1
|
Nag S, Stany B, Mishra S, Kumar S, Mohanto S, Ahmed M, Mathew B, Subramaniyan V. Multireceptor Analysis for Evaluating the Antidiabetic Efficacy of Karanjin: A Computational Approach. Endocrinol Diabetes Metab 2024; 7:e509. [PMID: 38982323 PMCID: PMC11233261 DOI: 10.1002/edm2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Diabetes mellitus, notably type 2, is a rising global health challenge, prompting the need for effective management strategies. Common medications such as metformin, insulin, repaglinide and sitagliptin can induce side effects like gastrointestinal disturbances, hypoglycemia, weight gain and specific organ risks. Plant-derived therapies like Karanjin from Pongamia pinnata present promising alternatives due to their historical use, holistic health benefits and potentially fewer adverse effects. This study employs in silico analysis to explore Karanjin's interactions with diabetes-associated receptors, aiming to unveil its therapeutic potential while addressing the limitations and side effects associated with conventional medications. METHODOLOGY The research encompassed the selection of proteins from the Protein Data Bank (PDB), followed by structural refinement processes and optimization. Ligands such as Karanjin and standard drugs were retrieved from PubChem, followed by a comprehensive analysis of their ADMET profiling and pharmacokinetic properties. Protein-ligand interactions were evaluated through molecular docking using AutoDockTools 1.5.7, followed by the analysis of structural stability using coarse-grained simulations with CABS Flex 2.0. Molecular dynamics simulations were performed using Desmond 7.2 and the OPLS4 force field to explore how Karanjin interacts with proteins over 100 nanoseconds, focusing on the dynamics and structural stability. RESULTS Karanjin, a phytochemical from Pongamia pinnata, shows superior drug candidate potential compared to common medications, offering advantages in efficacy and reduced side effects. It adheres to drug-likeness criteria and exhibits optimal ADMET properties, including moderate solubility, high gastrointestinal absorption and blood-brain barrier penetration. Molecular docking revealed Karanjin's highest binding energy against receptor 3L2M (Pig pancreatic alpha-amylase) at -9.1 kcal/mol, indicating strong efficacy potential. Molecular dynamics simulations confirmed stable ligand-protein complexes with minor fluctuations in RMSD and RMSF, suggesting robust interactions with receptors 3L2M. CONCLUSION Karanjin demonstrates potential in pharmaceutical expansion for treating metabolic disorders such as diabetes, as supported by computational analysis. Prospects for Karanjin in pharmaceutical development include structural modifications for enhanced efficacy and safety. Nanoencapsulation may improve bioavailability and targeted delivery to pancreatic cells, while combination therapies could optimize treatment outcomes in diabetes management. Clinical trials and experimental studies are crucial to validate its potential as a novel therapeutic agent.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - B. Stany
- Department of Biomedical SciencesSchool of Bio‐Sciences & Technology (SBST), Vellore Institute of Technology (VIT)VelloreTamil NaduIndia
| | - Shatakshi Mishra
- Department of Biomedical SciencesSchool of Bio‐Sciences & Technology (SBST), Vellore Institute of Technology (VIT)VelloreTamil NaduIndia
| | - Sunil Kumar
- Department of Pharmaceutical ChemistryAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science CampusKochiIndia
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research CentreYenepoya (Deemed to Be University)MangaloreKarnatakaIndia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research CentreYenepoya (Deemed to Be University)MangaloreKarnatakaIndia
| | - Bijo Mathew
- Department of Pharmaceutical ChemistryAmrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science CampusKochiIndia
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
2
|
Chen NY, Li CP, Huang HF. Synthesis, antitumor evaluation and computational study of thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole. Mol Divers 2024; 28:875-888. [PMID: 36862356 DOI: 10.1007/s11030-023-10626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In an attempt to search for new natural product-based antitumor agents, a series of novel thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole were designed and synthesized. The primary antitumor tests showed that compounds 5 m exhibited almost the best inhibitory activity against the tested cancer cells. The computational study suggested NOTCH1, IGF1R, TLR4, and KDR were the core targets of the title compounds, and the IC50 of SCC9 and Cal27 is strong correlation with the binding ability of TLR4 and compounds.
Collapse
Affiliation(s)
- Nai-Yuan Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Cui-Ping Li
- Key Laboratory of Research and Application of Stomatological Equipment, School of Stomatology/Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| | - Hong-Fei Huang
- XI DA Testing Co., Ltd. of GuangXi, Nanning, 530007, China
| |
Collapse
|
3
|
Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines 2024; 12:563. [PMID: 38540176 PMCID: PMC10967781 DOI: 10.3390/biomedicines12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Shaira Gail Santos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carol Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
4
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
5
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
6
|
Jiráček J, Selicharová I, Žáková L. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2. VITAMINS AND HORMONES 2023; 123:187-230. [PMID: 37717985 DOI: 10.1016/bs.vh.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions. It was suggested that hormones could bind to receptors through two binding sites on the hormone surface called site 1 and site 2. A breakthrough in knowledge came with the solution of cryoelectron microscopy (cryoEM) structures of hormone-receptor complexes. In this chapter, we document in detail the mutagenesis of insulin, IGF-1, and IGF-2 with emphasis on modifications of the hypothetical binding site 2 in the hormones, and we discuss the results of structure-activity studies in light of recent cryoEM structures of hormone complexes with IR and IGF-1R.
