1
|
Zhong X, Fei Y, Zhao H, Chen J, Gao M, Huang Y, Fei W. Mechanistic studies and therapeutic potential of angiopoietin in head and neck tumor angiogenesis. Front Oncol 2025; 15:1529225. [PMID: 40260291 PMCID: PMC12010120 DOI: 10.3389/fonc.2025.1529225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 04/23/2025] Open
Abstract
Head and neck tumors represent a prevalent category of oral and maxillofacial malignancies, posing significant therapeutic and prognostic challenges due to their complex anatomical structure, tumor heterogeneity, and resistance to conventional therapies. Recent studies have highlighted the strong association between tumor progression and neoangiogenesis, with the angiopoietin (ANG) family playing a central role in this process. Comprising ANG1, ANG2, ANG3, and ANG4, these factors regulate multiple signaling pathways that promote cellular growth, differentiation, and proliferation, thereby driving angiogenesis and accelerating tumor growth and metastasis. Therefore, a comprehensive investigation of the ANG family's role in head and neck tumors may offer critical insights into tumorigenesis mechanisms and unveil novel therapeutic targets. Such research has the potential to improve treatment outcomes and enhance the quality of life for patients.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Yujie Fei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Haihui Zhao
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingyu Gao
- Yibin Second People’s Hospital, Yibin, Sichuan, China
| | - Yi Huang
- Department of Maxillofacial Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Fei
- Department of Maxillofacial Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Wenjiang Hospital, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hirose T, Kunisada Y, Kadoya K, Mandai H, Sakamoto Y, Obata K, Ono K, Takakura H, Omori K, Takashiba S, Suga S, Ibaragi S. Terrein Exhibits Anti-tumor Activity by Suppressing Angiogenin Expression in Malignant Melanoma Cells. Cancer Genomics Proteomics 2024; 21:464-473. [PMID: 39191499 PMCID: PMC11363929 DOI: 10.21873/cgp.20464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms. MATERIALS AND METHODS Human malignant melanoma cell lines were cultured in the presence of terrein and analyzed. Angiogenin production was evaluated using ELISA. Ribosome biosynthesis was evaluated using silver staining of the nucleolar organizer region. Intracellular signaling pathways were analyzed using western blotting. Malignant melanoma cells were transplanted subcutaneously into the backs of nude mice. The tumors were removed at 5 weeks and analyzed histopathologically. RESULTS Terrein inhibited angiogenin expression, proliferation, migration, invasion, and ribosome biosynthesis in malignant melanoma cells. Terrein was shown to inhibit tumor growth and angiogenesis in animal models. CONCLUSION This study demonstrated that terrein has anti-tumor effects against malignant melanoma. Furthermore, chemically synthesized non-natural terrein can be mass-produced and serve as a novel potential anti-tumor drug candidate.
Collapse
Affiliation(s)
- Taira Hirose
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Koichi Kadoya
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu, Japan
| | - Yumi Sakamoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Takakura
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan;
| |
Collapse
|
3
|
Loveland AB, Koh CS, Ganesan R, Jacobson A, Korostelev AA. Structural mechanism of angiogenin activation by the ribosome. Nature 2024; 630:769-776. [PMID: 38718836 PMCID: PMC11912008 DOI: 10.1038/s41586-024-07508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/02/2024] [Indexed: 05/15/2024]
Abstract
Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA.
| | - Cha San Koh
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | | |
Collapse
|
4
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Culurciello R, Di Nardo I, Bosso A, Tortora F, Troisi R, Sica F, Arciello A, Notomista E, Pizzo E. Tailoring the stress response of human skin cells by substantially limiting the nuclear localization of angiogenin. Heliyon 2024; 10:e24556. [PMID: 38317956 PMCID: PMC10839879 DOI: 10.1016/j.heliyon.2024.e24556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves. Since it exists a clear connection between hANG roles and its intracellular routing, starting from our recent findings on heterologous ANG (ANG) properties in human keratinocytes (HaCaT cells), here we designed a variant unable to translocate into the nucleus with the aim of thoroughly verifying its potentialities under stress. This variant, widely characterized for its structural features and biological attitudes, shows more pronounced aid properties than unmodified protein. The collected evidence thus fully prove that ANG stress-induced skills in assisting cellular homeostasis are strictly due to its cytosolic localization. This study opens an interesting scenario for future studies regarding both the strengthening of skin defences and in understanding the mechanism of action of these special enzymes potentially suitable for any cell type.
Collapse
Affiliation(s)
- Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Francesca Tortora
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Institute of Biostructures and Bioimaging, CNR, 80131, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126, Naples, Italy
| |
Collapse
|
6
|
Massenet-Regad L, Poirot J, Jackson M, Hoffmann C, Amblard E, Onodi F, Bouhidel F, Djouadou M, Ouzaid I, Xylinas E, Medvedovic J, Soumelis V. Large-scale analysis of cell-cell communication reveals angiogenin-dependent tumor progression in clear cell renal cell carcinoma. iScience 2023; 26:108367. [PMID: 38025776 PMCID: PMC10663819 DOI: 10.1016/j.isci.2023.108367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular crosstalk in the tumor microenvironment (TME) is still largely uncharacterized, while it plays an essential role in shaping immunosuppression or anti-tumor response. Large-scale analyses are needed to better decipher cell-cell communication in cancer. In this work, we used original and publicly available single-cell RNA sequencing (scRNAseq) data to characterize in-depth the communication networks in human clear cell renal cell carcinoma (ccRCC). We identified 50 putative communication channels specifically used by cancer cells to interact with other cells, including two novel angiogenin-mediated interactions. Expression of angiogenin and its receptors was validated at the protein level in primary ccRCC. Mechanistically, angiogenin enhanced ccRCC cell line proliferation and down-regulated secretion of IL-6, IL-8, and MCP-1 proinflammatory molecules. This study provides novel biological insights into molecular mechanisms of ccRCC, and suggests angiogenin and its receptors as potential therapeutic targets in clear cell renal cancer.
