1
|
Stuart SH, Ahmed ACC, Kilikevicius L, Robinson GE. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J Exp Biol 2024; 227:jeb246785. [PMID: 38517067 PMCID: PMC11112348 DOI: 10.1242/jeb.246785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.
Collapse
Affiliation(s)
- Sarai H. Stuart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy C. Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Kilikevicius
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Bain SA, Marshall H, de la Filia AG, Laetsch DR, Husnik F, Ross L. Sex-specific expression and DNA methylation in a species with extreme sexual dimorphism and paternal genome elimination. Mol Ecol 2021; 30:5687-5703. [PMID: 33629415 DOI: 10.1111/mec.15842] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Phenotypic differences between sexes are often mediated by differential expression and alternative splicing of genes. However, the mechanisms that regulate these expression and splicing patterns remain poorly understood. The mealybug, Planococcus citri, displays extreme sexual dimorphism and exhibits an unusual instance of sex-specific genomic imprinting, paternal genome elimination (PGE), in which the paternal chromosomes in males are highly condensed and eliminated from the sperm. Planococcus citri has no sex chromosomes and both sexual dimorphism and PGE are predicted to be under epigenetic control. We recently showed that P. citri females display a highly unusual DNA methylation profile for an insect species, with the presence of promoter methylation associated with lower levels of gene expression. Here, we therefore decided to explore genome-wide differences in DNA methylation between male and female P. citri using whole-genome bisulphite sequencing. We identified extreme differences in genome-wide levels and patterns between the sexes. Males display overall higher levels of DNA methylation which manifest as more uniform low levels across the genome. Whereas females display more targeted high levels of methylation. We suggest these unique sex-specific differences are due to chromosomal differences caused by PGE and may be linked to possible ploidy compensation. Using RNA-Seq, we identify extensive sex-specific gene expression and alternative splicing, but we find no correlation with cis-acting DNA methylation.
Collapse
Affiliation(s)
- Stevie A Bain
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Hollie Marshall
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Filip Husnik
- Evolution, Cell Biology, and Symbiosis Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Japan
| | - Laura Ross
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Jones BM, Rao VD, Gernat T, Jagla T, Cash-Ahmed AC, Rubin BER, Comi TJ, Bhogale S, Husain SS, Blatti C, Middendorf M, Sinha S, Chandrasekaran S, Robinson GE. Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. eLife 2020; 9:e62850. [PMID: 33350385 PMCID: PMC7755388 DOI: 10.7554/elife.62850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the regulatory architecture of phenotypic variation is a fundamental goal in biology, but connections between gene regulatory network (GRN) activity and individual differences in behavior are poorly understood. We characterized the molecular basis of behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, we discovered these colonies contain a continuum of phenotypes, with some individuals specialized for either egg-laying or foraging and 'generalists' that perform both. Brain gene expression and chromatin accessibility profiles were correlated with behavioral variation, with generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed for individuals revealed that transcription factor (TF) activity was highly predictive of behavior, and behavior-associated regulatory regions had more TF motifs. These results provide new insights into the important role played by brain GRN plasticity in the regulation of behavior, with implications for social evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Vikyath D Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Physics, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Tobias Jagla
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Benjamin ER Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Troy J Comi
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Syed S Husain
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Entomology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| |
Collapse
|
5
|
Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS, Hofmann HA, Huang S, Katz PS, Keagy J, Lynch VJ, Sokolowski MB, Stubbs LJ, Tabe-Bordbar S, Wolfner MF, Robinson GE. Behavior-related gene regulatory networks: A new level of organization in the brain. Proc Natl Acad Sci U S A 2020; 117:23270-23279. [PMID: 32661177 PMCID: PMC7519311 DOI: 10.1073/pnas.1921625117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Beryl M Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61820
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109
| | - Paul S Katz
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Jason Keagy
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14260
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801;
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
6
|
Adames TR, Rondeau NC, Kabir MT, Johnston BA, Truong H, Snow JW. The IRE1 pathway regulates honey bee Unfolded Protein Response gene expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103368. [PMID: 32229172 DOI: 10.1016/j.ibmb.2020.103368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Our molecular understanding of honey bee cellular stress responses is incomplete. Previously, we sought to identify and began functional characterization of the components of the Unfolded Protein Response (UPR) in honey bees. We observed that UPR stimulation resulted in induction of target genes upon IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA. However, we were not able to determine the relative role of the various UPR pathways in gene activation. Our understanding of honey bee signal transduction and transcriptional regulation has been hampered by a lack of tools. After using RNA-seq to expand the known UPR targets in the honey bee, we used the Drosophila melanogaster S2 cell line and honey bee trans and cis elements to investigate the role of the IRE1 pathway in the transcriptional activation of one of these targets, the honey bee Hsc70-3 gene. Using a luciferase reporter, we show that honey bee Hsc70 promoter activity is inducible by UPR activation. In addition, we show that this activation is IRE1-dependent and relies on specific cis regulatory elements. Experiments using exogenous honey bee or fruit fly XBP1S proteins demonstrate that both factors can activate the Hsc70-3 promoter and further support a role for the IRE1 pathway in control of Hsc70-3 expression in the honey bee. By providing foundational knowledge about the UPR in the honey bee and demonstrating the usefulness of a heterologous cell line for molecular characterization of honey bee pathways, this work stands to improve our understanding of this critical species.
Collapse
Affiliation(s)
| | | | | | - Brittany A Johnston
- Biology Department, The City College of New York - CUNY, New York, NY, 10031, USA
| | - Henry Truong
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Faragalla KM, Chernyshova AM, Gallo AJ, Thompson GJ. From gene list to gene network: Recognizing functional connections that regulate behavioral traits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:317-329. [DOI: 10.1002/jez.b.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
8
|
Azzouz-Olden F, Hunt A, DeGrandi-Hoffman G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics 2018; 19:628. [PMID: 30134827 PMCID: PMC6106827 DOI: 10.1186/s12864-018-5007-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-5007-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | | |
Collapse
|
9
|
Ben-Shahar Y. The Impact of Environmental Mn Exposure on Insect Biology. Front Genet 2018; 9:70. [PMID: 29545824 PMCID: PMC5837978 DOI: 10.3389/fgene.2018.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/16/2018] [Indexed: 01/18/2023] Open
Abstract
Manganese (Mn) is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism) via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.