Collapse
Affiliation(s)
- Jiří Jiráček
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic.
| | - Irena Selicharová
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Žáková
- From Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Gorai B, Vashisth H. Structural models of viral insulin-like peptides and their analogs. Proteins 2023; 91:62-73. [PMID: 35962629 PMCID: PMC9772067 DOI: 10.1002/prot.26410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The insulin receptor (IR), the insulin-like growth factor-1 receptor (IGF1R), and the insulin/IGF1 hybrid receptors (hybR) are homologous transmembrane receptors. The peptide ligands, insulin and IGF1, exhibit significant structural homology and can bind to each receptor via site-1 and site-2 residues with distinct affinities. The variants of the Iridoviridae virus family show capability in expressing single-chain insulin/IGF1 like proteins, termed viral insulin-like peptides (VILPs), which can stimulate receptors from the insulin family. The sequences of VILPs lacking the central C-domain (dcVILPs) are known, but their structures in unbound and receptor-bound states have not been resolved to date. We report all-atom structural models of three dcVILPs (dcGIV, dcSGIV, and dcLCDV1) and their complexes with the receptors (μIR, μIGF1R, and μhybR), and probed the peptide/receptor interactions in each system using all-atom molecular dynamics (MD) simulations. Based on the nonbonded interaction energies computed between each residue of peptides (insulin and dcVILPs) and the receptors, we provide details on residues establishing significant interactions. The observed site-1 insulin/μIR interactions are consistent with previous experimental studies, and a residue-level comparison of interactions of peptides (insulin and dcVILPs) with the receptors revealed that, due to sequence differences, dcVILPs also establish some interactions distinct from those between insulin and IR. We also designed insulin analogs and report enhanced interactions between some analogs and the receptors.
Collapse
Affiliation(s)
- Biswajit Gorai
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
8
|
Giacomozzi C, Martin A, Fernández MC, Gutiérrez M, Iascone M, Domené HM, Dominici FP, Bergadá I, Cangiano B, Persani L, Pennisi PA. Novel Insulin-Like Growth Factor 1 Gene Mutation: Broadening of the Phenotype and Implications for Insulin Resistance. J Clin Endocrinol Metab 2022; 108:1355-1369. [PMID: 36546343 DOI: 10.1210/clinem/dgac738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Insulin-like Growth Factor (IGF)1 gene mutations are extremely rare causes of pre- and post-natal growth retardation. Phenotype can be heterogenous with varying degrees of neurosensory deafness, cognitive defects, glucose metabolism impairment and short stature. This study describes a 12.6-year-old girl presenting severe short stature and insulin resistance, but with normal hearing and neurological development at the lower limit of normal. METHODS DNA was obtained from the proband and both parents for whole exome sequencing (WES). In silico analysis was performed to predict the impact of the IGF1 variant on IGF1 and insulin receptors (IGF1R and IR) signalling. Phosphorylation of the IGF1R at activating Tyr residues and cell proliferation analyses were used to assess the ability of each subject's IGF1 to bind and activate IGF1R. RESULTS The proband had low immunoreactive IGF1 in serum and WES revealed a novel homozygous IGF1 missense variant (c.247A > T), causing a change of serine 83 for cysteine (p.Ser83Cys; p.Ser35Cys in mature peptide). The proband's parents were heterozygous for this mutation. In silico analyses indicated the pathogenic potential of the variant with electrostatic variations with the potential of hampering the interaction with the IGF1R but strengthening the binding to IR. The mutant IGF1 protein had a significantly reduced activity on in vitro bioassays. MAIN CONCLUSIONS We describe a novel IGF1 mutation leading to severe loss of circulating IGF1 immunoreactivity and bioactivity, In silico modelling predicts that the mutant IGF1 could interfere with IR signalling, providing a possible explanation for the severe insulin resistance observed in the patient. The absence of significant hearing and neurodevelopmental involvement in the present case is unusual and broadens the clinical spectrum of IGF1 mutations.
Collapse
Affiliation(s)
- Claudio Giacomozzi
- Unit of Pediatrics, Department of Maternal and Child Health, Carlo Poma Hospital, ASST-Mantova, Mantua, Italy
| | - Ayelen Martin
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Celia Fernández
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Fernando P Dominici
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica (IQUIFIB-CONICET), Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Biagio Cangiano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Patricia A Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
9
|
Smith NA, Menting JG, Weiss MA, Lawrence MC, Smith BJ. Single-chain insulin analogs threaded by the insulin receptor αCT domain. Biophys J 2022; 121:4063-4077. [PMID: 36181268 PMCID: PMC9675026 DOI: 10.1016/j.bpj.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; "microreceptor" [μIR]). The structure of the SCI-μIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs.
Collapse
Affiliation(s)
- Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - John G Menting
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun 2022; 13:5594. [PMID: 36151101 PMCID: PMC9508239 DOI: 10.1038/s41467-022-33274-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
Collapse
|
11
|
De Meyts P. [The insulin receptor discovery is 50 years old - A review of achieved progress]. Biol Aujourdhui 2022; 216:7-28. [PMID: 35876517 DOI: 10.1051/jbio/2022007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The isolation of insulin from the pancreas and its purification to a degree permitting its safe administration to type 1 diabetic patients were accomplished 100 years ago at the University of Toronto by Banting, Best, Collip and McLeod and constitute undeniably one of the major medical therapeutic revolutions, recognized by the attribution of the 1923 Nobel Prize in Physiology or Medicine to Banting and McLeod. The clinical spin off was immediate as well as the internationalization of insulin's commercial production. The outcomes regarding basic research were much slower, in particular regarding the molecular mechanisms of insulin action on its target cells. It took almost a half-century before the determination of the tri-dimensional structure of insulin in 1969 and the characterization of its cell receptor in 1970-1971. The demonstration that the insulin receptor is in fact an enzyme named tyrosine kinase came in the years 1982-1985, and the crystal structure of the intracellular kinase domain 10 years later. The crystal structure of the first intracellular kinase substrate (IRS-1) in 1991 paved the way for the elucidation of the intracellular signalling pathways but it took 15 more years to obtain the complete crystal structure of the extracellular receptor domain (without insulin) in 2006. Since then, the determination of the structure of the whole insulin-receptor complex in both the inactive and activated states has made considerable progress, not least due to recent improvement in the resolution power of cryo-electron microscopy. I will here review the steps in the development of the concept of hormone receptor, and of our knowledge of the structure and molecular mechanism of activation of the insulin receptor.
