induce tolerance to any other organ or tissue from the same donor (or another donor tissue-matched to the thymic tissue) if successfully transplanted. In this review, we outline the history of this approach as well as work to date on its application in organ transplantation, concluding with future directions. We also review our experience with allogeneic processed thymus tissue for the treatment of congenital athymia, encompassing complete DiGeorge syndrome and other rare genetic disorders, and consider whether allogeneic processed thymic tissue implantation may offer a novel method for future experimentation with tolerance induction in organ transplantation.
Collapse
Affiliation(s)
- Zachary W Fitch
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Lillian Kang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jie Li
- Department of Surgery, Duke University Medical Center, Durham, NC; Department of Pediatrics, Duke University Medical Center, Durham, NC
| | | | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Allan D Kirk
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - M Louise Markert
- Department of Pediatrics, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
3
|
Abstract
T-cell immunity undergoes a complex and continuous remodeling with aging. Understanding those dynamics is essential in refining immunosuppression. Aging is linked to phenotypic and metabolic changes in T-cell immunity, many resulting into impaired function and compromised effectiveness. Those changes may impact clinical immunosuppression with evidences suggesting age-specific efficacies of some (CNI and mammalian target of rapamycin inhibitors) but not necessarily all immunosuppressants. Metabolic changes of T cells with aging have only recently been appreciated and may provide novel ways of immunosuppression. Here, we provide an update on changes of T-cell immunity in aging.
Collapse
|
4
|
Kwun J, Li J, Rouse C, Park JB, Farris AB, Kuchibhatla M, Turek JW, Knechtle SJ, Kirk AD, Markert ML. Cultured thymus tissue implantation promotes donor-specific tolerance to allogeneic heart transplants. JCI Insight 2020; 5:129983. [PMID: 32352934 DOI: 10.1172/jci.insight.129983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Eighty-six infants born without a thymus have been treated with allogeneic cultured thymus tissue implantation (CTTI). These infants, who lack T cells and are profoundly immunodeficient at birth, after CTTI from an unmatched donor develop T cells similar to those of recipient that are tolerant to both their own major histocompatibility antigens and those of the donor. We tested use of CTTI with the goal of inducing tolerance to unmatched heart transplants in immunocompetent rats. We thymectomized and T cell-depleted Lewis rats. The rats were then given cultured thymus tissue from F1 (Lewis × Dark Agouti ) under the kidney capsule and vascularized Dark Agouti (DA) heart transplants in the abdomen. Cyclosporine was administered for 4 months. The control group did not receive CTTI. Recipients with CTTI showed repopulation of naive and recent thymic emigrant CD4 T cells; controls had none. Recipients of CTTI did not reject DA cardiac allografts. Control animals did not reject DA grafts, due to lack of functional T cells. To confirm donor-specific unresponsiveness, MHC-mismatched Brown Norway (BN) hearts were transplanted 6 months after the initial DA heart transplant. LW rats with LWxDA CTTI rejected the third-party BN hearts (mean survival time 10 days); controls did not. CTTI recipients produced antibody against third-party BN donor but not against the DA thymus donor, demonstrating humoral donor-specific tolerance. Taken together, F1(LWxDA) CTTI given to Lewis rats resulted in specific tolerance to the allogeneic DA MHC expressed in the donor thymus, with resulting long-term survival of DA heart transplants after withdrawal of all immunosuppression.
Collapse
Affiliation(s)
- Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jie Li
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Clay Rouse
- Division of Laboratory Animal Resources, Duke University, Durham, North Carolina, USA
| | - Jae Berm Park
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alton B Farris
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| | | | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Allan D Kirk
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - M Louise Markert
- Department of Immunology, and.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Zor F, Bozkurt M, Cwykiel J, Karagoz H, Kulahci Y, Uygur S, Siemionow M. The effect of thymus transplantation on donor-specific chimerism in the rat model of composite osseomusculocutaneous sternum, ribs, thymus, pectoralis muscles, and skin allotransplantation. Microsurgery 2020; 40:576-584. [PMID: 31904149 DOI: 10.1002/micr.30555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/15/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Research on tolerance has proven that development of donor-specific chimerism (DSC) may accompany tolerance induction in vascularized composite allotransplantation (VCA). In this study, we aimed to determine the effect of thymus transplantation on the induction of DSC in rat VCA model of osseomusculocutaneous sternum (OMCS) and osseomusculocutaneous sternum and thymus (OMCST) allotransplantation. MATERIALS AND METHODS A total of 20 Lewis-Brown Norway and Lewis rats, 5-6 weeks old, weighting between 120 and 150 g, were used in the study. OMCS (n = 5) and OMCST (n = 5) allografts were harvested from Lewis-Brown Norway donors (RT1l + n ) based on the common carotid artery and external jugular vein, and a heterotopic transplantation was performed to the inguinal region of the Lewis (RT1l ) recipients under cyclosporine A monotherapy (16 mg/kg) protocol tapered to 2 mg/kg and maintained for the duration of the study. The peripheral blood chimerism levels (T-cell, B-cell, and monocyte/granulocyte/dendritic cell-MGDC populations) were evaluated at days 7, 14, 35, 63, 100, and 150 posttransplant by flow cytometry. At Day 150, thymus, spleen, and liver samples were assessed by polymerase chain reaction (PCR) in the presence of DSC. RESULTS Total chimerism level increased in both OMCST and OMCS groups at all time points. At 150 days posttransplant, chimerism in OMCST group was significantly higher (12.91 ± 0.16%) than that in OMCS group (8.89 ± 0.53%%, p < .01), and PCR confirmed the presence of donor-derived cells in the liver and spleen of all OMCST recipients and in one liver sample and two spleen samples in OMCS recipients without thymus transplant. CONCLUSIONS This study confirmed the direct effects of thymus transplantation on the induction and maintenance of DSC in T-cell, B-cell, and MGDC populations. These results confirm correlation between thymus transplantation and DSC induction.
