1
|
Han Z, Wu Q, Rao H, Xu T, Zhou C. An overview of PROTACs targeting KRAS and SOS1 as antitumor agents. Bioorg Med Chem Lett 2025; 125-126:130283. [PMID: 40381703 DOI: 10.1016/j.bmcl.2025.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
KRAS is the most frequently mutated oncogene and its mutational activation drives approximately 25 % of human cancers. Son of Sevenless 1 (SOS1) plays a pivotal role in the KRAS signaling pathway through catalyzing the conversion of inactive GDP-bound KRAS to active GTP-bound KRAS, and is thus considered as a promising target for pan-KRAS inhibition. Currently, four KRASG12C-specific inhibitors, namely sotorasib, adagrasib, fulzerasib and garsorasib, have garnered regulatory approval. However, acquired resistance to KRASG12C inhibition rapidly emerges. In addition, the other prevalent KRAS mutations, including G12D and G12V, are still lacking effective therapeutic drugs. PROTAC-mediated KRAS and SOS1 degradation has been emerged as a promising strategy to overcome these issues, and achieved rapid progress in the recent years. This article provides an overview of the chemical structures, design strategies, structure-activity relationship (SAR) studies as well as in vitro and in vivo activities of the PROTACs degrading KRAS and SOS1, and sheds light on future challenges and opportunities to accelerate the development of new chemotherapies for KRAS-driven cancers.
Collapse
Affiliation(s)
- Zhiqiu Han
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qianping Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hongxin Rao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Tianfeng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Chuan Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Ahmed R, Nishibe N, Zhang Z, Maruta S. Photocontrol of the small GTPase Ras using its regulatory factor, GTPase-activating protein, modified with photochromic nanodevices. J Biochem 2025; 177:363-374. [PMID: 39930719 DOI: 10.1093/jb/mvaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 04/30/2025] Open
Abstract
Ras, a small GTPase, is central to the regulation of diverse cellular processes including transcription, cell cycle progression, growth, migration, cytoskeletal reorganization, apoptosis, cell survival and senescence. Ras activation is mediated by GTP binding, whereas its inactivation occurs via GDP binding, which is tightly controlled by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). GAPs accelerate GTP hydrolysis, playing a crucial role in modulating Ras signalling to prevent excessive or prolonged activation. Here, we investigated monofunctional azobenzene derivatives as photochromic modulators to control the function of Ras in a light-dependent and reversible manner. Three thiol-reactive azobenzene derivatives with distinct electrostatic properties were synthesized and incorporated into GAP functional sites to modulate Ras activity. GAP mutants containing a single cysteine residue at the functional site were generated using an Escherichia coli expression system. Our results showed that modifications near the GAP 'arginine finger', a critical region for stabilizing the GTP hydrolysis transition state of Ras, induced significant light-dependent changes in GTPase activity. We achieved photoreversible control of the interaction between Ras and its effector Raf using these azobenzene derivatives. These findings suggest that Ras function can be precisely modulated using photochromic molecules, providing a novel light-based approach for controlling Ras activity.
Collapse
Affiliation(s)
- Rajib Ahmed
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ziyun Zhang
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
3
|
Hu Z, Martí J. Unraveling atomic-scale mechanisms of GDP extraction catalyzed by SOS1 in KRAS-G12 and KRAS-D12 oncogenes. Comput Biol Med 2025; 186:109599. [PMID: 39731920 DOI: 10.1016/j.compbiomed.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored. In this study, we unveil and describe in atomic detail the primary mechanisms by which SOS1 facilitates GDP extraction from KRAS oncogenes. For GDP-bound wild-type KRAS (KRAS-G12), four critical amino acids (Lys811, Glu812, Lys939, and Glu942) are identified as essential for the catalytic function of SOS1. Notably, the KRAS-G12D mutation (KRAS-D12) significantly accelerates the rate of GDP extraction. The molecular basis of this enhancement are attributed to hydrogen bonding interactions between the mutant residue Asp12 and a positively charged pocket in the intrinsically disordered region (residues 807-818), comprising Ser807, Trp809, Thr810, and Lys811. These findings provide novel insights into SOS1-KRAS interactions and offer a foundation for developing anti-cancer strategies aimed at disrupting these mechanisms.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain.
| |
Collapse
|
4
|
Ren H, Lee AA, Lew LJN, DeGrandchamp JB, Groves JT. Positive feedback in Ras activation by full-length SOS arises from autoinhibition release mechanism. Biophys J 2024; 123:3295-3303. [PMID: 39021073 PMCID: PMC11480760 DOI: 10.1016/j.bpj.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.
Collapse
Affiliation(s)
- He Ren
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Albert A Lee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California
| | - L J Nugent Lew
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | | | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
5
|
Fischer B, Uchański T, Sheryazdanova A, Gonzalez S, Volkov AN, Brosens E, Zögg T, Kalichuk V, Ballet S, Versées W, Sablina AA, Pardon E, Wohlkönig A, Steyaert J. Allosteric nanobodies to study the interactions between SOS1 and RAS. Nat Commun 2024; 15:6214. [PMID: 39043660 PMCID: PMC11266648 DOI: 10.1038/s41467-024-50349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/07/2024] [Indexed: 07/25/2024] Open
Abstract
Protein-protein interactions (PPIs) are central in cell metabolism but research tools for the structural and functional characterization of these PPIs are often missing. Here we introduce broadly applicable immunization (Cross-link PPIs and immunize llamas, ChILL) and selection strategies (Display and co-selection, DisCO) for the discovery of diverse nanobodies that either stabilize or disrupt PPIs in a single experiment. We apply ChILL and DisCO to identify competitive, connective, or fully allosteric nanobodies that inhibit or facilitate the formation of the SOS1•RAS complex and modulate the nucleotide exchange rate on this pivotal GTPase in vitro as well as RAS signalling in cellulo. One of these connective nanobodies fills a cavity that was previously identified as the binding pocket for a series of therapeutic lead compounds. The long complementarity-determining region (CDR3) that penetrates this binding pocket serves as pharmacophore for extending the repertoire of potential leads.
Collapse
Affiliation(s)
- Baptiste Fischer
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
- European Institute of Chemistry and Biology (IECB), 2 rue Robert Escarpit, Pessac, France
| | - Tomasz Uchański
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Aidana Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Simon Gonzalez
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Jean Jeener NMR Centre, VUB, Brussels, Belgium
| | - Elke Brosens
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Valentina Kalichuk
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
6
|
Wang K, Zhou Z, Ma X, Xu J, Xu W, Zhou G, Zhou C, Li H, Zheng M, Zhang S, Xu T. Design, synthesis, and bioevaluation of SOS1 PROTACs derived from pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor. Bioorg Med Chem Lett 2024; 107:129780. [PMID: 38714262 DOI: 10.1016/j.bmcl.2024.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.