Collapse
Affiliation(s)
- Pierre De Meyts
- de Duve Institute, Department of Cell Signalling, Avenue Hippocrate 74, B-1200 Bruxelles, Belgique - Novo Nordisk A/S, Department of Stem Cell Research, Novo Nordisk Park 1, DK-2760 Maaloev, Danemark
| |
Collapse
|
12
|
Xu Y, Margetts MB, Venugopal H, Menting JG, Kirk NS, Croll TI, Delaine C, Forbes BE, Lawrence MC. How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor. Structure 2022; 30:1098-1108.e6. [PMID: 35660159 PMCID: PMC9364964 DOI: 10.1016/j.str.2022.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands. A cryo-EM structure of IGF-I bound to a hybrid IR/IGF-1R ectodomain is presented The structure is congruent to those of the single-liganded homodimeric receptors
Collapse
Affiliation(s)
- Yibin Xu
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | | | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - John G Menting
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nicholas S Kirk
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Carlie Delaine
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Michael C Lawrence
- WEHI, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
13
|
Xiong X, Blakely A, Kim JH, Menting JG, Schäfer IB, Schubert HL, Agrawal R, Gutmann T, Delaine C, Zhang YW, Artik GO, Merriman A, Eckert D, Lawrence MC, Coskun Ü, Fisher SJ, Forbes BE, Safavi-Hemami H, Hill CP, Chou DHC. Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nat Chem Biol 2022; 18:511-519. [PMID: 35289328 PMCID: PMC9248236 DOI: 10.1038/s41589-022-00981-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023]
Abstract
Cone snail venoms contain a wide variety of bioactive peptides, including insulin-like molecules with distinct structural features, binding modes and biochemical properties. Here, we report an active humanized cone snail venom insulin with an elongated A chain and a truncated B chain, and use cryo-electron microscopy (cryo-EM) and protein engineering to elucidate its interactions with the human insulin receptor (IR) ectodomain. We reveal how an extended A chain can compensate for deletion of B-chain residues, which are essential for activity of human insulin but also compromise therapeutic utility by delaying dissolution from the site of subcutaneous injection. This finding suggests approaches to developing improved therapeutic insulins. Curiously, the receptor displays a continuum of conformations from the symmetric state to a highly asymmetric low-abundance structure that displays coordination of a single humanized venom insulin using elements from both of the previously characterized site 1 and site 2 interactions.
Collapse
Affiliation(s)
- Xiaochun Xiong
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John G Menting
- WEHI, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Rahul Agrawal
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theresia Gutmann
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carlie Delaine
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Yi Wolf Zhang
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Gizem Olay Artik
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Membrane Biochemistry and Lipid Research, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Allanah Merriman
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Debbie Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Membrane Biochemistry and Lipid Research, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Simon J Fisher
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Briony E Forbes
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Zhang F, Altindis E, Kahn CR, DiMarchi RD, Gelfanov V. A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Mol Metab 2021; 53:101316. [PMID: 34400347 PMCID: PMC8621328 DOI: 10.1016/j.molmet.2021.101316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Natural sources of molecular diversity remain of utmost importance as a reservoir of proteins and peptides with unique biological functions. We recently identified such a family of viral insulin-like peptides (VILPs). We sought to advance the chemical methods in synthesis to explore the structure-function relationship within these VILPs, and the molecular basis for differential biological activities relative to human IGF-1 and insulin. METHODS Optimized chemical methods in synthesis were established for a set of VILPs and related analogs. These modified forms included the substitution of select VILP chains with those derived from human insulin and IGF-1. Each peptide was assessed in vitro for agonism and antagonism at the human insulin and the human insulin-like growth factor 1 receptor (IGF-1R). RESULTS We report here that one of these VILPs, lymphocystis disease virus-1 (LCDV1)-VILP, has the unique property to be a potent and full antagonist of the IGF-1R. We demonstrate the coordinated importance of the B- and C-chains of the VILP in regulating this activity. Moreover, mutation of the glycine following the first cysteine in the B-chain of IGF-1 to serine, in concert with substitution to the connecting peptide of LCDV1-VILP, converted native IGF-1 to a high potency antagonist. CONCLUSIONS The results reveal novel aspects in ligand-receptor interactions at the IGF-1 receptor and identify a set of antagonists of potential medicinal importance.
Collapse
Affiliation(s)
- Fa Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| | - Vasily Gelfanov
- Novo Nordisk Research Center, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| |
Collapse
|
15
|
Abstract
BACKGROUND Insulin's discovery 100 years ago and its ongoing use since that time to treat diabetes belies the molecular complexity of its structure and that of its receptor. Advances in single-particle cryo-electron microscopy have over the past three years revolutionized our understanding of the atomic detail of insulin-receptor interactions. SCOPE OF REVIEW This review describes the three-dimensional structure of insulin and its receptor and details on how they interact. This review also highlights the current gaps in our structural understanding of the system. MAJOR CONCLUSIONS A near-complete picture has been obtained of the hormone receptor interactions, providing new insights into the kinetics of the interactions and necessitating a revision of the extant two-site cross-linking model of hormone receptor engagement. How insulin initially engages the receptor and the receptor's traversed trajectory as it undergoes conformational changes associated with activation remain areas for future investigation.
Collapse
Affiliation(s)
- Michael C Lawrence
- WEHI, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
16
|
Yang YX, Li P, Wang P, Zhu BT. Insulin-induced conformational changes in the full-length insulin receptor: structural insights gained from molecular modeling analyses. Acta Biochim Biophys Sin (Shanghai) 2021; 53:848-869. [PMID: 33987639 DOI: 10.1093/abbs/gmab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
Insulin receptor plays an important role in the regulation of energy metabolism. Dysfunction of insulin receptor (IR) can lead to many disease states, such as diabetes mellitus. Deciphering the complex dynamic structures of human IR and its mechanism of activation would greatly aid in understanding IR-mediated signaling pathways and also in designing new drugs (including nonpeptidal insulin analogs) to treat diabetes mellitus. Experimental evidence about IR structures has been gradually obtained by biologists over the past three decades. Based on available experimental structures of IR in different states, here we employ molecular modeling approach to construct the full-length IR structures in different states and model its structural and conformational changes during insulin-induced IR activation. Several key possible intermediate states are constructed based on structural alignment, rotation, and computational modeling. Based on the structures of the full-length IR in different states, it appears that there are two possible conformational transition pathways: one is symmetric and the other one is asymmetric. Structural changes and motions of different domains of the full-length IR along the pathways are analyzed. The role of insulin binding to IR in facilitating the conformational transition of the receptor is analyzed. Information and insights derived from our present structural modeling analyses may aid in understanding the complex dynamic, structural, and conformational changes during the process of IR activation.