Collapse
Affiliation(s)
- Fatih Zor
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Mehmet Bozkurt
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio.,Department of Plastic and Reconstructive Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Joanna Cwykiel
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois
| | - Huseyin Karagoz
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Safak Uygur
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois
| | - Maria Siemionow
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Yamada K, Ariyoshi Y, Pomposelli T, Sekijima M. Co-transplantation of Vascularized Thymic Graft with Kidney in Pig-to-Nonhuman Primates for the Induction of Tolerance Across Xenogeneic Barriers. Methods Mol Biol 2020; 2110:151-171. [PMID: 32002908 DOI: 10.1007/978-1-0716-0255-3_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using advanced gene editing technologies, xenotransplantation from multi-transgenic alpha-1,3-galactosyltransferase knockout pigs has demonstrated marked prolongation of renal xenograft survival, ranging from days to greater than several months for life-supporting kidneys and >2 years in a heterotopic non-life-supporting cardiac xenograft model. However, continuous administration of multiple immunosuppressive drugs continues to be required, and attempts to taper immunosuppression have been unsuccessful. These data are consistent with previous reports indicating that the human-anti-porcine T cell response is similar or stronger than that across allogeneic barriers. Due to the strength of both the innate and adaptive immune responses in xenotransplantation, the level of continuous immunosuppression needed to control these responses and prolong xenograft survival has been associated with prohibitive morbidity and mortality. These facts provide compelling rationale to pursue a clinically applicable strategy for the induction of tolerance.Mixed chimerism and thymic tissue transplantation have both achieved xenogeneic tolerance in pig-to-mouse models, and both have recently been extended to pig-to-baboon models. Although these strategies are promising in small animal models, neither direct intravenous injection of porcine bone marrow cells nor direct fetal thymic tissue transplantation into recipients was able to achieve >2 days chimerism following BM Tx or the engraftment of thymic tissues across xenogeneic barriers in pig-to-nonhuman primate models. Several innovative procedures have been largely developed by Kazuhiko Yamada to overcome these failures. These include vascularized thymic transplantation, combined with either thymokidney (TK) or vascularized thymic lobe (VTL) transplantation. Utilizing the strategy of transplanting vascularized thymic grafts with kidney from the same GalT-KO donor without further gene modification, we have achieved longer than 6 months survival of life-supporting kidneys in a baboon. Notably, the recipient became donor specific unresponsive and developed new thymic emigrants. In this chapter, we introduce a brief summary of our achievements to date toward the successful induction of tolerance by utilizing our novel strategy of vascularized thymic transplantation (including thymokidney transplantation), as well as describe the step-by-step methodology of surgical and in vitro procedures which are required for this experiment.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.
