1
|
Fosch A, Pizarro DS, Zagmutt S, Reguera AC, Batallé G, Rodríguez-García M, García-Chica J, Freire-Agulleiro O, Miralpeix C, Zizzari P, Serra D, Herrero L, López M, Cota D, Rodríguez-Rodríguez R, Casals N. CPT1C deficiency in SF1 neurons impairs early metabolic adaptation to dietary fats, leading to obesity. Mol Metab 2025; 96:102155. [PMID: 40268191 PMCID: PMC12076790 DOI: 10.1016/j.molmet.2025.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVES SF1 neurons of the ventromedial hypothalamus (VMH) play a pivotal role in regulating body weight and adiposity, particularly in response to a high-fat diet (HFD), as well as in the recovery from insulin-induced hypoglycemia. While the brain-specific CPT1C isoform is well known for its role in controlling food intake and energy homeostasis, its function within specific hypothalamic neuronal populations remains largely unexplored. Here, we explore the role of CPT1C in SF1 neurons. METHODS Mice deficient in CPT1C within SF1 neurons were generated, and their response to a HFD was investigated. RESULTS SF1-Cpt1c-KO mice fail to adjust their caloric intake during initial HFD exposure, which is associated with impaired activation of the melanocortin system. Furthermore, these mice exhibit disrupted metabolic gene expression in the liver, muscle, and adipose tissue, leading to increased adiposity independently of food intake. In contrast, their response to glucose or insulin challenges remains intact. After long-term HFD exposure, SF1-Cpt1c-KO mice are more prone to developing obesity and glucose intolerance than control littermates, with males exhibiting a more severe phenotype. Interestingly, CPT1C deficiency in SF1 neurons also results in elevated hypothalamic endocannabinoid (eCB) levels under both chow and HFD conditions. We propose that this sustained eCB elevation reduces VMH activation by fatty acids and impairs the SF1-POMC drive upon fat intake. CONCLUSION Our findings establish CPT1C in SF1 neurons as essential for VMH-driven dietary fat sensing, satiety, and lipid metabolic adaptation.
Collapse
Affiliation(s)
- A Fosch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - D S Pizarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - S Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - A C Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - G Batallé
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - M Rodríguez-García
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - J García-Chica
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - O Freire-Agulleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - C Miralpeix
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - P Zizzari
- INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - D Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028 Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - L Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028 Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - D Cota
- INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - R Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - N Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Yuan J, Zhao J, Sun Y, Wang Y, Li Y, Ni A, Zong Y, Ma H, Wang P, Shi L, Chen J. The mRNA-lncRNA landscape of multiple tissues uncovers key regulators and molecular pathways that underlie heterosis for feed intake and efficiency in laying chickens. Genet Sel Evol 2023; 55:69. [PMID: 37803296 PMCID: PMC10559425 DOI: 10.1186/s12711-023-00834-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/24/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Heterosis is routinely exploited to improve animal performance. However, heterosis and its underlying molecular mechanism for feed intake and efficiency have been rarely explored in chickens. Feed efficiency continues to be an important breeding goal trait since feed accounts for 60 to 70% of the total production costs in poultry. Here, we profiled the mRNA-lncRNA landscape of 96 samples of the hypothalamus, liver and duodenum mucosa from White Leghorn (WL), Beijing-You chicken (YY), and their reciprocal crosses (WY and YW) to elucidate the regulatory mechanisms of heterosis. RESULTS We observed negative heterosis for both feed intake and residual feed intake (RFI) in YW during the laying period from 43 to 46 weeks of age. Analysis of the global expression pattern showed that non-additivity was a major component of the inheritance of gene expression in the three tissues for YW but not for WY. The YW-specific non-additively expressed genes (YWG) and lncRNA (YWL) dominated the total number of non-additively expressed genes and lncRNA in the hypothalamus and duodenum mucosa. Enrichment analysis of YWG showed that mitochondria components and oxidation phosphorylation (OXPHOS) pathways were shared among the three tissues. The OXPHOS pathway was enriched by target genes for YWL with non-additive inheritance of expression in the liver and duodenum mucosa. Weighted gene co-expression network analysis revealed divergent co-expression modules associated with feed intake and RFI in the three tissues from WL, YW, and YY. Among the negatively related modules, the OXPHOS pathway was enriched by hub genes in the three tissues, which supports the critical role of oxidative phosphorylation. Furthermore, protein quantification of ATP5I was highly consistent with ATP5I expression in the liver, which suggests that, in crossbred YW, non-additive gene expression is down-regulated and decreases ATP production through oxidative phosphorylation, resulting in negative heterosis for feed intake and efficiency. CONCLUSIONS Our results demonstrate that non-additively expressed genes and lncRNA involved in oxidative phosphorylation in the hypothalamus, liver, and duodenum mucosa are key regulators of the negative heterosis for feed intake and RFI in layer chickens. These findings should facilitate the rational choice of suitable parents for producing crossbred chickens.
Collapse
Affiliation(s)
- Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Panlin Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
3
|
Garcia-Chica J, Paraiso WKD, Zagmutt S, Fosch A, Reguera AC, Alzina S, Sánchez-García L, Fukushima S, Toh K, Casals N, Serra D, Herrero L, Garcia J, Kataoka K, Ariza X, Quader S, Rodríguez-Rodríguez R. Nanomedicine targeting brain lipid metabolism as a feasible approach for controlling the energy balance. Biomater Sci 2023; 11:2336-2347. [PMID: 36804651 DOI: 10.1039/d2bm01751b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.
Collapse
Affiliation(s)
- Jesús Garcia-Chica
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain.
| | - West Kristian Dizon Paraiso
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Sebastián Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain.
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain.
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain.
| | - Sara Alzina
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain.
| | - Laura Sánchez-García
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain.