Collapse
Affiliation(s)
- Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pan Wang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
17
|
Role of surface-exposed charged basic amino acids (Lys, Arg) and guanidination in insulin on the interaction and stability of insulin-insulin receptor complex. Comput Biol Chem 2021; 92:107501. [PMID: 33989998 DOI: 10.1016/j.compbiolchem.2021.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
Naturally occurring proteins are emerging as novel therapeutics in the protein-based biopharmaceutical industry for the treatment of diabetes and obesity. However, proteins are not suitable for oral delivery due to short half-life, reduced physical and chemical stability and low permeability across the membrane. Chemical modification has been identified as a formulation strategy to enhance the stability and bioavailability of protein drugs. The present study aims to study the effect of charge-specific modification of basic amino acids (Lys, Arg) and guanidination on the interaction of insulin with its receptor using molecular modelling. Our investigation revealed that the guanidination of insulin (Lys-NHC = NHNH2) enhanced and exerted stronger binding of the protein to its receptor through electrostatic interaction than native insulin (Lys-NH3+). Point mutations of Lys and Arg (R22, K29; R22K, K29; R22, K29R; R22K, K29R) were attempted and the effects on the interaction and stability between insulin/modified insulins and insulin receptor were also analyzed in this study. The findings from the study are expected to provide a better understanding of the possible mechanism of action of the modified protein at a molecular level before advancing to real experiments.
Collapse
|
18
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
19
|
Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells 2020; 9:cells9102276. [PMID: 33053840 PMCID: PMC7601145 DOI: 10.3390/cells9102276] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system regulates metabolic and mitogenic signaling through an intricate network of related receptors and hormones. IGF-II is one of several hormones within this system that primarily regulates mitogenic functions and is especially important during fetal growth and development. IGF-II is also found to be overexpressed in several cancer types, promoting growth and survival. It is also unique in the IGF system as it acts through both IGF-1R and insulin receptor isoform A (IR-A). Despite this, IGF-II is the least investigated ligand of the IGF system. This review will explore recent developments in IGF-II research including a structure of IGF-II bound to IGF-1R determined using cryo-electron microscopy (cryoEM). Comparisons are made with the structures of insulin and IGF-I bound to their cognate receptors. Finally discussed are outstanding questions in the mechanism of action of IGF-II with the goal of developing antagonists of IGF action in cancer.
Collapse
|
20
|
Zhang X, Yu D, Sun J, Wu Y, Gong J, Li X, Liu L, Liu S, Liu J, Wu Y, Li D, Ma Y, Han X, Zhu Y, Wu Z, Wang Y, Ouyang Q, Wang T. Visualization of Ligand-Bound Ectodomain Assembly in the Full-Length Human IGF-1 Receptor by Cryo-EM Single-Particle Analysis. Structure 2020; 28:555-561.e4. [PMID: 32275863 DOI: 10.1016/j.str.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/21/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
|
21
|
Ferguson KM, Hu C, Lemmon MA. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Sci 2020; 29:1331-1344. [PMID: 32297376 DOI: 10.1002/pro.3871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Insulin receptor (IR) and the epidermal growth factor receptor (EGFR) were the first receptor tyrosine kinases (RTKs) to be studied in detail. Both are important clinical targets-in diabetes and cancer, respectively. They have unique extracellular domain compositions among RTKs, but share a common module with two ligand-binding leucine-rich-repeat (LRR)-like domains connected by a flexible cysteine-rich (CR) domain (L1-CR-L2 in IR/domain, I-II-III in EGFR). This module is linked to the transmembrane region by three fibronectin type III domains in IR, and by a second CR in EGFR. Despite sharing this conserved ligand-binding module, IR and EGFR family members are considered mechanistically distinct-in part because IR is a disulfide-linked (αβ)2 dimer regardless of ligand binding, whereas EGFR is a monomer that undergoes ligand-induced dimerization. Recent cryo-electron microscopy (cryo-EM) structures suggest a way of unifying IR and EGFR activation mechanisms and origins of negative cooperativity. In EGFR, ligand engages both LRRs in the ligand-binding module, "closing" this module to break intramolecular autoinhibitory interactions and expose new dimerization sites for receptor activation. How insulin binds the activated IR was less clear until now. Insulin was known to associate with one LRR (L1), but recent cryo-EM structures suggest that it also engages the second LRR (albeit indirectly) to "close" the L1-CR-L2 module, paralleling EGFR. This transition simultaneously breaks autoinhibitory interactions and creates new receptor-receptor contacts-remodeling the IR dimer (rather than inducing dimerization per se) to activate it. Here, we develop this view in detail, drawing mechanistic links between IR and EGFR.