Collapse
Affiliation(s)
- Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
10
|
Cervoni MS, Cardoso-Júnior CAM, Craveiro G, Souza ADO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee ( Apis mellifera L.) workers. ACTA ACUST UNITED AC 2017; 220:4035-4046. [PMID: 28912256 DOI: 10.1242/jeb.161844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.
Collapse
Affiliation(s)
- Mário S Cervoni
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Giovana Craveiro
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Anderson de O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Toth AL, Rehan SM. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:419-442. [PMID: 27912247 DOI: 10.1146/annurev-ento-031616-035601] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, cis regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.
Collapse
Affiliation(s)
- Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011;
- Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824;
| |
Collapse
|
12
|
Qiu HL, Zhao CY, He YR. On the Molecular Basis of Division of Labor in Solenopsis invicta (Hymenoptera: Formicidae) Workers: RNA-seq Analysis. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3093133. [PMID: 28365770 PMCID: PMC5469383 DOI: 10.1093/jisesa/iex002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 06/07/2023]
Abstract
The fire ant Solenopsis invicta Buren is an important invasive pest. Among S. invicta workers behavioral changes depend on age where younger ants are nurses and older ants foragers. To identify potential genes associated with this division of labor, we compared gene expression between foragers and nurses by high-throughput sequencing. In total, we identified 1,618 genes significantly differently expressed between nurses and foragers, of which 542 were upregulated in foragers and 1,076 were upregulated in nurses. Several pathways related to metabolism were significantly enriched, such as lipid storage and fatty acid biosynthesis, which might contribute to the division of labor in S. invicta. Several genes involved in DNA methylation, transcription, and olfactory responses as well as resistance to stress were differentially expressed between nurses and foragers workers. Finally, a comparison between previously published microarray data and our RNA-seq data in S. invicta shows 116 genes overlap, and the GO term myofibril assembly (GO: 0030239) were simultaneously significantly enriched. These results advance knowledge of potentially important genes and molecular pathways associated with worker division of labor in S. invicta. We hope our dataset will provide . candidate target genes to disrupt organization in S. invicta as a control strategy against this invasive pest.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| | - Cheng-Yin Zhao
- Department of Life Science Luoyang Normal University, Henan, Luoyang 471000, China
| | - Yu-Rong He
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| |
Collapse
|
13
|
Wheeler MM, Ament SA, Rodriguez-Zas SL, Southey B, Robinson GE. Diet and endocrine effects on behavioral maturation-related gene expression in the pars intercerebralis of the honey bee brain. ACTA ACUST UNITED AC 2015; 218:4005-14. [PMID: 26567353 DOI: 10.1242/jeb.119420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023]
Abstract
Nervous and neuroendocrine systems mediate environmental conditions to control a variety of life history traits. Our goal was to provide mechanistic insights as to how neurosecretory signals mediate division of labor in the honey bee (Apis mellifera). Worker division of labor is based on a process of behavioral maturation by individual bees, which involves performing in-hive tasks early in adulthood, then transitioning to foraging for food outside the hive. Social and nutritional cues converge on endocrine factors to regulate behavioral maturation, but whether neurosecretory systems are central to this process is not known. To explore this, we performed transcriptomic profiling of a neurosecretory region of the brain, the pars intercerebralis (PI). We first compared PI transcriptional profiles for bees performing in-hive tasks and bees engaged in foraging. Using these results as a baseline, we then performed manipulative experiments to test whether the PI is responsive to dietary changes and/or changes in juvenile hormone (JH) levels. Results reveal a robust molecular signature of behavioral maturation in the PI, with a subset of gene expression changes consistent with changes elicited by JH treatment. In contrast, dietary changes did not induce transcriptomic changes in the PI consistent with behavioral maturation or JH treatment. Based on these results, we propose a new verbal model of the regulation of division of labor in honey bees in which the relationship between diet and nutritional physiology is attenuated, and in its place is a relationship between social signals and nutritional physiology that is mediated by JH.
Collapse
Affiliation(s)
| | - Seth A Ament
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Bruce Southey
- Department of Animal Sciences, UIUC, Urbana, IL 61801, USA
| | - Gene E Robinson
- Department of Entomology, UIUC, Urbana, IL 61801, USA Institute for Genomic Biology, UIUC, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Khamis AM, Hamilton AR, Medvedeva YA, Alam T, Alam I, Essack M, Umylny B, Jankovic BR, Naeger NL, Suzuki M, Harbers M, Robinson GE, Bajic VB. Insights into the Transcriptional Architecture of Behavioral Plasticity in the Honey Bee Apis mellifera. Sci Rep 2015; 5:11136. [PMID: 26073445 PMCID: PMC4466890 DOI: 10.1038/srep11136] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/01/2015] [Indexed: 12/30/2022] Open
Abstract
Honey bee colonies exhibit an age-related division of labor, with worker bees performing discrete sets of behaviors throughout their lifespan. These behavioral states are associated with distinct brain transcriptomic states, yet little is known about the regulatory mechanisms governing them. We used CAGEscan (a variant of the Cap Analysis of Gene Expression technique) for the first time to characterize the promoter regions of differentially expressed brain genes during two behavioral states (brood care (aka “nursing”) and foraging) and identified transcription factors (TFs) that may govern their expression. More than half of the differentially expressed TFs were associated with motifs enriched in the promoter regions of differentially expressed genes (DEGs), suggesting they are regulators of behavioral state. Strikingly, five TFs (nf-kb, egr, pax6, hairy, and clockwork orange) were predicted to co-regulate nearly half of the genes that were upregulated in foragers. Finally, differences in alternative TSS usage between nurses and foragers were detected upstream of 646 genes, whose functional analysis revealed enrichment for Gene Ontology terms associated with neural function and plasticity. This demonstrates for the first time that alternative TSSs are associated with stable differences in behavior, suggesting they may play a role in organizing behavioral state.