| | - Shigeto Fukushima
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Kazuko Toh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain. .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, E-08028, Spain
| | - Jordi Garcia
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, E-08028, Spain
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Xavier Ariza
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, E-08028, Spain
| | - Sabina Quader
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, E-08195, Spain. .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain
| |
Collapse
|
4
|
Wang D, Yin J, Zhou Z, Tao Y, Jia Y, Jie H, Zhao J, Li R, Li Y, Guo C, Zhu F, Mao H, Zhang L, Wang Q. Oral Spermidine Targets Brown Fat and Skeletal Muscle to Mitigate Diet-Induced Obesity and Metabolic Disorders. Mol Nutr Food Res 2021; 65:e2100315. [PMID: 34363644 DOI: 10.1002/mnfr.202100315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Obesity causes many life-threatening diseases. It is important to develop effective approaches for obesity treatment. Oral supplementation with spermidine retards age-related processes, but its influences on obesity and various metabolic tissues remain largely unknow. This study aims to investigate the effects of oral spermidine on brown adipose tissue (BAT) and skeletal muscle as well as its roles in counteracting obesity and metabolic disorders. METHODS AND RESULTS Spermidine is orally administrated into high-fat diet (HFD)-fed mice. The weight gain, insulin resistance, and hepatic steatosis are attenuated by oral spermidine in HFD-fed mice, accompanied by an alleviation of white adipose tissue inflammation. Oral spermidine promotes BAT activation and metabolic adaptation of skeletal muscle in HFD-fed mice, evidenced by UCP-1 induction and CREB activation in both tissues. Notably, oral spermidine upregulates tyrosine hydroxylase in hypothalamus of HFD-fed mice; spermidine treatment increases tyrosine hydroxylase expression and norepinephrine production in neurocytes, which leads to CREB activation and UCP-1 induction in brown adipocytes and myotubes. Spermidine also directly promotes UCP-1 and PGC-1α expression in brown adipocytes and myotubes. CONCLUSION Spermidine serves as an oral supplement to attenuate obesity and metabolic disorders through hypothalamus-dependent or -independent BAT activation and skeletal muscle adaptation.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jilong Yin
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Jia
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haipeng Jie
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruiyu Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Feng M, Xiang B, Fan L, Wang Q, Xu W, Xiang H. Interrogating autonomic peripheral nervous system neurons with viruses - A literature review. J Neurosci Methods 2020; 346:108958. [PMID: 32979424 DOI: 10.1016/j.jneumeth.2020.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
How rich functionality emerges from the rather invariant structural architecture of the peripheral autonomic nervous system remains one of the major mysteries in neuroscience. The high incidence of patients with neural circuit-related autonomic nervous system diseases highlights the importance of fundamental research, among others with neurotracing methods, into autonomic neuron functionality. Due to the emergence of neurotropic virus-based tracing techniques in recent years the access to neuronal connectivity in the peripheral autonomic nervous system has greatly been improved. This review is devoted to the anatomical distribution of neural circuits in the periphery of the autonomous nervous system and to the interaction between the autonomic nervous system and vital peripheral organs or tissues. The experimental evidence available at present has greatly expanded our understanding of autonomic peripheral nervous system neurons.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan 430071, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qian Wang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - HongBing Xiang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
6
|
Buresova J, Janovska P, Kuda O, Krizova J, der Stelt IRV, Keijer J, Hansikova H, Rossmeisl M, Kopecky J. Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: a role of pyruvate dehydrogenase. Int J Obes (Lond) 2018; 44:235-244. [PMID: 30538280 DOI: 10.1038/s41366-018-0281-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND/OBJECTIVE Adaptation to the extrauterine environment depends on a switch from glycolysis to catabolism of fatty acids (FA) provided as milk lipids. We sought to learn whether the postnatal induction of muscle FA oxidation in mice could reflect propensity to obesity and to characterize the mechanisms controlling this induction. METHODS Experiments were conducted using obesity-resistant A/J and obesity-prone C57BL/6J (B6) mice maintained at 30 °C, from 5 to 28 days after birth. At day 10, both A/J and B6 mice with genetic ablation (KO) of α2 subunit of AMP-activated protein kinase (AMPK) were also used. In skeletal muscle, expression of selected genes was determined using quantitative real-time PCR, and AMPK subunits content was evaluated using Western blotting. Activities of both AMPK and pyruvate dehydrogenase (PDH), as well as acylcarnitine levels in the muscle were measured. RESULTS Acylcarnitine levels and gene expression indicated transient increase in FA oxidation during the first 2 weeks after birth, with a stronger increase in A/J mice. These data correlated with (i) the surge in plasma leptin levels, which peaked at day 10 and was higher in A/J mice, and (ii) relatively low activity of PDH linked with up-regulation of PDH kinase 4 gene (Pdk4) expression in the 10-day-old A/J mice. In contrast with the Pdk4 expression, transient up-regulation of uncoupling protein 3 gene was observed in B6 but not A/J mice. AMPK activity changed during the development, without major differences between A/J and B6 mice. Expression of neither Pdk4 nor other muscle genes was affected by AMPK-KO. CONCLUSIONS Our results indicate a relatively strong postnatal induction of FA oxidation in skeletal muscle of the obesity-resistant A/J mice. This induction is transient and probably results from suppression of PDH activity, linked with a postnatal surge in plasma leptin levels, independent of AMPK.
Collapse
Affiliation(s)
- Jana Buresova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Krizova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Osman WNW, Mohamed S. Standardized Morinda citrifolia L. and Morinda elliptica L. leaf extracts alleviated fatigue by improving glycogen storage and lipid/carbohydrate metabolism. Phytother Res 2018; 32:2078-2085. [PMID: 29993148 DOI: 10.1002/ptr.6151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/13/2018] [Accepted: 06/16/2018] [Indexed: 12/30/2022]
Abstract
The antifatigue properties of Morinda elliptica (ME) leaf were compared with Morinda citrifolia (MC) leaf extracts. Sixty Balb/C mice were administered (N = 10): control water, standardized green tea extract (positive control 200 mg/kg body weight [BW]), either 200 or 400 mg MC/kg BW, or either 200 or 400 mg ME/kg BW). The mice performances, biochemical, and mRNA expressions were evaluated. After 6 weeks, the weight-loaded swimming time to exhaustion in the mice consuming 400 mg MC/kg, were almost five times longer than the control mice. The gene expressions analysis suggested the extracts enhanced performance by improving lipid catabolism, carbohydrate metabolism, electron transport, antioxidant responses, energy production, and tissue glycogen stores. The MC and ME extracts enhanced stamina by reducing blood lactate and blood urea nitrogen levels, increasing liver and muscle glycogen reserve through augmenting the glucose metabolism (glucose transporter type 4 and pyruvate dehydrogenase kinase 4), lipid catabolism (acyl-Coenzyme A dehydrogenases and fatty acid translocase), antioxidant (superoxide dismutase 2) defence responses, electron transport (COX4I2), and energy production (PGC1α, NRF1, NRF2, cytochrome C electron transport, mitochondrial transcription factor A, UCP1, and UCP3) biomarkers. The MC (containing scopoletin and epicatechin) was better than ME (containing only scopoletin) or green tea (containing epicatechin and GT catechins) for alleviating fatigue.
Collapse
Affiliation(s)
- Wan Nurfarahin Wan Osman
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Menendez JA, Lupu R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis 2017; 6:e299. [PMID: 28240737 PMCID: PMC5337623 DOI: 10.1038/oncsis.2017.4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023] Open
Abstract
Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in a biologically aggressive subset of sex steroid-related tumors, including breast carcinomas. Using pharmacological and genetic approaches, we assessed the molecular relationship between FASN signaling and estrogen receptor alpha (ERα) signaling in breast cancer. The small compound C75, a synthetic slow-binding inhibitor of FASN activity, induced a dramatic augmentation of estradiol (E2)-stimulated, ERα-driven transcription. FASN and ERα were both necessary for the synergistic activation of ERα transcriptional activity that occurred following co-exposure to C75 and E2: first, knockdown of FASN expression using RNAi (RNA interference) drastically lowered (>100 fold) the amount of E2 required for optimal activation of ERα-mediated transcriptional activity; second, FASN blockade synergistically increased E2-stimulated ERα-mediated transcriptional activity in ERα-negative breast cancer cells stably transfected with ERα, but not in ERα-negative parental cells. Non-genomic, E2-regulated cross-talk between the ERα and MAPK pathways participated in these phenomena. Thus, treatment with the pure antiestrogen ICI 182 780 or the potent and specific inhibitor of MEK/ERK, U0126, was sufficient to abolish the synergistic nature of the interaction between FASN blockade and E2-stimulated ERα transactivation. FASN inhibition suppressed E2-stimulated breast cancer cell proliferation and anchorage-independent colony formation while promoting the reduction of ERα protein. FASN blockade resulted in the increased expression and nuclear accumulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27Kip1, two critical mediators of the therapeutic effects of antiestrogen in breast cancer, while inactivating AKT, a key mediator of E2-promoted anchorage-independent growth. The ability of FASN to regulate E2/ERα signaling may represent a promising strategy for anticancer treatment involving a new generation of FASN inhibitors.
Collapse
Affiliation(s)
- J A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - R Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA
| |
Collapse
|
9
|
Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses. Food Chem 2016; 212:443-52. [PMID: 27374554 DOI: 10.1016/j.foodchem.2016.05.179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery.