Collapse
Affiliation(s)
- Kathryn M Ferguson
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chun Hu
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark A Lemmon
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Lawrence MC. Insulin and its receptor: a grand challenge in structural biology. Biophys Rev 2019; 11:543-545. [PMID: 31250315 PMCID: PMC6682184 DOI: 10.1007/s12551-019-00559-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Chrudinová M, Žáková L, Marek A, Socha O, Buděšínský M, Hubálek M, Pícha J, Macháčková K, Jiráček J, Selicharová I. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding. J Biol Chem 2018; 293:16818-16829. [PMID: 30213860 PMCID: PMC6204900 DOI: 10.1074/jbc.ra118.004852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Indexed: 12/02/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
Collapse
Affiliation(s)
- Martina Chrudinová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Aleš Marek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Martin Hubálek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Pícha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Kateřina Macháčková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
24
|
Xu Y, Kong GKW, Menting JG, Margetts MB, Delaine CA, Jenkin LM, Kiselyov VV, De Meyts P, Forbes BE, Lawrence MC. How ligand binds to the type 1 insulin-like growth factor receptor. Nat Commun 2018; 9:821. [PMID: 29483580 PMCID: PMC5826941 DOI: 10.1038/s41467-018-03219-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/29/2018] [Indexed: 12/28/2022] Open
Abstract
Human type 1 insulin-like growth factor receptor is a homodimeric receptor tyrosine kinase that signals into pathways directing normal cellular growth, differentiation and proliferation, with aberrant signalling implicated in cancer. Insulin-like growth factor binding is understood to relax conformational restraints within the homodimer, initiating transphosphorylation of the tyrosine kinase domains. However, no three-dimensional structures exist for the receptor ectodomain to inform atomic-level understanding of these events. Here, we present crystal structures of the ectodomain in apo form and in complex with insulin-like growth factor I, the latter obtained by crystal soaking. These structures not only provide a wealth of detail of the growth factor interaction with the receptor’s primary ligand-binding site but also indicate that ligand binding separates receptor domains by a mechanism of induced fit. Our findings are of importance to the design of agents targeting IGF-1R and its partner protein, the human insulin receptor. The human type 1 insulin-like growth factor receptor (IGF-1R) is important for normal human growth and development. Here, the authors present the crystal structures of the IGF-1R ectodomain both in its apo form and in complex with its ligand insulin-like growth factor I and discuss the receptor activation mechanism.
Collapse
Affiliation(s)
- Yibin Xu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Geoffrey K-W Kong
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Monash Macromolecular Crystallisation Facility, 11 Chancellors Walk, Clayton Campus, Monash University, Clayton, VIC, 3800, Australia
| | - John G Menting
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mai B Margetts
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Carlie A Delaine
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA, 5042, Australia
| | - Lauren M Jenkin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Vladislav V Kiselyov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Pierre De Meyts
- Department of Cell Signaling, de Duve Institute, B-1200, Brussels, Belgium.,Department of Stem Cell Research, Novo Nordisk A/S, 2760, Måløv, Denmark.,De Meyts R&D Consulting, Avenue Reine Astrid 42, B-1950, Kraainem, Belgium
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA, 5042, Australia
| | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
25
|
Nakamura K, Muraoka O. Effect of electrolyzed water produced using carbon electrodes on HeLa cell proliferation. Biosci Trends 2018; 11:688-693. [PMID: 29225281 DOI: 10.5582/bst.2017.01193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We developed electrolyzed water (EW) using carbon electrodes and investigated the ability of the developed EW to inhibit the proliferation of human cervical carcinoma HeLa cells. We observed that EW-containing media inhibited HeLa cell proliferation. Many very small black dots were produced in EW and these were associated with the inhibitory effect on the cell proliferation. Furthermore, the very small black dots that could inhibit cell proliferation were produced only at pH 3 to 3.5 of EW. Additional experiments showed that this inhibition of proliferation is reversible. These results suggest that the effect of EW on HeLa cells is cytostatic and not cytotoxic. Thus, our results indicate that the EW developed in this study may be used to inhibit cell proliretation.
Collapse
Affiliation(s)
- Kyoko Nakamura
- Pharmaceutical Research and Technology Institute, Kindai University
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| |
Collapse
|
26
|
Glidden MD, Yang Y, Smith NA, Phillips NB, Carr K, Wickramasinghe NP, Ismail-Beigi F, Lawrence MC, Smith BJ, Weiss MA. Solution structure of an ultra-stable single-chain insulin analog connects protein dynamics to a novel mechanism of receptor binding. J Biol Chem 2018; 293:69-88. [PMID: 29114034 PMCID: PMC5766920 DOI: 10.1074/jbc.m117.808667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Domain-minimized insulin receptors (IRs) have enabled crystallographic analysis of insulin-bound "micro-receptors." In such structures, the C-terminal segment of the insulin B chain inserts between conserved IR domains, unmasking an invariant receptor-binding surface that spans both insulin A and B chains. This "open" conformation not only rationalizes the inactivity of single-chain insulin (SCI) analogs (in which the A and B chains are directly linked), but also suggests that connecting (C) domains of sufficient length will bind the IR. Here, we report the high-resolution solution structure and dynamics of such an active SCI. The hormone's closed-to-open transition is foreshadowed by segmental flexibility in the native state as probed by heteronuclear NMR spectroscopy and multiple conformer simulations of crystallographic protomers as described in the companion article. We propose a model of the SCI's IR-bound state based on molecular-dynamics simulations of a micro-receptor complex. In this model, a loop defined by the SCI's B and C domains encircles the C-terminal segment of the IR α-subunit. This binding mode predicts a conformational transition between an ultra-stable closed state (in the free hormone) and an active open state (on receptor binding). Optimization of this switch within an ultra-stable SCI promises to circumvent insulin's complex global cold chain. The analog's biphasic activity, which serendipitously resembles current premixed formulations of soluble insulin and microcrystalline suspension, may be of particular utility in the developing world.