Collapse
Affiliation(s)
- Kun Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zehui Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jiahang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wangyang Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chuan Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Huajie Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mingyue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Tianfeng Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
7
|
Nishibe N, Maruta S. Photocontrol of small GTPase Ras fused with a photoresponsive protein. J Biochem 2024; 176:11-21. [PMID: 38366640 DOI: 10.1093/jb/mvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
Collapse
Affiliation(s)
- Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
8
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
9
|
Tang Y, Pu X, Yuan X, Pang Z, Li F, Wang X. Targeting KRASG12D mutation in non-small cell lung cancer: molecular mechanisms and therapeutic potential. Cancer Gene Ther 2024; 31:961-969. [PMID: 38734764 PMCID: PMC11257988 DOI: 10.1038/s41417-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Lung malignant tumors are a type of cancer with high incidence and mortality rates worldwide. Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung malignant tumors, and most patients are diagnosed at advanced stages, leading to poor prognosis. Over the past decades, various oncogenic driver alterations associated with lung cancer have been identified, each of which can potentially serve as a therapeutic target. Rat sarcoma (RAS) genes are the most commonly mutated oncogenes in human cancers, with Kirsten rat sarcoma (KRAS) being the most common subtype. The role of KRAS oncogene in NSCLC is still not fully understood, and its impact on prognosis remains controversial. Despite the significant advancements in targeted therapy and immune checkpoint inhibitors (ICI) that have transformed the treatment landscape of advanced NSCLC in recent years, targeting KRAS (both directly and indirectly) remains challenging and is still under intensive research. In recent years, significant progress has been made in the development of targeted drugs targeting the NSCLC KRASG12C mutant subtype. However, research progress on target drugs for the more common KRASG12D subtype has been slow, and currently, no specific drugs have been approved for clinical use, and many questions remain to be answered, such as the mechanisms of resistance in this subtype of NSCLC, how to better utilize combination strategies with multiple treatment modalities, and whether KRASG12D inhibitors offer substantial efficacy in the treatment of advanced NSCLC patients.
Collapse
Affiliation(s)
- Yining Tang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhonghao Pang
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
10
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without deterministic bistability. SCIENCE ADVANCES 2024; 10:eadi0707. [PMID: 38905351 PMCID: PMC11192083 DOI: 10.1126/sciadv.adi0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of deterministic bistability but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts deterministic bistability and may be more resistant to pharmacological inhibition.
Collapse
Affiliation(s)
- Albert A. Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Neil H. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - He Ren
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Li D, Xie Q, Yang M, Cai Y, Sun K, Jiang S, Yu S, Liu L, Zhang Y, Yu B, Tu W, Li L. Lead Identification of Novel Naphthyridine Derivatives as Potent SOS1 Inhibitors. ACS Med Chem Lett 2024; 15:958-964. [PMID: 38894918 PMCID: PMC11181497 DOI: 10.1021/acsmedchemlett.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
SOS1, a guanine nucleotide exchange factor (GEF), plays a critical role in catalyzing the conversion of KRAS from its GDP- to GTP-bound form, regardless of KRAS mutation status, and represents a promising new drug target to treat all KRAS-driven tumors. Herein, we employed a scaffold hopping strategy to design, synthesize, and optimize a series of novel binary ring derivatives as SOS1 inhibitors. Among them, compound 10f (HH0043) displayed potent activities in both biochemical and cellular assays and favorable pharmacokinetic profiles. Oral administration of HH0043 resulted in a significant tumor inhibitory effect in a subcutaneous KRAS G12C-mutated NCI-H358 (human lung cancer cell line) xenograft mouse model, and the tumor inhibitory effect of HH0043 was superior to that of BI-3406 at the same dose (total growth inhibition, TGI: 76% vs 49%). On the basis of these results, HH0043, with a novel 1,7-naphthyridine scaffold that is distinct from currently reported SOS1 inhibitors, is nominated as the lead compound for this discovery project.
Collapse
Affiliation(s)
- Dongsheng Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Qing Xie
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Maozhi Yang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Yalei Cai
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Kang Sun
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865# Zuchongzhi Road Zhangjiang Science City, Shanghai 201203, China
| |
Collapse
|
12
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 modulates the threshold of EGFR signaling to regulate osimertinib efficacy and resistance in lung adenocarcinoma. Mol Oncol 2024; 18:641-661. [PMID: 38073064 PMCID: PMC10920089 DOI: 10.1002/1878-0261.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
Son of sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic receptor tyrosine kinase (RTK)-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR tyrosine kinase inhibitor (EGFR-TKI) osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion (SOS2KO ) sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, oncogenic transformation, and survival. Bypassing RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2KO inhibited hepatocyte growth factor (HGF)-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long-term in situ resistance assay, most osimertinib-resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2KO cultures that became osimertinib resistant primarily underwent non-RTK-dependent epithelial-mesenchymal transition (EMT). Since bypassing RTK reactivation and/or tertiary EGFR mutations represent most osimertinib-resistant cancers, these data suggest that targeting proximal RTK signaling, here exemplified by SOS2 deletion, has the potential to delay the development osimertinib resistance and enhance overall clinical responses for patients with EGFR-mutated LUAD.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Johnny Yang
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Katherine Cox
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
13
|
Bhadhadhara K, Jani V, Koulgi S, Sonavane U, Joshi R. Studying early structural changes in SOS1 mediated KRAS activation mechanism. Curr Res Struct Biol 2023; 7:100115. [PMID: 38188543 PMCID: PMC10765296 DOI: 10.1016/j.crstbi.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
KRAS activation is known to be modulated by a guanine nucleotide exchange factor (GEF), namely, Son of Sevenless1 (SOS1). SOS1 facilitates the exchange of GDP to GTP thereby leading to activation of KRAS. The binding of GDP/GTP to KRAS at the REM/allosteric site of SOS1 regulates the activation of KRAS at CDC25/catalytic site by facilitating its exchange. Different aspects of the allosteric activation of KRAS through SOS1 are still being explored. To understand the SOS1 mediated activation of KRAS, molecular dynamics simulations for a total of nine SOS1 complexes (KRAS-SOS1-KRAS) were performed. These nine systems comprised different combinations of KRAS-bound nucleotides (GTP/GDP) at REM and CDC25 sites of SOS1. Various conformational and thermodynamic parameters were analyzed for these simulation systems. MMPBSA free energy analysis revealed that binding at CDC25 site of SOS1 was significantly low for GDP-bound KRAS as compared to that of GTP-bound KRAS. It was observed that presence of either GDP/GTP bound KRAS at the REM site of SOS1 affected the activation related changes in the KRAS present at CDC25 site. The conformational changes at the catalytic site of SOS1 resulting from GDP/GTP-bound KRAS at the allosteric changes may hint at KRAS activation through different pathways (slow/fast/rare). The allosteric effect on activation of KRAS at CDC25 site may be due to conformations adopted by switch-I, switch-II, beta2 regions of KRAS at REM site. The effect of structural rearrangements occurring at allosteric KRAS may have led to increased interactions between SOS1 and KRAS at both the sites. The SOS1 residues involved in these important interactions with KRAS at the REM site were R694, S732 and K735. Whereas the ones interacting with KRAS at CDC25 site were S807, W809 and K814. This may suggest the crucial role of these residues in guiding the allosteric activation of KRAS at CDC25 site. The conformational shifts observed in the switch-I, switch-II and alpha3 regions of KRAS at CDC25 site may be attributed to be a part of allosteric activation. The binding affinities, interacting residues and conformational dynamics may provide an insight into development of inhibitors targeting the SOS1 mediated KRAS activation.
Collapse
Affiliation(s)
- Kirti Bhadhadhara
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Vinod Jani
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Shruti Koulgi
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Uddhavesh Sonavane
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| | - Rajendra Joshi
- High Performance Computing-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Innovation Park, Panchawati, Pashan, Pune, 411008, India
| |
Collapse
|
14
|
Androutsopoulos G, Styliara I, Zarogianni E, Lazurko N, Valasoulis G, Michail G, Adonakis G. The ErbB Signaling Network and Its Potential Role in Endometrial Cancer. EPIGENOMES 2023; 7:24. [PMID: 37873809 PMCID: PMC10594534 DOI: 10.3390/epigenomes7040024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Endometrial cancer (EC) is the second most common malignancy of the female reproductive system worldwide. The updated EC classification emphasizes the significant role of various signaling pathways such as PIK3CA-PIK3R1-PTEN and RTK/RAS/β-catenin in EC pathogenesis. Some of these pathways are part of the EGF system signaling network, which becomes hyperactivated by various mechanisms and participates in cancer pathogenesis. In EC, the expression of ErbB receptors is significantly different, compared with the premenopausal and postmenopausal endometrium, mainly because of the increased transcriptional activity of ErbB encoding genes in EC cells. Moreover, there are some differences in ErbB-2 receptor profile among EC subgroups that could be explained by the alterations in pathophysiology and clinical behavior of various EC histologic subtypes. The fact that ErbB-2 receptor expression is more common in aggressive EC histologic subtypes (papillary serous and clear cell) could indicate a future role of ErbB-targeted therapies in well-defined EC subgroups with overexpression of ErbB receptors.
