1
|
Dowdell A, Paschke PI, Thomason PA, Tweedy L, Insall RH. Competition between chemoattractants causes unexpected complexity and can explain negative chemotaxis. Curr Biol 2023; 33:1704-1715.e3. [PMID: 37001521 DOI: 10.1016/j.cub.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023]
Abstract
Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors.
Collapse
Affiliation(s)
- Adam Dowdell
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | - Peggy I Paschke
- CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | | | - Luke Tweedy
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | - Robert H Insall
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK.
| |
Collapse
|
2
|
Shaw S, Roditi I. The sweet and sour sides of trypanosome social motility. Trends Parasitol 2023; 39:242-250. [PMID: 36732111 DOI: 10.1016/j.pt.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Recent studies showed that the formation of elegant geometric patterns by communities of Trypanosoma brucei on semi-solid surfaces, dubbed social motility (SoMo) by its discoverers, is a manifestation of pH taxis. This is caused by procyclic forms generating and responding to pH gradients through glucose metabolism and cAMP signalling. These findings established that trypanosomes can sense and manipulate gradients, potentially helping them to navigate through host tissues. At the same time, the host itself and bystanders such as endosymbionts have the potential to shape the environment and influence the chances of successful transmission. We postulate that the ability to sense and contribute to the gradient landscape may also underlie the tissue tropism and migration of other parasites in their hosts.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Insall RH. Receptors, enzymes and self-attraction as autocrine generators and amplifiers of chemotaxis and cell steering. Curr Opin Cell Biol 2023; 81:102169. [PMID: 37075582 DOI: 10.1016/j.ceb.2023.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
Cells create their own steering cues, or modify cues from their outside, for a number of reasons. These include generating optimal, legible directional information; probing their environments for information to help decide an optimal route; symmetry breaking; generating new patterns and complexity; and bringing together collectives such as neutrophil swarms. Recent advances include more mechanisms of self-steering, in particular by using cell-generated mechanical cues, and gradients of respired oxygen. An increasing number of cell types are being found to use self-steering, in particular immune cells responding to chemokines and mesodermal cells during gastrulation. Finally, receptor modification has emerged as an important limit on the range of neutrophil swarming, allowing cells to monitor other areas as well as coming together. Self-steering is thus emerging as a dominant feature of cell motility.
Collapse
Affiliation(s)
- Robert H Insall
- School of Cancer Sciences, University of Glasgow, G61 1BD, UK.
| |
Collapse
|
4
|
Singh SP, Paschke P, Tweedy L, Insall RH. AKT and SGK kinases regulate cell migration by altering Scar/WAVE complex activation and Arp2/3 complex recruitment. Front Mol Biosci 2022; 9:965921. [PMID: 36106016 PMCID: PMC9466652 DOI: 10.3389/fmolb.2022.965921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Cell polarity and cell migration both depend on pseudopodia and lamellipodia formation. These are regulated by coordinated signaling acting through G-protein coupled receptors and kinases such as PKB/AKT and SGK, as well as the actin cytoskeletal machinery. Here we show that both Dictyostelium PKB and SGK kinases (encoded by pkbA and pkgB) are dispensable for chemotaxis towards folate. However, both are involved in the regulation of pseudopod formation and thus cell motility. Cells lacking pkbA and pkgB showed a substantial drop in cell speed. Actin polymerization is perturbed in pkbA- and reduced in pkgB- and pkbA-/pkgB- mutants. The Scar/WAVE complex, key catalyst of pseudopod formation, is recruited normally to the fronts of all mutant cells (pkbA-, pkgB- and pkbA-/pkgB-), but is unexpectedly unable to recruit the Arp2/3 complex in cells lacking SGK. Consequently, loss of SGK causes a near-complete loss of normal actin pseudopodia, though this can be rescued by overexpression of PKB. Hence both PKB and SGK are required for correct assembly of F-actin and recruitment of the Arp2/3 complex by the Scar/WAVE complex during pseudopodia formation.