Collapse
|
10
|
Lack of phosphatidylethanolamine N -methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:119-129. [DOI: 10.1016/j.bbalip.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/08/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
|
11
|
Coles CA. Adipokines in Healthy Skeletal Muscle and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:133-60. [DOI: 10.1007/978-3-319-27511-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
da Silva AI, Braz GRF, Silva-Filho R, Pedroza AA, Ferreira DS, Manhães de Castro R, Lagranha C. Effect of fluoxetine treatment on mitochondrial bioenergetics in central and peripheral rat tissues. Appl Physiol Nutr Metab 2015; 40:565-74. [DOI: 10.1139/apnm-2014-0462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent investigations have focused on the mitochondrion as a direct drug target in the treatment of metabolic diseases (obesity, metabolic syndrome). Relatively few studies, however, have explicitly investigated whether drug therapies aimed at changing behavior by altering central nervous system (CNS) function affect mitochondrial bioenergetics, and none has explored their effect during early neonatal development. The present study was designed to evaluate the effects of chronic treatment of newborn male rats with the selective serotonin reuptake inhibitor fluoxetine on the mitochondrial bioenergetics of the hypothalamus and skeletal muscle during the critical nursing period of development. Male Wistar rat pups received either fluoxetine (Fx group) or vehicle solution (Ct group) from the day of birth until 21 days of age. At 60 days of age, mitochondrial bioenergetics were evaluated. The Fx group showed increased oxygen consumption in several different respiratory states and reduced production of reactive oxygen species, but there was no change in mitochondrial permeability transition pore opening or oxidative stress in either the hypothalamus or skeletal muscle. We observed an increase in glutathione S-transferase activity only in the hypothalamus of the Fx group. Taken together, our results suggest that chronic exposure to fluoxetine during the nursing phase of early rat development results in a positive modulation of mitochondrial respiration in the hypothalamus and skeletal muscle that persists into adulthood. Such long-lasting alterations in mitochondrial activity in the CNS, especially in areas regulating appetite, may contribute to permanent changes in energy balance in treated animals.
Collapse
Affiliation(s)
- Aline Isabel da Silva
- Programa de Pós-Graduação em Nutrição, Departamento de Nutrição da Universidade Federal de Pernambuco, Recife, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Glauber Ruda Feitoza Braz
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Reginaldo Silva-Filho
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Anderson Apolonio Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Diorginis Soares Ferreira
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Raul Manhães de Castro
- Programa de Pós-Graduação em Nutrição, Departamento de Nutrição da Universidade Federal de Pernambuco, Recife, Brazil
| | - Claudia Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| |
Collapse
|
13
|
Makowski K, Mera P, Paredes D, Herrero L, Ariza X, Asins G, Hegardt FG, García J, Serra D. Differential pharmacologic properties of the two C75 enantiomers: (+)-C75 is a strong anorectic drug; (-)-C75 has antitumor activity. Chirality 2013; 25:281-7. [PMID: 23620264 DOI: 10.1002/chir.22139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/12/2012] [Indexed: 11/12/2022]
Abstract
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identifying it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential different biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that (-)-C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Collapse
Affiliation(s)
- Kamil Makowski
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The central administration of C75, a fatty acid synthase inhibitor, activates sympathetic outflow and thermogenesis in interscapular brown adipose tissue. Pflugers Arch 2013; 465:1687-99. [PMID: 23827961 DOI: 10.1007/s00424-013-1301-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
The present work investigated the participation of interscapular brown adipose tissue (IBAT), which is an important site for thermogenesis, in the anti-obesity effects of C75, a synthetic inhibitor of fatty acid synthase (FAS). We report that a single intracerebroventricular (i.c.v.) injection of C75 induced hypophagia and weight loss in fasted male Wistar rats. Furthermore, C75 induced a rapid increase in core body temperature and an increase in heat dissipation. In parallel, C75 stimulated IBAT thermogenesis, which was evidenced by a marked increase in the IBAT temperature that preceded the rise in the core body temperature and an increase in the mRNA levels of uncoupling protein-1. As with C75, an i.c.v. injection of cerulenin, a natural FAS inhibitor, increased the core body and IBAT temperatures. The sympathetic IBAT denervation attenuated all of the thermoregulatory effects of FAS inhibitors as well as the C75 effect on weight loss and hypophagia. C75 induced the expression of Fos in the paraventricular nucleus, preoptic area, dorsomedial nucleus, ventromedial nucleus, and raphé pallidus, all of which support a central role of FAS in regulating IBAT thermogenesis. These data indicate a role for IBAT in the increase in body temperature and hypophagia that is induced by FAS inhibitors and suggest new mechanisms explaining the weight loss induced by these compounds.
Collapse
|
15
|
Xiang HB, Zhu WZ, Guan XH, Ye DW. The cuneiform nucleus may be involved in the regulation of skeletal muscle tone by motor pathway: a virally mediated trans-synaptic tracing study in surgically sympathectomized mice. ACTA ACUST UNITED AC 2013; 136:e251. [PMID: 23771341 DOI: 10.1093/brain/awt123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hong-Bing Xiang
- 1 Department of Anaesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Transcriptional Regulation by Nuclear Corepressors and PGC-1α: Implications for Mitochondrial Quality Control and Insulin Sensitivity. PPAR Res 2012; 2012:348245. [PMID: 23304112 PMCID: PMC3523614 DOI: 10.1155/2012/348245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/06/2012] [Accepted: 11/13/2012] [Indexed: 02/07/2023] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptor (ERRα) are ligand-activated nuclear receptors that coordinately regulate gene expression. Recent evidence suggests that nuclear corepressors, NCoR, RIP140, and SMRT, repress nuclear receptors-mediated transcriptional activity on specific promoters, and thus regulate insulin sensitivity, adipogenesis, mitochondrial number, and activity in vivo. Moreover, the coactivator PGC-1α that increases mitochondrial biogenesis during exercise and calorie restriction directly regulates autophagy in skeletal muscle and mitophagy in the pathogenesis of Parkinson's disease. In this paper, we discuss the PGC-1α's novel role in mitochondrial quality control and the role of nuclear corepressors in regulating insulin sensitivity and interacting with PGC-1α.
Collapse
|
17
|
Minokoshi Y, Toda C, Okamoto S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J Endocrinol Metab 2012; 16:S562-S568. [PMID: 23565491 PMCID: PMC3602985 DOI: 10.4103/2230-8210.105573] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulation of food intake, energy expenditure, and neuroendocrine function. Several lines of evidences indicate that independent of the anorexic effect, leptin regulates glucose and lipid metabolism in peripheral tissues in rodents and humans. It has been shown that leptin improves the diabetes phenotype in lipodystrophic patients and rodents. Moreover, leptin suppresses the development of severe, progressive impairment of glucose metabolism in insulin-deficient diabetes in rodents. We found that leptin increases glucose uptake and fatty acid oxidation in skeletal muscle in rats and mice in vivo. Leptin increases glucose uptake in skeletal muscle via the hypothalamic-sympathetic nervous system axis and β-adrenergic mechanism, while leptin stimulates fatty acid oxidation in muscle via AMP-activated protein kinase (AMPK). Leptin-induced fatty acid oxidation results in the decrease of lipid accumulation in muscle, which can lead to functional impairments called as "lipotoxicity." Activation of AMPK occurs by direct action of leptin on muscle and through the medial hypothalamus-sympathetic nervous system and α-adrenergic mechanism. Thus, leptin plays an important role in the regulation of glucose and fatty acid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi - 444-8787, Japan
| | - Chitoku Toda
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi - 444-8787, Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi - 444-8787, Japan
| |
Collapse
|
18
|
Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism. PLoS One 2012; 7:e41503. [PMID: 22911803 PMCID: PMC3404019 DOI: 10.1371/journal.pone.0041503] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023] Open
Abstract
Rodent experiments have emphasized a role of central fatty acid (FA) species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF) and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT) followed by measurements of 24 hour (24EE) and sleep energy expenditure (SLEEP) as well as respiratory quotient (RQ) in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid) concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16∶1, C18∶1) and very-long-chain saturated (C24∶0, C26∶0) FAs. Conclusions: Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.