| | - Yuichi Ariyoshi
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Thomas Pomposelli
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Mitsuhiro Sekijima
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Cooper DKC, Hara H, Iwase H, Banks CA, Cleveland DC. An approach to induction of tolerance to pig cardiac xenografts in neonates. Xenotransplantation 2018; 25:e12454. [PMID: 30125392 PMCID: PMC10124770 DOI: 10.1111/xen.12454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
There is a continuing need for donor hearts for infants with complex congenital heart defects. The transplantation of hearts from neonatal pigs would be an alternative to human organs, particularly if donor-specific immunological tolerance could be achieved. The great majority of infant humans do not make natural (preformed) antibodies against triple-knockout (TKO) pigs (that do not express any of the three known pig antigens against which humans have natural anti-pig antibodies). The transplantation of a heart from a TKO pig into an infant would therefore minimize any risk of early antibody-mediated rejection, and, with adequate immunosuppressive therapy, prolonged graft survival may well be achieved. Total host thymectomy (commonly carried out at the time of orthotopic heart transplantation in this age group) ± residual T-cell depletion and donor-specific pig thymus tissue transplantation might induce T-cell tolerance and allow immunosuppressive therapy to be discontinued (if there is in vitro evidence of T-cell and B-cell nonresponsiveness to donor-specific pig cells). Even if tolerance were not achieved, with continuing immunosuppressive therapy, the graft would likely "bridge" the patient until a suitable allograft became available or be associated with prolonged xenograft function.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles Adam Banks
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - David C Cleveland
- Department of Pediatric Cardiovascular Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review describes recent progress in tolerance-inducing strategies across xenogeneic immunological barriers as well as the potential benefit of a tolerance strategy for islets and kidney xenotransplantation. RECENT FINDINGS Using advanced gene editing technologies, xenotransplantation from multitransgenic alpha-1,3-galactosyltransferase knockout pigs has demonstrated marked prolongation of renal xenograft survival, ranging from days to greater than several months for life-supporting kidneys, and more than 2 years in a heterotopic nonlife-supporting cardiac xenograft model. Continuous administration of multiple immunosuppressive drugs has been required and attempts to taper immunosuppression have been unsuccessful. It appears likely that low levels of T cell dependent antibodies and activation of innate responses are responsible for xenograft loss. Mixed chimerism and thymic transplantation approaches have achieved xenogeneic tolerance in pig-to-mouse models and both have recently been extended to pig-to-baboon models. Encouraging results have been reported, including persistence of macrochimerism, prolonged pig skin graft survival, donor-specific unresponsiveness in vitro and detection of recent T cell emigrants in vivo. SUMMARY Although tolerance induction in vivo has not yet been achieved in pig-to-baboon models, recent results are encouraging that this goal will be attainable through genetic engineering of porcine donors.
Collapse
|
9
|
Colvin MM, Smith CA, Tullius SG, Goldstein DR. Aging and the immune response to organ transplantation. J Clin Invest 2017; 127:2523-2529. [PMID: 28504651 DOI: 10.1172/jci90601] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An increasing number of older people receive organ transplants for various end-stage conditions. Although organ transplantation is an effective therapy for older patients (i.e., older than 65 years of age), such as in end-stage renal disease, this therapy has not been optimized for older patients because of our lack of understanding of the effect of aging and the immune response to organ transplantation. Here, we provide an overview of the impact of aging on both the allograft and the recipient and its effect on the immune response to organ transplantation. We describe what has been determined to date, discuss existing gaps in our knowledge, and make suggestions on necessary future studies to optimize organ transplantation for older people.
Collapse
Affiliation(s)
- Monica M Colvin
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Candice A Smith
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stefan G Tullius
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel R Goldstein
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Yamada K, Shah JA, Tanabe T, Lanaspa MA, Johnson RJ. Xenotransplantation: Where Are We with Potential Kidney Recipients? Recent Progress and Potential Future Clinical Trials. CURRENT TRANSPLANTATION REPORTS 2017; 4:101-109. [PMID: 28989853 DOI: 10.1007/s40472-017-0149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Inter-species transplantation, xenotransplantation, is becoming a realistic strategy to solve the organ shortage crisis. Here we focus on seminal publications that have driven research in xenotransplantation, as well as recently published literature and future endeavors. RECENT FINDINGS Advances in gene editing technology have allowed for the efficient production of multi-transgenic porcine donors leading improved xenograft survival in baboons, up to 2-years following heterotopic heart xenotransplantation and from weeks to several months following life-supporting kidney xenotransplanation. As technology evolves, additional challenges have arisen, including the development of proteinuria, early graft loss associated with porcine CMV, disparities in organ growth between donors and recipients as well as high-dose continuous immunosuppression requirements. To address these issues, our laboratory developed a tolerance-inducing protocol which has allowed for >6 months survival of a life-supporting kidney with further approaches currently underway to address the challenges mentioned above. SUMMARY Our recent findings, reviewed in this article, led us to develop methods to overcome obstacles, which, in conjunction with the work of others, are promising for future clinical applications of xenotransplantation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Jigesh A Shah
- Transplantation Biology Research Laboratories, Massachusetts general Hospital, Harvard Medical School, Boston, MA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| |
Collapse
|
11
|
Scalea JR, Hickman JB, Moore DJ, Brayman KL. An overview of the necessary thymic contributions to tolerance in transplantation. Clin Immunol 2016; 173:S1521-6616(16)30382-5. [PMID: 27989896 DOI: 10.1016/j.clim.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 02/08/2023]
Abstract
The thymus is important for the development of the immune system. However, aging leads to predictable involution of the thymus and immunodeficiency. These immunodeficiencies may be rectified with thymic rejuvenation. Atrophy of the thymus is governed by a complex interplay of molecular, cytokine and hormonal factors. Herein we review the interaction of these factors across age and how they may be targeted for thymic rejuvenation. We further discuss the growing pre-clinical evidence defining the necessary and sufficient contributions of the thymus to successful tolerance induction in transplantation.