Collapse
Affiliation(s)
- Lucile Massenet-Regad
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Université Paris-Saclay, F-91190 Saint Aubin, France
| | - Justine Poirot
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Université Paris-Saclay, F-91190 Saint Aubin, France
| | | | - Caroline Hoffmann
- INSERM U932, Department of Surgical Oncology, PSL University, Institut Curie, 75005 Paris, France
- Owkin France, 75010 Paris, France
| | - Elise Amblard
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble Alpes University, 38000 Grenoble, France
| | - Fanny Onodi
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
| | - Fatiha Bouhidel
- Department of Pathology, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| | - Malika Djouadou
- Department of Urology, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| | - Idir Ouzaid
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP.Nord, Université Paris Cité, 75018 Paris, France
| | - Evanguelos Xylinas
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP.Nord, Université Paris Cité, 75018 Paris, France
| | | | - Vassili Soumelis
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Owkin France, 75010 Paris, France
- Department of Immunology-Histocompatibility, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| |
Collapse
|
7
|
Panda A, Halder K, Debnath D, De S, Dasgupta S. Thermodynamics of the Association of Aminoglycoside Antibiotics with Human Angiogenin. Protein Pept Lett 2023; 30:92-101. [PMID: 36281865 DOI: 10.2174/0929866530666221021111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND The body needs to maintain a firm balance between the inducers and inhibitors of angiogenesis, the process of proliferation of blood vessels from pre-existing ones. Human angiogenin (hAng), being a potent inducer of angiogenesis, is a cause of tumor cell proliferation, therefore its inhibition becomes a vital area of research. Aminoglycosides are linked ring systems consisting of amino sugars and an aminocyclitol ring and are in use in clinical practices for a long time. These compounds have found clinical uses as antibacterial agents that inhibit bacterial protein synthesis. OBJECTIVE Gentamycin C1, Kanamycin A, Neomycin B, Paromomycin I, and Streptomycin A are commonly used aminoglycoside antibiotics that have been used for the present study. Among these, Neomycin has reported inhibitory activity against angiogenin-induced angiogenesis on the chicken chorioallantoic membrane. This study focuses on the thermodynamic parameters involved in the interactions of these antibiotics with hAng. METHODS Agarose gel-based assay, Fluorescence quenching studies and Docking studies. RESULTS Anti-ribonucleolytic effect of the antibiotics was observed qualitatively using an agarose gelbased assay, which shows that Neomycin exhibits the most efficient inhibition of hAng. Fluorescence quenching studies at different temperatures, using Stern-Volmer and van't Hoff equations provide information about the thermodynamics of binding, which furthermore highlights the higher binding constant of Neomycin. Docking studies showed that the antibiotics preferably interact with the nuclear translocation site, except Streptomycin, which shows affinity towards the ribonucleolytic site of the protein with very less affinity value. CONCLUSION The study has shown the highly spontaneous formation of Neomycin-hAng complex, giving an exothermic reaction with increase in the degree of freedom of the protein-ligand complex.
Collapse
Affiliation(s)
- Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debkumar Debnath
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Sultana MF, Abo H, Kawashima H. Human and mouse angiogenins: Emerging insights and potential opportunities. Front Microbiol 2022; 13:1022945. [PMID: 36466652 PMCID: PMC9714274 DOI: 10.3389/fmicb.2022.1022945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/01/2022] [Indexed: 12/27/2023] Open
Abstract
Angiogenin, a well-known angiogenic factor, is crucial to the angiogenesis in gastrointestinal tumors. Human angiogenin has only one gene, whereas the murine angiogenin family has extended to incorporate six genes. Evolutionary studies have suggested functional variations among murine angiogenin paralogs, even though the three-dimensional structures of angiogenin proteins are remarkably similar. In addition to angiogenesis, the ubiquitous pattern of angiogenin expression suggests a variety of functions, such as tumorigenesis, neuroprotective, antimicrobial activity, and innate immunity. Here, we comprehensively reviewed studies on the structures and functions of human and mouse angiogenins. Understanding the structure and function of angiogenins from a broader perspective could facilitate future research related to development of novel therapeutics on its biological processes, especially in gastrointestinal cancers.
Collapse
Affiliation(s)
- Mst. Farzana Sultana
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium. INORGANICS 2022. [DOI: 10.3390/inorganics10110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., >100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG.
Collapse
|
10
|
Vanli N, Sheng J, Li S, Xu Z, Hu GF. Ribonuclease 4 is associated with aggressiveness and progression of prostate cancer. Commun Biol 2022; 5:625. [PMID: 35752711 PMCID: PMC9233706 DOI: 10.1038/s42003-022-03597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate specific antigen screening has resulted in a decrease in prostate cancer-related deaths. However, it also has led to over-treatment affecting the quality of life of many patients. New biomarkers are needed to distinguish prostate cancer from benign prostate hyperplasia (BPH) and to predict aggressiveness of the disease. Here, we report that ribonuclease 4 (RNASE4) serves as such a biomarker as well as a therapeutic target. RNASE4 protein level in the plasma is elevated in prostate cancer patients and is positively correlated with disease stage, grade, and Gleason score. Plasma RNASE4 level can be used to predict biopsy outcome and to enhance diagnosis accuracy. RNASE4 protein in prostate cancer tissues is enhanced and can differentiate prostate cancer and BPH. RNASE4 stimulates prostate cancer cell proliferation, induces tumor angiogenesis, and activates receptor tyrosine kinase AXL as well as AKT and S6K. An RNASE4-specific monoclonal antibody inhibits the growth of xenograft human prostate cancer cell tumors in athymic mice.
Collapse
Affiliation(s)
- Nil Vanli
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Jinghao Sheng
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuping Li
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
11
|
Yang H, Yuan L, Ibaragi S, Li S, Shapiro R, Vanli N, Goncalves KA, Yu W, Kishikawa H, Jiang Y, Hu AJ, Jay D, Cochran B, Holland EC, Hu GF. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer 2022; 127:422-435. [PMID: 35418212 PMCID: PMC9345892 DOI: 10.1038/s41416-022-01814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated. METHODS Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models. RESULTS Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf-/-:Pten-/- background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models. CONCLUSIONS Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.
Collapse
Affiliation(s)
- Hailing Yang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Shuping Li
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Robert Shapiro
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Nil Vanli
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Wenhao Yu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hiroko Kishikawa
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Jiang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Alexander J Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Daniel Jay
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Brent Cochran
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
12
|
Han GS, Domaille DW. Connecting the Dynamics and Reactivity of Arylboronic Acids to Emergent and Stimuli-Responsive Material Properties. J Mater Chem B 2022; 10:6263-6278. [DOI: 10.1039/d2tb00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past two decades, arylboronic acid-functionalized biomaterials have been used in a variety of sensing and stimuli-responsive scaffolds. Their diverse applications result from the diverse reactivity of arylboronic acids,...