Collapse
Affiliation(s)
- Georgios Androutsopoulos
- Gynaecological Oncology Unit, Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Ioanna Styliara
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Evgenia Zarogianni
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Nadia Lazurko
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - George Valasoulis
- Department of Obstetrics and Gynaecology, Medical School, University of Thessaly, 41334 Larisa, Greece;
- Hellenic National Public Health Organization—ECDC, 15123 Athens, Greece
| | - Georgios Michail
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Georgios Adonakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| |
Collapse
|
15
|
Manso JA, Carabias A, Sárkány Z, de Pereda JM, Pereira PJB, Macedo-Ribeiro S. Pathogen-specific structural features of Candida albicans Ras1 activation complex: uncovering new antifungal drug targets. mBio 2023; 14:e0063823. [PMID: 37526476 PMCID: PMC10470544 DOI: 10.1128/mbio.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.
Collapse
Affiliation(s)
- José A. Manso
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Zsuzsa Sárkány
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Pedro José Barbosa Pereira
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Wu X, Song W, Cheng C, Liu Z, Li X, Cui Y, Gao Y, Li D. Small molecular inhibitors for KRAS-mutant cancers. Front Immunol 2023; 14:1223433. [PMID: 37662925 PMCID: PMC10470052 DOI: 10.3389/fimmu.2023.1223433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered "undruggable", recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziyang Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yu Cui
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yao Gao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without classic kinetic bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549263. [PMID: 37503094 PMCID: PMC10370109 DOI: 10.1101/2023.07.17.549263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal, or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of classic kinetic bistability, but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts classic kinetic bistability and is distinctly more resistant to pharmacological inhibition.
Collapse
|
18
|
Sartre C, Peurois F, Ley M, Kryszke MH, Zhang W, Courilleau D, Fischmeister R, Ambroise Y, Zeghouf M, Cianferani S, Ferrandez Y, Cherfils J. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling. Nat Commun 2023; 14:4157. [PMID: 37438343 DOI: 10.1038/s41467-023-39894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
Collapse
Affiliation(s)
- Candice Sartre
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - François Peurois
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Marie-Hélène Kryszke
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Wenhua Zhang
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Delphine Courilleau
- Université Paris-Saclay, IPSIT-CIBLOT, Inserm US31, CNRS UAR3679, 91400, Orsay, France
| | | | - Yves Ambroise
- Université Paris-Saclay, CEA, Service de Chimie Bioorganique et de Marquage, 91191, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Yann Ferrandez
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Alem D, Yang X, Beato F, Sarcar B, Tassielli AF, Dai R, Hogenson TL, Park MA, Jiang K, Cai J, Yuan Y, Fernandez-Zapico ME, Tan AC, Fleming JB, Xie H. Translational relevance of SOS1 targeting for KRAS-mutant colorectal cancer. Mol Carcinog 2023; 62:1025-1037. [PMID: 37042566 PMCID: PMC10330439 DOI: 10.1002/mc.23543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Abstract
It has been challenging to target mutant KRAS (mKRAS) in colorectal cancer (CRC) and other malignancies. Recent efforts have focused on developing inhibitors blocking molecules essential for KRAS activity. In this regard, SOS1 inhibition has arisen as an attractive approach for mKRAS CRC given its essential role as a guanine nucleotide exchange factor for this GTPase. Here, we demonstrated the translational value of SOS1 blockade in mKRAS CRC. We used CRC patient-derived organoids (PDOs) as preclinical models to evaluate their sensitivity to SOS1 inhibitor BI3406. A combination of in silico analyses and wet lab techniques was utilized to define potential predictive markers for SOS1 sensitivity and potential mechanisms of resistance in CRC. RNA-seq analysis of CRC PDOs revealed two groups of CRC PDOs with differential sensitivities to SOS1 inhibitor BI3406. The resistant group was enriched in gene sets involving cholesterol homeostasis, epithelial-mesenchymal transition, and TNF-α/NFκB signaling. Expression analysis identified a significant correlation between SOS1 and SOS2 mRNA levels (Spearman's ρ 0.56, p < 0.001). SOS1/2 protein expression was universally present with heterogeneous patterns in CRC cells but only minimal to none in surrounding nonmalignant cells. Only SOS1 protein expression was associated with worse survival in patients with RAS/RAF mutant CRC (p = 0.04). We also found that SOS1/SOS2 protein expression ratio >1 by immunohistochemistry (p = 0.03) instead of KRAS mutation (p = 1) was a better predictive marker to BI3406 sensitivity of CRC PDOs, concordant with the significant positive correlation between SOS1/SOS2 protein expression ratio and SOS1 dependency. Finally, we showed that GTP-bound RAS level underwent rebound even in BI3406-sensitive PDOs with no change of KRAS downstream effector genes, thus suggesting upregulation of guanine nucleotide exchange factor as potential cellular adaptation mechanisms to SOS1 inhibition. Taken together, our results show that high SOS1/SOS2 protein expression ratio predicts sensitivity to SOS1 inhibition and support further clinical development of SOS1-targeting agents in CRC.
Collapse
Affiliation(s)
- Diego Alem
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xinrui Yang
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Francisca Beato
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alexandra F Tassielli
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ruifan Dai
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Tara L Hogenson
- Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret A Park
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kun Jiang
- Department of Pathology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
| | - Martin E Fernandez-Zapico
- Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
20
|
Miller-Phillips L, Collisson EA. RAS and Other Molecular Targets in Pancreatic Cancer: The Next Wave Is Coming. Curr Treat Options Oncol 2023:10.1007/s11864-023-01096-x. [PMID: 37296367 DOI: 10.1007/s11864-023-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT Since the discovery of oncogenes in the 1970s, cancer doctors and researchers alike have understood the promise of discovering drugs to block the dominantly acting function of mutated signaling proteins in cancer. This promise was delivered, first slowly, with early signals inhibiting HER2 and BCR-Abl in the 1990s and 2000s, and then quickly, with kinase inhibitors being approved hand over fist in non-small cell lung cancer, melanoma, and many other malignancies. The RAS proteins, however, remained recalcitrant to chemical inhibition for decades, despite being, by far, the most frequently mutated oncogenes in cancers of all types. Nowhere was this deficit more palpable than in pancreatic ductal adenocarcinoma (PDA), where > 90% of cases are driven by single nucleotide substitutions at a single codon of the KRAS gene. The ice began to crack in 2012 when Ostrem and colleagues (Nature 503(7477): 548-551, 2013) synthesized the first KRAS G12C inhibitors, which covalently bind to GDP-bound G12C-mutated KRAS and lock the oncoprotein in its inactive state. In the last decade, the scientific community has established a new foundation on this and other druggable pockets in mutant KRAS. Here we provide an up-to-date overview of drugs targeting KRAS and other molecular targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lisa Miller-Phillips
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA.
| |
Collapse
|
21
|
Ni Q, Zhu B, Ji Y, Zheng Q, Liang X, Ma N, Jiang H, Zhang F, Shang Y, Wang Y, Xu S, Zhang E, Yuan Y, Chen T, Yin F, Cao H, Huang J, Xia J, Ding X, Qiu X, Ding K, Song C, Zhou W, Wu M, Wang K, Lui R, Lin Q, Chen W, Li Z, Cheng S, Wang X, Xie D, Li J. PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202448. [PMID: 36453576 PMCID: PMC9839844 DOI: 10.1002/advs.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.