Collapse
Affiliation(s)
- Shashi Prakash Singh
- CRUK Beatson Institute, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Shashi Prakash Singh,
| | | | - Luke Tweedy
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Insall RH, Paschke P, Tweedy L. Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends Cell Biol 2022; 32:585-596. [DOI: 10.1016/j.tcb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
6
|
Abstract
Bioimage analysis (BIA) has historically helped study how and why cells move; biological experiments evolved in intimate feedback with the most classical image processing techniques because they contribute objectivity and reproducibility to an eminently qualitative science. Cell segmentation, tracking, and morphology descriptors are all discussed here. Using ameboid motility as a case study, these methods help us illustrate how proper quantification can augment biological data, for example, by choosing mathematical representations that amplify initially subtle differences, by statistically uncovering general laws or by integrating physical insight. More recently, the non-invasive nature of quantitative imaging is fertilizing two blooming fields: mechanobiology, where many biophysical measurements remain inaccessible, and microenvironments, where the quest for physiological relevance has exploded data size. From relief to remedy, this trend indicates that BIA is to become a main vector of biological discovery as human visual analysis struggles against ever more complex data.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
- Sorbonne Université, Paris 75005, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS ERL9195, Paris, France
| |
Collapse
|
7
|
Characterization of Extracellular Vesicles from Entamoeba histolytica Identifies Roles in Intercellular Communication That Regulates Parasite Growth and Development. Infect Immun 2020; 88:IAI.00349-20. [PMID: 32719158 DOI: 10.1128/iai.00349-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) secreted by eukaryotic and prokaryotic cells to transport lipids, proteins, and nucleic acids to the external environment have important roles in cell-cell communication through cargo transfer. We identified and characterized EVs from Entamoeba histolytica, a protozoan parasite and a human pathogen. Conditioned medium from amebic parasites contained particles consistent with the expected size and morphology of EVs. Mass spectrometry was used to characterize the EV proteome and showed that it was enriched in common exosome marker proteins, including proteins associated with vesicle formation, cell signaling, and metabolism, as well as cytoskeletal proteins. Additionally, the EVs were found to selectively package small RNAs (sRNA), which were protected within the vesicles against RNase treatment. Sequencing analysis of the sRNA contained in EVs revealed that the majority were 27 nucleotides (nt) in size and represented a subset of the cellular antisense small RNA population that has previously been characterized in Entamoeba RNA interference (RNAi) pathway proteins, including Argonaute, were also present in amebic EVs. Interestingly, we found that the amebic EVs impacted intercellular communication between parasites and altered encystation efficiency. EVs isolated from encysting parasites promoted encystation in other parasites, whereas EVs from metabolically active trophozoites impeded encystation. Overall, the data reveal that Entamoeba secrete EVs that are similar in size and shape to previously characterized exosomes from other organisms and that these EVs contain a defined protein and small RNA cargo and have roles in intercellular communication among parasites and influence growth kinetics.
Collapse
|
8
|
Abstract
Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies. To complete its infectious cycle, the protozoan parasite Trypanosoma brucei must navigate through diverse tissue environments in both its tsetse fly and mammalian hosts. This is hypothesized to be driven by yet unidentified chemotactic cues. Prior work has shown that parasites engaging in social motility in vitro alter their trajectory to avoid other groups of parasites, an example of negative chemotaxis. However, movement of T. brucei toward a stimulus, positive chemotaxis, has so far not been reported. Here, we show that upon encountering Escherichia coli, socially behaving T. brucei parasites exhibit positive chemotaxis, redirecting group movement toward the neighboring bacterial colony. This response occurs at a distance from the bacteria and involves active changes in parasite motility. By developing a quantitative chemotaxis assay, we show that the attractant is a soluble, diffusible signal dependent on actively growing E. coli. Time-lapse and live video microscopy revealed that T. brucei chemotaxis involves changes in both group and single cell motility. Groups of parasites change direction of group movement and accelerate as they approach the source of attractant, and this correlates with increasingly constrained movement of individual cells within the group. Identification of positive chemotaxis in T. brucei opens new opportunities to study mechanisms of chemotaxis in these medically and economically important pathogens. This will lead to deeper insights into how these parasites interact with and navigate through their host environments. IMPORTANCE Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies.