Collapse
Affiliation(s)
- Abdullah M Khamis
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam R Hamilton
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yulia A Medvedeva
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tanvir Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Boris Umylny
- Lumenogix Inc., 2935 Rodeo Park Drive East, Santa Fe NM, 87505, USA
| | - Boris R Jankovic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nicholas L Naeger
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Makoto Suzuki
- DNAFORM Inc., Leading Venture Plaza-2, 75-1, Ono-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0046, Japan
| | - Matthias Harbers
- 1] DNAFORM Inc., Leading Venture Plaza-2, 75-1, Ono-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0046, Japan [2] RIKEN Center for Life Science Technologies, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Gene E Robinson
- Departments of Entomology and Institute for Genomic Biology, Urbana, IL 61801; and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vladimir B Bajic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, Wang R, Audet JN, Kellis M, Mukherjee S, Sinha S, Hartemink AJ, West AE, Jarvis ED. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 2014; 346:1256780. [PMID: 25504732 DOI: 10.1126/science.1256780] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks.
Collapse
Affiliation(s)
- Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| | - Andreas R Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA. Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Blatti
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - James M Ward
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jean-Nicoles Audet
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory and the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA
| | | | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Behura SK, Severson DW. Bidirectional promoters of insects: genome-wide comparison, evolutionary implication and influence on gene expression. J Mol Biol 2014; 427:521-36. [PMID: 25463441 DOI: 10.1016/j.jmb.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Bidirectional promoters are widespread in insect genomes. By analyzing 23 insect genomes we show that the frequency of bidirectional gene pairs varies according to genome compactness and density of genes among the species. The density of bidirectional genes expected based on number of genes per megabase of genome explains the observed density suggesting that bidirectional pairing of genes may be due to random event. We identified specific transcription factor binding motifs that are enriched in bidirectional promoters across insect species. Furthermore, we observed that bidirectional promoters may act as transcriptional hotspots in insect genomes where protein coding genes tend to aggregate in significantly biased (p < 0.001) manner compared to unidirectional promoters. Natural selection seems to have an association with the extent of bidirectionality of genes among the species. The rate of non-synonymous-to-synonymous changes (dN/dS) shows a second-order polynomial distribution with bidirectionality between species indicating that bidirectionality is dependent upon evolutionary pressure acting on the genomes. Analysis of genome-wide microarray expression data of multiple insect species suggested that bidirectionality has a similar association with transcriptome variation across species. Furthermore, bidirectional promoters show significant association with correlated expression of the divergent gene pairs depending upon their motif composition. Analysis of gene ontology showed that bidirectional genes tend to have a common association with functions related to "binding" (including ion binding, nucleotide binding and protein binding) across genomes. Such functional constraint of bidirectional genes may explain their widespread persistence in genome of diverse insect species.
Collapse
Affiliation(s)
- Susanta K Behura
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David W Severson
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Yadav RK, Tavakkoli M, Xie M, Girke T, Reddy GV. A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 2014; 141:2735-44. [PMID: 24961803 DOI: 10.1242/dev.106104] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The shoot apical meristem (SAM) acts as a reservoir for stem cells. The central zone (CZ) harbors stem cells. The stem cell progenitors differentiate in the adjacent peripheral zone and in the rib meristem located just beneath the CZ. The SAM is further divided into distinct clonal layers: the L1 epidermal, L2 sub-epidermal and L3 layers. Collectively, SAMs are complex structures that consist of cells of different clonal origins that are organized into functional domains. By employing fluorescence-activated cell sorting, we have generated gene expression profiles of ten cell populations that belong to different clonal layers as well as domains along the central and peripheral axis. Our work reveals that cells in distinct clonal layers exhibit greater diversity in gene expression and greater transcriptional complexity than clonally related cell types in the central and peripheral axis. Assessment of molecular functions and biological processes reveals that epidermal cells express genes involved in pathogen defense: the L2 layer cells express genes involved in DNA repair pathways and telomere maintenance, and the L3 layers express transcripts involved in ion balance and salt tolerance besides photosynthesis. Strikingly, the stem cell-enriched transcriptome comprises very few hormone-responsive transcripts. In addition to providing insights into the expression profiles of hundreds of transcripts, the data presented here will act as a resource for reverse genetic analysis and will be useful in deciphering molecular pathways involved in cell type specification and their functions.
Collapse
Affiliation(s)
- Ram Kishor Yadav
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA 92521, USA Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali 140306, India
| | - Montreh Tavakkoli
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA 92521, USA
| | - Mingtang Xie
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA 92521, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA 92521, USA
| | - G Venugopala Reddy
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Wang Y, Baker N, Amdam GV. RNAi-mediated double gene knockdown and gustatory perception measurement in honey bees (Apis mellifera). J Vis Exp 2013. [PMID: 23912844 DOI: 10.3791/50446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception. RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species. The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee's behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Arizona State University, Arizona, USA
| | | | | |
Collapse
|
19
|
Yadav RK, Snipes S, Girke T, Reddy GV. Gene expression analysis of shoot apical meristem cell types. Methods Mol Biol 2013; 959:235-245. [PMID: 23299680 DOI: 10.1007/978-1-62703-221-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Shoot apical meristems (SAMs) of higher plants harbor a set of stem-cells and provide cells for the development of all the above-ground biomass of plants. Most of the important pattern formation events such as maintenance of stem-cell identity, specification and differentiation of leaf/flower primordia, and temporal control of the transition from vegetative to reproductive program are determined in SAMs. Genetic analysis has revealed molecular and hormonal pathways involved in stem-cell maintenance, organ differentiation, and flowering time. However, limited information is available as to how different pathways interact with each other to function as a network in specifying different cell types and their function. Deciphering gene networks that underlie cell fate transitions requires new approaches aimed at assaying genome-scale expression patterns of genes at a single cell-type resolution. Here we provide details of experimental methods involved in protoplasting of SAM cells, generating cell type-specific gene expression profiles, and analysis platforms for identifying and inferring gene networks.