Collapse
|
22
|
Bian Y, Alem D, Beato F, Hogenson TL, Yang X, Jiang K, Cai J, Ma WW, Fernandez-Zapico M, Tan AC, Lawrence NJ, Fleming JB, Yuan Y, Xie H. Development of SOS1 Inhibitor-Based Degraders to Target KRAS-Mutant Colorectal Cancer. J Med Chem 2022; 65:16432-16450. [PMID: 36459180 PMCID: PMC10113742 DOI: 10.1021/acs.jmedchem.2c01300] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Direct blockade of KRAS driver mutations in colorectal cancer (CRC) has been challenging. Targeting SOS1, a guanine nucleotide exchange factor, has arisen as an attractive approach for KRAS-mutant CRC. Here, we describe the development of novel SOS1 degraders and their activity in patient-derived CRC organoids (PDO). The design of these degraders as proteolysis-targeting chimera was based on the crystal structures of cereblon and SOS1. The synthesis used the 6- and 7-OH groups of a quinazoline core as anchor points to connect lenalidomide. Fifteen compounds were screened for SOS1 degradation. P7 was found to have up to 92% SOS1 degradation in both CRC cell lines and PDOs with excellent specificity. SOS1 degrader P7 demonstrated superior activity in inhibiting CRC PDO growth with an IC50 5 times lower than that of SOS1 inhibitor BI3406. In summary, we developed new SOS1 degraders and demonstrated SOS1 degradation as a feasible therapeutic strategy for KRAS-mutant CRC.
Collapse
Affiliation(s)
- Yujia Bian
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Diego Alem
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Francisca Beato
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Xinrui Yang
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Kun Jiang
- Department of Pathology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 12111 USF Sweetgum Ln, Tampa, Florida 33620, United States
| | - Wen Wee Ma
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Martin Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Nicholas J Lawrence
- Department of Drug Discovery, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| |
Collapse
|
23
|
Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun. Curr Treat Options Oncol 2022; 23:1699-1720. [PMID: 36394791 DOI: 10.1007/s11864-022-01033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
OPINION STATEMENT KRASp.G12C mutation occurs in 12% of newly diagnosed advanced NSCLC and has recently emerged as a positive predictive biomarker for the selection of advanced NSCLC patients who may respond to novel KRASp.G12C inhibitors. The recent discovery of a new binding pocket under the effector region of KRAS G12C oncoprotein has made direct pharmacological inhibition of the KRASp.G12 mutation possible, leading to the clinical development of a new series of direct selective inhibitors, with a potential major impact on patients' survival and quality of life. Promising efficacy and tolerability data emerging from the early phase CodeBreak trial have already supported the regulatory approval of sotorasib as first in class targeted treatment for the second-line treatment of KRASp.G12C-positive NSCLC population, following immunotherapy-based first-line therapies, while the randomized phase III CodeBreak 200 clinical study has recently confirmed a significant superiority of sotorasib over docetaxel in terms of progression-free survival and quality of life. However, KRAS mutant NSCLC is a high heterogeneous disease characterized by a high rate of co-mutations, most frequently involving P53, STK11, and KEAP1 genes, which significantly modulate the composition of the tumor microenvironment and consequently affect clinical responses to both immunotherapy and targeted inhibitors now available in clinical practice. Both pre-clinical and clinical translational series have recently revealed a wide spectrum of resistance mechanisms occurring under selective KRASG12C inhibitors, including both on-target and off-target molecular alterations as well as morphological switching, negatively affecting the antitumor activity of these drugs when used as single agent therapies. The understanding of such biological background along with the emergence of pre-clinical data provided a strong rational to investigate different combination strategies, including the inhibition of SHP2, SOS1, and KRAS G12C downstream effectors, as well as the addition of immunotherapy and/or chemotherapy to targeted therapy. The preliminary results of these trials have recently suggested a promising activity of SHP2 inhibitors in the front-line setting, while toxicity issues limited the concurrent administration of immune-checkpoint inhibitors and sotorasib. The identification of predictive genomic/immunological biomarkers will be crucial to understand how to optimally sequencing/combining different drugs and ultimately personalize treatment strategies under clinical investigation, to definitively increase the survival outcomes of KRASp.G12C mutant advanced NSCLC patients.
Collapse
|
24
|
Bröker J, Waterson AG, Smethurst C, Kessler D, Böttcher J, Mayer M, Gmaschitz G, Phan J, Little A, Abbott JR, Sun Q, Gmachl M, Rudolph D, Arnhof H, Rumpel K, Savarese F, Gerstberger T, Mischerikow N, Treu M, Herdeis L, Wunberg T, Gollner A, Weinstabl H, Mantoulidis A, Krämer O, McConnell DB, W. Fesik S. Fragment Optimization of Reversible Binding to the Switch II Pocket on KRAS Leads to a Potent, In Vivo Active KRAS G12C Inhibitor. J Med Chem 2022; 65:14614-14629. [PMID: 36300829 PMCID: PMC9661478 DOI: 10.1021/acs.jmedchem.2c01120] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/02/2022]
Abstract
Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.
Collapse
Affiliation(s)
- Joachim Bröker
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Alex G. Waterson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Chris Smethurst
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jark Böttcher
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Moriz Mayer
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jason Phan
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Andrew Little
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Jason R. Abbott
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Qi Sun
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Michael Gmachl
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dorothea Rudolph
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Klaus Rumpel
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Fabio Savarese
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Nikolai Mischerikow
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Matthias Treu
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Lorenz Herdeis
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Tobias Wunberg
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Gollner
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Harald Weinstabl
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Oliver Krämer
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B. McConnell
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Stephen W. Fesik
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
25
|
A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation. Cell Chem Biol 2022; 29:1446-1464.e10. [PMID: 35835118 DOI: 10.1016/j.chembiol.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022]
Abstract
Chemogenetic methods enabling the rapid translocation of specific proteins to the plasma membrane (PM) in a single protein-single ligand manner are useful tools in cell biology. We recently developed a technique, in which proteins fused to an Escherichia coli dihydrofolate reductase (eDHFR) variant carrying N-terminal hexalysine residues are recruited from the cytoplasm to the PM using the synthetic myristoyl-d-Cys-tethered trimethoprim (mDcTMP) ligand. However, this system achieved PM-specific translocation only when the eDHFR tag was fused to the N terminus of proteins, thereby limiting its application. In this report, we engineered a universal PM-targeting tag for mDcTMP-induced protein translocation by grafting the hexalysine motif into an intra-loop region of eDHFR. We demonstrate the broad applicability of the new loop-engineered eDHFR tag and mDcTMP pair for conditional PM recruitment and activation of various tag-fused signaling proteins with different fusion configurations and for reversibly and repeatedly controlling protein localization to generate synthetic signal oscillations.
Collapse
|
26
|
Conroy M, Cowzer D, Kolch W, Duffy AG. Emerging RAS-directed therapies for cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:543-558. [PMID: 35582302 PMCID: PMC9094076 DOI: 10.20517/cdr.2021.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
RAS oncogenes are the most commonly mutated oncogenes in human cancer, and RAS-mutant cancers represent a major burden of human disease. Though these oncogenes were discovered decades ago, recent years have seen major advances in understanding of their structure and function, including the therapeutic and prognostic significance of diverse isoforms. Targeting of these mutations has proven difficult, despite some successes with inhibition of RAS effector signalling. More recently, direct RAS inhibition has been achieved in a trial setting. While this has yet to be translated to everyday clinical practice, this development carries much promise. This review summarizes the diverse approaches that have been taken to RAS inhibition and then focuses on the most recent developments in direct inhibition of KRAS(G12C).