Collapse
|
9
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Morphological and Motility Features of the Stable Bleb-Driven Monopodial Form of Entamoeba and Its Importance in Encystation. Infect Immun 2020; 88:IAI.00903-19. [PMID: 32393510 DOI: 10.1128/iai.00903-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/27/2020] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica and its reptilian counterpart and encystation model Entamoeba invadens formed a polarized monopodial morphology when treated with pentoxifylline. This morphology was propelled by retrograde flow of the cell surface resulting from a cyclic sol-gel conversion of cytoplasm and a stable bleb at the leading edge. Pentoxifylline treatment switched the unpolarized, adherent trophozoites to the nonadherent, stable bleb-driven form and altered the motility pattern from slow and random to fast, directionally persistent, and highly chemotactic. Interestingly, exogenously added adenosine produced multiple protrusions and random motility, an opposite phenotype to that of pentoxifylline. Thus, pentoxifylline, an adenosine antagonist, may be inducing the monopodial morphology by preventing lateral protrusions and restricting the leading edge to one site. The polarized form of E. invadens was aggregation competent, and time-lapse microscopy of encystation revealed its appearance during early hours, mediating the cell aggregation by directional cell migration. The addition of purine nucleotides to in vitro encystation culture prevented the formation of polarized morphology and inhibited the cell aggregation and, thus, the encystation, which further showed the importance of the polarized form in the Entamoeba life cycle. Cell polarity and motility are essential in the pathogenesis of Entamoeba parasites, and the stable bleb-driven polarized morphology of Entamoeba may also be important in invasive amoebiasis.
Collapse
|
11
|
Mechanisms of natural resistance of Balb/c mice to experimental liver amoebiasis. Biosci Rep 2019; 39:BSR20182333. [PMID: 30979831 PMCID: PMC6500896 DOI: 10.1042/bsr20182333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/24/2022] Open
Abstract
Entamoeba histolytica is the parasite responsible for human amoebiasis. The analysis of the natural resistance mechanisms of some rodents to amoebic liver abscess (ALA) may reveal alternative pathogenicity mechanisms to those previously discovered in the experimental model of ALA in hamsters. In this work the natural resistance of BALB/c mice to ALA was explored by performing: (i) in vivo chemotaxis analysis with a specifically designed chamber; (ii) in vitro amoebic survival in fresh and decomplemented serum; (iii) histological temporal course analysis of ALA development in mice with different treatments (hypocomplementemic, hyperimmune and treated with iNOS and NADPH oxidase inhibitors) and (iv) mouse liver amoebic infection by both in situ implantation of ALA from hamsters and inoculation of parasites into the peritoneal cavity. The results show that E. histolytica clearance from the mouse liver is related to a low chemotactic activity of complement, which results in poor inflammatory response and parasite inability to cause tissue damage. Also, the absence of amoebic tropism for the mouse liver is correlated with resistance to experimental liver amoebiasis.
Collapse
|
12
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
13
|
Sierra-López F, Baylón-Pacheco L, Espíritu-Gordillo P, Lagunes-Guillén A, Chávez-Munguía B, Rosales-Encina JL. Influence of Micropatterned Grill Lines on Entamoeba histolytica Trophozoites Morphology and Migration. Front Cell Infect Microbiol 2018; 8:295. [PMID: 30197879 PMCID: PMC6117912 DOI: 10.3389/fcimb.2018.00295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022] Open
Abstract
Entamoeba histolytica, the causal agent of human amoebiasis, has two morphologically different phases: a resistant cyst and a trophozoite responsible for the invasion of the host tissues such as the colonic mucosa and the intestinal epithelium. During in vitro migration, trophozoites usually produce protuberances such as pseudopods and rarely filopodia, structures that have been observed in the interaction of trophozoites with human colonic epithelial tissue. To study the different membrane projections produced by the trophozoites, including pseudopods, filopodia, uropods, blebs, and others, we designed an induction system using erythrocyte extract or fibronectin (FN) in micropatterned grill lines (each micro-line containing multiple micro-portions of FN or erythrocyte extract) on which the trophozoites were placed in culture for migration assays. Using light, confocal, and scanning electron microscopy, we established that E. histolytica trophozoites frequently produce short and long filopodia, large retractile uropods in the rear, pseudopods, blebs, and others structures, also showing continuous migration periods. The present study provides a simple migration method to induce trophozoites to generate abundant membrane protrusion structures that are rarely obtained in normal or induced cultures, such as long filopodia; this method will allow a–better understanding of the interactions of trophozoites with FN and cell debris. E. histolytica trophozoites motility plays an important role in invasive amoebiasis. It has been proposed that both physical forces and chemical signals are involved in the trophozoite motility and migration. However, the in vivo molecules that drive the chemotactic migration remain to be determined. We propose the present assay to study host molecules that guide chemotactic behavior because the method is highly reproducible, and a live image of cell movement and migration can be quantified.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Espíritu-Gordillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
14
|
Susanto O, Insall RH. LPP3, LPA and self-generated chemotactic gradients in biomedical science. Commun Integr Biol 2018. [PMCID: PMC5824962 DOI: 10.1080/19420889.2017.1398870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chemotaxis is a major driver of cancer spread, but in most cases we do not know where gradients of attractant come from. In the case of melanoma, chemotaxis to LPA is an important driver of metastasis, and the gradients are made by the tumour cells themselves, by locally breaking down ambient LPA. We have now made a general assay for self-generated chemotaxis, and used it to show that the enzyme LPP3 is responsible for breaking down LPA and thus creating the gradients. Further analysis shows LPP3 is important in several invasion assays, in particular 3D ones in which cells spread outwards through matrix. The new assays will illuminate where physiological self-generated gradients occur; we believe they will be common throughout biology and pathology.