Collapse
|
19
|
Tokutake Y, Iio W, Onizawa N, Ogata Y, Kohari D, Toyoda A, Chohnan S. Effect of diet composition on coenzyme A and its thioester pools in various rat tissues. Biochem Biophys Res Commun 2012; 423:781-4. [PMID: 22713453 DOI: 10.1016/j.bbrc.2012.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Three coenzyme A (CoA) molecular species, i.e., acetyl-CoA, malonyl-CoA, and nonesterified CoA (CoASH), in 13 types of fasted rat tissue were analyzed. A relatively larger pool size of total CoA, consisting of acetyl-CoA, malonyl-CoA, and CoASH, was observed in the medulla oblongata, liver, heart, and brown adipose tissue. Focusing on changes in the CoA pool size in response to the nutrient composition of the diet given, total CoA pools in rats continuously fed a high-fat diet for 4 weeks were significantly higher in the hypothalamus, cerebellum, and kidney, and significantly lower in the liver and skeletal muscle than those of rats fed a high-carbohydrate or high-protein diet. In particular, reductions in the liver were remarkable and were caused by decreased CoASH levels. Consequently, the total CoA pool size was reduced by approximately one-fifth of the hepatic contents of rats fed the other diets. In the hypothalamus, which monitors energy balance, all three CoA molecular species measured were at higher levels when rats were fed the high-fat diet. Thus, it was of interest that feeding rats a high-fat diet affected the behaviors of CoA pools in the hypothalamus, liver, and skeletal muscle, suggesting a significant relationship between CoA pools, especially malonyl-CoA and/or CoASH pools, and lipid metabolism in vivo.
Collapse
Affiliation(s)
- Yuka Tokutake
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Bento-Santos A, Silveira LDR, Manhães-de-Castro R, Leandro CG. Desnutrição perinatal e o controle hipotalâmico do comportamento alimentar e do metabolismo do músculo esquelético. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000300010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A deficiência de nutrientes durante os períodos críticos do desenvolvimento tem sido associada com maior risco para desenvolver obesidade e diabetes Mellitus na vida adulta. Um dos mecanismos propostos refere-se à regulação do comportamento alimentar e às alterações do metabolismo energético do músculo esquelético. Recentemente, tem sido proposta a existência de uma comunicação entre o hipotálamo e o músculo esquelético a partir de sinais autonômicos que podem explicar as repercussões da desnutrição perinatal. Assim, esta revisão tem como objetivo discutir as repercussões da desnutrição perinatal sobre o comportamento alimentar e o metabolismo energético muscular e a comunicação existente entre o hipotálamo e o músculo via sinais adrenérgicos. Foram utilizadas as bases de dados MedLine/PubMed, Lilacs e Bireme, com publicações entre 2000 e 2011. Os termos de indexação utilizados foram: feeding behavior, energy metabolism, protein malnutrition, developmental plasticity, skeletal muscle e autonomic nervous system. Concluiu-se que a desnutrição perinatal pode atuar no controle hipotalâmico do comportamento alimentar e no metabolismo energético muscular, e a comunicação hipotálamo-músculo pode favorecer o desenvolvimento de obesidade e comorbidades durante o desenvolvimento.
Collapse
|
21
|
Lee JW, Choe SS, Jang H, Kim J, Jeong HW, Jo H, Jeong KH, Tadi S, Park MG, Kwak TH, Man Kim J, Hyun DH, Kim JB. AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. J Lipid Res 2012; 53:1277-86. [PMID: 22493094 DOI: 10.1194/jlr.m022897] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we demonstrate that activation of AMP-activated protein kinase (AMPK) with glabridin alleviates adiposity and hyperlipidemia in obesity. In several obese rodent models, glabridin decreased body weight and adiposity with a concomitant reduction in fat cell size. Further, glabridin ameliorated fatty liver and plasma levels of triglyceride and cholesterol. In accordance with these findings, glabridin suppressed the expression of lipogenic genes such as sterol regulatory element binding transcription factor (SREBP)-1c, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase (SCD)-1 in white adipose tissues and liver, whereas it elevated the expression of fatty acid oxidation genes such as carnitine palmitoyl transferase (CPT)1, acyl-CoA oxidase (ACO), and peroxisome proliferator-activated receptor (PPAR)α in muscle. Moreover, glabridin enhanced phosphorylation of AMPK in muscle and liver and promoted fatty acid oxidation by modulating mitochondrial activity. Together, these data suggest that glabridin is a novel AMPK activator that would exert therapeutic effects in obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Joo-Won Lee
- Department of Biophysics and Chemical Biology, School of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K, Veech RL. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J 2012; 26:2351-62. [PMID: 22362892 DOI: 10.1096/fj.11-200410] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We measured the effects of a diet in which D-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [(18)F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Cachexia is a metabolic syndrome that manifests with excessive weight loss and disproportionate muscle wasting. It is related to many different chronic diseases, such as cancer, infections, liver disease, inflammatory bowel disease, cardiac disease, chronic obstructive pulmonary disease, chronic renal failure and rheumatoid arthritis. Cachexia is linked with poor outcome for the patients. In this article, we explore the role of the hypothalamus, liver, muscle tissue and adipose tissue in the pathogenesis of this syndrome, particularly concentrating on the role of cytokines, hormones and cell energy-controlling pathways (such as AMPK, PI3K/Akt and mTOR). We also look at possible future directions for therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Briggs
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Anil Dhawan
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
24
|
Reamy AA, Wolfgang MJ. Carnitine palmitoyltransferase-1c gain-of-function in the brain results in postnatal microencephaly. J Neurochem 2011; 118:388-98. [PMID: 21592121 DOI: 10.1111/j.1471-4159.2011.07312.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Carnitine palmitoyltransferase-1c (CPT1c) is a newly identified and poorly understood brain-specific CPT1 homologue. Here, we have generated a new animal model that allows the conditional expression of CPT1c in a tissue specific and/or temporal manner via Cre-lox mediated recombination. Brain-specific, exogenous expression of CPT1c was achieved by crossing transgenic CPT1c mice to Nestin-Cre mice. The resulting double transgenic mice (CPT1c-TgN) displayed severe growth retardation in the postnatal period with a stunted development at 2 weeks of age. CPT1c-TgN mice had a greater than 2.3-fold reduction in brain weight. Even with this degree of microencephaly, CPT1c-TgN mice were viable and fertile and exhibited normal post-weaning growth. When fed a high fat diet CPT1c-TgN mice were protected from weight gain and the difference in body weight between CPT1c-TgN and control mice was further exaggerated. Conversely, low fat, high carbohydrate feeding partially reversed the body weight defects in CPT1c-TgN mice. Analysis of total brain lipids of low fat fed mice revealed a depletion of total very long chain fatty acids in adult CPT1c-TgN mice which was not evident in high fat fed CPT1c-TgN mice. These data show that CPT1c can elicit profound effects on brain physiology and total fatty acid profiles, which can be modulated by the nutritional composition of the diet.
Collapse
Affiliation(s)
- Amanda A Reamy
- Center for Metabolism and Obesity Research, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
25
|
Abstract
Metabolic integration of nutrient sensing in the central nervous system has been shown to be an important regulator of adiposity by affecting food intake and peripheral energy expenditure. Modulation of de novo fatty acid synthetic flux by cytokines and nutrient availability plays an important role in this process. Inhibition of hypothalamic fatty acid synthase by pharmacologic or genetic means leads to an increased malonyl-CoA level and suppression of food intake and adiposity. Conversely, the ectopic expression of malonyl-CoA decarboxylase in the hypothalamus is sufficient to promote feeding and adiposity. Based on these and other findings, metabolic intermediates in fatty acid biogenesis, including malonyl-CoA and long-chain acyl-CoAs, have been implicated as signaling mediators in the central control of body weight. Malonyl-CoA has been hypothesized to mediate its effects in part through an allosteric interaction with an atypical and brain-specific carnitine palmitoyltransferase-1 (CPT1c). CPT1c is expressed in neurons and binds malonyl-CoA, however, it does not perform the same biochemical function as the prototypical CPT1 enzymes. Mouse knockout models of CPT1c exhibit suppressed food intake and smaller body weight, but are highly susceptible to weight gain when fed a high-fat diet. Thus, the brain can directly sense and respond to changes in nutrient availability and composition to affect body weight and adiposity.
