1
|
Pandit A, Srivastava S, Kumar N, Sawant DM. Deciphering the sequence-dependent unfolding pathways of an RNA pseudoknot with steered molecular dynamics. J Comput Aided Mol Des 2025; 39:16. [PMID: 40259108 DOI: 10.1007/s10822-025-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Programmed ribosomal frameshifting in Simian retrovirus-1 (SRV-1) is sensitive to the mechanical properties of an RNA pseudoknot. Unravelling these mechanical intricacies via unfolding reveals fundamental insights into their structural dynamics. Using constant velocity steered molecular dynamics (CV-SMD) simulations, we explored the unfolding dynamics and the impact of mutations on the unfolding pathway of the pseudoknot. Except for A28C, A/U to C mutations that disrupt base triples between the loop 2 and stem 1 significantly weaken the pseudoknot and make it more susceptible to unfolding. Complementary mutations in 3 base pairs of the stem region (S1) enhanced its susceptibility to disruption except for Mut5 (S2). We quantitatively assessed the variations in unfolding pathways by analysing the opening of distinct Canonical (WC) and non-canonical (NWC) interactions, force-extension curves, and potential mean force profiles (as a guiding decision for planning mutations). These findings offer a quantified perspective, showcasing the potential of utilizing the unfolding pathways of RNA pseudoknots to explore the programmability of RNA structures. This insight proves valuable for designing RNA-PROTACS and RNA-aptamers, allowing for the assessment and manipulation of their biological folding/unfolding processes.
Collapse
Affiliation(s)
- Akansha Pandit
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy Udaipur, Udaipur, Rajasthan, India, 313001
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
2
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JD. RNA elements required for the high efficiency of West Nile virus-induced ribosomal frameshifting. Nucleic Acids Res 2025; 53:gkae1248. [PMID: 39698810 PMCID: PMC11797035 DOI: 10.1093/nar/gkae1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
West Nile virus (WNV) requires programmed -1 ribosomal frameshifting for translation of the viral genome. The efficiency of WNV frameshifting is among the highest known. However, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here, we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We also find that the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we show that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after ribosome translocation. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Conner J Langeberg
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rohan R Shelke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tianhao Yin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JHD. RNA elements required for the high efficiency of West Nile Virus-induced ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618579. [PMID: 39464146 PMCID: PMC11507841 DOI: 10.1101/2024.10.16.618579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
West Nile Virus (WNV), a member of the Flaviviridae family, requires programmed -1 ribosomal frameshifting (PRF) for translation of the viral genome. The efficiency of WNV frameshifting is among the highest observed to date. Despite structural similarities to frameshifting sites in other viruses, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We mapped the most favorable distance between the slippery site and the pseudoknot essential for optimal frameshifting, and found the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we find that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after translocation of the mRNA and tRNA on the ribosome. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Conner J. Langeberg
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Rohan R. Shelke
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Tianhao Yin
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Abstract
Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.
Collapse
Affiliation(s)
- Chris H Hill
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom;
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
5
|
Satpathi S, Endoh T, Sugimoto N. Applicability of the nearest-neighbour model for pseudoknot RNAs. Chem Commun (Camb) 2022; 58:5952-5955. [PMID: 35451430 DOI: 10.1039/d1cc07094k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The validity of the nearest-neighbour (NN) model was verified in an RNA pseudoknot (PK) structure. The thermodynamic parameters of the second hairpin stem (S2) region, which separates the PK from a hairpin structure, were monitored using CD and UV melting. Different PKs with identical NN base pairs in the S2 region exhibited similar thermodynamic parameters, highlighting the validity of the NN model in this RNA tertiary structure motif.
Collapse
Affiliation(s)
- Sagar Satpathi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
6
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The translational landscape of SARS-CoV-2 and infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.03.367516. [PMID: 33173862 PMCID: PMC7654850 DOI: 10.1101/2020.11.03.367516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hung R Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James B Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Zhang K, Zheludev IN, Hagey RJ, Haslecker R, Hou YJ, Kretsch R, Pintilie GD, Rangan R, Kladwang W, Li S, Wu MTP, Pham EA, Bernardin-Souibgui C, Baric RS, Sheahan TP, D'Souza V, Glenn JS, Chiu W, Das R. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat Struct Mol Biol 2021; 28:747-754. [PMID: 34426697 PMCID: PMC8848339 DOI: 10.1038/s41594-021-00653-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5' end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration.