Collapse
Affiliation(s)
- Ram Kishor Yadav
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA, USA
| | | | | | | |
Collapse
|
20
|
Sanogo YO, Band M, Blatti C, Sinha S, Bell AM. Transcriptional regulation of brain gene expression in response to a territorial intrusion. Proc Biol Sci 2012; 279:4929-38. [PMID: 23097509 DOI: 10.1098/rspb.2012.2087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aggressive behaviour associated with territorial defence is widespread and has fitness consequences. However, excess aggression can interfere with other important biological functions such as immunity and energy homeostasis. How the expression of complex behaviours such as aggression is regulated in the brain has long intrigued ethologists, but has only recently become amenable for molecular dissection in non-model organisms. We investigated the transcriptomic response to territorial intrusion in four brain regions in breeding male threespined sticklebacks using expression microarrays and quantitative polymerase chain reaction (qPCR). Each region of the brain had a distinct genomic response to a territorial challenge. We identified a set of genes that were upregulated in the diencephalon and downregulated in the cerebellum and the brain stem. Cis-regulatory network analysis suggested transcription factors that regulated or co-regulated genes that were consistently regulated in all brain regions and others that regulated gene expression in opposing directions across brain regions. Our results support the hypothesis that territorial animals respond to social challenges via transcriptional regulation of genes in different brain regions. Finally, we found a remarkably close association between gene expression and aggressive behaviour at the individual level. This study sheds light on the molecular mechanisms in the brain that underlie the response to social challenges.
Collapse
Affiliation(s)
- Yibayiri O Sanogo
- Integrative Biology, University of Illinois, Urbana-Champaign, IL, USA
| | | | | | | | | |
Collapse
|
21
|
Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci U S A 2012; 109:18012-7. [PMID: 23071321 DOI: 10.1073/pnas.1208094109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The rise of insect societies, marked by the formation of reproductive and sterile castes, represents a major unsolved mystery in evolution. Across several independent origins of sociality, the genomes of social hymenopterans share two peculiar attributes: high recombination and low but heterogeneous GC content. For example, the genome of the honey bee, Apis mellifera, represents a mosaic of GC-poor and GC-rich regions with rates of recombination an order of magnitude higher than in humans. However, it is unclear how heterogeneity in GC content arises, and how it relates to the expression and evolution of worker traits. Using population genetic analyses, we demonstrate a bias in the allele frequency and fixation rate of derived C or G mutations in high-recombination regions, consistent with recombination's causal influence on GC-content evolution via biased gene conversion. We also show that recombination and biased gene conversion actively maintain the heterogeneous GC content of the honey bee genome despite an overall A/T mutation bias. Further, we found that GC-rich genes and intergenic regions have higher levels of genetic diversity and divergence relative to GC-poor regions, also consistent with recombination's causal influence on the rate of molecular evolution. Finally, we found that genes associated with behavior and those with worker-biased expression are found in GC-rich regions of the bee genome and also experience high rates of molecular evolution. Taken together, these findings suggest that recombination acts to maintain a genetically diverse and dynamic part of the genome where genes underlying worker behavior evolve more quickly.
Collapse
|
22
|
Zayed A, Robinson GE. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 2012; 46:591-615. [PMID: 22994354 DOI: 10.1146/annurev-genet-110711-155517] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavior is a complex phenotype that is plastic and evolutionarily labile. The advent of genomics has revolutionized the field of behavioral genetics by providing tools to quantify the dynamic nature of brain gene expression in relation to behavioral output. The honey bee Apis mellifera provides an excellent platform for investigating the relationship between brain gene expression and behavior given both the remarkable behavioral repertoire expressed by members of its intricate society and the degree to which behavior is influenced by heredity and the social environment. Here, we review a linked series of studies that assayed changes in honey bee brain transcriptomes associated with natural and experimentally induced changes in behavioral state. These experiments demonstrate that brain gene expression is closely linked with behavior, that changes in brain gene expression mediate changes in behavior, and that the association between specific genes and behavior exists over multiple timescales, from physiological to evolutionary.
Collapse
Affiliation(s)
- Amro Zayed
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
23
|
New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior. Proc Natl Acad Sci U S A 2012; 109:E1801-10. [PMID: 22691501 DOI: 10.1073/pnas.1205283109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A fundamental problem in meta-analysis is how to systematically combine information from multiple statistical tests to rigorously evaluate a single overarching hypothesis. This problem occurs in systems biology when attempting to map genomic attributes to complex phenotypes such as behavior. Behavior and other complex phenotypes are influenced by intrinsic and environmental determinants that act on the transcriptome, but little is known about how these determinants interact at the molecular level. We developed an informatic technique that identifies statistically significant meta-associations between gene expression patterns and transcription factor combinations. Deploying this technique for brain transcriptome profiles from ca. 400 individual bees, we show that diverse determinants of behavior rely on shared combinations of transcription factors. These relationships were revealed only when we considered complex and variable regulatory rules, suggesting that these shared transcription factors are used in distinct ways by different determinants. This regulatory code would have been missed by traditional gene coexpression or cis-regulatory analytic methods. We expect that our meta-analysis tools will be useful for a broad array of problems in systems biology and other fields.
Collapse
|
24
|
Ament SA, Wang Y, Chen CC, Blatti CA, Hong F, Liang ZS, Negre N, White KP, Rodriguez-Zas SL, Mizzen CA, Sinha S, Zhong S, Robinson GE. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression. PLoS Genet 2012; 8:e1002596. [PMID: 22479195 PMCID: PMC3315457 DOI: 10.1371/journal.pgen.1002596] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 01/30/2012] [Indexed: 01/30/2023] Open
Abstract
Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. Animals use behavior as one of the principal means of meeting their basic needs and responding flexibly to changes in their environment. An emerging insight is that changes in behavior are associated with massive changes in gene expression in the brain, but we know relatively little about how these changes are regulated. One important class of gene regulators are transcription factors (TF), proteins that orchestrate the expression of tens to thousands of genes. We discovered that ultraspiracle (USP), a TF previously known primarily for its role in development, regulates behavioral change in the honey bee; and we show that USP causes behaviorally related changes in gene expression by mediating responses to an endocrine regulator, juvenile hormone. We present evidence that these effects on gene expression occur through combinatorial interactions between USP and other TFs, and that these hormonally related transcriptional networks are preserved between two tissues with causal roles in behavioral plasticity: the brain and the fat body, a peripheral nutrient-sensing organ. These results suggest that behavior is subserved by complex interactions between genes and gene networks, occurring both in the brain and in peripheral tissues. More generally our results suggest that molecular systems biology is a promising paradigm by which to understand the mechanistic basis for behavior.