Collapse
Affiliation(s)
- Michael Conroy
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland.,Authors contributed equally
| | - Darren Cowzer
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland.,Authors contributed equally
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Austin G Duffy
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| |
Collapse
|
27
|
He X, Du K, Wang Y, Fan J, Li M, Ni D, Lu S, Bian X, Liu Y. Autopromotion of K-Ras4B Feedback Activation Through an SOS-Mediated Long-Range Allosteric Effect. Front Mol Biosci 2022; 9:860962. [PMID: 35463958 PMCID: PMC9023742 DOI: 10.3389/fmolb.2022.860962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
The Ras-specific guanine nucleotide exchange factors Son of Sevenless (SOS) regulates Ras activation by converting inactive GDP-bound to active GTP-bound states. The catalytic activity of Ras is further allosterically regulated by GTP-Ras bound to a distal site through a positive feedback loop. To address the mechanism underlying the long-range allosteric activation of the catalytic K-Ras4B by an additional allosteric GTP-Ras through SOS, we employed molecular dynamics simulation of the K-Ras4BG13D•SOScat complex with and without an allosteric GTP-bound K-Ras4BG13D. We found that the binding of an allosteric GTP-K-Ras4BG13D enhanced the affinity between the catalytic K-Ras4BG13D and SOScat, forming a more stable conformational state. The peeling away of the switch I from the nucleotide binding site facilitated the dissociation of GDP, thereby contributing to the increased nucleotide exchange rate. The community networks further showed stronger edge connection upon allosteric GTP-K-Ras4BG13D binding, which represented an increased interaction between catalytic K-Ras4BG13D and SOScat. Moreover, GTP-K-Ras4BG13D binding transmitted allosteric signaling pathways though the Cdc25 domain of SOS that enhanced the allosteric regulatory from the K-Ras4BG13D allosteric site to the catalytic site. This study may provide an in-depth mechanism for abnormal activation and allosteric regulation of K-Ras4BG13D.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Daily Practice Assessment of KRAS Status in NSCLC Patients: A New Challenge for the Thoracic Pathologist Is Right around the Corner. Cancers (Basel) 2022; 14:cancers14071628. [PMID: 35406400 PMCID: PMC8996900 DOI: 10.3390/cancers14071628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary RAS mutation is the most frequent oncogenic alteration in human cancers and KRAS is the most frequently mutated, notably in non-small cell lung carcinomas (NSCLC). Various attempts to inhibit KRAS in the past were unsuccessful in these latter tumors. However, recently, several small molecules (AMG510, MRTX849, JNJ-74699157, and LY3499446) have been developed to specifically target KRAS G12C-mutated tumors, which seems promising for patient treatment and should soon be administered in daily practice for non-squamous (NS)-NSCLC. In this context, it will be mandatory to systematically assess the KRAS status in routine clinical practice, at least in advanced NS-NSCLC, leading to new challenges for thoracic oncologists. Abstract KRAS mutations are among the most frequent genomic alterations identified in non-squamous non-small cell lung carcinomas (NS-NSCLC), notably in lung adenocarcinomas. In most cases, these mutations are mutually exclusive, with different genomic alterations currently known to be sensitive to therapies targeting EGFR, ALK, BRAF, ROS1, and NTRK. Recently, several promising clinical trials targeting KRAS mutations, particularly for KRAS G12C-mutated NSCLC, have established new hope for better treatment of patients. In parallel, other studies have shown that NSCLC harboring co-mutations in KRAS and STK11 or KEAP1 have demonstrated primary resistance to immune checkpoint inhibitors. Thus, the assessment of the KRAS status in advanced-stage NS-NSCLC has become essential to setting up an optimal therapeutic strategy in these patients. This stimulated the development of new algorithms for the management of NSCLC samples in pathology laboratories and conditioned reorganization of optimal health care of lung cancer patients by the thoracic pathologists. This review addresses the recent data concerning the detection of KRAS mutations in NSCLC and focuses on the new challenges facing pathologists in daily practice for KRAS status assessment.
Collapse
|
29
|
Désage AL, Léonce C, Swalduz A, Ortiz-Cuaran S. Targeting KRAS Mutant in Non-Small Cell Lung Cancer: Novel Insights Into Therapeutic Strategies. Front Oncol 2022; 12:796832. [PMID: 35251972 PMCID: PMC8889932 DOI: 10.3389/fonc.2022.796832] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Although KRAS-activating mutations represent the most common oncogenic driver in non-small cell lung cancer (NSCLC), various attempts to inhibit KRAS failed in the past decade. KRAS mutations are associated with a poor prognosis and a poor response to standard therapeutic regimen. The recent development of new therapeutic agents (i.e., adagrasib, sotorasib) that target specifically KRAS G12C in its GDP-bound state has evidenced an unprecedented success in the treatment of this subgroup of patients. Despite providing pre-clinical and clinical efficacy, several mechanisms of acquired resistance to KRAS G12C inhibitors have been reported. In this setting, combined therapeutic strategies including inhibition of either SHP2, SOS1 or downstream effectors of KRAS G12C seem particularly interesting to overcome acquired resistance. In this review, we will discuss the novel therapeutic strategies targeting KRAS G12C and promising approaches of combined therapy to overcome acquired resistance to KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Camille Léonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
30
|
Zhou C, Fan Z, Zhou Z, Li Y, Cui R, Liu C, Zhou G, Diao X, Jiang H, Zheng M, Zhang S, Xu T. Discovery of the First-in-Class Agonist-Based SOS1 PROTACs Effective in Human Cancer Cells Harboring Various KRAS Mutations. J Med Chem 2022; 65:3923-3942. [PMID: 35230841 DOI: 10.1021/acs.jmedchem.1c01774] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulating SOS1 functions may result in targeted pan-KRAS therapies. Small-molecule SOS1 inhibitors showed promising anticancer potential, and the most advanced inhibitor BI 1701963 is currently under phase I clinical studies. SOS1 agonists provide new opportunities to treat cancer; however, the underlying mechanisms still warrant investigation. We here report the discovery of the first SOS1 PROTACs designed uniquely by connecting a VHL ligand to the reported SOS1 agonist, ensuring that the observed inhibitory activity results from degraders. The best compound 9d induced SOS1 degradation in various KRAS-driven cancer cells and displayed superior antiproliferation activity compared to the agonist itself. Tumor xenograft study clearly showed the promising antitumor potency of 9d against human lung cancer. This study provides good evidence of using agonists to design SOS1 PROTACs and demonstrates that targeted SOS1 degradation represents an effective therapeutic strategy for overcoming KRAS-driven cancers.
Collapse
Affiliation(s)
- Chuan Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zisheng Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zehui Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yupeng Li
- Masonic Cancer Center & Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rongrong Cui
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chaoyi Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Guizhen Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xingxing Diao
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mingyue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tianfeng Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
31
|
Hosein AN, Dougan SK, Aguirre AJ, Maitra A. Translational advances in pancreatic ductal adenocarcinoma therapy. NATURE CANCER 2022; 3:272-286. [PMID: 35352061 DOI: 10.1038/s43018-022-00349-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that is most frequently detected at advanced stages, limiting treatment options to systemic chemotherapy with modest clinical responses. Here, we review recent advances in targeted therapy and immunotherapy for treating subtypes of PDAC with diverse molecular alterations. We focus on the current preclinical and clinical evidence supporting the potential of these approaches and the promise of combinatorial regimens to improve the lives of patients with PDAC.