Collapse
Affiliation(s)
- Kaiming Zhang
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ivan N Zheludev
- Department of Biochemistry Stanford University, Stanford, CA, USA
| | - Rachel J Hagey
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Raphael Haslecker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Grigore D Pintilie
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Wipapat Kladwang
- Department of Biochemistry Stanford University, Stanford, CA, USA
| | - Shanshan Li
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Marie Teng-Pei Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Edward A Pham
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Claire Bernardin-Souibgui
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| | - Wah Chiu
- Departments of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| | - Rhiju Das
- Department of Biochemistry Stanford University, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Hsu CF, Chang KC, Chen YL, Hsieh PS, Lee AI, Tu JY, Chen YT, Wen JD. Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates. Nucleic Acids Res 2021; 49:6941-6957. [PMID: 34161580 PMCID: PMC8266650 DOI: 10.1093/nar/gkab512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed –1 ribosomal frameshifting is an essential regulation mechanism of translation in viruses and bacteria. It is stimulated by mRNA structures inside the coding region. As the structure is unfolded repeatedly by consecutive translating ribosomes, whether it can refold properly each time is important in performing its function. By using single-molecule approaches and molecular dynamics simulations, we found that a frameshift-stimulating RNA pseudoknot folds sequentially through its upstream stem S1 and downstream stem S2. In this pathway, S2 folds from the downstream side and tends to be trapped in intermediates. By masking the last few nucleotides to mimic their gradual emergence from translating ribosomes, S2 can be directed to fold from the upstream region. The results show that the intermediates are greatly suppressed, suggesting that mRNA refolding may be modulated by ribosomes. Moreover, masking the first few nucleotides of S1 favors the folding from S2 and yields native pseudoknots, which are stable enough to retrieve the masked nucleotides. We hypothesize that translating ribosomes can remodel an intermediate mRNA structure into a stable conformation, which may in turn stimulate backward slippage of the ribosome. This supports an interactive model of ribosomal frameshifting and gives an insightful account addressing previous experimental observations.
Collapse
Affiliation(s)
- Chiung-Fang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Chun Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Lan Chen
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Po-Szu Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - An-I Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jui-Yun Tu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Chang KC, Wen JD. Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput Struct Biotechnol J 2021; 19:3580-3588. [PMID: 34257837 PMCID: PMC8246090 DOI: 10.1016/j.csbj.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/01/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote -1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics.
Collapse
Affiliation(s)
- Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, CA 94158, United States
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Halma MTJ, Ritchie DB, Woodside MT. Conformational Shannon Entropy of mRNA Structures from Force Spectroscopy Measurements Predicts the Efficiency of -1 Programmed Ribosomal Frameshift Stimulation. PHYSICAL REVIEW LETTERS 2021; 126:038102. [PMID: 33543960 DOI: 10.1103/physrevlett.126.038102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
-1 programmed ribosomal frameshifting (-1 PRF) is stimulated by structures in messenger RNA (mRNA), but the factors determining -1 PRF efficiency are unclear. We show that -1 PRF efficiency varies directly with the conformational heterogeneity of the stimulatory structure, quantified as the Shannon entropy of the state occupancy, for a panel of stimulatory structures with efficiencies from 2% to 80%. The correlation is force dependent and vanishes at forces above those applied by the ribosome. These results support the hypothesis that heterogeneous conformational dynamics are a key factor in stimulating -1 PRF.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
11
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
12
|
Zhang K, Zheludev IN, Hagey RJ, Wu MTP, Haslecker R, Hou YJ, Kretsch R, Pintilie GD, Rangan R, Kladwang W, Li S, Pham EA, Bernardin-Souibgui C, Baric RS, Sheahan TP, D Souza V, Glenn JS, Chiu W, Das R. Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743589 DOI: 10.1101/2020.07.18.209270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Drug discovery campaigns against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are beginning to target the viral RNA genome 1, 2 . The frameshift stimulation element (FSE) of the SARS-CoV-2 genome is required for balanced expression of essential viral proteins and is highly conserved, making it a potential candidate for antiviral targeting by small molecules and oligonucleotides 3-6 . To aid global efforts focusing on SARS-CoV-2 frameshifting, we report exploratory results from frameshifting and cellular replication experiments with locked nucleic acid (LNA) antisense oligonucleotides (ASOs), which support the FSE as a therapeutic target but highlight difficulties in achieving strong inactivation. To understand current limitations, we applied cryogenic electron microscopy (cryo-EM) and the Ribosolve 7 pipeline to determine a three-dimensional structure of the SARS-CoV-2 FSE, validated through an RNA nanostructure tagging method. This is the smallest macromolecule (88 nt; 28 kDa) resolved by single-particle cryo-EM at subnanometer resolution to date. The tertiary structure model, defined to an estimated accuracy of 5.9 Å, presents a topologically complex fold in which the 5' end threads through a ring formed inside a three-stem pseudoknot. Our results suggest an updated model for SARS-CoV-2 frameshifting as well as binding sites that may be targeted by next generation ASOs and small molecules.