Collapse
Affiliation(s)
- Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
26
|
Seebacher F, Brand MD, Else PL, Guderley H, Hulbert AJ, Moyes CD. Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 2010; 83:721-32. [PMID: 20586603 DOI: 10.1086/649964] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Converting food to chemical energy (ATP) that is usable by cells is a principal requirement to sustain life. The rate of ATP production has to be sufficient for housekeeping functions, such as protein synthesis and maintaining membrane potentials, as well as for growth and locomotion. Energy metabolism is temperature sensitive, and animals respond to environmental variability at different temporal levels, from within-individual to evolutionary timescales. Here we review principal molecular mechanisms that underlie control of oxidative ATP production in response to climate variability. Nuclear transcription factors and coactivators control expression of mitochondrial proteins and abundance of mitochondria. Fatty acid and phospholipid concentrations of membranes influence the activity of membrane-bound proteins as well as the passive leak of protons across the mitochondrial membrane. Passive proton leak as well as protein-mediated proton leak across the inner mitochondrial membrane determine the efficacy of ATP production but are also instrumental in endothermic heat production and as a defense against reactive oxygen species. Both transcriptional mechanisms and membrane composition interact with environmental temperature and diet, and this interaction between diet and temperature in determining mitochondrial function links the two major environmental variables that are affected by changing climates. The limits to metabolic plasticity could be set by the production of reactive oxygen species leading to cellular damage, limits to substrate availability in mitochondria, and a disproportionally large increase in proton leak over ATP production.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Coenzyme A and its thioester pools in fasted and fed rat tissues. Biochem Biophys Res Commun 2010; 402:158-62. [PMID: 20933504 DOI: 10.1016/j.bbrc.2010.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
Abstract
Levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in fasted and fed rat tissues were analyzed by the acyl-CoA cycling method which makes detection possible at the pmol level. Malonyl-CoA in brain tissues readily increased with feeding, and inversely, acetyl-CoA decreased. This phenomenon occurred in the cerebral cortex, hippocampus, cerebellum, and medulla oblongata, as well as in the hypothalamus which controls energy balance by monitoring malonyl-CoA. In the non-brain tissues, the sizes of the acetyl-CoA, malonyl-CoA, and CoASH pools depended on the tissues. The total CoA pools consisting of the above three CoA species in the liver, heart, and brown adipose tissue were larger and those of the perirenal, epididymal, and ovarian adipose tissues were much smaller, compared with those of other tissues including brain tissues. In addition, the response of each CoA pool to feeding was not uniform, suggesting that the tissue-specific metabolism individually functions in the non-brain tissues. Thus, a comprehensive analysis of thirteen types of rat tissue revealed that CoA pools have different sizes and showed a different response to fasting and feeding depending on the tissue.
Collapse
|
28
|
O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci U S A 2010; 107:17797-802. [PMID: 20876116 DOI: 10.1073/pnas.1001907107] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The failing heart is subject to elevated metabolic demands, adverse remodeling, chronic apoptosis, and ventricular dysfunction. The interplay among such pathologic changes is largely unknown. Several laboratories have identified a unique posttranslational modification that may have significant effects on cardiovascular function. The O-linked β-N-acetylglucosamine (O-GlcNAc) posttranslational modification (O-GlcNAcylation) integrates glucose metabolism with intracellular protein activity and localization. Because O-GlcNAc is derived from glucose, we hypothesized that altered O-GlcNAcylation would occur during heart failure and figure prominently in its pathophysiology. After 5 d of coronary ligation in WT mice, cardiac O-GlcNAc transferase (OGT; which adds O-GlcNAc to proteins) and levels of O-GlcNAcylation were significantly (P < 0.05) elevated in the surviving remote myocardium. We used inducible, cardiac myocyte-specific Cre recombinase transgenic mice crossed with loxP-flanked OGT mice to genetically delete cardiomyocyte OGT (cmOGT KO) and ascertain its role in the failing heart. After tamoxifen induction, cardiac O-GlcNAcylation of proteins and OGT levels were significantly reduced compared with WT, but not in other tissues. WT and cardiomyocyte OGT KO mice underwent nonreperfused coronary ligation and were followed for 4 wk. Although OGT deletion caused no functional change in sham-operated mice, OGT deletion in infarcted mice significantly exacerbated cardiac dysfunction compared with WT. These data provide keen insights into the pathophysiology of the failing heart and illuminate a previously unrecognized point of integration between metabolism and cardiac function in the failing heart.
Collapse
|
29
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
30
|
Lopaschuk GD, Ussher JR, Jaswal JS. Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite. Pharmacol Rev 2010; 62:237-64. [PMID: 20392806 DOI: 10.1124/pr.109.002428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fatty acids by fatty acid synthase, or converted back to acetyl-CoA by malonyl CoA decarboxylase. Increased hypothalamic malonyl CoA is an indicator of energy surplus, resulting in a decrease in food intake and an increase in energy expenditure. In contrast, a decrease in hypothalamic malonyl CoA signals an energy deficit, resulting in an increased appetite and a decrease in body energy expenditure. A number of hormonal and neural orexigenic and anorexigenic signaling pathways have now been shown to be associated with changes in malonyl CoA levels in the arcuate nucleus (ARC) of the hypothalamus. Despite compelling evidence that malonyl CoA is an important mediator in the hypothalamic ARC control of food intake and regulation of energy balance, the mechanism(s) by which this occurs has not been established. Malonyl CoA inhibits carnitine palmitoyltransferase-1 (CPT-1), and it has been proposed that the substrate of CPT-1, long-chain acyl CoA(s), may act as a mediator(s) of appetite and energy balance. However, recent evidence has challenged the role of long-chain acyl CoA(s) in this process, as well as the involvement of CPT-1 in hypothalamic malonyl CoA signaling. A better understanding of how malonyl CoA regulates energy balance should provide novel approaches to targeting intermediary metabolism in the hypothalamus as a mechanism to control appetite and body weight. Here, we review the data supporting an important role for malonyl CoA in mediating hypothalamic control of energy balance, and recent evidence suggesting that targeting malonyl CoA synthesis or degradation may be a novel approach to favorably modify appetite and weight gain.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- 423 Heritage Medical Research Center, University of Alberta, Edmonton, Canada T6G2S2.
| | | | | |
Collapse
|
31
|
Roman EAFR, Reis D, Romanatto T, Maimoni D, Ferreira EA, Santos GA, Torsoni AS, Velloso LA, Torsoni MA. Central leptin action improves skeletal muscle AKT, AMPK, and PGC1 alpha activation by hypothalamic PI3K-dependent mechanism. Mol Cell Endocrinol 2010; 314:62-9. [PMID: 19698760 DOI: 10.1016/j.mce.2009.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 08/01/2009] [Accepted: 08/11/2009] [Indexed: 02/03/2023]
Abstract
Central leptin action requires PI3K activity to modulate glucose homeostasis and peripheral metabolism. However, the mechanism behind this phenomenon is not clearly understood. We hypothesize that hypothalamic PI3K activity is important for the modulation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway, PGC1 alpha, and AKT in skeletal muscle (SM). To address this issue, we injected leptin into the lateral ventricle of rats. Hypothalamic JAK2 and AKT were activated by intracerebroventricular (ICV) injection of leptin in a time-dependent manner. Central leptin improved tolerance to glucose (GTT), increased PGC1 alpha expression, and AKT, AMPK, ACC and JAK2 phosphorylation in the soleus muscle. Previous ICV administration of either LY294002 or propranolol (IP) blocked these effects. We concluded that the activation of the hypothalamic PI3K pathway is important for leptin-induced AKT phosphorylation, as well as for active catabolic pathway through AMPK and PGC1 alpha in SM. Thus, a defective leptin signalling PI3K pathway in the hypothalamus may contribute to peripheral resistance to insulin associated to diet-induced obesity.