Collapse
|
13
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Marzo T, Ferraro G, Cucci LM, Pratesi A, Hansson Ö, Satriano C, Merlino A, La Mendola D. Oxaliplatin inhibits angiogenin proliferative and cell migration effects in prostate cancer cells. J Inorg Biochem 2021; 226:111657. [PMID: 34784565 DOI: 10.1016/j.jinorgbio.2021.111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 01/11/2023]
Abstract
Angiogenin (Ang) is a potent angiogenic protein that is overexpressed in many types of cancer at concentration values correlated to the tumor aggressiveness. Here, by means of an integrated multi-technique approach based on crystallographic, spectrometric and spectroscopic analyses, we demonstrate that the anti-cancer drug oxaliplatin efficiently binds angiogenin. Microscopy cellular studies, carried out on the prostate cancer cell (PC-3) line , show that oxaliplatin inhibits the angiogenin prompting effect on cell proliferation and migration, which are typical features of angiogenesis process. Overall, our findings point to angiogenin as a possible target of oxaliplatin, thus suggesting a potential novel mechanism for the antineoplastic activity of this platinum drug and opening the avenue to novel approaches in the combined anti-cancer anti-angiogenic therapy.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Giarita Ferraro
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Lorena Maria Cucci
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Örjan Hansson
- Department of Chemistry and Chemical Biology, University of Gothenburg, Medicinaregatan 9C, PO Box 462, SE-40530 Göteborg, Sweden
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
15
|
Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingjing Xu
- Center for Molecular Recognition and Biosensing School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Haohan Miao
- Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Lihua Zou
- Center for Molecular Recognition and Biosensing School of Life Sciences Shanghai University Shanghai 200444 P. R. China
| | - Bernadette Tse Sum Bui
- Université de Technologie de Compiègne CNRS Enzyme and Cell Engineering Laboratory Rue du Docteur Schweitzer 60203 Compiègne Cedex France
| | - Karsten Haupt
- Université de Technologie de Compiègne CNRS Enzyme and Cell Engineering Laboratory Rue du Docteur Schweitzer 60203 Compiègne Cedex France
| | - Guoqing Pan
- Institute for Advanced Materials School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
16
|
Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021; 60:24526-24533. [PMID: 34418248 DOI: 10.1002/anie.202106657] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Molecular imprinting represents one of the most promising strategies to design artificial enzyme inhibitors. However, the study of molecularly imprinted enzyme inhibitors (MIEIs) remains at a primary stage. Advanced applications of MIEIs for cell regulation have rarely been explored. Using a solid-phase oriented imprinting strategy so as to leave the active site of the enzymes accessible, we synthesized two MIEIs that exhibit high specificity and potent inhibitory effects (inhibition constant at low nM range) towards trypsin and angiogenin. The trypsin MIEI inhibits trypsin activity, tryptic digestion-induced extracellular matrix lysis and cell membrane destruction, indicating its utility in the treatment of active trypsin-dependent cell injury. The angiogenin MIEI blocks cancer cell proliferation by suppressing the ribonuclease activity of angiogenin and decreasing the angiogenin level inside and outside HeLa cells. Our work demonstrates the versatility of MIEIs for both enzyme inhibition and cell fate manipulation, showing their great potential as therapeutic drugs in biomedicine.
Collapse
Affiliation(s)
- Jingjing Xu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lihua Zou
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Bernadette Tse Sum Bui
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203, Compiègne Cedex, France
| | - Karsten Haupt
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203, Compiègne Cedex, France
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
17
|
Cavaliere M, Bisogno A, Scarpa A, D'Urso A, Marra P, Colacurcio V, De Luca P, Ralli M, Cassandro E, Cassandro C. Biomarkers of laryngeal squamous cell carcinoma: a review. Ann Diagn Pathol 2021; 54:151787. [PMID: 34242969 DOI: 10.1016/j.anndiagpath.2021.151787] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Laryngeal carcinoma is the second common malignancy of the upper aerodigestive tract after lung cancer; in most cases is a squamous cell carcinoma, whose risk factors include tobacco smoking and alcohol consumption. Despite therapeutic progress, the five-year overall survival rate for this malignancy has remained nearly 50% and many patients already present metastasis at the time of diagnosis. To date, there are no tools that predict the evolution of laryngeal carcinoma: in this light, during the last years, many studies were planned with the aim to investigate the role played by different biomarkers expressed by larynx cancer, which can help make an early diagnosis, predict disease evolution and direct therapeutic choice. This review aims to summarize these markers and correlating them with disease evolution.
Collapse
Affiliation(s)
- Matteo Cavaliere
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy
| | - Antonella Bisogno
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy.
| | - Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy
| | - Alessia D'Urso
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy
| | - Pasquale Marra
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy
| | - Vito Colacurcio
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy
| | - Pietro De Luca
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy.
| | - Ettore Cassandro
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Salerno, Italy.
| | - Claudia Cassandro
- Surgical Sciences Department, University of Turin, Corso Dogliotti 14, 10124 Turin, Italy
| |
Collapse
|
18
|
Gabriel-Salazar M, Lei T, Grayston A, Costa C, Medina-Gutiérrez E, Comabella M, Montaner J, Rosell A. Angiogenin in the Neurogenic Subventricular Zone After Stroke. Front Neurol 2021; 12:662235. [PMID: 34234733 PMCID: PMC8256153 DOI: 10.3389/fneur.2021.662235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. In vitro, treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Hypoxia-Induced Reactivity of Tumor-Associated Astrocytes Affects Glioma Cell Properties. Cells 2021; 10:cells10030613. [PMID: 33802060 PMCID: PMC7999295 DOI: 10.3390/cells10030613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma is characterized by extensive necrotic areas with surrounding hypoxia. The cancer cell response to hypoxia in these areas is well-described; it involves a metabolic shift and an increase in stem cell-like characteristics. Less is known about the hypoxic response of tumor-associated astrocytes, a major component of the glioma tumor microenvironment. Here, we used primary human astrocytes and a genetically engineered glioma mouse model to investigate the response of this stromal cell type to hypoxia. We found that astrocytes became reactive in response to intermediate and severe hypoxia, similarly to irradiated and temozolomide-treated astrocytes. Hypoxic astrocytes displayed a potent hypoxia response that appeared to be driven primarily by hypoxia-inducible factor 2-alpha (HIF-2α). This response involved the activation of classical HIF target genes and the increased production of hypoxia-associated cytokines such as TGF-β1, IL-3, angiogenin, VEGF-A, and IL-1 alpha. In vivo, astrocytes were present in proximity to perinecrotic areas surrounding HIF-2α expressing cells, suggesting that hypoxic astrocytes contribute to the glioma microenvironment. Extracellular matrix derived from hypoxic astrocytes increased the proliferation and drug efflux capability of glioma cells. Together, our findings suggest that hypoxic astrocytes are implicated in tumor growth and potentially stemness maintenance by remodeling the tumor microenvironment.
Collapse
|
20
|
Gokalp C. Cytotoxic and anti-angiogenic effects of zoledronic acid in DU-145 and PC-3 prostate cancer cell lines. Mol Biol Rep 2020; 47:7675-7683. [PMID: 32989500 DOI: 10.1007/s11033-020-05840-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023]
Abstract
This study aims to investigate the apoptotic and anti-angiogenic effect of Zoledronic acid on hormone-refractory prostate cancer cell lines. XTT cell proliferation assay used to assess cytotoxicity. Caspase 3/7 activity and DNA fragmentation were measured to verify apoptosis. Angiogenic cytokine profiles investigated using the human angiogenesis antibody array I. Administration of Zoledronic acid on PC-3 and DU-145 prostate cancer cell lines resulted in increased cytotoxicity and apoptosis with a time- and dose-related manner. Also, the administration of Zoledronic acid significantly reduced several angiogenic cytokine productions in PC-3 and DU-145 cell lines. Zoledronic acid successfully induced apoptosis and reduced various angiogenic cytokine production in hormone-refractory prostate cancer cell lines. Novel treatment protocols may be developed in the future with chemotherapeutic combinations for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Cenk Gokalp
- Department of Internal Medicine, Faculty of Medicine, Ege University, Kazim Dirik Mah, 35100, Izmir, Turkey.