Collapse
Affiliation(s)
- Joseph R Scalea
- Division of Transplantation, Department of Surgery, University of Maryland, United States.
| | - John B Hickman
- School of Medicine, University of Virginia, United States
| | - Daniel J Moore
- Division of Endocrinology, Department of Pediatrics, Department of Pathology, Microbiology and Immunology, Vanderbilt University, United States
| | - Kenneth L Brayman
- School of Medicine, University of Virginia, United States; Division of Transplantation, Department of Surgery, University of Virginia, United States
| |
Collapse
|
12
|
Oh B, Furtmüller GJ, Sosin M, Fryer ML, Gottlieb LJ, Christy MR, Brandacher G, Dorafshar AH. A Novel Microsurgical Model for Heterotopic, En Bloc Chest Wall, Thymus, and Heart Transplantation in Mice. J Vis Exp 2016:e53442. [PMID: 26863343 DOI: 10.3791/53442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Exploration of novel strategies in organ transplantation to prolong allograft survival and minimizing the need for long-term maintenance immunosuppression must be pursued. Employing vascularized bone marrow transplantation and co-transplantation of the thymus have shown promise in this regard in various animal models. Vascularized bone marrow transplantation allows for the uninterrupted transfer of donor bone marrow cells within the preserved donor microenvironment, and the incorporation of thymus tissue with vascularized bone marrow transplantation has shown to increase T-cell chimerism ultimately playing a supportive role in the induction of immune regulation. The combination of solid organ and vascularized composite allotransplantation can uniquely combine these strategies in the form of a novel transplant model. Murine models serve as an excellent paradigm to explore the mechanisms of acute and chronic rejection, chimerism, and tolerance induction, thus providing the foundation to propagate superior allograft survival strategies for larger animal models and future clinical application. Herein, we developed a novel heterotopic en bloc chest wall, thymus, and heart transplant model in mice using a cervical non-suture cuff technique. The experience in syngeneic and allogeneic transplant settings is described for future broader immunological investigations via an instructional manuscript and video supplement.
Collapse
Affiliation(s)
| | | | | | | | - Lawrence J Gottlieb
- Burn and Complex Wound Center; Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center
| | - Michael R Christy
- Division of Plastic, Reconstructive, and Maxillofacial Surgery, R Adams Cowley Shock Trauma Center
| | - Gerald Brandacher
- Johns Hopkins University School of Medicine; Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine; Vascularized Composite Allotransplantation (VCA) Lab, Johns Hopkins University School of Medicine;
| | - Amir H Dorafshar
- Johns Hopkins University School of Medicine; Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine; Vascularized Composite Allotransplantation (VCA) Lab, Johns Hopkins University School of Medicine;
| |
Collapse
|
13
|
Duran-Struuck R, Huang CA, Orf K, Bronson RT, Sachs DH, Spitzer TR. Miniature Swine as a Clinically Relevant Model of Graft-Versus-Host Disease. Comp Med 2015; 65:429-443. [PMID: 26473348 PMCID: PMC4617335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/27/2015] [Accepted: 05/17/2015] [Indexed: 06/05/2023]
Abstract
Miniature swine provide a preclinical model of hematopoietic cell transplantation (HCT) for studies of graft-versus-host disease. HCT between MHC-matched or -mismatched pigs can be performed to mimic clinical scenarios with outcomes that closely resemble those observed in human HCT recipients. With myeloablative conditioning, HCT across MHC barriers is typically fatal, with pigs developing severe (grade III or IV) GVHD involving the gastrointestinal tract, liver, and skin. Unlike rodent models, miniature swine provide an opportunity to perform extended longitudinal studies on individual animals, because multiple tissue biopsies can be harvested without the need for euthanasia. In addition, we have developed a swine GVHD scoring system that parallels that used in the human clinical setting. Given the similarities of GVHD in pigs and humans, we hope that the use of this scoring system facilitates clinical and scientific discourse between the laboratory and the clinic. We anticipate that results of swine studies will support the development of new strategies to improve the identification and treatment of GVHD in clinical HCT scenarios.
Collapse
Affiliation(s)
- Raimon Duran-Struuck
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Christene A Huang
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katherine Orf
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - David H Sachs
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas R Spitzer
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
14
|
WEI TIANLI, ZHANG NANNAN, GUO ZHIBIN, CHI FENG, SONG YAN, ZHU XIKE. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep 2015; 12:7568-76. [DOI: 10.3892/mmr.2015.4343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
|
15
|
Scalea JR, Torabi R, Tena A, Tasaki M, Gillon BC, Moran S, Cormack T, Villani V, Shimizu A, Sachs DH, Yamada K. The rejuvenating effects of leuprolide acetate on the aged baboon's thymus. Transpl Immunol 2014; 31:134-9. [PMID: 25240733 DOI: 10.1016/j.trim.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND We have previously demonstrated that the juvenile thymus plays an essential role in tolerance induced by both renal transplantation and a short course of calcineurin inhibitors. Aged thymi have a decreased ability to induce tolerance. Luteinizing hormone-releasing hormone (LHRH) is known to pharmacologically rejuvenate the thymus in rodents. In order to develop a clinically applicable regimen of transplantation tolerance in adults, we sought to determine if thymic rejuvenation would occur with LHRH agonism in non-human primates. METHODS AND RESULTS Thymic rejuvenation was evaluated by magnetic resonance imaging (MRI), histology, as well as in-vitro cellular and molecular tests. Four aged male hamadryas baboons underwent subcutaneous injection of a 3-month depot of Lupron (11.25mg; LI) and were followed for 3 months. Thymi increased volumetrically by MRI. After LI, thymic cellularity markedly increased within the cortical and medullary thymus. Additionally, a significant increase in the CD4(+)/CD45RA(hi+) population in the peripheral blood occurred for 50 days after LI, and flow cytometry of thymic tissue revealed a large increase in the percentage of CD4(+)/CD8(+) cells. TREC assay corroborated enhancement in thymic function. CONCLUSION These data indicate that LI is associated with thymic rejuvenation in baboons, and further confirm that extrinsic factors play an important role in thymic rejuvenation in a non-human primate model.