Collapse
Affiliation(s)
- Michael D Glidden
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kelley Carr
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
27
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
28
|
Hossain MA, Bathgate RAD. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorg Med Chem 2017; 26:2827-2841. [PMID: 28988628 DOI: 10.1016/j.bmc.2017.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Peptidomimetics are designed to overcome the poor pharmacokinetics and pharmacodynamics associated with the native peptide or protein on which they are based. The design of peptidomimetics starts from developing structure-activity relationships of the native ligand-target pair that identify the key residues that are responsible for the biological effect of the native peptide or protein. Then minimization of the structure and introduction of constraints are applied to create the core active site that can interact with the target with high affinity and selectivity. Developing peptidomimetics is not trivial and often challenging, particularly when peptides' interaction mechanism with their target is complex. This review will discuss the challenges of developing peptidomimetics of therapeutically important insulin superfamily peptides, particularly those which have two chains (A and B) and three disulfide bonds and whose receptors are known, namely insulin, H2 relaxin, H3 relaxin, INSL3 and INSL5.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
29
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
30
|
Liu F, Li P, Gelfanov V, Mayer J, DiMarchi R. Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity. Acc Chem Res 2017; 50:1855-1865. [PMID: 28771323 DOI: 10.1021/acs.accounts.7b00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin is a miraculous hormone that has served a seminal role in the treatment of insulin-dependent diabetes for nearly a century. Insulin resides within in a superfamily of structurally related peptides that are distinguished by three invariant disulfide bonds that anchor the three-dimensional conformation of the hormone. The additional family members include the insulin-like growth factors (IGF) and the relaxin-related set of peptides that includes the so-called insulin-like peptides. Advances in peptide chemistry and rDNA-based synthesis have enabled the preparation of multiple insulin analogues. The translation of these methods from insulin to related peptides has presented unique challenges that pertain to differing biophysical properties and unique amino acid compositions. This Account presents a historical context for the advances in the chemical synthesis of insulin and the related peptides, with division into two general categories where disulfide bond formation is facilitated by native conformational folding or alternatively orthogonal chemical reactivity. The inherent differences in biophysical properties of insulin-like peptides, and in particular within synthetic intermediates, have constituted a central limitation to achieving high yield synthesis of properly folded peptides. Various synthetic approaches have been advanced in the past decade to successfully address this challenge. The use of chemical ligation and metastable amide bond surrogates are two of the more important synthetic advances in the preparation of high quality synthetic precursors to high potency peptides. The discovery and application of biomimetic connecting peptides simplifies proper disulfide formation and the subsequent traceless removal by chemical methods dramatically simplifies the total synthesis of virtually any two-chain insulin-like peptide. We report the application of these higher synthetic yield methodologies to the preparation of insulin-like peptides in support of exploratory in vivo studies requiring a large quantity of peptide. Tangentially, we demonstrate the use of these methods to study the relative importance of the IGF-1 connecting peptide to its biological activity. We report the translation of these finding in search of an insulin analog that might be comparably enhanced by a suitable connecting peptide for interaction with the insulin receptor, as occurs with IGF-1 and its receptor. The results identify a unique receptor site in the IGF-1 receptor from which this enhancement derives. The selective substitution of this specific IGF-1 receptor sequence into the homologous site in the insulin receptor generated a chimeric receptor that was equally capable of signaling with insulin or IGF-1. This novel receptor proved to enhance the potency of lower affinity insulin ligands when they were supplemented with the IGF-1 connecting peptide that similarly enhanced IGF-1 activity at its receptor. The chimeric insulin receptor demonstrated no further enhancement of potency for native insulin when it was similarly prepared as a single-chain analogue with a native IGF-1 connecting peptide. These results suggest a more highly evolved insulin receptor structure where the requirement for an additional structural element to achieve high potency interaction as demonstrated for IGF-1 is no longer required.
Collapse
Affiliation(s)
- Fa Liu
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Pengyun Li
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily Gelfanov
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - John Mayer
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
31
|
Chan JY, Hackel BJ, Yee D. Targeting Insulin Receptor in Breast Cancer Using Small Engineered Protein Scaffolds. Mol Cancer Ther 2017; 16:1324-1334. [PMID: 28468775 DOI: 10.1158/1535-7163.mct-16-0685] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022]
Abstract
Insulin receptor (InsR) and the type I insulin-like growth factor (IGF1R) are homologous receptors necessary for signal transduction by their cognate ligands insulin, IGF-I and IGF-II. IGF1R mAbs, intended to inhibit malignant phenotypic signaling, failed to show benefit in patients with endocrine-resistant tumors in phase III clinical trials. Our previous work showed that in tamoxifen-resistant cells, IGF1R expression was lacking, but InsR inhibition effectively blocked growth. In endocrine-sensitive breast cancer cells, insulin was not growth stimulatory, likely due to the presence of hybrid InsR/IGF1R, which has high affinity for IGF-I, but not insulin. Combination inhibition of InsR and IGF1R showed complete suppression of the system in endocrine-sensitive breast cancer cells. To develop InsR-binding agents, we employed a small protein scaffold, T7 phage gene 2 protein (Gp2) with the long-term goal of creating effective InsR inhibitors and diagnostics. Using yeast display and directed evolution, we identified three Gp2 variants (Gp2 #1, #5, and #10) with low nanomolar affinity and specific binding to cell surface InsR. These Gp2 variants inhibited insulin-mediated monolayer proliferation in both endocrine-sensitive and resistant breast cancer, but did not downregulate InsR expression. Gp2 #5 and Gp2 #10 disrupted InsR function by inhibiting ligand-induced receptor activation. In contrast, Gp2 #1 did not block InsR phosphorylation. Notably, Gp2 #1 binding was enhanced by pretreatment of cells with insulin, suggesting a unique receptor-ligand-binding mode. These Gp2 variants are the first nonimmunoglobulin protein scaffolds to target insulin receptor and present compelling opportunity for modulation of InsR signaling. Mol Cancer Ther; 16(7); 1324-34. ©2017 AACR.
Collapse
Affiliation(s)
- Jie Ying Chan
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Douglas Yee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Ye L, Maji S, Sanghera N, Gopalasingam P, Gorbunov E, Tarasov S, Epstein O, Klein-Seetharaman J. Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discov Today 2017; 22:1092-1102. [PMID: 28476537 DOI: 10.1016/j.drudis.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
Recently, major progress has been made in uncovering the mechanisms of how insulin engages its receptor and modulates downstream signal transduction. Here, we present in detail the current structural knowledge surrounding the individual components of the complex, binding sites, and dynamics during the activation process. A novel kinase triggering mechanism, the 'bow-arrow model', is proposed based on current knowledge and computational simulations of this system, in which insulin, after its initial interaction with binding site 1, engages with site 2 between the fibronectin type III (FnIII)-1 and -2 domains, which changes the conformation of FnIII-3 and eventually translates into structural changes across the membrane. This model provides a new perspective on the process of insulin binding to its receptor and, thus, could lead to future novel drug discovery efforts.