| |
Collapse
|
21
|
Sung SM, Lee SJ, Lee KW, Kim JC. Ultraviolet B-induced Senescence Model Using Corneal Fibroblasts and the Anti-aging Effect of Angiogenin. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2020. [DOI: 10.3341/jkos.2020.61.9.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Guzzi N, Bellodi C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development. RNA Biol 2020; 17:1214-1222. [PMID: 32116113 PMCID: PMC7549657 DOI: 10.1080/15476286.2020.1732694] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
tRNA-derived fragments or tRFs were long considered merely degradation intermediates of full-length tRNAs; however, emerging research is highlighting unanticipated new and highly distinct functions in epigenetic control, metabolism, immune activity and stem cell fate commitment. Importantly, recent studies suggest that RNA epitranscriptomic modifications may provide an additional regulatory layer that dynamically directs tRF activity in stem and cancer cells. In this review, we explore current work illustrating unanticipated roles of tRFs in mammalian stem cells with a focus on the impact of post-transcriptional RNA modifications for the biogenesis and function of this growing class of small noncoding RNAs.
Collapse
Affiliation(s)
- Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University , Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University , Lund, Sweden
| |
Collapse
|
23
|
Adithan A, John Peter JS, Mohammad AH, Kim B, Kang CW, Kim NS, Hwang KC, Kim JH. A gastric cancer cell derived extracellular compounds suppresses CD161 +CD3 - lymphocytes and aggravates tumor formation in a syngeneic mouse model. Mol Immunol 2020; 120:136-145. [PMID: 32120181 DOI: 10.1016/j.molimm.2020.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 01/16/2023]
Abstract
Evasion of the immune system is often associated with malignant tumors. The cancer cell microenvironment plays an important role in tumor progression, but its mechanism is largely unknown. Here we show that an extracellular compound derived from gastric cancer (GC-EC) selectively suppresses CD161+CD3- natural killer (NK) cells. Splenocytes treated with GC-EC showed considerable proliferation and the CD161+CD3- NK cell population was time-dependently suppressed. Intracellular staining of IFN-γ was shown to be down-regulated in concert with granzyme B and perforin. A cytotoxicity assay of splenocytes treated with GC-EC against K-562 cells showed a significant reduction in cytolytic activity. Further, the immune-suppressive effect of GC-EC was more evident in a syngeneic tumor model in C57BL/6 mice. Animals treated with B16 F10 and GC-EC exhibited more aggravated tumor formation than animals treated with B16 F10 only. We demonstrated that inhibition of apoptosis while increasing PI3 K/AKT levels may provoke tumor formation by GC-EC. A cytokine array revealed the presence of several cytokines in GC-EC that negatively regulate immune cytolytic activity and could be potential candidates for immune-suppressive effects.
Collapse
Affiliation(s)
- Aravinthan Adithan
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Judith Sharmila John Peter
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Amjad Hossain Mohammad
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Chang-Won Kang
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Nam Soo Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Ki-Chul Hwang
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
24
|
Li S, Goncalves KA, Lyu B, Yuan L, Hu GF. Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol 2020; 3:26. [PMID: 31942000 PMCID: PMC6962460 DOI: 10.1038/s42003-020-0750-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are an obstacle in cancer therapy and are a major cause of drug resistance, cancer recurrence, and metastasis. Available treatments, targeting proliferating cancer cells, are not effective in eliminating quiescent CSCs. Identification of CSC regulators will help design therapeutic strategies to sensitize drug-resistant CSCs for chemo-eradication. Here, we show that angiogenin and plexin-B2 regulate the stemness of prostate CSCs, and that inhibitors of angiogenin/plexin-B2 sensitize prostate CSCs to chemotherapy. Prostate CSCs capable of self-renewal, differentiation, and tumor initiation with a single cell inoculation were identified and shown to be regulated by angiogenin/plexin-B2 that promotes quiescence and self-renewal through 5S ribosomal RNA processing and generation of the bioactive 3′-end fragments of 5S ribosomal RNA, which suppress protein translation and restrict cell cycling. Monoclonal antibodies of angiogenin and plexin-B2 decrease the stemness of prostate CSCs and sensitize them to chemotherapeutic agents in vitro and in vivo. Shuping Li et al. show that angiogenin and its receptor plexin-B2 regulate the stemness of prostate cancer stem cells. Monoclonal antibodies of angiogenin and plexin-B2 sensitize prostate cancer stem cells to chemotherapy, highlighting the targeting potential of this regulation.
Collapse
Affiliation(s)
- Shuping Li
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Baiqing Lyu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Guo-Fu Hu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
25
|
The Anti-Inflammatory Effects of Angiogenin in an Endotoxin Induced Uveitis in Rats. Int J Mol Sci 2020; 21:ijms21020413. [PMID: 31936482 PMCID: PMC7014170 DOI: 10.3390/ijms21020413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.
Collapse
|
26
|
Vaeteewoottacharn K, Kariya R, Pothipan P, Fujikawa S, Pairojkul C, Waraasawapati S, Kuwahara K, Wongkham C, Wongkham S, Okada S. Attenuation of CD47-SIRPα Signal in Cholangiocarcinoma Potentiates Tumor-Associated Macrophage-Mediated Phagocytosis and Suppresses Intrahepatic Metastasis. Transl Oncol 2019; 12:217-225. [PMID: 30415063 PMCID: PMC6231245 DOI: 10.1016/j.tranon.2018.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
The involvement of chronic inflammation in cholangiocarcinoma (CCA) progression is well established. Cluster of differentiation 47 (CD47) is mutually expressed in various cancers and serves as a protective signal for phagocytic elimination. CD47 signaling blockage is a recent treatment strategy; however, little is known regarding CD47 in CCA. Therefore, the potential use of CD47 targeting in CCA was focused. CD47 was highly expressed in CCA compared to hepatocellular carcinoma (HCC). Disturbance of CD47-signal regulatory protein-α (SIRPα) interaction by blocking antibodies promoted the macrophage phagocytosis. The therapeutic potential of anti-CD47 therapy was demonstrated in liver metastatic model; alleviation of cancer colonization together with dense macrophage infiltrations was observed. The usefulness of anti-CD47 was emphasized by its universal facilitating macrophage activities. Moreover, increased production of inflammatory cytokines, such as IL-6 and IL-10, in macrophage exposed to CCA-conditioned media suggested that CCA alters macrophages toward cancer promotion. Taken together, interfering of CD47-SIRPα interaction promotes macrophage phagocytosis in all macrophage subtypes and consequently suppresses CCA growth and metastasis. The unique overexpression of CD47 in CCA but not HCC offers an exceptional opportunity for a targeted therapy. CD47 is therefore a novel target for CCA treatment.