Collapse
Affiliation(s)
- Seth A. Ament
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ying Wang
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chieh-Chun Chen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Charles A. Blatti
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Feng Hong
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhengzheng S. Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nicolas Negre
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Craig A. Mizzen
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sheng Zhong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gene E. Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ament SA, Chan QW, Wheeler MM, Nixon SE, Johnson SP, Rodriguez-Zas SL, Foster LJ, Robinson GE. Mechanisms of stable lipid loss in a social insect. ACTA ACUST UNITED AC 2012; 214:3808-21. [PMID: 22031746 DOI: 10.1242/jeb.060244] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worker honey bees undergo a socially regulated, highly stable lipid loss as part of their behavioral maturation. We used large-scale transcriptomic and proteomic experiments, physiological experiments and RNA interference to explore the mechanistic basis for this lipid loss. Lipid loss was associated with thousands of gene expression changes in abdominal fat bodies. Many of these genes were also regulated in young bees by nutrition during an initial period of lipid gain. Surprisingly, in older bees, which is when maximum lipid loss occurs, diet played less of a role in regulating fat body gene expression for components of evolutionarily conserved nutrition-related endocrine systems involving insulin and juvenile hormone signaling. By contrast, fat body gene expression in older bees was regulated more strongly by evolutionarily novel regulatory factors, queen mandibular pheromone (a honey bee-specific social signal) and vitellogenin (a conserved yolk protein that has evolved novel, maturation-related functions in the bee), independent of nutrition. These results demonstrate that conserved molecular pathways can be manipulated to achieve stable lipid loss through evolutionarily novel regulatory processes.
Collapse
Affiliation(s)
- Seth A Ament
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ament SA, Wang Y, Robinson GE. Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:566-576. [PMID: 20836048 DOI: 10.1002/wsbm.73] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Organisms adapt their behavior and physiology to environmental conditions through processes of phenotypic plasticity. In one well-studied example, the division of labor among worker honey bees involves a stereotyped yet plastic pattern of behavioral and physiological maturation. Early in life, workers perform brood care and other in-hive tasks and have large internal nutrient stores; later in life, they forage for nectar and pollen outside the hive and have small nutrient stores. The pace of maturation depends on colony conditions, and the environmental, physiological, and genomic mechanisms by which this occurs are being actively investigated. Here we review current knowledge of the mechanisms by which a key environmental variable, nutritional status, influences worker honey bee division of labor. These studies demonstrate that changes in individual nutritional status and conserved food-related molecular and hormonal pathways regulate the age at which individual bees begin to forage. We then outline ways in which systems biology approaches, enabled by the sequencing of the honey bee genome, will allow researchers to gain deeper insight into nutritional regulation of honey bee behavior, and phenotypic plasticity in general.
Collapse
Affiliation(s)
- Seth A Ament
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | - Ying Wang
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA.,Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.,Entomology Department, University of Illinois, Urbana, IL 61801, USA.,Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Janes DE, Chapus C, Gondo Y, Clayton DF, Sinha S, Blatti CA, Organ CL, Fujita MK, Balakrishnan CN, Edwards SV. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor. Genome Biol Evol 2010; 3:102-13. [PMID: 21183607 PMCID: PMC3035132 DOI: 10.1093/gbe/evq087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2010] [Indexed: 12/14/2022] Open
Abstract
Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.
Collapse
Affiliation(s)
- D E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Steller MM, Kambhampati S, Caragea D. Comparative analysis of expressed sequence tags from three castes and two life stages of the termite Reticulitermes flavipes. BMC Genomics 2010; 11:463. [PMID: 20691076 PMCID: PMC3091659 DOI: 10.1186/1471-2164-11-463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 08/06/2010] [Indexed: 11/25/2022] Open
Abstract
Background Termites (Isoptera) are eusocial insects whose colonies consist of morphologically and behaviorally specialized castes of sterile workers and soldiers, and reproductive alates. Previous studies on eusocial insects have indicated that caste differentiation and behavior are underlain by differential gene expression. Although much is known about gene expression in the honey bee, Apis mellifera, termites remain relatively understudied in this regard. Therefore, our objective was to assemble an expressed sequence tag (EST) data base for the eastern subterranean termite, Reticulitermes flavipes, for future gene expression studies. Results Soldier, worker, and alate caste and two larval cDNA libraries were constructed, and approximately 15,000 randomly chosen clones were sequenced to compile an EST data base. Putative gene functions were assigned based on a BLASTX Swissprot search. Categorical in silico expression patterns for each library were compared using the R-statistic. A significant proportion of the ESTs of each caste and life stages had no significant similarity to those in existing data bases. All cDNA libraries, including those of non-reproductive worker and soldier castes, contained sequences with putative reproductive functions. Genes that showed a potential expression bias among castes included a putative antibacterial humoral response and translation elongation protein in soldiers and a chemosensory protein in alates. Conclusions We have expanded upon the available sequences for R. flavipes and utilized an in silico method to compare gene expression in different castes of an eusocial insect. The in silico analysis allowed us to identify several genes which may be differentially expressed and involved in caste differences. These include a gene overrepresented in the alate cDNA library with a predicted function of neurotransmitter secretion or cholesterol absorption and a gene predicted to be involved in protein biosynthesis and ligase activity that was overrepresented in the late larval stage cDNA library. The EST data base and analyses reported here will be a valuable resource for future studies on the genomics of R. flavipes and other termites.
Collapse
Affiliation(s)
- Matthew M Steller
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
29
|
Behura SK, Whitfield CW. Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. INSECT MOLECULAR BIOLOGY 2010; 19:431-9. [PMID: 20491979 DOI: 10.1111/j.1365-2583.2010.01010.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The hive-living honeybees (Apis mellifera) show age-dependent behavioural changes; young bees usually nurse the broods in the colony and the older bees engage in foraging activities. These developmentally regulated behavioural changes were previously shown to be correlated with genome-wide transcriptional changes in the honeybee brain. The indigenous small regulatory RNA molecules, known as microRNAs (miRNAs), are potent regulators of gene expression and also are developmentally regulated. Thus, we wanted to study if there might be correlation of differential expression of miRNA genes in the brain with age-dependent behavioural changes of the bees. We determined expression patterns of a set (n= 20) of predicted miRNA genes, by quantitative real-time PCR assays, in the brains of young and old bees that were engaged in nursing or foraging activities in the colony, respectively. Our data show correlated up-regulation of miRNA-124, miRNA-14, miRNA-276, miRNA-13b, let-7 and miRNA-13a in the young nurse bees. miRNA-12, miRNA-9, miRNA-219, miRNA-210, miRNA-263, miRNA-92 and miRNA-283 showed correlated expression patterns in the old forager bees. The modular changes of miRNA genes in the young nurse and old forager bees suggest possible roles of miRNAs in age-dependent behavioural changes in bees. The correlated expression of intronic miRNA genes and their host genes as well as of miRNA genes physically clustered in the genome are also observed.