Collapse
Affiliation(s)
- Libin Ye
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Suvrajit Maji
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Narinder Sanghera
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Piraveen Gopalasingam
- Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Evgeniy Gorbunov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Sergey Tarasov
- OOO 'NPF 'MATERIA MEDICA HOLDING', 47-1, Trifonovskaya St, Moscow 129272, Russian Federation
| | - Oleg Epstein
- The Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St, 125315 Moscow, Russian Federation
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Division of Metabolic and Vascular Health & Systems, Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
33
|
Mohammadiarani H, Vashisth H. Insulin mimetic peptide S371 folds into a helical structure. J Comput Chem 2017; 38:1158-1166. [DOI: 10.1002/jcc.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Accepted: 01/07/2017] [Indexed: 01/26/2023]
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering; University of New Hampshire; Durham New Hampshire
| |
Collapse
|
34
|
Jiráček J, Žáková L. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs. Front Endocrinol (Lausanne) 2017; 8:167. [PMID: 28798723 PMCID: PMC5529358 DOI: 10.3389/fendo.2017.00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 01/16/2023] Open
Abstract
A significant drawback of the exogenous administration of insulin to diabetics is the non-physiological profile of insulin action resulting in the insufficient suppression of hepatic glucose production, which is the main contributing factor to diabetic hyperglycemia under fasting conditions and the basis of the challenge to restore a more physiological glucose profile in diabetes. The insulin receptor (IR) exists in two alternatively spliced variants, IR-A and IR-B, with different tissue distribution. While peripheral tissues contain different proportions of both isoforms, hepatic cells almost exclusively contain IR-B. In this respect, IR-B-selective insulin analogs would be of great interest for their potential to restore more natural metabolic homeostasis in diabetes. Recent advances in the structural biology of insulin and IR have provided new clues for understanding the interaction of both proteins. This article discusses and offers some structural perspectives for the design of specific insulin analogs with a preferential binding to IR-B.
Collapse
Affiliation(s)
- Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jiří Jiráček,
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
35
|
Lawrence MC, Colman PM. Vale Colin Ward-A Leader in Receptor Structural Biology. Front Endocrinol (Lausanne) 2017; 8:95. [PMID: 28553260 PMCID: PMC5425603 DOI: 10.3389/fendo.2017.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael C. Lawrence
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Michael C. Lawrence,
| | - Peter M. Colman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
De Meyts P. Structural basis for the poisonous activity of a predator's venom insulin. Nat Struct Mol Biol 2016; 23:872-874. [PMID: 27706132 DOI: 10.1038/nsmb.3304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pierre De Meyts
- de Duve Institute, Brussels, Belgium, and at Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
37
|
Lawrence CF, Margetts MB, Menting JG, Smith NA, Smith BJ, Ward CW, Lawrence MC. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor. J Biol Chem 2016; 291:15473-81. [PMID: 27281820 DOI: 10.1074/jbc.m116.732180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/06/2022] Open
Abstract
Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor.
Collapse
Affiliation(s)
- Callum F Lawrence
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Mai B Margetts
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - John G Menting
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia, and
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia, and
| | - Colin W Ward
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael C Lawrence
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
38
|
Szewczuk M. Polymorphism in exon 2 encoding the putative ligand binding pocket of the bovine insulin-like growth factor 1 receptor affects milk traits in four different cattle breeds. J Anim Breed Genet 2016; 134:34-42. [PMID: 27112238 DOI: 10.1111/jbg.12216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/03/2016] [Indexed: 11/28/2022]
Abstract
As a member of the somatotropic axis, insulin-like growth factor I receptor (IGF1R) seems to be a promising candidate gene. Two silent polymorphisms, identified by MspI and TaqI restriction enzymes, were selected within exon 2, encoding the majority of the putative ligand binding pocket. A total of 1169 cows of four pure breeds (Polish Holstein Friesian, Montbeliarde, Jersey and Holstein Friesian) were genotyped. The T (IGF1R/e2/MspI) and G (IGF1R/e2/TaqI) alleles were found to be prevalent. Three combinations of genotypes (TT/GG, TT/AG and CT/GG) were associated with the highest productivity (milk, protein and fat yields) among all breeds under study, as opposed to individuals carrying the worst CC/AA combination. In view of the specific structure of the ligand binding pocket and the significance of insulin-like growth factor I signalling promoting the development and differentiation in a variety of tissues (not only limited to mammary gland), the existence of missense mutation is unlikely. Potential mutations are likely limited to mRNA transcription and further post-transcriptional modifications. Further investigations should follow searching for the most useful IGF1R haplotypes, associated with higher milk production traits, exerting at the same time positive or neutral impact on health and welfare of individuals.
Collapse
Affiliation(s)
- M Szewczuk
- Department of Ruminant Science, The West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
39
|
Pandyarajan V, Phillips NB, Rege N, Lawrence MC, Whittaker J, Weiss MA. Contribution of TyrB26 to the Function and Stability of Insulin: STRUCTURE-ACTIVITY RELATIONSHIPS AT A CONSERVED HORMONE-RECEPTOR INTERFACE. J Biol Chem 2016; 291:12978-90. [PMID: 27129279 DOI: 10.1074/jbc.m115.708347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of Tyr(B26), a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the Glu(B26) analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although Tyr(B26) is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences.
Collapse
Affiliation(s)
| | | | | | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
40
|
Croll TI, Smith BJ, Margetts MB, Whittaker J, Weiss MA, Ward CW, Lawrence MC. Higher-Resolution Structure of the Human Insulin Receptor Ectodomain: Multi-Modal Inclusion of the Insert Domain. Structure 2016; 24:469-76. [PMID: 26853939 DOI: 10.1016/j.str.2015.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 11/16/2022]
Abstract
Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding.