Collapse
Affiliation(s)
- Joseph R Scalea
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Radbeh Torabi
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Aseda Tena
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Masayuki Tasaki
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Bradford C Gillon
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Shannon Moran
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Taylor Cormack
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Vincenzo Villani
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - David H Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Kazuhiko Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| |
Collapse
|
16
|
Scalea JR, Okumi M, Villani V, Shimizu A, Nishimura H, Gillon BC, Torabi R, Cormack T, Moran S, LeGuern C, Sachs DH, Yamada K. Abrogation of renal allograft tolerance in MGH miniature swine: the role of intra-graft and peripheral factors in long-term tolerance. Am J Transplant 2014; 14:2001-10. [PMID: 25100613 PMCID: PMC4194165 DOI: 10.1111/ajt.12816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 01/25/2023]
Abstract
We have previously demonstrated that long-term tolerance (LTT) of an MHC class-I mismatched renal allograft can be achieved with a short course of cyclosporine. In order to examine regulatory mechanisms underlying tolerance in this model, we assessed the contributions of factors within the graft and in the peripheral blood for their relative roles in the maintenance of stable tolerance. Twelve LTT recipients of MHC class-I mismatched primary kidneys were subjected to a treatment consisting of donor-specific transfusion followed by leukapheresis, in order to remove peripheral leukocytes, including putative regulatory T cells (Tregs). Following treatment, 2 controls were followed clinically and 10 animals had the primary graft removed and received a second, donor-MHC-matched kidney. Neither control animal showed evidence of rejection, while 8 of 10 retransplanted animals developed either rejection crisis or full rejection of the second transplant. In vitro assays confirmed that the removed leukocytes were suppressive and that CD4(+) Foxp3(+) Treg reconstitution in blood and kidney grafts correlated with return to normal renal function in animals experiencing transient rejection crises. These data indicate that components of accepted kidney grafts as well as peripheral regulatory components both contribute to the tolerogenic environment required for tolerance of MHC class-I mismatched allotransplants.
Collapse
|
17
|
Chest wall, thymus, and heart vascularized composite allograft proof of concept cadaveric model for heart transplantation. Ann Plast Surg 2014; 73:102-4. [PMID: 24918739 DOI: 10.1097/sap.0000000000000181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of vascularized composite allografts allows for the reconstruction of complex scenarios that previously have required multistaged operations. Heart transplantation often follows a series of previous operations leading to chest wall deformities and significant mediastinal adhesions that can limit the use of larger hearts, making it difficult to find a suitable donor. Further, research has shown that the use of vascularized bone marrow and vascularized thymus in transplantation potentially prolongs graft survival with decreased immunosuppression requirements. The authors propose using a vascularized composite allograft of the chest wall consisting of sternum and thymus in conjunction with the heart for cardiac transplantation to allow for more flexibility from the donor pool, maintain chest wall integrity and physiology, and potentially immunoregulate the concomitant solid organ transplant.
Collapse
|
18
|
Kawano Y, Ishikawa N, Aida J, Sanada Y, Izumiyama-Shimomura N, Nakamura KI, Poon SSS, Matsumoto K, Mizuta K, Uchida E, Tajiri T, Kawarasaki H, Takubo K. Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 2014; 9:e93749. [PMID: 24727734 PMCID: PMC3984102 DOI: 10.1371/journal.pone.0093749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/07/2014] [Indexed: 12/22/2022] Open
Abstract
Along with the increasing need for living-donor liver transplantation (LDLT), the issue of organ shortage has become a serious problem. Therefore, the use of organs from elderly donors has been increasing. While the short-term results of LDLT have greatly improved, problems affecting the long-term outcome of transplant patients remain unsolved. Furthermore, since contradictory data have been reported with regard to the relationship between donor age and LT/LDLT outcome, the question of whether the use of elderly donors influences the long-term outcome of a graft after LT/LDLT remains unsettled. To address whether hepatocyte telomere length reflects the outcome of LDLT, we analyzed the telomere lengths of hepatocytes in informative biopsy samples from 12 paired donors and recipients (grafts) of pediatric LDLT more than 5 years after adult-to-child LDLT because of primary biliary atresia, using quantitative fluorescence in situ hybridization (Q-FISH). The telomere lengths in the paired samples showed a robust relationship between the donor and grafted hepatocytes (r = 0.765, p = 0.0038), demonstrating the feasibility of our Q-FISH method for cell-specific evaluation. While 8 pairs showed no significant difference between the telomere lengths for the donor and the recipient, the other 4 pairs showed significantly shorter telomeres in the recipient than in the donor. Multiple regression analysis revealed that the donors in the latter group were older than those in the former (p = 0.001). Despite the small number of subjects, this pilot study indicates that donor age is a crucial factor affecting telomere length sustainability in hepatocytes after pediatric LDLT, and that the telomeres in grafted livers may be elongated somewhat longer when the grafts are immunologically well controlled.