Collapse
|
13
|
Gupta A, Bansal M. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Brief Bioinform 2020; 21:1151-1163. [PMID: 31204430 PMCID: PMC7109810 DOI: 10.1093/bib/bbz054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle, where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active role in translational regulation, their global conformational features and the bioinformatics/computational tools available for the identification and prediction of these structures.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Heidari M, Schiessel H, Mashaghi A. Circuit Topology Analysis of Polymer Folding Reactions. ACS CENTRAL SCIENCE 2020; 6:839-847. [PMID: 32607431 PMCID: PMC7318069 DOI: 10.1021/acscentsci.0c00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 06/03/2023]
Abstract
Circuit topology is emerging as a versatile measure to classify the internal structures of folded linear polymers such as proteins and nucleic acids. The topology framework can be applied to a wide range of problems, most notably molecular folding reactions that are central to biology and molecular engineering. In this Outlook, we discuss the state-of-the art of the technology and elaborate on the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Maziar Heidari
- Leiden
Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden2300 RA, The Netherlands
- Laboratoire
Gulliver, UMR 7083, ESPCI Paris and PSL
University, 75005 Paris, France
| | - Helmut Schiessel
- Institute
Lorentz for Theoretical Physics, Faculty of Science, Leiden University, Leiden 2333 CA, The Netherlands
| | - Alireza Mashaghi
- Leiden
Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden2300 RA, The Netherlands
| |
Collapse
|
15
|
Bao C, Loerch S, Ling C, Korostelev AA, Grigorieff N, Ermolenko DN. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife 2020; 9:e55799. [PMID: 32427100 PMCID: PMC7282821 DOI: 10.7554/elife.55799] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022] Open
Abstract
Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single-molecule Förster resonance energy transfer (smFRET) experiments, we studied how frameshift-inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can transiently escape the ribosome helicase by binding to the A site. Thus, the stem-loops can modulate gene expression by sterically hindering tRNA binding and inhibiting translation elongation.
Collapse
Affiliation(s)
- Chen Bao
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| | - Sarah Loerch
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Clarence Ling
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| | - Andrei A Korostelev
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
16
|
Complex dynamics under tension in a high-efficiency frameshift stimulatory structure. Proc Natl Acad Sci U S A 2019; 116:19500-19505. [PMID: 31409714 DOI: 10.1073/pnas.1905258116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Specific structures in mRNA can stimulate programmed ribosomal frameshifting (PRF). PRF efficiency can vary enormously between different stimulatory structures, but the features that lead to efficient PRF stimulation remain uncertain. To address this question, we studied the structural dynamics of the frameshift signal from West Nile virus (WNV), which stimulates -1 PRF at very high levels and has been proposed to form several different structures, including mutually incompatible pseudoknots and a double hairpin. Using optical tweezers to apply tension to single mRNA molecules, mimicking the tension applied by the ribosome during PRF, we found that the WNV frameshift signal formed an unusually large number of different metastable structures, including all of those previously proposed. From force-extension curve measurements, we mapped 2 mutually exclusive pathways for the folding, each encompassing multiple intermediates. We identified the intermediates in each pathway from length changes and the effects of antisense oligomers blocking formation of specific contacts. Intriguingly, the number of transitions between the different conformers of the WNV frameshift signal was maximal in the range of forces applied by the ribosome during -1 PRF. Furthermore, the occupancy of the pseudoknotted conformations was far too low for static pseudoknots to account for the high levels of -1 PRF. These results support the hypothesis that conformational heterogeneity plays a key role in frameshifting and suggest that transitions between different conformers under tension are linked to efficient PRF stimulation.