Collapse
Affiliation(s)
- Abdel Nasser Hosein
- Division of Hematology & Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Advocate Aurora Health, Vince Lombardi Cancer Clinic, Sheboygan, WI, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Mero HR, Lyantagaye SL, Bongcam-Rudloff E. Cassava Brown Streak Viruses express second 6-kilodalton (6K2) protein with varied polarity and three dimensional (3D) structures: Basis for trait discrepancy between the virus species. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105219. [PMID: 35066168 DOI: 10.1016/j.meegid.2022.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV) are the two among six virus species speculated to cause the most catastrophic Brown Streak Disease of Cassava (CBSD) in Africa and Asia. Cassava Brown Streak Virus (CBSV) is hard to breed resistance for compared to Ugandan Cassava Brown Streak Virus (UCBSV) species. This is exemplified by incidences of CBSV species rather than UCBSV species in elite breeding line, KBH 2006/0026 at Bagamoyo, Tanzania. It is not yet understood as to why CBSV species could breakdown CBSD-resistance in the KBH 2006/0026 unlike the UCBSV species. This marks the first in silico study conducted to understand molecular basis for the trait discrepancy between CBSV and UCBSV species from structural biology view point. Following ab initio modelling and analysis of physical-chemical properties of second 6-kilodalton (6K2) protein encoded by CBSV and UCBSV species, using ROBETTA server and Protein Parameters tool, respectively we report that; three dimensional (3D) structures and polarity of the protein differs significantly between the two virus species. (95% and 5%) and (85% and 15%) strains of 20 CBSV and 20 UCBSV species respectively, expressed the protein in homo-trimeric and homo-tetrameric forms, correspondingly. 95% and 85% of studied strain population of the two virus species expressed hydrophilic and hydrophobic 6K2, respectively. Based on findings of the curent study, we hypothesize that; (i) The hydrophilic 6K2 expressed by the CBSV species, favour its faster systemic movement via vascular tissues of cassava host and hence result into higher tissue titres than the UCBSV species encoding hydrophobic form of the protein. t and (ii) The hydrophilic 6K2 expressed byCBSV species have additional interaction advantage with Nuclear Inclusion b protease domain (NIb) and Viral genome-linked protein (VPg), components of Virus Replication Complex (VRC) and hence contributing to faster replication of viral genome than the hydrophobic 6K2 expressed by the UCBSV species. Experimental studies are needed to resolve the 3D structures of the 6K2, VPg and NIb and comprehend complex molecular interactions between them. We suggest that, the 6K2 gene should be targeted for improvement of RNA interference (RNAi)-directed transgenesis of virus-resistant cassava as a more effective way to control the CBSD besides breeding.
Collapse
Affiliation(s)
- Herieth Rhodes Mero
- University of Dar es Salaam, Mkwawa University College of Education (MUCE), P. O. Box 2513, Iringa, Tanzania; Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, P. 0. BOX 7054, 750 07 Uppsala, Sweden.
| | | | - Erik Bongcam-Rudloff
- Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, P. 0. BOX 7054, 750 07 Uppsala, Sweden
| |
Collapse
|
33
|
Ma B, Cao L, Li Y. A novel 10-gene immune-related lncRNA signature model for the prognosis of colorectal cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9743-9760. [PMID: 34814366 DOI: 10.3934/mbe.2021477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND The tumor immune microenvironment of colorectal cancer (CRC) affects tumor development, prognosis and immunotherapy strategies. Recently, immune-related lncRNA were shown to play vital roles in the tumor immune microenvironment. The objective of this study was to identify lncRNAs involved in the immune response, tumorigenesis and progression of CRC and to establish an immune-related lncRNA signature for predicting the prognosis of CRC. METHODS We used data retrieved from the cancer genome atlas (TCGA) dataset to construct a 10-gene immune-related lncRNA pair (IRLP) signature model using a method based on the ranking and comparison of paired gene expression in CRC. The clinical prognosis, immune checkpoints and lncRNA-protein networks were analyzed to evaluate the signature. RESULTS The signature was closely associated with overall survival of CRC patients (p < 0.001 in both of the training and validating cohorts) and the 3-year AUC values for the training and validating cohorts were 0.884 and 0.739, respectively. And, there were positive correlations between the signature and age (p = 0.048), clinical stage (p < 0.01), T stage (p < 0.01), N stage (p < 0.001) and M stage (p < 0.01). In addition, the signature model appeared to be highly relevant to some checkpoints, including CD160, TNFSF15, HHLA2, IDO2 and KIR3DL1. Further, molecular functional analysis and lncRNA-protein networks were applied to understand the molecular mechanisms underlying the carcinogenic effect and progression. CONCLUSION The 10-gene IRLP signature model is an independent prognostic factor for CRC patient and can be utilized for the development of immunotherapy.
Collapse
Affiliation(s)
- Bin Ma
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| | - Lianqun Cao
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| | - Yongmin Li
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| |
Collapse
|
34
|
A Rational Design of α-Helix-Shaped Peptides Employing the Hydrogen-Bond Surrogate Approach: A Modulation Strategy for Ras-RasGRF1 Interaction in Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2021; 14:ph14111099. [PMID: 34832880 PMCID: PMC8623491 DOI: 10.3390/ph14111099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023] Open
Abstract
In the last two decades, abnormal Ras (rat sarcoma protein)-ERK (extracellular signal-regulated kinase) signalling in the brain has been involved in a variety of neuropsychiatric disorders, including drug addiction, certain forms of intellectual disability, and autism spectrum disorder. Modulation of membrane-receptor-mediated Ras activation has been proposed as a potential target mechanism to attenuate ERK signalling in the brain. Previously, we showed that a cell penetrating peptide, RB3, was able to inhibit downstream signalling by preventing RasGRF1 (Ras guanine nucleotide-releasing factor 1), a neuronal specific GDP/GTP exchange factor, to bind Ras proteins, both in brain slices and in vivo, with an IC50 value in the micromolar range. The aim of this work was to mutate and improve this peptide through computer-aided techniques to increase its inhibitory activity against RasGRF1. The designed peptides were built based on the RB3 peptide structure corresponding to the α-helix of RasGRF1 responsible for Ras binding. For this purpose, the hydrogen-bond surrogate (HBS) approach was exploited to maintain the helical conformation of the designed peptides. Finally, residue scanning, MD simulations, and MM-GBSA calculations were used to identify 18 most promising α-helix-shaped peptides that will be assayed to check their potential activity against Ras-RasGRF1 and prevent downstream molecular events implicated in brain disorders.