Collapse
Affiliation(s)
- Youichi Kawano
- Department of Surgery, Nippon Medical School, Tokyo, Japan
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- * E-mail: (YK); (NI)
| | - Naoshi Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- * E-mail: (YK); (NI)
| | - Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yukihiro Sanada
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Ken-ichi Nakamura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Steven S. S. Poon
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Koshi Matsumoto
- Department of Clinical Pathology, Ebina General Hospital, Kanagawa, Japan
| | - Koichi Mizuta
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | - Eiji Uchida
- Department of Surgery, Nippon Medical School, Tokyo, Japan
| | - Takashi Tajiri
- Department of Surgery, Nippon Medical School, Tokyo, Japan
| | - Hideo Kawarasaki
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
19
|
Martins PNA, Tullius SG, Markmann JF. Immunosenescence and immune response in organ transplantation. Int Rev Immunol 2013; 33:162-73. [PMID: 24127845 DOI: 10.3109/08830185.2013.829469] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune system undergoes a complex and continuous remodeling with aging. Immunosenescence results into both quantitative and qualitative changes of specific cellular subpopulations that have major impact on allorecognition and alloresponse, and consequently on graft rejection and tolerance. Here, we are going to review the immunological changes associated with the aging process relevant for transplantation. Interventions to selectively target changes associated with the senescence process seem promising therapeutic strategies to improve transplantation outcome.
Collapse
Affiliation(s)
- Paulo Ney Aguiar Martins
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | | | |
Collapse
|
20
|
Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS, Hebrok M. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 2013; 13:219-29. [PMID: 23684540 DOI: 10.1016/j.stem.2013.04.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/26/2013] [Accepted: 03/29/2013] [Indexed: 12/29/2022]
Abstract
Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into thymic epithelial progenitors (TEPs) by precise regulation of TGFβ, BMP4, RA, Wnt, Shh, and FGF signaling. The hESC-derived TEPs further mature into functional TECs that support T cell development upon transplantation into thymus-deficient mice. Importantly, the engrafted TEPs produce T cells capable of in vitro proliferation as well as in vivo immune responses. Thus, hESC-derived TEP grafts may have broad applications for enhancing engraftment in cell-based therapies as well as restoring age- and stress-related thymic decline.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0540, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Orlando G. Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective. Expert Rev Clin Immunol 2012; 8:179-187. [DOI: 10.1586/eci.11.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
22
|
Thymic transplantation in pig-to-nonhuman primates for the induction of tolerance across xenogeneic barriers. Methods Mol Biol 2012; 885:191-212. [PMID: 22565997 DOI: 10.1007/978-1-61779-845-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the advent of knockout pigs for α1,3-galactosyltransferease (GalT-KO, which lack a cell-surface antigen to which humans have preformed antibodies), investigators have extended the survival of life-supporting xenorenal grafts. However, despite these increases, nonhuman primates transplanted with GalT-KO renal grafts are susceptible to anti-donor T-cell responses that are strong or stronger than allogeneic responses. In order to prevent rejection, recipients must be subjected to morbidly high levels of immunosuppression. For these reasons, our laboratory has attempted to develop novel methods of xenogeneic tolerance using vascularized porcine thymic grafts in order to reteach the recipient's immune system to accept the xenogeneic organ as self. These strategies, largely developed by Dr. Kazuhiko Yamada, involve the co-transplantation of a vascularized donor thymus with a kidney. This has been successfully done in two ways. The first method involves the preparation of a composite tissue "thymokidney" and the second utilizes the transplantation of an isolated vascularized thymic lobe. Both strategies involve the transplantation of fully vascularized thymic tissue at the time of xenotransplantation, a fact which is crucial for function of the thymic tissue immediately after xenografting and reeducation of recipient T-cells. These strategies have successfully induced tolerance across fully allogeneic models in miniature swine and prolonged graft survival in our pig-to-baboon model of life-supporting xenotransplantation to greater than 80 days with in vitro evidence of donor-specific unresponsiveness. Although it is too early for the development of clinical renal xenotransplantation protocols, this chapter describes the authors' unique experience with one of the most promising preclinical large-animal models of xenotransplantation. Furthermore, understanding the importance and measurement of T-cell responses in xenotransplantation is contingent upon a functional knowledge of these procedures.