Collapse
Affiliation(s)
- Kulthida Vaeteewoottacharn
- Division of Hematopoiesis, Center for AIDS research and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS research and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Phattarin Pothipan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sawako Fujikawa
- Division of Hematopoiesis, Center for AIDS research and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Pathology Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Waraasawapati
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Pathology Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS research and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
27
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
28
|
Magrì A, Tabbì G, Breglia R, De Gioia L, Fantucci P, Bruschi M, Bonomo RP, La Mendola D. Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Trans 2018. [PMID: 28636006 DOI: 10.1039/c7dt01209h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiogenin protein (Ang) is a member of the vertebrate-specific secreted ribonucleases and one of the most potent angiogenic factors known. Ang is a normal constituent of human plasma and its concentration increases under some physiological and pathological conditions to promote neovascularization. Ang was originally identified as an angiogenic tumour factor, but its biological activity has been found to extend from inducing angiogenesis to promoting cell survival in different neurodegenerative diseases. Ang exhibits weak ribonucleolytic activity, which is critical for its biological functions. The RNase catalytic sites are two histidine residues, His-13 and His-114, and the lysine Lys-40. Copper is also an essential cofactor in angiogenesis and influences angiogenin's biological properties. The main Cu(ii) anchoring site of Ang is His-114, where metal binding inhibits RNase activity of the protein. To reveal the Cu(ii) coordination environment in the C-terminal domain of the Ang protein, we report on the characterization, by means of potentiometric, voltammetric, and spectroscopic (CD, UV-Vis and EPR) methods and DFT calculations, of Cu(ii) complexes formed with a peptide fragment including the Ang sequence 112-117 (PVHLDQ). Potentiometric titrations indicated that [CuLH-2] is the predominant species at physiological pH. EPR, voltammetric data and DFT calculations are consistent with a CuN3O2 coordination mode in which a distorted square pyramidal arrangement of the peptide was observed with the equatorial positions occupied by the nitrogen atoms of the deprotonated amides of the Asp and Leu residues, the δ-N atom of histidine and the oxygen atom of the aspartic carboxylic group. Moreover, two analogous peptides encompassing the PVHLNQ and LVHLDQ sequences were also characterized by using thermodynamic, spectroscopic and DFT studies to reveal the role they play in Cu(ii) complex formation by the carboxylate side chain of the Asp and Pro residues, a known breaking-point in metal coordination.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fu JL, Hsiao KY, Lee HC, Li WN, Chang N, Wu MH, Tsai SJ. Suppression of COUP-TFII upregulates angiogenin and promotes angiogenesis in endometriosis. Hum Reprod 2018; 33:1517-1527. [DOI: 10.1093/humrep/dey220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jhao-Lin Fu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Chi Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ning Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsing Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics & Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Gabriel-Salazar M, Morancho A, Rodriguez S, Buxó X, García-Rodríguez N, Colell G, Fernandez A, Giralt D, Bustamante A, Montaner J, Rosell A. Importance of Angiogenin and Endothelial Progenitor Cells After Rehabilitation Both in Ischemic Stroke Patients and in a Mouse Model of Cerebral Ischemia. Front Neurol 2018; 9:508. [PMID: 30008694 PMCID: PMC6034071 DOI: 10.3389/fneur.2018.00508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Rehabilitation therapy is the only available treatment for stroke survivors presenting neurological deficits; however, the underlying molecules and mechanisms associated with functional/motor improvement during rehabilitation are poorly understood. Objective: Our aim is to study the modulation of angiogenin and endothelial progenitor cells (EPCs) as repair-associated factors in a cohort of stroke patients and mouse models of rehabilitation after cerebral ischemia. Methods: The clinical study included 18 ischemic strokes admitted to an intensive rehabilitation therapy (IRT) unit, 18 non-ischemic controls and brain samples from three deceased patients. Angiogenin and EPCs were measured in blood obtained before and up to 6 months after IRT together with an extensive evaluation of the motor/functional status. In parallel, C57BL/6 mice underwent middle cerebral artery occlusion, and the pasta matrix reaching-task or treadmill exercises were used as rehabilitation models. Angiogenin RNA expression was measured after 2 or 12 days of treatment together with cell counts from EPCs cultures. Results: Brain angiogenin was identified in both human and mouse tissue, whereas serum levels increased after 1 month of IRT in association with motor/functional improvement. EPC populations were increased after stroke and remained elevated during follow-up after IRT. The mouse model of rehabilitation by the task-specific pasta matrix exercise increased the number of EPCs at 2 days and increased angiogenin expression after 12 days of rehabilitation. Conclusions: Angiogenin and EPCs are modulated by rehabilitation after cerebral ischemia, suggesting that both angiogenin and EPCs could serve as biomarkers of improvement during rehabilitation or future therapeutic targets.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavi Buxó
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Guillem Colell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Fernandez
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Kandori S, Kojima T, Matsuoka T, Yoshino T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y, Nishiyama H. Phospholipase D2 promotes disease progression of renal cell carcinoma through the induction of angiogenin. Cancer Sci 2018; 109:1865-1875. [PMID: 29660846 PMCID: PMC5989877 DOI: 10.1111/cas.13609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
A hallmark of clear cell renal cell carcinoma (ccRCC) is the presence of intracellular lipid droplets (LD) and it is assumed that phosphatidic acid (PA) produced by phospholipase D (PLD) plays some role in the LD formation. However, little is known about the significance of PLD in ccRCC. In this study, we examined the expression levels of PLD in ccRCC. The classical mammalian isoforms of PLD are PLD1 and PLD2, and the levels of both mRNA were higher at the primary tumor sites than in normal kidney tissues. Similarly, both PLD were significantly abundant in tumor cells as determined by analysis using immunohistochemical staining. Importantly, a higher level of PLD was significantly associated with a higher tumor stage and grade. Because PLD2 knockdown effectively suppressed the cell proliferation and invasion of ccRCC as compared with PLD1 in vitro, we examined the effect of PLD2 in vivo. Notably, shRNA-mediated knockdown of PLD2 suppressed the growth and invasion of tumors in nude mouse xenograft models. Moreover, the higher expression of PLD2 was significantly associated with poorer prognosis in 67 patients. As for genes relating to the tumor invasion of PLD2, we found that angiogenin (ANG) was positively regulated by PLD2. In fact, the expression levels of ANG were elevated in tumor tissues as compared with normal kidney and the inhibition of ANG activity with a neutralizing antibody significantly suppressed tumor invasion. Overall, we revealed for the first time that PLD2-produced PA promoted cell invasion through the expression of ANG in ccRCC cells.
Collapse
Affiliation(s)
- Shuya Kandori
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Takahiro Kojima
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Taeko Matsuoka
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Takayuki Yoshino
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Aiko Sugiyama
- DSK ProjectMedical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Eijiro Nakamura
- DSK ProjectMedical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Toru Shimazui
- Department of UrologyIbaraki Prefectural Central HospitalKasamaJapan
- Faculty of MedicineDepartment of UrologyIbaraki Clinical Education and Training CenterUniversity of TsukubaTsukubaJapan
| | - Yuji Funakoshi
- Department of Physiological ChemistryFaculty of Medicine and Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yasunori Kanaho
- Department of Physiological ChemistryFaculty of Medicine and Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Hiroyuki Nishiyama
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| |
Collapse
|
32
|
Maki T, Morancho A, Segundo PMS, Hayakawa K, Takase H, Liang AC, Gabriel-Salazar M, Medina-Gutiérrez E, Washida K, Montaner J, Lok J, Lo EH, Arai K, Rosell A. Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Stroke 2018; 49:1003-1010. [PMID: 29511131 PMCID: PMC5871569 DOI: 10.1161/strokeaha.117.019346] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. METHODS The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. RESULTS Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. CONCLUSIONS Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling.