Collapse
|
17
|
Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, Zhang X. The Mechanical Properties of RNA-DNA Hybrid Duplex Stretched by Magnetic Tweezers. Biophys J 2018; 116:196-204. [PMID: 30635125 DOI: 10.1016/j.bpj.2018.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
RNA can anneal to its DNA template to generate an RNA-DNA hybrid (RDH) duplex and a displaced DNA strand, termed R-loop. RDH duplex occupies up to 5% of the mammalian genome and plays important roles in many biological processes. The functions of RDH duplex are affected by its mechanical properties, including the elasticity and the conformation transitions. The mechanical properties of RDH duplex, however, are still unclear. In this work, we studied the mechanical properties of RDH duplex using magnetic tweezers in comparison with those of DNA and RNA duplexes with the same sequences. We report that the contour length of RDH duplex is ∼0.30 nm/bp, and the stretching modulus of RDH duplex is ∼660 pN, neither of which is sensitive to NaCl concentration. The persistence length of RDH duplex depends on NaCl concentration, decreasing from ∼63 nm at 1 mM NaCl to ∼49 nm at 500 mM NaCl. Under high tension of ∼60 pN, the end-opened RDH duplex undergoes two distinct overstretching transitions; at high salt in which the basepairs are stable, it undergoes the nonhysteretic transition, leading to a basepaired elongated structure, whereas at low salt, it undergoes a hysteretic peeling transition, leading to the single-stranded DNA strand under force and the single-stranded RNA strand coils. The peeled RDH is difficult to reanneal back to the duplex conformation, which may be due to the secondary structures formed in the coiled single-stranded RNA strand. These results help us understand the full picture of the structures and mechanical properties of nucleic acid duplexes in solution and provide a baseline for studying the interaction of RDH with proteins at the single-molecule level.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Yajun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Erchi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Zhijie Tan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Nikoofard N, Mashaghi A. Implications of Molecular Topology for Nanoscale Mechanical Unfolding. J Phys Chem B 2018; 122:9703-9712. [PMID: 30351148 DOI: 10.1021/acs.jpcb.8b09454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.
Collapse
Affiliation(s)
- Narges Nikoofard
- Institute of Nanoscience and Nanotechnology , University of Kashan , Kashan 51167-87317 , Iran
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Science , Leiden University , Leiden 2333 CC , The Netherlands
| |
Collapse
|
19
|
Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot. Proc Natl Acad Sci U S A 2018; 115:E7313-E7322. [PMID: 30012621 PMCID: PMC6077692 DOI: 10.1073/pnas.1717582115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The assembly mechanism of RNA, vital to describing its functions, depends on both the sequence and the metal ion concentration. How the latter influences the folding trajectories remains an important unsolved problem. Here, we examine the folding pathways of an RNA pseudoknot (PK) with key functional roles in transcription and translation, using a combination of experiments and simulations. We demonstrate that the PK, consisting of two hairpins with differing stabilities, folds by parallel pathways. Surprisingly, the flux between them is modulated by monovalent salt concentration. Our work shows that the order of assembly of PKs is determined by the relative stability of the hairpins, implying that the folding landscape can be controlled by sequence and ion concentration. The functions of RNA pseudoknots (PKs), which are minimal tertiary structural motifs and an integral part of several ribozymes and ribonucleoprotein complexes, are determined by their structure, stability, and dynamics. Therefore, it is important to elucidate the general principles governing their thermodynamics/folding mechanisms. Here, we combine laser temperature-jump experiments and coarse-grained simulations to determine the folding/unfolding pathways of VPK, a variant of the mouse mammary tumor virus (MMTV) PK involved in ribosomal frameshifting. Fluorescent nucleotide analogs (2-aminopurine and pyrrolocytidine) placed at different stem/loop positions in the PK serve as local probes allowing us to monitor the order of assembly of VPK that has two constituent hairpins with different intrinsic stabilities. We show that at 50 mM KCl, the dominant folding pathway populates only the more stable hairpin intermediate; as the salt concentration is increased, a parallel folding pathway emerges involving the less stable hairpin as an alternate intermediate. Notably, the flux between the pathways is modulated by the ionic strength. Our findings support the principle that the order of PK structure formation is determined by the relative stabilities of the hairpins, which can be altered by sequence variations or salt concentrations. The experimental results of salt effects on the partitioning between the two folding pathways are in remarkable agreement with simulations that were performed with no adjustable parameters. Our study not only unambiguously demonstrates that VPK folds by parallel pathways but also showcases the power of combining experiments and simulations for a more enriched description of RNA self-assembly.