Collapse
|
35
|
Hamilton G, Plangger A. Cytotoxic activity of KRAS inhibitors in combination with chemotherapeutics. Expert Opin Drug Metab Toxicol 2021; 17:1065-1074. [PMID: 34347509 DOI: 10.1080/17425255.2021.1965123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION KRAS is the most frequently mutated oncogenic driver in pancreatic, lung, and colon cancer. Recently, KRAS inhibitors in clinical use show promising activity but most responses are partial and drug resistance develops. The use of therapeutics in combination with KRAS inhibitors are expected to improve outcomes. AREAS COVERED This review describes the KRAS G12C mutation-specific inhibitors and the SOS1-targeting inhibitors that reduce the GTP-loading of wildtype and mutated KRAS. Both types of compounds reduce tumor cell proliferation in vitro and in vivo. The combinations of the various KRAS inhibitors with downstream signaling effectors, modulators of KRAS-associated metabolic alterations and chemotherapeutics are summarized. EXPERT OPINION The clinical potency of mutated KRAS-specific inhibitors needs to be improved by suitable drug combinations. Inhibition of downstream signaling cascades increases toxicity and other combinations exploited comprise G12C-directed inhibitors with SOS1 inhibitors, glucose/glutamine metabolic modulators, classical chemotherapeutics, and others. The most suitable inhibitor combinations corroborated in preclinical development await clinical verification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
37
|
Kessler D, Gerlach D, Kraut N, McConnell DB. Targeting Son of Sevenless 1: The pacemaker of KRAS. Curr Opin Chem Biol 2021; 62:109-118. [PMID: 33848766 DOI: 10.1016/j.cbpa.2021.02.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Son of Sevenless (SOS) is a guanine nucleotide exchange factor that activates the important cell signaling switch KRAS. SOS acts as a pacemaker for KRAS, the beating heart of cancer, by catalyzing the "beating" from the KRAS(off) to the KRAS(on) conformation. Activating mutations in SOS1 are common in Noonan syndrome and oncogenic alterations in KRAS drive 1 in seven human cancers. Promising clinical efficacy has been observed for selective KRASG12C inhibitors, but the vast majority of oncogenic KRAS alterations remain undrugged. The discovery of a druggable pocket on SOS1 has led to potent SOS1 inhibitors such as BI-3406. SOS1 inhibition leads to antiproliferative effects against all major KRAS mutants. The first SOS1 inhibitor has entered clinical trials for KRAS-mutated cancers. In this review, we provide an overview of SOS1 function, its association with cancer and RASopathies, known SOS1 activators and inhibitors, and a future perspective is provided.
Collapse
Affiliation(s)
- Dirk Kessler
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria
| | - Daniel Gerlach
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria
| | - Norbert Kraut
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria
| | - Darryl B McConnell
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria.
| |
Collapse
|
38
|
Ramharter J, Kessler D, Ettmayer P, Hofmann MH, Gerstberger T, Gmachl M, Wunberg T, Kofink C, Sanderson M, Arnhof H, Bader G, Rumpel K, Zöphel A, Schnitzer R, Böttcher J, O'Connell JC, Mendes RL, Richard D, Pototschnig N, Weiner I, Hela W, Hauer K, Haering D, Lamarre L, Wolkerstorfer B, Salamon C, Werni P, Munico-Martinez S, Meyer R, Kennedy MD, Kraut N, McConnell DB. One Atom Makes All the Difference: Getting a Foot in the Door between SOS1 and KRAS. J Med Chem 2021; 64:6569-6580. [PMID: 33719426 DOI: 10.1021/acs.jmedchem.0c01949] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.
Collapse
Affiliation(s)
- Juergen Ramharter
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Marco H Hofmann
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Michael Gmachl
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Michael Sanderson
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Zöphel
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jonathan C O'Connell
- Forma Therapeutics, 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Rachel L Mendes
- Forma Therapeutics, 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - David Richard
- Forma Therapeutics, 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Nikolai Pototschnig
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Irene Weiner
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Wolfgang Hela
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Katja Hauer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Daniela Haering
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Lyne Lamarre
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Bernhard Wolkerstorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Christian Salamon
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Patrick Werni
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Silvia Munico-Martinez
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Reiner Meyer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Matthew D Kennedy
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
39
|
Tisi R, Spinelli M, Palmioli A, Airoldi C, Cazzaniga P, Besozzi D, Nobile MS, Mazzoleni E, Arnhold S, De Gioia L, Grandori R, Peri F, Vanoni M, Sacco E. The Multi-Level Mechanism of Action of a Pan-Ras Inhibitor Explains its Antiproliferative Activity on Cetuximab-Resistant Cancer Cells. Front Mol Biosci 2021; 8:625979. [PMID: 33681292 PMCID: PMC7925909 DOI: 10.3389/fmolb.2021.625979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
Ras oncoproteins play a crucial role in the onset, maintenance, and progression of the most common and deadly human cancers. Despite extensive research efforts, only a few mutant-specific Ras inhibitors have been reported. We show that cmp4–previously identified as a water-soluble Ras inhibitor– targets multiple steps in the activation and downstream signaling of different Ras mutants and isoforms. Binding of this pan-Ras inhibitor to an extended Switch II pocket on HRas and KRas proteins induces a conformational change that down-regulates intrinsic and GEF-mediated nucleotide dissociation and exchange and effector binding. A mathematical model of the Ras activation cycle predicts that the inhibitor severely reduces the proliferation of different Ras-driven cancer cells, effectively cooperating with Cetuximab to reduce proliferation even of Cetuximab-resistant cancer cell lines. Experimental data confirm the model prediction, indicating that the pan-Ras inhibitor is an appropriate candidate for medicinal chemistry efforts tailored at improving its currently unsatisfactory affinity.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Michela Spinelli
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Paolo Cazzaniga
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4, Milano, Italy
| | - Daniela Besozzi
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4, Milano, Italy
| | - Marco S Nobile
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4, Milano, Italy.,Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Elisa Mazzoleni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Simone Arnhold
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.,SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| |
Collapse
|
40
|
The hanging heart: How KRAS lures its prey to the membrane. Proc Natl Acad Sci U S A 2020; 117:26556-26558. [PMID: 32999064 DOI: 10.1073/pnas.2017730117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, Rumpel K, Botesteanu DA, Ettmayer P, Gerstberger T, Kofink C, Wunberg T, Zoephel A, Fu SC, Teh JL, Böttcher J, Pototschnig N, Schachinger F, Schipany K, Lieb S, Vellano CP, O'Connell JC, Mendes RL, Moll J, Petronczki M, Heffernan TP, Pearson M, McConnell DB, Kraut N. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov 2020; 11:142-157. [PMID: 32816843 DOI: 10.1158/2159-8290.cd-20-0142] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph R Marszalek
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | | | | | - Szu-Chin Fu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica L Teh
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christopher P Vellano
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jurgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Timothy P Heffernan
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| |
Collapse
|
42
|
Cowan JR, Salyer L, Wright NT, Kinnamon DD, Amaya P, Jordan E, Bamshad MJ, Nickerson DA, Hershberger RE. SOS1 Gain-of-Function Variants in Dilated Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002892. [PMID: 32603605 DOI: 10.1161/circgen.119.002892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a genetically heterogeneous cardiac disease characterized by progressive ventricular enlargement and reduced systolic function. Here, we report genetic and functional analyses implicating the rat sarcoma signaling protein, SOS1 (Son of sevenless homolog 1), in DCM pathogenesis. METHODS Exome sequencing was performed on 412 probands and family members from our DCM cohort, identifying several SOS1 variants with potential disease involvement. As several lines of evidence have implicated dysregulated rat sarcoma signaling in the pathogenesis of DCM, we assessed functional impact of each variant on the activation of ERK (extracellular signal-regulated kinase), AKT (protein kinase B), and JNK (c-Jun N-terminal kinase) pathways. Relative expression levels were determined by Western blot in HEK293T cells transfected with variant or wild-type human SOS1 expression constructs. RESULTS A rare SOS1 variant [c.571G>A, p.(Glu191Lys)] was found to segregate alongside an A-band TTN truncating variant in a pedigree with aggressive, early-onset DCM. Reduced disease severity in the absence of the SOS1 variant suggested its potential involvement as a genetic risk factor for DCM in this family. Exome sequencing identified 5 additional SOS1 variants with potential disease involvement in 4 other families [c.1820T>C, p.(Ile607Thr); c.2156G>C, p.(Gly719Ala); c.2230A>G, p.(Arg744Gly); c.2728G>C, p.(Asp910His); c.3601C>T, p.(Arg1201Trp)]. Impacted amino acids occupied a number of functional domains relevant to SOS1 activity, including the N-terminal histone fold, as well as the C-terminal REM (rat sarcoma exchange motif), CDC25 (cell division cycle 25), and PR (proline-rich) tail domains. Increased phosphorylated ERK expression relative to wild-type levels was seen for all 6 SOS1 variants, paralleling known disease-relevant SOS1 signaling profiles. CONCLUSIONS These data support gain-of-function variation in SOS1 as a contributing factor to isolated DCM.