Collapse
Affiliation(s)
- Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Pablo Martinez-San Segundo
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna C. Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Kazuo Washida
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna Rosell
- From the Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown (T.M., K.H., H.T., A.C.L., K.W., J.L., E.H.L., K.A.); and Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain (A.M., P.M.-S.S., M.G.-S., E.M.-G., J.M., A.R.).
| |
Collapse
|
33
|
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers (Basel) 2017; 9:cancers9120174. [PMID: 29261171 PMCID: PMC5742822 DOI: 10.3390/cancers9120174] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement (“signal-on”) or a quenching (“signal-off”) effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment.
Collapse
|
34
|
Plexin-B2 Mediates Physiologic and Pathologic Functions of Angiogenin. Cell 2017; 171:849-864.e25. [PMID: 29100074 DOI: 10.1016/j.cell.2017.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/20/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023]
Abstract
Angiogenin (ANG) is a secreted ribonuclease (RNase) with cell-type- and context-specific roles in growth, survival, and regeneration. Although these functions require receptor-mediated endocytosis and appropriate subcellular localization, the identity of the cell surface receptor remains undefined. Here, we show that plexin-B2 (PLXNB2) is the functional receptor for ANG in endothelial, cancer, neuronal, and normal hematopoietic and leukemic stem and progenitor cells. Mechanistically, PLXNB2 mediates intracellular RNA processing that contribute to cell growth, survival, and regenerative capabilities of ANG. Antibodies generated against the ANG-binding site on PLXNB2 restricts ANG activity in vitro and in vivo, resulting in inhibition of established xenograft tumors, ANG-induced neurogenesis and neuroprotection, levels of pro-self-renewal transcripts in hematopoietic and patient-derived leukemic stem and progenitor cells, and reduced progression of leukemia in vivo. PLXNB2 is therefore required for the physiological and pathological functions of ANG and has significant therapeutic potential in solid and hematopoietic cancers and neurodegenerative diseases.
Collapse
|
35
|
Andersen LMK, Wegner CS, Simonsen TG, Huang R, Gaustad JV, Hauge A, Galappathi K, Rofstad EK. Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts. Oncotarget 2017; 8:48060-48074. [PMID: 28624797 PMCID: PMC5564626 DOI: 10.18632/oncotarget.18231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/01/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients develop lymph node metastases early and have a particularly poor prognosis. The poor prognosis has been shown to be associated with the physicochemical microenvironment of the tumor tissue, which is characterized by desmoplasia, abnormal microvasculature, extensive hypoxia, and highly elevated interstitial fluid pressure (IFP). In this study, we searched for associations between lymph node metastasis and features of the physicochemical microenvironment in an attempt to identify mechanisms leading to metastatic dissemination and growth. BxPC-3 and Capan-2 PDAC xenografts were used as preclinical models of human PDAC. In both models, lymph node metastasis was associated with high IFP rather than high fraction of hypoxic tissue or high microvascular density. Seven angiogenesis-related genes associated with high IFP-associated lymph node metastasis were detected by quantitative PCR in each of the models, and these genes were all up-regulated in high IFP/highly metastatic tumors. Three genes were mutual for the BxPC-3 and Capan-2 models: transforming growth factor beta, angiogenin, and insulin-like growth factor 1. Further comprehensive studies are needed to determine whether there is a causal relationship between the up-regulation of these genes and high IFP and/or high propensity for lymph node metastasis in PDAC.
Collapse
Affiliation(s)
- Lise Mari K. Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S. Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G. Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
36
|
Hoang TT, Smith TP, Raines RT. A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. Angew Chem Int Ed Engl 2017; 56:2619-2622. [PMID: 28120377 PMCID: PMC5418131 DOI: 10.1002/anie.201611446] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/23/2016] [Indexed: 12/27/2022]
Abstract
Angiogenin (ANG) is a human ribonuclease that is compromised in patients with amyotrophic lateral sclerosis (ALS). ANG also promotes neovascularization, and can induce hemorrhage and encourage tumor growth. The causal neurodegeneration of ALS is associated with reactive oxygen species, which are also known to elicit the oxidative cleavage of carbon-boron bonds. We have developed a synthetic boronic acid mask that restrains the ribonucleolytic activity of ANG. The masked ANG does not stimulate endothelial cell proliferation but protects astrocytes from oxidative stress. By differentiating between the two dichotomous biological activities of ANG, this strategy could provide a viable pharmacological approach for the treatment of ALS.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| | - Thomas P Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706-1322, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706-1322, USA
| |
Collapse
|
37
|
Hoang TT, Raines RT. Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Res 2017; 45:818-831. [PMID: 27915233 PMCID: PMC5314776 DOI: 10.1093/nar/gkw1192] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/13/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022] Open
Abstract
Canonical growth factors act indirectly via receptor-mediated signal transduction pathways. Here, we report on an autonomous pathway in which a growth factor is internalized, has its localization regulated by phosphorylation, and ultimately uses intrinsic catalytic activity to effect epigenetic change. Angiogenin (ANG), a secreted vertebrate ribonuclease, is known to promote cell proliferation, leading to neovascularization as well as neuroprotection in mammals. Upon entering cells, ANG encounters the cytosolic ribonuclease inhibitor protein, which binds with femtomolar affinity. We find that protein kinase C and cyclin-dependent kinase phosphorylate ANG, enabling ANG to evade its inhibitor and enter the nucleus. After migrating to the nucleolus, ANG cleaves promoter-associated RNA, which prevents the recruitment of the nucleolar remodeling complex to the ribosomal DNA promoter. The ensuing derepression of rDNA transcription promotes cell proliferation. The biochemical basis for this unprecedented mechanism of signal transduction suggests new modalities for the treatment of cancers and neurological disorders.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
38
|
Hoang TT, Smith TP, Raines RT. A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Trish T. Hoang
- Department of Biochemistry; University of Wisconsin-Madison; 433 Babcock Drive Madison WI 53706-1544 USA
| | - Thomas P. Smith
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706-1322 USA
| | - Ronald T. Raines
- Department of Biochemistry; University of Wisconsin-Madison; 433 Babcock Drive Madison WI 53706-1544 USA
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706-1322 USA
| |
Collapse
|
39
|
Sub-chronic 90-day toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Toxicol Appl Pharmacol 2017; 315:50-59. [PMID: 27940282 DOI: 10.1016/j.taap.2016.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
Neamine, an inhibitor of angiogenin (ANG), is a new investigative anticancer drug currently in preclinical stage. Here we report the 90-day sub-chronic toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Neamine has a No Observed Adverse Effect Level (NOAEL) of 12 and 16mg·kg-1·d-1 for female and male rats, respectively. No mortality was found. The adverse effects included increased organ coefficients of spleen and kidney, increased BUN in both female and male rats at high dose, increased CR and decreased organ coefficients of heart and liver in male rats at high dose. All of which, except the kidney coefficient and BUN in males, returned to normal levels after 28-day recovery. Histopathological examination revealed vacuolar degeneration of glomerulus, degeneration of renal tubules and cast in the kidneys, which were also recovered except in males of high-dosing group. These results indicate that kidney is the most susceptible organ for neamine toxicity. Tissue microarray analysis validated that ANG is up-regulated in hepatocellular carcinoma accompanied by increased nuclear translocation, suggesting that ANG is a possible target for drug development in liver cancer treatment. Neamine blocked nuclear translocation of ANG in HUVEC and HepG2 cells, and inhibited ANG-stimulated cell proliferation without affecting basal level cell proliferation. Neamine also inhibited progression of HepG2 xenografts in athymic mice accompanied by decreased angiogenesis and cancer cell proliferation. These results suggest that neamine is a specific ANG inhibitor with low toxicity and high anti-liver cancer efficacy.