Collapse
Affiliation(s)
- Olivia Susanto
- CR-UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
15
|
Kuburich NA, Adhikari N, Hadwiger JA. Acanthamoeba and Dictyostelium Use Different Foraging Strategies. Protist 2016; 167:511-525. [PMID: 27693864 DOI: 10.1016/j.protis.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Amoeba often use cell movement as a mechanism to find food, such as bacteria, in their environment. The chemotactic movement of the soil amoeba Dictyostelium to folate or other pterin compounds released by bacteria is a well-documented foraging mechanism. Acanthamoeba can also feed on bacteria but relatively little is known about the mechanism(s) by which this amoeba locates bacteria. Acanthamoeba movement in the presence of folate or bacteria was analyzed in above agar assays and compared to that observed for Dictyostelium. The overall mobility of Acanthamoeba was robust like that of Dictyostelium but Acanthamoeba did not display a chemotactic response to folate. In the presence of bacteria, Acanthamoeba only showed a marginal bias in directed movement whereas Dictyostelium displayed a strong chemotactic response. A comparison of genomes revealed that Acanthamoeba and Dictyostelium share some similarities in G protein signaling components but that specific G proteins used in Dictyostelium chemotactic responses were not present in current Acanthamoeba genome sequence data. The results of this study suggest that Acanthamoeba does not use chemotaxis as the primary mechanism to find bacterial food sources and that the chemotactic responses of Dictyostelium to bacteria may have co-evolved with chemotactic responses that facilitate multicellular development.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA
| | - Nirakar Adhikari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA
| |
Collapse
|
16
|
Tweedy L, Knecht DA, Mackay GM, Insall RH. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis. PLoS Biol 2016; 14:e1002404. [PMID: 26981861 PMCID: PMC4794234 DOI: 10.1371/journal.pbio.1002404] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.
Collapse
Affiliation(s)
- Luke Tweedy
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | | | |
Collapse
|
17
|
Dufour AC, Olivo-Marin JC, Guillen N. Amoeboid movement in protozoan pathogens. Semin Cell Dev Biol 2015; 46:128-34. [PMID: 26459974 DOI: 10.1016/j.semcdb.2015.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, is a protozoan parasite characterised by its amoeboid motility, which is essential to its survival and invasion of the human host. Elucidating the molecular mechanisms leading to invasion of human tissues by E. histolytica requires a quantitative understanding of how its cytoskeleton deforms and tailors its mode of migration to the local microenvironment. Here we review the wide range of methods available to extract biophysical information from amoeboid cells, from interventional techniques to computational modelling approaches, and discuss how recent developments in bioimaging and bioimage informatics can complement our understanding of cellular morphodynamics at the intracellular level.
Collapse
Affiliation(s)
- Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, Department of Cell Biology & Infection, Paris, France; INSERM U786, Paris, France.