Collapse
Affiliation(s)
- Jason R Cowan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Lorien Salyer
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA (N.T.W.)
| | - Daniel D Kinnamon
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Pedro Amaya
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Elizabeth Jordan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Michael J Bamshad
- Department of Pediatrics (M.J.B.), University of Washington, Seattle
| | | | - Ray E Hershberger
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Cardiovascular Medicine (R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
43
|
Nakamura A, Oki C, Kato K, Fujinuma S, Maryu G, Kuwata K, Yoshii T, Matsuda M, Aoki K, Tsukiji S. Engineering Orthogonal, Plasma Membrane-Specific SLIPT Systems for Multiplexed Chemical Control of Signaling Pathways in Living Single Cells. ACS Chem Biol 2020; 15:1004-1015. [PMID: 32162909 DOI: 10.1021/acschembio.0c00024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Most cell behaviors are the outcome of processing information from multiple signals generated upon cell stimulation. Thus, a systematic understanding of cellular systems requires methods that allow the activation of more than one specific signaling molecule or pathway within a cell. However, the construction of tools suitable for such multiplexed signal control remains challenging. In this work, we aimed to develop a platform for chemically manipulating multiple signaling molecules/pathways in living mammalian cells based on self-localizing ligand-induced protein translocation (SLIPT). SLIPT is an emerging chemogenetic tool that controls protein localization and cell signaling using synthetic self-localizing ligands (SLs). Focusing on the inner leaflet of the plasma membrane (PM), where there is a hub of intracellular signaling networks, here we present the design and engineering of two new PM-specific SLIPT systems based on an orthogonal eDHFR and SNAP-tag pair. These systems rapidly induce translocation of eDHFR- and SNAP-tag-fusion proteins from the cytoplasm to the PM specifically in a time scale of minutes upon addition of the corresponding SL. We then show that the combined use of the two systems enables chemically inducible, individual translocation of two distinct proteins in the same cell. Finally, by integrating the orthogonal SLIPT systems with fluorescent reporters, we demonstrate simultaneous multiplexed activation and fluorescence imaging of endogenous ERK and Akt activities in a single cell. Collectively, orthogonal PM-specific SLIPT systems provide a powerful new platform for multiplexed chemical signal control in living single cells, offering new opportunities for dissecting cell signaling networks and synthetic cell manipulation.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Choji Oki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kenya Kato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Satoko Fujinuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Gembu Maryu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Frontier Research Institute for Materials Science (FRIMS), Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
44
|
Chen FY, Li X, Zhu HP, Huang W. Regulation of the Ras-Related Signaling Pathway by Small Molecules Containing an Indole Core Scaffold: A Potential Antitumor Therapy. Front Pharmacol 2020; 11:280. [PMID: 32231571 PMCID: PMC7082308 DOI: 10.3389/fphar.2020.00280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
The Ras-Related signaling pathway plays an important role in cell development and differentiation. A growing body of evidence collected in recent years has shown that the aberrant activation of Ras is associated with tumor-related processes. Several studies have indicated that indole and its derivatives can target regulatory factors and interfere with or even block the aberrant Ras-Related pathway to treat or improve malignant tumors. In this review, we summarize the roles of indole and its derivatives in the isoprenylcysteine carboxyl methyltransferase-participant Ras membrane localization signaling pathway and Ras-GTP/Raf/MAPK signaling pathway through their regulatory mechanisms. Moreover, we briefly discuss the current treatment strategies that target these pathways. Our review will help guide the further study of the application of Ras-Related signaling pathway inhibitors.
Collapse
Affiliation(s)
- Fei-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Sawada S, Nakamura A, Yoshii T, Kuwata K, Nakatsu F, Tsukiji S. Protein-recruiting synthetic molecules targeting the Golgi surface. Chem Commun (Camb) 2020; 56:15422-15425. [DOI: 10.1039/d0cc06908f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic molecules consisting of a small-molecule ligand and a tri-N-methylated myristoyl-Gly-Cys lipopeptide serve as chemical tools to rapidly recruit their target proteins from the cytoplasm to the Golgi surface in living cells.
Collapse
Affiliation(s)
- Shunsuke Sawada
- Department of Nanopharmaceutical Sciences
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Akinobu Nakamura
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM)
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology
- Graduate School of Medical and Dental Sciences
- Niigata University
- Niigata 951-8510
- Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| |
Collapse
|
46
|
Nakamura A, Katahira R, Sawada S, Shinoda E, Kuwata K, Yoshii T, Tsukiji S. Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules. Biochemistry 2019; 59:205-211. [DOI: 10.1021/acs.biochem.9b00807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Akinobu Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Rika Katahira
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Shunsuke Sawada
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Eri Shinoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- Frontier Research Institute for Materials Science (FRIMS), Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
47
|
Erickson KE, Rukhlenko OS, Posner RG, Hlavacek WS, Kholodenko BN. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling. Semin Cancer Biol 2019; 54:162-173. [PMID: 29518522 PMCID: PMC6123307 DOI: 10.1016/j.semcancer.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023]
Abstract
RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.
Collapse
Affiliation(s)
- Keesha E Erickson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
48
|
Bandaru P, Kondo Y, Kuriyan J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031534. [PMID: 29610148 DOI: 10.1101/cshperspect.a031534] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guanosine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
49
|
Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS-SOS1 interaction. Proc Natl Acad Sci U S A 2019; 116:2551-2560. [PMID: 30683722 PMCID: PMC6377443 DOI: 10.1073/pnas.1812963116] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutants of RAS are major oncogenes and occur in many human cancers, but efforts to develop drugs that directly inhibit the corresponding constitutively active RAS proteins have failed so far. We therefore focused on SOS1, the guanine nucleotide exchange factor (GEF) and activator of RAS. A combination of high-throughput and fragment screening resulted in the identification of nanomolar SOS1 inhibitors, which effectively down-regulate active RAS in tumor cells. In cells with wild-type KRAS, we observed complete inhibition of the RAS-RAF-MEK-ERK pathway. In a mutant KRAS cell line, SOS1 inhibition resulted in a reduction of phospho-ERK activity by 50%. Together, the data indicate that inhibition of GEFs may represent a viable approach for targeting RAS-driven tumors. Since the late 1980s, mutations in the RAS genes have been recognized as major oncogenes with a high occurrence rate in human cancers. Such mutations reduce the ability of the small GTPase RAS to hydrolyze GTP, keeping this molecular switch in a constitutively active GTP-bound form that drives, unchecked, oncogenic downstream signaling. One strategy to reduce the levels of active RAS is to target guanine nucleotide exchange factors, which allow RAS to cycle from the inactive GDP-bound state to the active GTP-bound form. Here, we describe the identification of potent and cell-active small-molecule inhibitors which efficiently disrupt the interaction between KRAS and its exchange factor SOS1, a mode of action confirmed by a series of biophysical techniques. The binding sites, mode of action, and selectivity were elucidated using crystal structures of KRASG12C–SOS1, SOS1, and SOS2. By preventing formation of the KRAS–SOS1 complex, these inhibitors block reloading of KRAS with GTP, leading to antiproliferative activity. The final compound 23 (BAY-293) selectively inhibits the KRAS–SOS1 interaction with an IC50 of 21 nM and is a valuable chemical probe for future investigations.
Collapse
|
50
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|