Collapse
|
40
|
Goncalves KA, Silberstein L, Li S, Severe N, Hu MG, Yang H, Scadden DT, Hu GF. Angiogenin Promotes Hematopoietic Regeneration by Dichotomously Regulating Quiescence of Stem and Progenitor Cells. Cell 2016; 166:894-906. [PMID: 27518564 DOI: 10.1016/j.cell.2016.06.042] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/19/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022]
Abstract
Regulation of stem and progenitor cell populations is critical in the development, maintenance, and regeneration of tissues. Here, we define a novel mechanism by which a niche-secreted RNase, angiogenin (ANG), distinctively alters the functional characteristics of primitive hematopoietic stem/progenitor cells (HSPCs) compared with lineage-committed myeloid-restricted progenitor (MyePro) cells. Specifically, ANG reduces the proliferative capacity of HSPC while simultaneously increasing proliferation of MyePro cells. Mechanistically, ANG induces cell-type-specific RNA-processing events: tRNA-derived stress-induced small RNA (tiRNA) generation in HSPCs and rRNA induction in MyePro cells, leading to respective reduction and increase in protein synthesis. Recombinant ANG protein improves survival of irradiated animals and enhances hematopoietic regeneration of mouse and human HSPCs in transplantation. Thus, ANG plays a non-cell-autonomous role in regulation of hematopoiesis by simultaneously preserving HSPC stemness and promoting MyePro proliferation. These cell-type-specific functions of ANG suggest considerable therapeutic potential.
Collapse
Affiliation(s)
- Kevin A Goncalves
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Lev Silberstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shuping Li
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Hailing Yang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
41
|
Tsika AC, Chatzileontiadou DSM, Leonidas DD, Spyroulias GA. NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:379-383. [PMID: 27624767 DOI: 10.1007/s12104-016-9704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.
Collapse
Affiliation(s)
| | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | | |
Collapse
|
42
|
Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway. Sci Rep 2016; 6:31162. [PMID: 27526633 PMCID: PMC4985649 DOI: 10.1038/srep31162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022] Open
Abstract
To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation.
Collapse
|
43
|
The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 2016; 36:194-207. [PMID: 27270424 PMCID: PMC5140775 DOI: 10.1038/onc.2016.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN, exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.
Collapse
|
44
|
Sheng J, Xu Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin (Shanghai) 2016; 48:399-410. [PMID: 26705141 DOI: 10.1093/abbs/gmv131] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
As a member of the vertebrate-specific secreted ribonucleases, angiogenin (ANG) was first isolated and identified solely by its ability to induce new blood vessel formation, and now, it has been recognized to play important roles in various physiological and pathological processes through regulating cell proliferation, survival, migration, invasion, and/or differentiation. ANG exhibits very weak ribonucleolytic activity that is critical for its biological functions, and exerts its functions through activating different signaling transduction pathways in different target cells. A series of recent studies have indicated that ANG contributes to cellular nucleic acid metabolism. Here, we comprehensively review the results of studies regarding the structure, mechanism, and function of ANG over the past three decades. Moreover, current problems and future research directions of ANG are discussed. The understanding of the function and mechanism of ANG in a wide context will help to better delineate its roles in diseases, especially in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinghao Sheng
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
45
|
Xu L, Liao WL, Lu QJ, Li CG, Yuan Y, Xu ZY, Huang SD, Chen HZ. ANG Promotes Proliferation and Invasion of the Cell of Lung Squamous Carcinoma by Directly Up-Regulating HMGA2. J Cancer 2016; 7:862-71. [PMID: 27162546 PMCID: PMC4860804 DOI: 10.7150/jca.14440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/15/2016] [Indexed: 01/04/2023] Open
Abstract
Objective: To determine the mechanism of Angiogenin(ANG) function involved in the carcinogenesis of lung squamous cell carcinoma. Methods: 12 patients' normal tissue and cancerous tissue were collected. ANG expression in the squamous cell carcinoma of the lung was evaluated by qRT-PCR and western-blot. The regulation of ANG on proliferation, migration, invasion, and apoptosis of SK-MES-1 cells were analyzed by Cell Counting Kit-8, Transwell migration chamber, Transwell invasion chamber, and Annexin V-FITC assay, respectively. PCR array was utilized for screening potential target genes of ANG. Chromatin immunoprecipitation(ChIP) assays and luciferase assay were adopted for investigation of ANG's direct regulation on HMGA2. Results: ANG expression is increased in the squamous cell carcinoma of the lung tissue. In vitro experiments results indicated that overexpression of ANG promotes proliferation and invasion capability of SK-MES-1 cells. The candidate proliferation, migration, and invasion related ANG target gene found was HMGA2, expression levels of which were also enhanced in lung squamous cell carcinoma tissue. The direct regulation of ANG on HMGA2 was verified by ChIP and luciferase assay results. Furthermore, down-regulating HMGA2 significantly alleviated the suppression effects of ANG on proliferation, migration, and invasion of SK-MES-1 cells. Conclusions: Our data illustrated the mechanisms that ANG promoted the cell of SQCLC proliferation, migration, and invasion capacity via directly up-regulating HMGA2.