| |
Collapse
|
18
|
Diaz-Valencia JD, Pérez-Yépez EA, Ayala-Sumuano JT, Franco E, Meza I. A surface membrane protein of Entamoeba histolytica functions as a receptor for human chemokine IL-8: its role in the attraction of trophozoites to inflammation sites. Int J Parasitol 2015; 45:915-23. [PMID: 26343219 DOI: 10.1016/j.ijpara.2015.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica trophozoites respond to the presence of IL-8, moving by chemotaxis towards the source of the chemokine. IL-8 binds to the trophozoite membrane and triggers a response that activates signaling pathways that in turn regulate actin/myosin cytoskeleton organisation to initiate migration towards the chemokine, suggesting the presence of a receptor for IL-8 in the parasite. Antibodies directed to the human IL-8 receptor (CXCR1) specifically recognised a 29 kDa protein in trophozoite membrane fractions. The same protein was immunoprecipitated by this antibody from total amebic extracts. Peptide analysis of the immunoprecipitated protein revealed a sequence with high homology to a previously identified amebic outer membrane peroxiredoxin and a motif within the third loop of human CXCR1, which is an important site for IL-8 binding and activation of signaling processes. Immunodetection assays demonstrated that the anti-human CXCR1 antibody binds to the 29 kDa protein in a different but close site to where IL-8 binds to the trophozoite surface membrane, suggesting that human and amebic receptors for this chemokine share common epitopes. In the context of the human intestinal environment, a receptor for IL-8 could be a great advantage for E. histolytica trophozoite survival, as they could reach an inflammatory milieu containing abundant nutrients. In addition, it has been suggested that the high content of accessible thiol groups of the protein and its peroxidase activity could provide protection in the oxygen rich milieu of colonic lesions, allowing trophozoite invasion of other tissues and escape from the host immune response.
Collapse
Affiliation(s)
- J Daniel Diaz-Valencia
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico
| | - Eloy Andrés Pérez-Yépez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico
| | | | - Elizabeth Franco
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico
| | - Isaura Meza
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico.
| |
Collapse
|
19
|
Silvestre A, Plaze A, Berthon P, Thibeaux R, Guillen N, Labruyère E. In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. MICROBIAL CELL (GRAZ, AUSTRIA) 2015; 2:235-246. [PMID: 28357299 PMCID: PMC5349171 DOI: 10.15698/mic2015.07.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Entamoeba histolytica cell migration is essential for the development of human amoebiasis (an infectious disease characterized by tissue invasion and destruction). The tissue inflammation associated with tumour necrosis factor (TNF) secretion by host cells is a well-documented feature of amoebiasis. Tumour necrosis factor is a chemoattractant for E. histolytica, and the parasite may have a TNF receptor at its cell surface. METHODS confocal microscopy, RNA Sequencing, bioinformatics, RNA antisense techniques and histological analysis of human colon explants were used to characterize the interplay between TNF and E. histolytica. RESULTS an antibody against human TNF receptor 1 (TNFR1) stained the E. histolytica trophozoite surface and (on immunoblots) binds to a 150-kDa protein. Proteome screening with the TNFR1 sequence revealed a BspA family protein in E. histolytica that carries a TNFR signature domain and six leucine-rich repeats (named here as "cell surface protein", CSP, in view of its cellular location). Cell surface protein shares structural homologies with Toll-Like receptors, colocalizes with TNF and is internalized in TNF-containing vesicles. Reduction of cellular CSP levels abolished chemotaxis toward TNF and blocked parasite invasion of human colon. CONCLUSIONS there is a clear link between TNF chemotaxis, CSP and pathogenesis.
Collapse
Affiliation(s)
- Anne Silvestre
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Aurélie Plaze
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Patricia Berthon
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Roman Thibeaux
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| |
Collapse
|
20
|
Muinonen-Martin AJ, Susanto O, Zhang Q, Smethurst E, Faller WJ, Veltman DM, Kalna G, Lindsay C, Bennett DC, Sansom OJ, Herd R, Jones R, Machesky LM, Wakelam MJO, Knecht DA, Insall RH. Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol 2014; 12:e1001966. [PMID: 25313567 PMCID: PMC4196730 DOI: 10.1371/journal.pbio.1001966] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022] Open
Abstract
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.
Collapse
Affiliation(s)
- Andrew J. Muinonen-Martin
- CRUK Beatson Institute, Glasgow, United Kingdom
- York Teaching Hospital NHS Foundation Trust, York, United Kingdom
- The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Qifeng Zhang
- The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | - Colin Lindsay
- CRUK Beatson Institute, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Dorothy C. Bennett
- Molecular Cell Sciences Research Centre, St. George's, University of London, London, United Kingdom
| | | | - Robert Herd
- Alan Lyell Centre for Dermatology, Glasgow, United Kingdom
| | - Robert Jones
- CRUK Beatson Institute, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | | | | | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | |
Collapse
|
21
|
Abstract
Entamoeba histolytica is the third-leading cause of parasitic mortality globally. E. histolytica infection generally does not cause symptoms, but the parasite has potent pathogenic potential. The origins, benefits, and triggers of amoebic virulence are complex. Amoebic pathogenesis entails depletion of the host mucosal barrier, adherence to the colonic lumen, cytotoxicity, and invasion of the colonic epithelium. Parasite damage results in colitis and, in some cases, disseminated disease. Both host and parasite genotypes influence the development of disease, as do the regulatory responses they govern at the host-pathogen interface. Host environmental factors determine parasite transmission and shape the colonic microenvironment E. histolytica infects. Here we highlight research that illuminates novel links between host, parasite, and environmental factors in the regulation of E. histolytica virulence.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908; ,
| | | |
Collapse
|
22
|
Koushik AB, Welter BH, Rock ML, Temesvari LA. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2014; 13:401-11. [PMID: 24442890 PMCID: PMC3957588 DOI: 10.1128/ec.00329-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.