Collapse
Affiliation(s)
- S K Behura
- Department of Entomology, University of Illinois at Urbana-Champaign, IL, USA.
| | | |
Collapse
|
30
|
Dearden PK, Duncan EJ, Wilson MJ. The honeybee Apis mellifera. Cold Spring Harb Protoc 2010; 2009:pdb.emo123. [PMID: 20147176 DOI: 10.1101/pdb.emo123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Peter K Dearden
- Laboratory for Evolution and Development, National Research Centre for Growth and Development, Biochemistry Department, University of Otago, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
31
|
Kim J, Cunningham R, James B, Wyder S, Gibson JD, Niehuis O, Zdobnov EM, Robertson HM, Robinson GE, Werren JH, Sinha S. Functional characterization of transcription factor motifs using cross-species comparison across large evolutionary distances. PLoS Comput Biol 2010; 6:e1000652. [PMID: 20126523 PMCID: PMC2813253 DOI: 10.1371/journal.pcbi.1000652] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022] Open
Abstract
We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of different motifs, and new ways to deal with redundancies among significant motif–function associations. This framework is applied to the recently sequenced genome of the jewel wasp, Nasonia vitripennis, making use of the existing knowledge of motifs and gene annotations in another insect genome, that of the fruitfly. The framework uses cross-species comparison to improve the specificity of its predictions, and does so without relying upon non-coding sequence alignment. It is therefore well suited for comparative genomics across large evolutionary divergences, where existing alignment-based methods are not applicable. We also apply the framework to find motifs associated with socially regulated gene sets in the honeybee, Apis mellifera, using comparisons with Nasonia, a solitary species, to identify honeybee-specific associations. We develop a computational pipeline for predicting the functions of transcription factor motifs, through DNA sequence analysis. The pipeline is applied to the newly sequenced genome of the jewel wasp, Nasonia vitripennis. It exploits the wealth of molecular data available in another insect species, the fruitfly Drosophila melanogaster, and uses cross-species comparison to its advantage. Our main contribution is to show how this can be done despite the large evolutionary divergence between the two species. The methodology presented here may be applied more generally to other scenarios (genomes) where comparative regulatory genomics must deal with large evolutionary divergences.
Collapse
Affiliation(s)
- Jaebum Kim
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ryan Cunningham
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian James
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Stefan Wyder
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Joshua D. Gibson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Oliver Niehuis
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gene E. Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
32
|
Alaux C, Maisonnasse A, Le Conte Y. Pheromones in a superorganism: from gene to social regulation. VITAMINS AND HORMONES 2010; 83:401-23. [PMID: 20831956 DOI: 10.1016/s0083-6729(10)83017-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Analogous to the importance of hormones in controlling organism homoeostasis, pheromones play a major role in the regulation of group homoeostasis at the social level. In social insects, pheromones coordinate the association of "unitary" organisms into a coherent social unit or so called "superorganism." For many years, honey bees have been a convincing model for studying pheromone regulation of social life. In addition, with the recent sequencing of its genome, a global view of pheromone communication is starting to emerge, and it is now possible to decipher this complex chemical language from the molecular to the social level. We review here the different pheromones regulating the main biological functions of the superorganism and detail their respective action on the genome, physiology and behavior of nestmates. Finally, we suggest some future research that may improve our understanding of the remarkably rich syntax of pheromone communication at the social level.
Collapse
Affiliation(s)
- C Alaux
- INRA, UMR 406 Abeilles et Environnement, Site Agroparc, Domaine Saint-Paul, Avignon, France
| | | | | |
Collapse
|
33
|
ELLIS LL, CARNEY GE. Drosophila melanogastermales respond differently at the behavioural and genome-wide levels toDrosophila melanogasterandDrosophila simulansfemales. J Evol Biol 2009; 22:2183-91. [DOI: 10.1111/j.1420-9101.2009.01834.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc Natl Acad Sci U S A 2009; 106:15400-5. [PMID: 19706434 DOI: 10.1073/pnas.0907043106] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A prominent theory states that animal phenotypes arise by evolutionary changes in gene regulation, but the extent to which this theory holds true for behavioral evolution is not known. Because "nature and nurture" are now understood to involve hereditary and environmental influences on gene expression, we studied whether environmental influences on a behavioral phenotype, i.e., aggression, could have evolved into inherited differences via changes in gene expression. Here, with microarray analysis of honey bees, we show that aggression-related genes with inherited patterns of brain expression are also environmentally regulated. There were expression differences in the brain for hundreds of genes between the highly aggressive Africanized honey bee compared with European honey bee (EHB) subspecies. Similar results were obtained for EHB in response to exposure to alarm pheromone (which provokes aggression) and when comparing old and young bees (aggressive tendencies increase with age). There was significant overlap of the gene lists generated from these three microarray experiments. Moreover, there was statistical enrichment of several of the same cis regulatory motifs in promoters of genes on all three gene lists. Aggression shows a remarkably robust brain molecular signature regardless of whether it occurs because of inherited, age-related, or environmental (social) factors. It appears that one element in the evolution of different degrees of aggressive behavior in honey bees involved changes in regulation of genes that mediate the response to alarm pheromone.
Collapse
|
35
|
Elango N, Hunt BG, Goodisman MAD, Yi SV. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci U S A 2009; 106:11206-11. [PMID: 19556545 PMCID: PMC2708677 DOI: 10.1073/pnas.0900301106] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Indexed: 11/18/2022] Open
Abstract
The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.