Collapse
Affiliation(s)
- Tristan I Croll
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD 4059, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mai B Margetts
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA; Departments of Physiology, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Colin W Ward
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michael C Lawrence
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
41
|
Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines. Biotechnol Bioeng 2016; 113:1094-101. [DOI: 10.1002/bit.25877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/11/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022]
|
42
|
Mohammadiarani H, Vashisth H. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors. Front Endocrinol (Lausanne) 2016; 7:68. [PMID: 27379020 PMCID: PMC4913204 DOI: 10.3389/fendo.2016.00068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
- *Correspondence: Harish Vashisth,
| |
Collapse
|
43
|
Cottam Jones JM, Harris PWR, Scanlon DB, Forbes BE, Brimble MA, Abell AD. Fluorescent IGF-II analogues for FRET-based investigations into the binding of IGF-II to the IGF-1R. Org Biomol Chem 2016; 14:2698-705. [DOI: 10.1039/c5ob02110c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Convergent-based synthesis of native IGF-II and two IGF-II analogues, with coumarin fluorescent probes incorporated at residues 19 and 28, and their use in FRET-based identification of interactions with the type 1 insulin-like growth factor receptor (IGF-IR).
Collapse
Affiliation(s)
| | - P. W. R. Harris
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - D. B. Scanlon
- Department of Chemistry
- The University of Adelaide
- Adelaide 5001
- Australia
| | - B. E. Forbes
- School of Molecular and Biomedical Sciences
- The University of Adelaide
- Adelaide 5005
- Australia
- School of Medicine
| | - M. A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - A. D. Abell
- Department of Chemistry
- The University of Adelaide
- Adelaide 5001
- Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
| |
Collapse
|
44
|
Wallis M. Coevolution of insulin-like growth factors, insulin and their receptors and binding proteins in New World Monkeys. Growth Horm IGF Res 2015; 25:158-167. [PMID: 26072449 DOI: 10.1016/j.ghir.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Previous work has shown that the evolution of both insulin-like growth factor 1 (IGF1) and insulin shows an episode of accelerated change on the branch leading to New World Monkeys (NWM). Here the possibility that this is accompanied by a corresponding episode of accelerated evolution of IGF1 receptor (IGF1R), insulin receptor (IR) and/or IGF binding proteins (IGFBPs) was investigated. Analysis of receptor sequences from a range of primates and some non-primate mammals showed that accelerated evolution did indeed occur on this branch in the case of IGF1R and IR, but not for the similar insulin receptor-related receptor (IRRR) which does not bind insulin or IGF1. Marked accelerated evolution on this branch was also seen for some IGFBPs, but not the mannose 6-phosphate/IGF2 receptor or epidermal growth factor receptor. The rate of evolution slowed before divergence of the lineages leading to the NWM for which sequences are available (Callithrix and Saimiri). For the IGF1R and IR, the accelerated evolution was most marked for the extracellular domains (ectodomains). Application of the branch-site method showed dN/dS ratios significantly greater than 1.0 for both receptor ectodomains and for IGFBP1, and allowed identification of residues likely to have been subject to selection. These residues were concentrated in the N-terminal half of the IGF1R ectodomain but the C-terminal half of the IR ectodomain, which could have implications for the formation of hybrid receptors. Overall the results suggest that adaptive coevolution of IGF1, insulin and their receptors and some IGFBPs occurred during the evolution of NWM. For the most part, the residues that change on this branch could not be associated with specific functional aspects (ligand binding, receptor dimerization, glycosylation) and the physiological significance of this coevolution remains to be established.
Collapse
Affiliation(s)
- Michael Wallis
- Biochemistry and Biomedicine Group, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
45
|
Menting J, Lawrence C, Kong GW, Margetts M, Ward C, Lawrence M. Structural Congruency of Ligand Binding to the Insulin and Insulin/Type 1 Insulin-like Growth Factor Hybrid Receptors. Structure 2015; 23:1271-82. [DOI: 10.1016/j.str.2015.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
46
|
Vashisth H. Theoretical and computational studies of peptides and receptors of the insulin family. MEMBRANES 2015; 5:48-83. [PMID: 25680077 PMCID: PMC4384091 DOI: 10.3390/membranes5010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Pierre De Meyts
- Department of Diabetes Biology; Novo Nordisk A/S; Måløv Denmark
- De Meyts R&D Consulting; Kraainem; Belgium
| |
Collapse
|
48
|
Vashisth H. Flexibility in the insulin receptor ectodomain enables docking of insulin in crystallographic conformation observed in a hormone-bound microreceptor. MEMBRANES 2014; 4:730-46. [PMID: 25309993 PMCID: PMC4289863 DOI: 10.3390/membranes4040730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/11/2022]
Abstract
Insulin binding to the insulin receptor (IR) is the first key step in initiating downstream signaling cascades for glucose homeostasis in higher organisms. The molecular details of insulin recognition by IR are not yet completely understood, but a picture of hormone/receptor interactions at one of the epitopes (Site 1) is beginning to emerge from recent structural evidence. However, insulin-bound structures of truncated IR suggest that crystallographic conformation of insulin cannot be accommodated in the full IR ectodomain due to steric overlap of insulin with the first two type III fibronectin domains (F1 and F2), which are contributed to the insulin binding-pocket by the second subunit in the IR homodimer. A conformational change in the F1-F2 pair has thus been suggested. In this work, we present an all-atom structural model of complex of insulin and the IR ectodomain, where no structural overlap of insulin with the receptor domains (F1 and F2) is observed. This structural model was arrived at by flexibly fitting parts of our earlier insulin/IR all-atom model into the simulated density maps of crystallized constructs combined with conformational sampling from apo-IR solution conformations. Importantly, our experimentally-consistent model helps rationalize yet unresolved Site.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham,NH 03824, USA.
| |
Collapse
|
49
|
Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design. J Biol Chem 2014; 289:34709-27. [PMID: 25305014 DOI: 10.1074/jbc.m114.608562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.
Collapse
Affiliation(s)
| | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | - John G Menting
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | | | | | - Michael C Lawrence
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
50
|
Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014; 3:199-235. [PMID: 24709958 PMCID: PMC4092852 DOI: 10.3390/cells3020199] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.
Collapse
|