Collapse
|
23
|
Søndergaard L, Dagnæs-Hansen F, Herskin M. Welfare assessment in porcine biomedical research – Suggestion for an operational tool. Res Vet Sci 2011; 91:e1-9. [DOI: 10.1016/j.rvsc.2011.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
|
24
|
Ikehara S. Thymus transplantation for treatment of cancer: lessons from murine models. Expert Rev Clin Immunol 2011; 7:205-11. [PMID: 21426258 DOI: 10.1586/eci.10.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is well known that tumor-bearing mammals, including humans, show decreased T-cell function due to involution of the thymus. This decrease results in faster tumor growth, susceptibility to infection and reduced life expectancy. Thus, the best strategy to restore T-cell function might be to transplant the thymus from the fetus or newborn. Based on this hypothesis, this article introduces our recent findings using mice and evidence is provided that, in humans, thymus transplantation in conjunction with bone marrow transplantation could become a valuable strategy for suppressing tumor growth, thereby prolonging survival.
Collapse
Affiliation(s)
- Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
25
|
Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 2010; 22:521-8. [PMID: 20650623 DOI: 10.1016/j.coi.2010.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 06/18/2010] [Accepted: 06/29/2010] [Indexed: 12/19/2022]
Abstract
With advancing age, the thymus undergoes striking fibrotic and fatty changes that culminate in its transformation into adipose tissue. As the thymus involutes, reduction in thymocytes and thymic epithelial cells precede the emergence of mature lipid-laden adipocytes. Dogma dictates that adipocytes are 'passive' cells that occupy non-epithelial thymic space or 'infiltrate' the non-cellular thymic niches. The provenance and purpose of ectopic thymic adipocytes during aging in an organ that is required for establishment and maintenance of T cell repertoire remains an unsolved puzzle. Nonetheless, tantalizing clues about elaborate reciprocal relationship between thymic fatness and thymopoietic fitness are emerging. Blocking or bypassing the route toward thymic adiposity may complement the approaches to rejuvenate thymopoiesis and immunity in elderly.
Collapse
|
26
|
Abstract
The thymus serves as the central organ of immunologic self-nonself discrimination. Thymocytes undergo both positive and negative selection, resulting in T cells with a broad range of reactivity to foreign antigens but with a lack of reactivity to self-antigens. The thymus is also the source of a subset of regulatory T cells that inhibit autoreactivity of T-cell clones that may escape negative selection. As a result of these functions, the thymus has been shown to be essential for the induction of tolerance in many rodent and large animal models. Proper donor antigen presentation in the thymus after bone marrow, dendritic cell, or solid organ transplantation has been shown to induce tolerance to allografts. The molecular mechanisms of positive and negative selection and regulatory T-cell development must be understood if a tolerance-inducing therapeutic intervention is to be designed effectively. In this brief and selective review, we present some of the known information on T-cell development and on the role of the thymus in experimental models of transplant tolerance. We also cite some clinical attempts to induce tolerance to allografts using pharmacologic or biologic interventions.
Collapse
|
27
|
Basso A, Malavolta M, Piacenza F, Santarelli L, Marcellini F, Papa R, Mocchegiani E. Noninvasive neonatal thymus graft into the axillary cavity extends the lifespan of old mice. Rejuvenation Res 2010; 13:288-91. [PMID: 19954334 DOI: 10.1089/rej.2009.0936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neonatal thymus grafts exert a rejuvenating action on various immunological and nonimmunological functions found altered in old mice. Commonly, half of a thymus is grafted under the kidney capsule. The invasiveness of the surgical procedure and the use of limited thymus tissue may explain why precedent survival kinetics remain unaffected. In this trial, we grafted two neonatal thymi into the axillary cavity of old mice, thus reducing the invasiveness of the intervention and increasing the amount of grafted neonatal tissue. Using a Piantanelli parametric model of survivorship, we found a significant change in mortality rate between the two groups (thymus graft and controls).