Collapse
Affiliation(s)
- Amrita B. Koushik
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Michelle L. Rock
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
23
|
Herlihy SE, Pilling D, Maharjan AS, Gomer RH. Dipeptidyl peptidase IV is a human and murine neutrophil chemorepellent. THE JOURNAL OF IMMUNOLOGY 2013; 190:6468-77. [PMID: 23677473 DOI: 10.4049/jimmunol.1202583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, AprA is a secreted protein that inhibits proliferation and causes chemorepulsion of Dictyostelium cells, yet AprA has little sequence similarity to any human proteins. We found that a predicted structure of AprA has similarity to human dipeptidyl peptidase IV (DPPIV). DPPIV is a serine protease present in extracellular fluids that cleaves peptides with a proline or alanine in the second position. In Insall chambers, DPPIV gradients below, similar to, and above the human serum DPPIV concentration cause movement of human neutrophils away from the higher concentration of DPPIV. A 1% DPPIV concentration difference between the front and back of the cell is sufficient to cause chemorepulsion. Neutrophil speed and viability are unaffected by DPPIV. DPPIV inhibitors block DPPIV-mediated chemorepulsion. In a murine model of acute respiratory distress syndrome, aspirated bleomycin induces a significant increase in the number of neutrophils in the lungs after 3 d. Oropharyngeal aspiration of DPPIV inhibits the bleomycin-induced accumulation of mouse neutrophils. These results indicate that DPPIV functions as a chemorepellent of human and mouse neutrophils, and they suggest new mechanisms to inhibit neutrophil accumulation in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
24
|
Localization of phosphatidylinositol 4,5-bisphosphate to lipid rafts and uroids in the human protozoan parasite Entamoeba histolytica. Infect Immun 2013; 81:2145-55. [PMID: 23545298 DOI: 10.1128/iai.00040-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite and is the causative agent of amoebiasis. During invasive infection, highly motile amoebae destroy the colonic epithelium, enter the blood circulation, and disseminate to other organs such as liver, causing liver abscess. Motility is a key factor in E. histolytica pathogenesis, and this process relies on a dynamic actomyosin cytoskeleton. In other systems, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is known to regulate a wide variety of cellular functions, including signal transduction, actin remodeling, and cell motility. Little is known about the role of PI(4,5)P2 in E. histolytica pathogenicity. In this study, we demonstrate that PI(4,5)P2 is localized to cholesterol-rich microdomains, lipid rafts, and the actin-rich fractions of the E. histolytica membrane. Microscopy revealed that the trailing edge of polarized trophozoites, uroids, are highly enriched in lipid rafts and their constituent lipid, PI(4,5)P2. Polarization and enrichment of uroids and rafts with PI(4,5)P2 were enhanced upon treatment of E. histolytica cells with cholesterol. Exposure to cholesterol also increased intracellular calcium, which is a downstream effector of PI(4,5)P2, with a concomitant increase in motility. Together, our data suggest that in E. histolytica, PI(4,5)P2 may signal from lipid rafts and cholesterol may play a role in triggering PI(4,5)P2-mediated signaling to enhance the motility of this pathogen.
Collapse
|
25
|
Abstract
The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling-Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation.
Collapse
|
26
|
Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 2012; 14:1428-41. [DOI: 10.1016/j.micinf.2012.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
|
27
|
A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2012; 109:10990-5. [PMID: 22711818 DOI: 10.1073/pnas.1206350109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditioned media from aprA(-) cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells.