Collapse
Affiliation(s)
- Erika A F R Roman
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Roth RJ, Le AM, Zhang L, Kahn M, Samuel VT, Shulman GI, Bennett AM. MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. J Clin Invest 2009; 119:3817-29. [PMID: 19920356 DOI: 10.1172/jci39054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 09/23/2009] [Indexed: 02/06/2023] Open
Abstract
Oxidative myofibers, also known as slow-twitch myofibers, help maintain the metabolic health of mammals, and it has been proposed that decreased numbers correlate with increased risk of obesity. The transcriptional coactivator PPARgamma coactivator 1alpha (PGC-1alpha) plays a central role in maintaining levels of oxidative myofibers in skeletal muscle. Indeed, loss of PGC-1alpha expression has been linked to a reduction in the proportion of oxidative myofibers in the skeletal muscle of obese mice. MAPK phosphatase-1 (MKP-1) is encoded by mkp-1, a stress-responsive immediate-early gene that dephosphorylates MAPKs in the nucleus. Previously we showed that mice deficient in MKP-1 have enhanced energy expenditure and are resistant to diet-induced obesity. Here we show in mice that excess dietary fat induced MKP-1 overexpression in skeletal muscle, and that this resulted in reduced p38 MAPK-mediated phosphorylation of PGC-1alpha on sites that promoted its stability. Consistent with this, MKP-1-deficient mice expressed higher levels of PGC-1alpha in skeletal muscle than did wild-type mice and were refractory to the loss of oxidative myofibers when fed a high-fat diet. Collectively, these data demonstrate an essential role for MKP-1 as a regulator of the myofiber composition of skeletal muscle and suggest a potential role for MKP-1 in metabolic syndrome.
Collapse
Affiliation(s)
- Rachel J Roth
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Martínez de Morentin PB, Varela L, Fernø J, Nogueiras R, Diéguez C, López M. Hypothalamic lipotoxicity and the metabolic syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:350-61. [PMID: 19796707 DOI: 10.1016/j.bbalip.2009.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 02/08/2023]
Abstract
Ectopic accumulation of lipids in peripheral tissues, such as pancreatic beta cells, liver, heart and skeletal muscle, leads to lipotoxicity, a process that contributes substantially to the pathophysiology of insulin resistance, type 2 diabetes, steatotic liver disease and heart failure. Current evidence has demonstrated that hypothalamic sensing of circulating lipids and modulation of hypothalamic endogenous fatty acid and lipid metabolism are two bona fide mechanisms modulating energy homeostasis at the whole body level. Key enzymes, such as AMP-activated protein kinase (AMPK) and fatty acid synthase (FAS), as well as intermediate metabolites, such as malonyl-CoA and long-chain fatty acids-CoA (LCFAs-CoA), play a major role in this neuronal network, integrating peripheral signals with classical neuropeptide-based mechanisms. However, one key question to be addressed is whether impairment of lipid metabolism and accumulation of specific lipid species in the hypothalamus, leading to lipotoxicity, have deleterious effects on hypothalamic neurons. In this review, we summarize what is known about hypothalamic lipid metabolism with focus on the events associated to lipotoxicity, such as endoplasmic reticulum (ER) stress in the hypothalamus. A better understanding of these molecular mechanisms will help to identify new drug targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Pablo B Martínez de Morentin
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela, A Coruña, 15782, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Ussher JR, Koves TR, Jaswal JS, Zhang L, Ilkayeva O, Dyck JR, Muoio DM, Lopaschuk GD. Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase. Diabetes 2009; 58:1766-75. [PMID: 19478144 PMCID: PMC2712785 DOI: 10.2337/db09-0011] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD(-/-); an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD(-/-) mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/- insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat-fed WT mice (167 +/- 31 vs. 734 +/- 125; P < 0.05). MCD(-/-) mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 +/- 82 vs. 167 +/- 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD(-/-) mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 +/- 3.72 vs. 3.29 +/- 0.62 mumol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity.
Collapse
Affiliation(s)
- John R. Ussher
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | - Timothy R. Koves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina
| | - Jagdip S. Jaswal
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | - Liyan Zhang
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina
| | - Jason R.B. Dyck
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | - Deborah M. Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina
| | - Gary D. Lopaschuk
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
- Corresponding author: Gary D. Lopaschuk,
| |
Collapse
|
35
|
Regulation of fatty acid oxidation in chicken (Gallus gallus): Interactions between genotype and diet composition. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:171-7. [DOI: 10.1016/j.cbpb.2009.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 12/22/2022]
|
36
|
Gao XF, Chen W, Kong XP, Xu AM, Wang ZG, Sweeney G, Wu D. Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia 2009; 52:912-20. [PMID: 19224198 DOI: 10.1007/s00125-009-1284-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/12/2009] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Carnitine palmitoyltransferase-1 (CPT1)c is a novel isoform in the CPT1 family and is found specifically in the brain. Cpt1c knockout (KO) mice are more susceptible to high-fat diet (HFD)-induced obesity. However, the underlying mechanism of this phenotype and the question of whether CPT1c is involved in the pathogenesis of diet-induced insulin resistance are unclear. METHODS To assess the potential role of CPT1c in the regulation of whole-body glucose homeostasis, we generated Cpt1c KO mice and challenged them with HFD or standard chow. Glucose homeostasis of each group was assessed weekly. RESULTS After 8 weeks of HFD feeding, Cpt1c KO mice developed a phenotype of more severe insulin resistance than that in wild-type controls. The increased susceptibility of Cpt1c KO mice to HFD-induced insulin resistance was independent of obesity. Impaired glucose tolerance in Cpt1c KO mice was attributable to elevated hepatic gluconeogenesis and decreased glucose uptake in skeletal muscle. These effects correlated with decreased hepatic and intramuscular fatty acid oxidation and expression of oxidative genes as well as with elevated triacylglycerol content in these tissues. Interestingly, Cpt1c deletion caused a specific elevation of hypothalamic CPT1a and CPT1b isoform expression and activity. We demonstrated that elevated plasma NEFA concentration is one mechanism via which this compensatory effect is induced. CONCLUSIONS/INTERPRETATION These results further establish the role of CPT1c in controlling whole-body glucose homeostasis and in the regulation of hypothalamic Cpt1 isoform expression. We identify changes in hepatic and skeletal muscle glucose metabolism as important mechanisms determining the phenotype of Cpt1c KO mice.