Collapse
Affiliation(s)
- Navin Elango
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Brendan G. Hunt
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Soojin V. Yi
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
36
|
Abstract
The equilibrium sequence diversity of genes within a population and the rate of sequence divergence between populations or species depends on a variety of factors, including expression pattern, mutation rate, nature of selection, random drift, and mating system. Here, we extend population genetic theory developed for maternal-effect genes to predict the equilibrium polymorphism within species and sequence divergence among species for genes with social effects on fitness. We show how the fitness effects of genes, mating system, and genetic system affect predicted gene polymorphism. We find that, because genes with indirect social effects on fitness effectively experience weaker selection, they are expected to harbor higher levels of polymorphism relative to genes with direct fitness effects. The relative increase in polymorphism is proportional to the inverse of the genetic relatedness between individuals expressing the gene and their social partners that experience the fitness effects of the gene. We find a similar pattern of more rapid divergence between populations or species for genes with indirect social effects relative to genes with direct effects. We focus our discussion on the social insects, organisms with diverse indirect genetic effects, mating and genetic systems, and we suggest specific examples for testing our predictions with emerging sociogenomic tools.
Collapse
Affiliation(s)
- Timothy A Linksvayer
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA.
| | | |
Collapse
|
37
|
Alaux C, Le Conte Y, Adams HA, Rodriguez-Zas S, Grozinger CM, Sinha S, Robinson GE. Regulation of brain gene expression in honey bees by brood pheromone. GENES BRAIN AND BEHAVIOR 2009; 8:309-19. [PMID: 19220482 DOI: 10.1111/j.1601-183x.2009.00480.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- C Alaux
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Smith CR, Toth AL, Suarez AV, Robinson GE. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 2008; 9:735-48. [PMID: 18802413 DOI: 10.1038/nrg2429] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Division of labour--individuals specializing in different activities--features prominently in the spectacular success of the social insects. Until recently, genetic and genomic analyses of division of labour were limited to just a few species. However, research on an ever-increasing number of species has provided new insight, from which we highlight two results. First, heritable influences on division of labour are more pervasive than previously imagined. Second, different forms of division of labour, in lineages in which eusociality has arisen independently, have evolved through changes in the regulation of highly conserved molecular pathways associated with several basic life-history traits, including nutrition, metabolism and reproduction.
Collapse
Affiliation(s)
- Chris R Smith
- Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
39
|
Insights into the molecular basis of social behaviour from studies on the honeybee, Apis mellifera. INVERTEBRATE NEUROSCIENCE 2008; 8:1-9. [DOI: 10.1007/s10158-008-0066-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/26/2022]
|
40
|
Li Y, Zhang Z, Robinson GE, Palli SR. Identification and characterization of a juvenile hormone response element and its binding proteins. J Biol Chem 2007; 282:37605-17. [PMID: 17956872 PMCID: PMC3556787 DOI: 10.1074/jbc.m704595200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Comparison of microarray data on JH-induced genes in the fruit fly, Drosophila melanogaster, L57 cells and in the honey bee, Apis mellifera, identified 16 genes that are induced in both species. Analysis of promoter regions of these 16 D. melanogaster genes identified DmJHRE1 (D. melanogaster JH response element 1). In L57 cells, the reporter gene regulated by DmJHRE1 was induced by JH III. Two proteins (FKBP39 and Chd64) that bind to DmJHRE1 were identified. FKBP39 and Chd64 double-stranded RNA inhibited JH III induction of a reporter gene regulated by DmJHRE1. FKBP39 and Chd64 proteins expressed in yeast bound to DmJHRE1. Two-hybrid and pull-down assays showed that these two proteins interact with each other as well as with ecdysone receptor, ultraspiracle, and methoprene-tolerant protein. Developmental expression profiles and JH induction of mRNA for FKBP39 and Chd64 proteins and their interaction with proteins known to be involved in both JH (methoprene-tolerant protein) and ecdysteroid action (ecdysone receptor and ultraspiracle) suggest that these proteins probably play important roles in cross-talk between JH and ecdysteroids.
Collapse
Affiliation(s)
- Yiping Li
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546
| | - Zhaolin Zhang
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546
| | - Gene E. Robinson
- Department of Entomology and Neuroscience Program, University of Illinois, Urbana, Illinois 61801
| | - Subba R. Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
41
|
Affiliation(s)
- Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5439, USA.
| |
Collapse
|
42
|
Abstract
Honeybees, termites and ants occupy the 'pinnacle of social evolution' with societies of a complexity that rivals our own. The sequencing of the honeybee genome will provide a strong foundation for studying the genetic basis of complex social behavior.