Collapse
Affiliation(s)
- Li Xu
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei-Lin Liao
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qi-Jue Lu
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Chun-Guang Li
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yuan
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhi-Yun Xu
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Sheng-Dong Huang
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - He-Zhong Chen
- Department of Cardiothoracic surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Diebel KW, Zhou K, Clarke AB, Bemis LT. Beyond the Ribosome: Extra-translational Functions of tRNA Fragments. Biomark Insights 2016; 11:1-8. [PMID: 26843810 PMCID: PMC4734663 DOI: 10.4137/bmi.s35904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 01/05/2023] Open
Abstract
High-throughput sequencing studies of small RNAs reveal a complex milieu of noncoding RNAs in biological samples. Early data analysis was often limited to microRNAs due to their regulatory nature and potential as biomarkers; however, many more classes of noncoding RNAs are now being recognized. A class of fragments initially excluded from analysis were those derived from transfer RNAs (tRNAs) because they were thought to be degradation products. More recently, critical cellular function has been attributed to tRNA fragments (tRFs), and their conservation across all domains of life has propelled them into an emerging area of scientific study. The biogenesis of tRFs is currently being elucidated, and initial studies show that a diverse array of tRFs are generated from all parts of a tRNA molecule. The goal of this review was to present what is currently known about tRFs and their potential as biomarkers for the earlier detection of disease.
Collapse
Affiliation(s)
- Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Kun Zhou
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Aaron B Clarke
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| |
Collapse
|
47
|
Yeo KJ, Jee JG, Park JW, Lee YJ, Ryu KS, Kwon BM, Jeon YH, Cheong HK. The role of the KRSIK motif of human angiogenin in heparin and DNA binding. RSC Adv 2016. [DOI: 10.1039/c6ra14599j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 50KRSIK54 motif is the main interaction site of hAng for heparin and DNA binding, providing an insight into the potential role of the motif for the internalization and DNA binding of hAng, which is essential for the regulation of angiogenesis.
Collapse
Affiliation(s)
- Kwon Joo Yeo
- Protein Structure Group
- Korea Basic Science Institute
- Ochang
- Republic of Korea
- College of Pharmacy
| | - Jun-Goo Jee
- College of Pharmacy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Jin-Wan Park
- Protein Structure Group
- Korea Basic Science Institute
- Ochang
- Republic of Korea
| | - Yu-Jin Lee
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Group
- Korea Basic Science Institute
- Ochang
- Republic of Korea
| | - Byoung-Mog Kwon
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy
- Korea University
- Sejong
- Republic of Korea
| | - Hae-Kap Cheong
- Protein Structure Group
- Korea Basic Science Institute
- Ochang
- Republic of Korea
| |
Collapse
|
48
|
Vanli N, Guo-Fu HU. Mechanism and Function of Angiogenin in Prostate Cancer. ZHONGGUO SHENG WU HUA XUE YU FEN ZI SHENG WU XUE BAO = CHINESE JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 31:1261-1266. [PMID: 27175049 DOI: 10.13865/j.cnki.cjbmb.2015.12.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiogenin (ANG), the fifth member of the vertebrate-specific ribonuclease (RNase) A superfamily, is a secreted angiogenic ribonuclease strongly up-regulated in human prostate cancers. ANG is translocated to the nucleus in both prostate cancer epithelial cells and endothelial cells to exert its role in prostate cancer progression by mediating tumor angiogenesis, cancer cell survival and proliferation through rRNA biogenesis. ANG-stimulated rRNA is required not only for prostate intraepithelial neoplasia (PIN) formation, but also for androgen-independent growth of prostate cancer cells. Targeting ANG by various antagonists that inhibit its nuclear translocation, function and/or activity has proven to inhibit prostate cancer growth in animal models. Furthermore, the role of ANG in androgen independence has been firmly established, suggesting a strong rationale for therapeutically targeting ANG in the treatment of castration resistant prostate cancer.
Collapse
Affiliation(s)
- Nil Vanli
- Molecular Oncology Research Institute, Tufts Medical Center Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - H U Guo-Fu
- Molecular Oncology Research Institute, Tufts Medical Center Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
49
|
Yuan A, Hsiao YJ, Chen HY, Chen HW, Ho CC, Chen YY, Liu YC, Hong TH, Yu SL, Chen JJW, Yang PC. Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Sci Rep 2015; 5:14273. [PMID: 26399191 PMCID: PMC4585843 DOI: 10.1038/srep14273] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages in a tumor microenvironment have been characterized as M1- and M2-polarized subtypes. Here, we discovered the different macrophages' impacts on lung cancer cell A549. The M2a/M2c subtypes promoted A549 invasion and xenograft tumor growth. The M1 subtype suppressed angiogenesis. M1 enhanced the sensitivity of A549 to cisplatin and decreased the tube formation activity and cell viability of A549 cells by inducing apoptosis and senescence. Different macrophage subtypes regulated genes involved in the immune response, cytoskeletal remodeling, coagulation, cell adhesion, and apoptosis pathways in A549 cells, which was a pattern that correlated with the altered behaviors of the A549 cells. Furthermore, we found that the identified M1/M2 gene signatures were significantly correlated with the extended overall survival of lung cancer patients. These results suggest that M1/M2 gene expression signature may be used as a prognostic indicator for lung cancer patients, and M1/M2 polarization may be a target of investigation of immune-modulating therapies for lung cancer in the future.
Collapse
Affiliation(s)
- Ang Yuan
- Departments of Chest Medicine and Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yun Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chia Liu
- Departments of Chest Medicine and Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsai-Hsia Hong
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,General Education Center, National Defense University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
50
|
A Higher Angiogenin Expression is Associated With a Nonnuclear Maspin Location in Laryngeal Carcinoma. Clin Exp Otorhinolaryngol 2015; 8:268-74. [PMID: 26330923 PMCID: PMC4553359 DOI: 10.3342/ceo.2015.8.3.268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/14/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives In numerous malignancies, angiogenin (ANG) and Maspin are important proangiogenic and antiangiogenic regulators, respectively. The aim of this study was to identify potential relationships between the biological roles of these two proteins in laryngeal squamous cell carcinoma (LSCC). Methods Immunohistochemical staining for ANG and Maspin was performed on specimens from 76 consecutive LSCC patients treated with surgery alone, considering the subcellular pattern of Maspin expression. Univariate and multivariate statistical models were used for prognostic purposes. Results On univariate analysis, a different level of ANG expression was seen for patients stratified by subcellular Maspin expression pattern: the mean ANG expression was higher in cases with a nonnuclear MASPIN expression than in those with a nuclear pattern (P=0.002). Disease-free survival (DFS; in months) differed significantly when patients were stratified by N stage (P=0.01). Patients whose Maspin expression was nonnuclear (i.e., it was cytoplasmic or there was none) had a significantly higher recurrence rate (P<0.001), and shorter DFS (P=0.01) than those with a nuclear Maspin pattern. The mean ANG expression was significantly higher in cases with loco-regional recurrent disease (P=0.007); and patients with an ANG expression ≥5.0% had a significantly shorter DFS than those with an ANG expression <5.0% (P=0.007). On multivariate analysis, ANG expression ≥5.0% was a significant, independent, negative prognostic factor in terms of DFS (P=0.041). Conclusion Our results support the hypothesis that a higher ANG expression is associated with a nonnuclear Maspin expression pattern in patients with LSCC. Further studies are needed to clarify the relationship between the ANG and Maspin pathways, and their potential diagnostic and therapeutic role in LSCC.
Collapse
|