Collapse
Affiliation(s)
- X F Gao
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Lane MD, Wolfgang M, Cha SH, Dai Y. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond) 2009; 32 Suppl 4:S49-54. [PMID: 18719599 DOI: 10.1038/ijo.2008.123] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Energy balance is monitored by the hypothalamus. Malonyl-CoA, an intermediate in fatty acid synthesis, serves as an indicator of energy status in the hypothalamic neurons. The cellular malonyl-CoA level is determined by its rate of synthesis, catalyzed by acetyl-CoA carboxylase (ACC), and rate of removal, by fatty acid synthase (FAS). Malonyl-CoA functions in the hypothalamic neurons that express orexigenic and anorexigenic neuropeptides. Inhibitors of FAS, administered systemically or intracerebroventricularly to mice, increase hypothalamic malony-CoA and suppress food intake. Recent evidence suggests that the changes of hypothalamic malonyl-CoA during feeding and fasting cycles are caused by changes in the phosphorylation state and activity of ACC mediated via 5'-AMP-activated protein kinase (AMPK). Stereotactic delivery of a viral malonyl-CoA decarboxylase (MCD) vector into the ventral hypothalamus lowers malonyl-CoA and increases food intake. Fasting decreases hypothalamic malonyl-CoA and refeeding increases hypothalamic malonyl-CoA, to alter feeding behavior in the predicted manner. Malonyl-CoA level is under the control of AMP kinase which phosphorylates/inactivates ACC. Malonyl-CoA is an inhibitor of carnitine palmitoyl-CoA transferase-1 (CPT1), an outer mitochondrial membrane enzyme that regulates entry into, and oxidation of fatty acids, by mitochondria. CPT1c, a recently discovered, brain-specific enzyme expressed in the hypothalamus, has high sequence similarity to liver/muscle CPT1a/b and binds malonyl-CoA, but does not catalyze the prototypical reaction. This suggests that CPT1c has a unique function or activation mechanism. CPT1c knockout (KO) mice have lower food intake, weigh less and have less body fat, consistent with the role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c protects against the effects of a high-fat diet. CPT1cKO mice exhibit decreased rates of fatty acid oxidation, consistent with their increased susceptibility to diet-induced obesity. We suggest that CPT1c may be a downstream target of malonyl-CoA that regulates energy homeostasis.
Collapse
Affiliation(s)
- M D Lane
- Department of Biological Chemistry, Johns Hopkins University Medical School, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
38
|
Kim WS, Lee YS, Cha SH, Jeong HW, Choe SS, Lee MR, Oh GT, Park HS, Lee KU, Lane MD, Kim JB. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am J Physiol Endocrinol Metab 2009; 296:E812-9. [PMID: 19176354 DOI: 10.1152/ajpendo.90710.2008] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) plays an important role in regulating whole body energy homeostasis. Recently, it has been demonstrated that berberine (BBR) exerts antiobesity and antidiabetic effects in obese and diabetic rodent models through the activation of AMPK in peripheral tissues. Here we show that BBR improves lipid dysregulation and fatty liver in obese mice through central and peripheral actions. In obese db/db and ob/ob mice, BBR treatment reduced liver weight, hepatic and plasma triglyceride, and cholesterol contents. In the liver and muscle of db/db mice, BBR promoted AMPK activity and fatty acid oxidation and changed expression of genes involved in lipid metabolism. Additionally, intracerebroventricular administration of BBR decreased the level of malonyl-CoA and stimulated the expression of fatty acid oxidation genes in skeletal muscle. Together, these data suggest that BBR would improve fatty liver in obese subjects, which is probably mediated not only by peripheral AMPK activation but also by neural signaling from the central nervous system.
Collapse
Affiliation(s)
- Woo Sik Kim
- Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, San 56-1, Sillim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Rossi Fanelli F, Seelaender M. Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab 2008; 295:E1000-8. [PMID: 18713954 DOI: 10.1152/ajpendo.90252.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anorexia-cachexia syndrome is a debilitating clinical condition characterizing the course of chronic diseases, which heavily impacts on patients' morbidity and quality of life, ultimately accelerating death. The pathogenesis is multifactorial and reflects the complexity and redundancy of the mechanisms controlling energy homeostasis under physiological conditions. Accumulating evidence indicates that, during disease, disturbances of the hypothalamic pathways controlling energy homeostasis occur, leading to profound metabolic changes in peripheral tissues. In particular, the hypothalamic melanocortin system does not respond appropriately to peripheral inputs, and its activity is diverted largely toward the promotion of catabolic stimuli (i.e., reduced energy intake, increased energy expenditure, possibly increased muscle proteolysis, and adipose tissue loss). Hypothalamic proinflammatory cytokines and serotonin, among other factors, are key in triggering hypothalamic resistance. These catabolic effects represent the central response to peripheral challenges (i.e., growing tumor, renal, cardiac failure, disrupted hepatic metabolism) that are likely sensed by the brain through the vagus nerve. Also, disease-induced changes in fatty acid oxidation within hypothalamic neurons may contribute to the dysfunction of the hypothalamic melanocortin system. Ultimately, sympathetic outflow mediates, at least in part, the metabolic changes in peripheral tissues. Other factors are likely involved in the pathogenesis of the anorexia-cachexia syndrome, and their role is currently being elucidated. However, available evidence shows that the constellation of symptoms characterizing this syndrome should be considered, at least in part, as different phenotypes of common neurochemical/metabolic alterations in the presence of a chronic inflammatory state.
Collapse
Affiliation(s)
- Alessandro Laviano
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a "futile" cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the "vital" cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids are in fact key signaling molecules whose production is closely linked to GL/FFA cycling processes. The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed. We also review the different enzymatic and transport steps that encompass the GL/FFA cycle leading to the generation of several metabolic signals possibly implicated in the regulation of biological processes ranging from energy homeostasis, insulin secretion and appetite control to aging and longevity. Finally, we present a perspective of the possible therapeutic implications of targeting this cycling.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
41
|
Li LF, Lu YY, Xiong W, Liu JY, Chen Q. Effect of centrally administered C75, a fatty acid synthase inhibitor, on gastric emptying and gastrointestinal transit in mice. Eur J Pharmacol 2008; 595:90-4. [DOI: 10.1016/j.ejphar.2008.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 07/05/2008] [Accepted: 07/22/2008] [Indexed: 12/14/2022]
|
42
|
López-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol 2008; 43:813-9. [PMID: 18662766 PMCID: PMC2562606 DOI: 10.1016/j.exger.2008.06.014] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 02/09/2023]
Abstract
Aging is associated with an overall loss of function at the level of the whole organism that has origins in cellular deterioration. Most cellular components, including mitochondria, require continuous recycling and regeneration throughout the lifespan. Mitochondria are particularly susceptive to damage over time as they are the major bioenergetic machinery and source of oxidative stress in cells. Effective control of mitochondrial biogenesis and turnover, therefore, becomes critical for the maintenance of energy production, the prevention of endogenous oxidative stress and the promotion of healthy aging. Multiple endogenous and exogenous factors regulate mitochondrial biogenesis through the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Activators of PGC-1alpha include nitric oxide, CREB and AMPK. Calorie restriction (CR) and resveratrol, a proposed CR mimetic, also increase mitochondrial biogenesis through activation of PGC-1alpha. Moderate exercise also mimics CR by inducing mitochondrial biogenesis. Negative regulators of PGC-1alpha such as RIP140 and 160MBP suppress mitochondrial biogenesis. Another mechanism involved in mitochondrial maintenance is mitochondrial fission/fusion and this process also involves an increasing number of regulatory proteins. Dysfunction of either biogenesis or fission/fusion of mitochondria is associated with diseases of the neuromuscular system and aging, and a greater understanding of the regulation of these processes should help us to ultimately control the aging process.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Pablo M. Irusta
- Department of Human Science, Georgetown University Medical Center, Georgetown University, Washington, D.C., USA
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Acetyl-CoA carboxylase and fatty acid synthase activities in human hypothalamus. Neurosci Lett 2008; 444:209-11. [PMID: 18760332 DOI: 10.1016/j.neulet.2008.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/24/2008] [Accepted: 08/17/2008] [Indexed: 11/22/2022]
Abstract
Several data indicate that hypothalamic fatty acid synthesis pathway plays an important role in the control of food intake and energy expenditure in rodents. However, the confirmation of its physiological relevance in regulation of feeding in human remains incomplete. For fatty acid synthesis pathway to function as regulator of energy balance in human hypothalamus, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and other lipogenic enzymes activities must be present. The presence of FAS in human hypothalamic neurons has been shown by immunohistochemistry, but quantitative studies on FAS activity there has not been performed so far. There is no available data concerning ACC activity in human hypothalamus. Thus, we investigated ACC and FAS (as well as other lipogenic enzymes) activities in human hypothalamus of subjects who died in car accidents. The results presented in this paper indicate that ACC and FAS activities are present in human hypothalamus and that these activities are 2- to 3-fold lower than in rat hypothalamus. Moreover, our data presented in this paper indicate that other lipogenic enzymes activities are also present in human hypothalamus. The activity of FAS, ACC and other lipogenic enzymes in human hypothalamus suggests that fatty acid synthesis actively occurs there. Therefore, it is likely, that in human this pathway may be relevant to hypothalamic functioning as food intake and energy expenditure regulator, similarly as it was suggested in rodents.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To revise current available information related to the role of brain lipogenic pathways in the regulation of energy homeostasis. RECENT FINDINGS The 'classical' hypothalamic neuropeptide view of feeding regulation has been extensively reviewed and revised during the past few years. Accumulating evidence indicates that the modulation of lipogenesis de novo in the hypothalamus, through selective pharmacologic and genetic manipulation of acetyl-CoA carboxylase, AMP-activated protein kinase, carnitine palmitoyltransferase 1, fatty acid synthase and malonyl-CoA decarboxylase enzymes, has a severe impact on food intake and body weight homeostasis. Furthermore, as these manipulations alter the hypothalamic pool of lipids, such as malonyl-CoA or long chain fatty acyl-CoA or both, the concept of lipids as signals of nutrient abundance able to modulate feeding in the hypothalamus has recently re-emerged. SUMMARY In this review, we summarize what is known about brain lipogenesis and energy balance and propose further avenues of research. Defining these novel mechanisms could offer new targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
45
|
Wolfgang MJ, Cha SH, Millington DS, Cline G, Shulman GI, Suwa A, Asaumi M, Kurama T, Shimokawa T, Lane MD. Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight. J Neurochem 2008; 105:1550-9. [PMID: 18248603 PMCID: PMC3888516 DOI: 10.1111/j.1471-4159.2008.05255.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of carnitine palmitoyl-transferase 1 (CPT1), a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c knockout (KO) mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than wild-type littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation.