Collapse
Affiliation(s)
- Yannick Wurm
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
43
|
Abstract
Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
Collapse
Collaborators
George M Weinstock, Gene E Robinson, Richard A Gibbs, George M Weinstock, Gene E Robinson, Kim C Worley, Jay D Evans, Ryszard Maleszka, Hugh M Robertson, Daniel B Weaver, Martin Beye, Peer Bork, Christine G Elsik, Jay D Evans, Klaus Hartfelder, Greg J Hunt, Hugh M Robertson, Gene E Robinson, Ryszard Maleszka, George M Weinstock, Kim C Worley, Evgeny M Zdobnov, Klaus Hartfelder, Gro V Amdam, Márcia M G Bitondi, Anita M Collins, Alexandre S Cristino, Jay D Evans, Michael G Lattorff, Carlos H Lobo, Robin F A Moritz, Francis M F Nunes, Robert E Page, Zilá L P Simões, Diana Wheeler, Piero Carninci, Shiro Fukuda, Yoshihide Hayashizaki, Chikatoshi Kai, Jun Kawai, Naoko Sakazume, Daisuke Sasaki, Michihira Tagami, Ryszard Maleszka, Gro V Amdam, Stefan Albert, Geert Baggerman, Kyle T Beggs, Guy Bloch, Giuseppe Cazzamali, Mira Cohen, Mark David Drapeau, Dorothea Eisenhardt, Christine Emore, Michael A Ewing, Susan E Fahrbach, Sylvain Forêt, Cornelis J P Grimmelikhuijzen, Frank Hauser, Amanda B Hummon, Greg J Hunt, Jurgen Huybrechts, Andrew K Jones, Tatsuhiko Kadowaki, Noam Kaplan, Robert Kucharski, Gérard Leboulle, Michal Linial, J Troy Littleton, Alison R Mercer, Robert E Page, Hugh M Robertson, Gene E Robinson, Timothy A Richmond, Sandra L Rodriguez-Zas, Elad B Rubin, David B Sattelle, David Schlipalius, Liliane Schoofs, Yair Shemesh, Jonathan V Sweedler, Rodrigo Velarde, Peter Verleyen, Evy Vierstraete, Michael R Williamson, Martin Beye, Seth A Ament, Susan J Brown, Miguel Corona, Peter K Dearden, W Augustine Dunn, Michelle M Elekonich, Christine G Elsik, Sylvain Forêt, Tomoko Fujiyuki, Eriko Gattermeier, Tanja Gempe, Martin Hasselmann, Tatsuhiko Kadowaki, Eriko Kage, Azusa Kamikouchi, Takeo Kubo, Robert Kucharski, Takekazu Kunieda, Marcé Lorenzen, Ryszard Maleszka, Natalia V Milshina, Mizue Morioka, Kazuaki Ohashi, Ross Overbeek, Robert E Page, Hugh M Robertson, Gene E Robinson, Christian A Ross, Morten Schioett, Teresa Shippy, Hideaki Takeuchi, Amy L Toth, Judith H Willis, Megan J Wilson, Hugh M Robertson, Evgeny M Zdobnov, Peer Bork, Christine G Elsik, Karl H J Gordon, Ivica Letunic, Kevin Hackett, Jane Peterson, Adam Felsenfeld, Mark Guyer, Michel Solignac, Richa Agarwala, Jean Marie Cornuet, Christine G Elsik, Christine Emore, Greg J Hunt, Monique Monnerot, Florence Mougel, Justin T Reese, David Schlipalius, Dominique Vautrin, Daniel B Weaver, Joseph J Gillespie, Jamie J Cannone, Robin R Gutell, J Spencer Johnston, Christine G Elsik, Giuseppe Cazzamali, Michael B Eisen, Cornelis J P Grimmelikhuijzen, Frank Hauser, Amanda B Hummon, Venky N Iyer, Vivek Iyer, Peter Kosarev, Aaron J Mackey, Ryszard Maleszka, Justin T Reese, Timothy A Richmond, Hugh M Robertson, Victor Solovyev, Alexandre Souvorov, Jonathan V Sweedler, George M Weinstock, Michael R Willliamson, Evgeny M Zdobnov, Jay D Evans, Katherine A Aronstein, Katarina Bilikova, Yan Ping Chen, Andrew G Clark, Laura I Decanini, William M Gelbart, Charles Hetru, Dan Hultmark, Jean-Luc Imler, Haobo Jiang, Michael Kanost, Kiyoshi Kimura, Brian P Lazzaro, Dawn L Lopez, Jozef Simuth, Graham J Thompson, Zhen Zou, Pieter De Jong, Erica Sodergren, Miklós Csûrös, Aleksandar Milosavljevic, J Spencer Johnston, Kazutoyo Osoegawa, Stephen Richards, Chung-Li Shu, George M Weinstock, Christine G Elsik, Laurent Duret, Eran Elhaik, Dan Graur, Justin T Reese, Hugh M Robertson, Hugh M Robertson, Christine G Elsik, Ryszard Maleszka, Daniel B Weaver, Gro V Amdam, Juan M Anzola, Kathryn S Campbell, Kevin L Childs, Derek Collinge, Madeline A Crosby, C Michael Dickens, Christine G Elsik, Karl H J Gordon, L Sian Grametes, Christina M Grozinger, Peter L Jones, Mireia Jorda, Xu Ling, Beverly B Matthews, Jonathan Miller, Natalia V Milshina, Craig Mizzen, Miguel A Peinado, Justin T Reese, Jeffrey G Reid, Hugh M Robertson, Gene E Robinson, Susan M Russo, Andrew J Schroeder, Susan E St Pierre, Ying Wang, Pinglei Zhou, Hugh M Robertson, Richa Agarwala, Christine G Elsik, Natalia V Milshina, Justin T Reese, Daniel B Weaver, Kim C Worley, Kevin L Childs, C Michael Dickens, Christine G Elsik, William M Gelbart, Huaiyang Jiang, Paul Kitts, Natalia V Milshina, Justin T Reese, Barbara Ruef, Susan M Russo, Anad Venkatraman, George M Weinstock, Lan Zhang, Pinglei Zhou, J Spencer Johnston, Gildardo Aquino-Perez, Jean Marie Cornuet, Monique Monnerot, Michel Solignac, Dominique Vautrin, Charles W Whitfield, Susanta Behura, Stewart H Berlocher, Andrew G Clark, Richard A Gibbs, J Spencer Johnston, Walter S Sheppard, Deborah R Smith, Andrew V Suarez, Neil D Tsutsui, Daniel B Weaver, Xuehong Wei, David Wheeler, George M Weinstock, Kim C Worley, Paul Havlak, Bingshan Li, Yue Liu, Erica Sodergren, Lan Zhang, Martin Beye, Martin Hasselmann, Angela Jolivet, Sandra Lee, Lynne V Nazareth, Ling-Ling Pu, Rachel Thorn, George M Weinstock, Viktor Stolc, Gene E Robinson, Ryszard Maleszka, Thomas Newman, Manoj Samanta, Waraporn A Tongprasit, Katherine A Aronstein, Charles Claudianos, May R Berenbaum, Sunita Biswas, Dirk C de Graaf, Rene Feyereisen, Reed M Johnson, John G Oakeshott, Hilary Ranson, Mary A Schuler, Donna Muzny, Richard A Gibbs, George M Weinstock, Joseph Chacko, Clay Davis, Huyen Dinh, Rachel Gill, Judith Hernandez, Sandra Hines, Jennifer Hume, LaRonda Jackson, Christie Kovar, Lora Lewis, George Miner, Margaret Morgan, Lynne V Nazareth, Ngoc Nguyen, Geoffrey Okwuonu, Heidi Paul, Stephen Richards, Jireh Santibanez, Glenford Savery, Erica Sodergren, Amanda Svatek, Donna Villasana, Rita Wright,
Collapse
|