Collapse
|
28
|
Espinosa A, Paz-Y-Miño-C G. Discrimination, crypticity, and incipient taxa in entamoeba. J Eukaryot Microbiol 2012; 59:105-10. [PMID: 22299709 DOI: 10.1111/j.1550-7408.2011.00606.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/05/2011] [Indexed: 11/30/2022]
Abstract
Persistent difficulties in resolving clear lineages in diverging populations of prokaryotes or unicellular eukaryotes (protistan polyphyletic groups) are challenging the classical species concept. Although multiple integrated approaches would render holistic taxonomies, most phylogenetic studies are still based on single-gene or morphological traits. Such methodologies conceal natural lineages, which are considered "cryptic." The concept of species is considered artificial and inadequate to define natural populations. Social organisms display differential behaviors toward kin than to nonrelated individuals. In "social" microbes, kin discrimination has been used to help resolve crypticity. Aggregative behavior could be explored in a nonsocial protist to define phylogenetic varieties that are considered "cryptic." Two Entamoeba invadens strains, IP-1 and VK-1:NS are considered close populations of the same "species." This study demonstrates that IP-1 and VK-1:NS trophozoites aggregate only with alike members and discriminate members of different strains based on behavioral and chemical signals. Combined morphological, behavioral/chemical, and ecological studies could improve Archamoebae phylogenies and define cryptic varieties. Evolutionary processes in which selection acted continuously and cumulatively on ancestors of Entamoeba populations gave rise to chemical and behavioral signals that allowed individuals to discriminate nonpopulation members and, gradually, to the emergence of new lineages; alternative views that claim a "Designer" or "Creator" as responsible for protistan diversity are unfounded.
Collapse
Affiliation(s)
- Avelina Espinosa
- Department of Biology, Roger Williams University, Bristol, RI 02809, USA.
| | | |
Collapse
|
29
|
Differences in cap formation between invasive Entamoeba histolytica and non-invasive Entamoeba dispar. Parasitol Res 2012; 111:215-21. [PMID: 22278728 DOI: 10.1007/s00436-012-2820-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
The rapid redistribution of surface antigen-antibody complexes in trophozoites of the human protozoan parasite Entamoeba histolytica, in a process known as capping, has been considered as a means of the parasite to evade the host immune response. So far, capping has been documented in the invasive E. histolytica, whereas the mobility of surface components in the non-invasive Entamoeba dispar is not known. E. dispar does not induce liver lesions in rodent experimental models, in contrast to the liver abscesses produced by E. histolytica in the same animal model. We have therefore analyzed the mobility of surface receptors to the lectin concanavalin A and of Rab11, a membrane-associated protein, in both species of Entamoebae by confocal fluorescence microscopy and transmission and scanning electron microscopy. The great majority of E. histolytica trophozoites became morphologically polarized through the formation of well-defined caps at the posterior pole of the parasite. Actin colocalized with the lectin caps. Antibodies against the membrane protein Rab 11 also produced capping. In striking contrast, in E. dispar, the mobility of concanavalin A surface receptors was restricted to the formation of irregular surface patches that did no progress to constitute well-defined caps. Also, anti-Rab 11 antibodies did not result in capping in E. dispar. Whether the failure of E. dispar to efficiently mobilize surface molecules in response to lectin or antibodies as shown in the present results is related to its non-invasive character represents an interesting hypothesis requiring further analysis.
Collapse
|
30
|
Ralston KS, Petri WA. Tissue destruction and invasion by Entamoeba histolytica. Trends Parasitol 2011; 27:254-63. [PMID: 21440507 DOI: 10.1016/j.pt.2011.02.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 11/17/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, a disease that is a major source of morbidity and mortality in the developing world. The potent cytotoxic activity of the parasite appears to underlie disease pathogenesis, although the mechanism is unknown. Recently, progress has been made in determining that the parasite activates apoptosis in target cells and some putative effectors have been identified. Recent studies have also begun to unravel the host genetic determinants that influence infection outcome. Thus, we are beginning to get a clearer picture of how this parasite manages to infect, invade and ultimately inflict devastating tissue destruction.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | | |
Collapse
|
31
|
Maugis B, Brugués J, Nassoy P, Guillen N, Sens P, Amblard F. Dynamic instability of the intracellular pressure drives bleb-based motility. J Cell Sci 2010; 123:3884-92. [PMID: 20980385 DOI: 10.1242/jcs.065672] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that the two- and three-dimensional motility of the human pathogenic parasite Entamoeba histolytica (Eh) depends on sustained instability of the intracellular hydrostatic pressure. This instability drives the cyclic generation and healing of membrane blebs, with typical protrusion velocities of 10-20 μm/second over a few hundred milliseconds and healing times of 10 seconds. The use of a novel micro-electroporation method to control the intracellular pressure enabled us to develop a qualitative model with three parameters: the rate of the myosin-driven internal pressure increase; the critical disjunction stress of membrane-cytoskeleton bonds; and the turnover time of the F-actin cortex. Although blebs occur randomly in space and irregularly time, they can be forced to occur with a defined periodicity in confined geometries, thus confirming our model. Given the highly efficient bleb-based motility of Eh in vitro and in vivo, Eh cells represent a unique model for studying the physical and biological aspects of amoeboid versus mesenchymal motility in two- and three-dimensional environments.