Collapse
Affiliation(s)
- Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Seung Hun Cha
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David S. Millington
- Duke University Medical Center, Biochemical Genetics Laboratory, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Gary Cline
- Department of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Gerald I Shulman
- Department of Internal Medicine and Cellular and Molecular Physiology, Howard Hughes Medical Institute, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Akira Suwa
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Makoto Asaumi
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Takeshi Kurama
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - Teruhiko Shimokawa
- Molecular Medicine Laboratories, Astellas Pharma Inc. Tsukuba, Ibaraki 305-8585 Japan
| | - M. Daniel Lane
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
46
|
Wolfgang MJ, Lane MD. Hypothalamic malonyl-coenzyme A and the control of energy balance. Mol Endocrinol 2008; 22:2012-20. [PMID: 18356287 DOI: 10.1210/me.2007-0538] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An intermediate in the fatty acid biosynthetic pathway, malonyl-coenzyme A (CoA), has emerged as a major regulator of energy homeostasis not only in peripheral metabolic tissues but also in regions of the central nervous system that control satiety and energy expenditure. Fluctuations in hypothalamic malonyl-CoA lead to changes in food intake and peripheral energy expenditure in a manner consistent with an anorexigenic signaling intermediate. Hypothalamic malonyl-CoA is regulated by nutritional and endocrine cues including glucose and leptin, respectively. That malonyl-CoA is an essential component in the energy homeostatic signaling system of the hypothalamus is supported by convergence of physiological, pharmacological, and genetic evidence. This review will focus on evidence implicating malonyl-CoA as a central player in the control of body weight and adiposity as well as clues to the molecular mechanism by which carbon flux through the fatty acid biosynthetic pathway is linked to the neural control of energy balance.
Collapse
Affiliation(s)
- Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 512 WBSB, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
47
|
Aja S, Landree LE, Kleman AM, Medghalchi SM, Vadlamudi A, McFadden JM, Aplasca A, Hyun J, Plummer E, Daniels K, Kemm M, Townsend CA, Thupari JN, Kuhajda FP, Moran TH, Ronnett GV. Pharmacological stimulation of brain carnitine palmitoyl-transferase-1 decreases food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2007; 294:R352-61. [PMID: 18056987 DOI: 10.1152/ajpregu.00862.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.
Collapse
Affiliation(s)
- Susan Aja
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Appraisal of current and experimental approaches to the treatment of cachexia. Curr Opin Support Palliat Care 2007; 1:312-6. [DOI: 10.1097/spc.0b013e3282f3474c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc Natl Acad Sci U S A 2007; 104:19285-90. [PMID: 18032600 DOI: 10.1073/pnas.0709778104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypothalamic malonyl-CoA has been shown to function in global energy homeostasis by modulating food intake and energy expenditure. Little is known, however, about the regulation of malonyl-CoA concentration in the central nervous system. To address this issue we investigated the response of putative intermediates in the malonyl-CoA pathway to metabolic and endocrine cues, notably those provoked by glucose and leptin. Hypothalamic malonyl-CoA rises in proportion to the carbohydrate content of the diet consumed after food deprivation. Malonyl-CoA concentration peaks 1 h after refeeding or after peripheral glucose administration. This response depends on the dose of glucose administered and is blocked by the i.c.v. administration of an inhibitor of glucose metabolism, 2-deoxyglucose (2-DG). The kinetics of change in hypothalamic malonyl-CoA after glucose administration is coincident with the suppression of phosphorylation of AMP kinase and acetyl-CoA carboxylase. Blockade of glucose utilization in the CNS by i.c.v. 2-DG prevented the effects of glucose on 5'AMP-activated protein kinase, malonyl-CoA, hypothalamic neuropeptide expression, and food intake. Finally, we showed that leptin can increase hypothalamic malonyl-CoA and that the increase is additive with glucose administration. Leptin-deficient ob/ob mice, however, showed no defect in the glucose- or refeeding-induced rise in hypothalamic malonyl-CoA after food deprivation, demonstrating that leptin was not required for this effect. These studies show that hypothalamic malonyl-CoA responds to the level of circulating glucose and leptin, both of which affect energy homeostasis.
Collapse
|
50
|
Chakravarthy MV, Zhu Y, López M, Yin L, Wozniak DF, Coleman T, Hu Z, Wolfgang M, Vidal-Puig A, Lane MD, Semenkovich CF. Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. J Clin Invest 2007; 117:2539-52. [PMID: 17694178 PMCID: PMC1937501 DOI: 10.1172/jci31183] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 05/20/2007] [Indexed: 12/18/2022] Open
Abstract
Central nervous system control of energy balance affects susceptibility to obesity and diabetes, but how fatty acids, malonyl-CoA, and other metabolites act at this site to alter metabolism is poorly understood. Pharmacological inhibition of fatty acid synthase (FAS), rate limiting for de novo lipogenesis, decreases appetite independently of leptin but also promotes weight loss through activities unrelated to FAS inhibition. Here we report that the conditional genetic inactivation of FAS in pancreatic beta cells and hypothalamus produced lean, hypophagic mice with increased physical activity and impaired hypothalamic PPARalpha signaling. Administration of a PPARalpha agonist into the hypothalamus increased PPARalpha target genes and normalized food intake. Inactivation of beta cell FAS enzyme activity had no effect on islet function in culture or in vivo. These results suggest a critical role for brain FAS in the regulation of not only feeding, but also physical activity, effects that appear to be mediated through the provision of ligands generated by FAS to PPARalpha. Thus, 2 diametrically opposed proteins, FAS (induced by feeding) and PPARalpha (induced by starvation), unexpectedly form an integrative sensory module in the central nervous system to orchestrate energy balance.
Collapse
Affiliation(s)
- Manu V. Chakravarthy
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yimin Zhu
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Miguel López
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Li Yin
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David F. Wozniak
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Trey Coleman
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhiyuan Hu
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Wolfgang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Antonio Vidal-Puig
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - M. Daniel Lane
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Clay F. Semenkovich
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|