Collapse
Affiliation(s)
- Andrea Basso
- INRCA, Scientific and Technological Research, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Hirakata A, Okumi M, Griesemer AD, Shimizu A, Nobori S, Tena A, Moran S, Arn S, Boyd RL, Sachs DH, Yamada K. Reversal of age-related thymic involution by an LHRH agonist in miniature swine. Transpl Immunol 2010; 24:76-81. [PMID: 20692342 DOI: 10.1016/j.trim.2010.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/30/2010] [Accepted: 08/01/2010] [Indexed: 12/28/2022]
Abstract
UNLABELLED BACKGROUND AND AIMS OF STUDY: We have previously demonstrated a requirement for the presence of a juvenile thymus for the induction of transplantation tolerance to renal allografts by a short-course of calcineurin inhibition in miniature swine. We have also shown that aged, involuted thymi can be rejuvenated when transplanted as vascularized thymic lobes into juvenile swine recipients. The present studies were aimed at elucidating the extrinsic factors facilitating this restoration of function in the aged thymus. In particular, we tested the impact of sex steroid blockade by Luteinizing Hormone-Releasing Hormone (LHRH). MATERIALS AND METHODS 30 naive animals (25 males and 5 females) were used for measurement of serum testosterone levels. 3 mature male pigs (aged at 22, 22 and 29 months old) were used to test the effects of Lupron (LHRH analog) injection at 45 mg (per 70-80 kg body weight) as a 3-month depot on testosterone levels and thymic rejuvenation. Thymic rejuvenation was assessed by histology, flow cytometric analysis, morphometric analysis and TREC assays. RESULTS Hormonal alterations were induced by Lupron and resulted in macroscopic and histologic regeneration of the thymus of aged animals within 2 months, as evidenced by restoration of juvenile thymus architecture and increased cellularity. Two animals that were evaluated for TREC both showed increased levels in the periphery following Lupron treatment. CONCLUSION Treatment of aged animals with Lupron leads to thymic rejuventaion in adult miniature swine. This result could expand the applicability of thymus-dependent tolerance-inducing regimens to adult recipients.
Collapse
Affiliation(s)
- Atsushi Hirakata
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Porcine CFSE mixed lymphocyte reaction and PKH-26 cell-mediated lympholysis assays. Transpl Immunol 2008; 20:78-82. [DOI: 10.1016/j.trim.2008.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Accepted: 07/23/2008] [Indexed: 11/21/2022]
|
30
|
Derhovanessian E, Solana R, Larbi A, Pawelec G. Immunity, ageing and cancer. IMMUNITY & AGEING 2008; 5:11. [PMID: 18816370 PMCID: PMC2564902 DOI: 10.1186/1742-4933-5-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/24/2008] [Indexed: 11/22/2022]
Abstract
Compromised immunity contributes to the decreased ability of the elderly to control infectious disease and to their generally poor response to vaccination. It is controversial as to how far this phenomenon contributes to the well-known age-associated increase in the occurrence of many cancers in the elderly. However, should the immune system be important in controlling cancer, for which there is a great deal of evidence, it is logical to propose that dysfunctional immunity in the elderly would contribute to compromised immunosurveillance and increased cancer occurrence. The chronological age at which immunosenescence becomes clinically important is known to be influenced by many factors, including the pathogen load to which individuals are exposed throughout life. It is proposed here that the cancer antigen load may have a similar effect on "immune exhaustion" and that pathogen load and tumor load may act additively to accelerate immunosenescence. Understanding how and why immune responsiveness changes in humans as they age is essential for developing strategies to prevent or restore dysregulated immunity and assure healthy longevity, clearly possible only if cancer is avoided. Here, we provide an overview of the impact of age on human immune competence, emphasizing T-cell-dependent adaptive immunity, which is the most sensitive to ageing. This knowledge will pave the way for rational interventions to maintain or restore appropriate immune function not only in the elderly but also in the cancer patient.
Collapse
|
31
|
Analysis of Tolerance Induction Using Triple Chimeric Mice: Major Histocompatibility Complex-Disparate Thymus, Hemopoietic Cells, and Microenvironment. Transplantation 2008; 85:1151-8. [DOI: 10.1097/tp.0b013e31816a8f1f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Legrand N, Dontje W, van Lent AU, Spits H, Blom B. Human thymus regeneration and T cell reconstitution. Semin Immunol 2007; 19:280-8. [DOI: 10.1016/j.smim.2007.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 10/02/2007] [Indexed: 01/12/2023]
|
33
|
Abstract
Vascularized allografts are rejected unless some indefinite modification to the recipient's immune system is made. This modification is typically achieved through the long-term administration of immunosuppressive drugs. Patients thus trade their end-stage organ failure for dependence on daily drug therapy and the accompanying chronic condition of immunodeficiency. However, it is clear from studies in experimental animals that rejection can be prevented through the use of several therapeutic approaches, including donor hematopoietic cell infusion, chimerism, T cell depletion, and/or co-stimulation blockade. Successfully treated animals avoid rejection beyond the period of therapy without a phenotype of chronic immunosuppression and are thus considered to be tolerant of their grafts. Although intriguing, this success in animals has yet to be reproducibly translated to the clinic, and human transplant recipients remain tethered to immunosuppressive drugs with rare exceptions. This article provides an overview of the existing, largely anecdotal, clinical experience with organ allograft tolerance. It reviews the various approaches that are being applied in pilot human trials and suggests avenues for future clinical investigation.
Collapse
Affiliation(s)
- Raffaele Girlanda
- Transplantation Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Abstract
Here I present the idea that the immune system uses a computational strategy to carry out its many functions in protecting and maintaining the body. Along the way, I define the concepts of computation, Turing machines and system states. I attempt to show that reframing our view of the immune system in computational terms is worth our while.
Collapse
Affiliation(s)
- Irun R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|