Collapse
Affiliation(s)
- Benoît Maugis
- Institut Curie, Centre de Recherche, Paris, 75248, France
| | | | | | | | | | | |
Collapse
|
32
|
Localization of phosphatidylinositol (3,4,5)-trisphosphate to phagosomes in entamoeba histolytica achieved using glutathione S-transferase- and green fluorescent protein-tagged lipid biosensors. Infect Immun 2009; 78:125-37. [PMID: 19901063 DOI: 10.1128/iai.00719-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite that causes amoebic dysentery and liver abscess. Phagocytosis by the parasite is a critical virulence process, since it is a prerequisite for tissue invasion and establishment of chronic infection. While the roles of many of the proteins that regulate phagocytosis-related signaling events in E. histolytica have been characterized, the functions of lipids in this cellular process remain largely unknown in this parasite. In other systems, phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), a major product of phosphoinositide 3 kinase (PI3-kinase) activity, is essential for phagocytosis. Pleckstrin homology (PH) domains are protein domains that specifically bind to PIP(3). In this study, we utilized glutathione S-transferase (GST)- and green fluorescent protein (GFP)-labeled PH domains as lipid biosensors to characterize the spatiotemporal aspects of PIP(3) distribution during various endocytic processes in E. histolytica. PIP(3)-specific biosensors accumulated at extending pseudopodia and in phagosomal cups in trophozoites exposed to erythrocytes but did not localize to pinocytic compartments during the uptake of a fluid-phase marker, dextran. Our results suggest that PIP(3) is involved in the early stages of phagosome formation in E. histolytica. In addition, we demonstrated that PIP(3) exists at high steady-state levels in the plasma membrane of E. histolytica and that these levels, unlike those in mammalian cells, are not abolished by serum withdrawal. Finally, expression of a PH domain in trophozoites inhibited erythrophagocytosis and enhanced motility, providing genetic evidence supporting the role of PI3-kinase signaling in these processes in E. histolytica.
Collapse
|
33
|
Maeda Y, Mayanagi T, Amagai A. Folic Acid is A Potent Chemoattractant of Free-Living Amoebae in A New and Amazing Species of Protist,Vahlkampfiasp. Zoolog Sci 2009; 26:179-86. [DOI: 10.2108/zsj.26.179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Replacement of the essential Dictyostelium Arp2 gene by its Entamoeba homologue using parasexual genetics. BMC Genet 2007; 8:28. [PMID: 17553170 PMCID: PMC1904233 DOI: 10.1186/1471-2156-8-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell motility is an essential feature of the pathogenesis and morbidity of amoebiasis caused by Entamoeba histolytica. As motility depends on cytoskeletal organisation and regulation, a study of the molecular components involved is key to a better understanding of amoebic pathogenesis. However, little is known about the physiological roles, interactions and regulation of the proteins of the Entamoeba cytoskeleton. RESULTS We have established a genetic strategy that uses parasexual genetics to allow essential Dictyostelium discoideum genes to be manipulated and replaced with modified or tagged homologues. Our results show that actin related protein 2 (Arp2) is essential for survival, but that the Dictyostelium protein can be complemented by E. histolytica Arp2, despite the presence of an insertion of 16 amino acids in an otherwise highly conserved protein. Replacement of endogenous Arp2 with myc-tagged Entamoeba or Dictyostelium Arp2 has no obvious effects on growth and the protein incorporates effectively into the Arp2/3 complex. CONCLUSION We have established an effective two-step method for replacing genes that are required for survival. Our protocol will allow such genes to be studied far more easily, and also allows an unambiguous demonstration that particular genes are truly essential. In addition, cells in which the Dictyostelium Arp2 has been replaced by the Entamoeba protein are potential targets for drug screens.
Collapse
|