Collapse
|
20
|
Yang L, Zhong Z, Tong C, Jia H, Liu Y, Chen G. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting. J Am Chem Soc 2018; 140:8172-8184. [PMID: 29884019 DOI: 10.1021/jacs.8b02970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A wobble A·C pair can be protonated at near physiological pH to form a more stable wobble A+·C pair. Here, we constructed an RNA hairpin (rHP) and three mutants with one A-U base pair substituted with an A·C mismatch on the top (near the loop, U22C), middle (U25C), and bottom (U29C) positions of the stem, respectively. Our results on single-molecule mechanical (un)folding using optical tweezers reveal the destabilization effect of A-U to A·C pair substitution and protonation-dependent enhancement of mechanical stability facilitated through an increased folding rate, or decreased unfolding rate, or both. Our data show that protonation may occur rapidly upon the formation of an apparent mechanical folding transition state. Furthermore, we measured the bulk -1 ribosomal frameshifting efficiencies of the hairpins by a cell-free translation assay. For the mRNA hairpins studied, -1 frameshifting efficiency correlates with mechanical unfolding force at equilibrium and folding rate at around 15 pN. U29C has a frameshifting efficiency similar to that of rHP (∼2%). Accordingly, the bottom 2-4 base pairs of U29C may not form under a stretching force at pH 7.3, which is consistent with the fact that the bottom base pairs of the hairpins may be disrupted by ribosome at the slippery site. U22C and U25C have a similar frameshifting efficiency (∼1%), indicating that both unfolding and folding rates of an mRNA hairpin in a crowded environment may affect frameshifting. Our data indicate that mechanical (un)folding of RNA hairpins may mimic how mRNAs unfold and fold in the presence of translating ribosomes.
Collapse
Affiliation(s)
- Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371.,School of Physics, and State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Cailing Tong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Huan Jia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yiran Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
21
|
Drees SL, Klinkert B, Helling S, Beyer DF, Marcus K, Narberhaus F, Lübben M. One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting inEscherichia coli. Mol Microbiol 2017; 106:635-645. [DOI: 10.1111/mmi.13841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Steffen L. Drees
- Department of Biophysics; Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
- Institute for Molecular Microbiology and Biotechnology; University of Münster; Germany
| | - Birgit Klinkert
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Stefan Helling
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Dominik F. Beyer
- Department of Biophysics; Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Mathias Lübben
- Department of Biophysics; Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| |
Collapse
|
22
|
Ritchie DB, Cappellano TR, Tittle C, Rezajooei N, Rouleau L, Sikkema WKA, Woodside MT. Conformational dynamics of the frameshift stimulatory structure in HIV-1. RNA (NEW YORK, N.Y.) 2017; 23:1376-1384. [PMID: 28522581 PMCID: PMC5558907 DOI: 10.1261/rna.061655.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 05/02/2023]
Abstract
Programmed ribosomal frameshifting (PRF) in HIV-1 is thought to be stimulated by a hairpin in the mRNA, although a pseudoknot-like triplex has also been proposed. Because the conformational dynamics of the stimulatory structure under tension applied by the ribosomal helicase during translation may play an important role in PRF, we used optical tweezers to apply tension to the HIV stimulatory structure and monitor its unfolding and refolding dynamics. The folding and unfolding kinetics and energy landscape of the hairpin were measured by ramping the force on the hairpin up and down, providing a detailed biophysical characterization. Unexpectedly, whereas unfolding reflected the simple two-state behavior typical of many hairpins, refolding was more complex, displaying significant heterogeneity. Evidence was found for multiple refolding pathways as well as previously unsuspected, partially folded intermediates. Measuring a variant mRNA containing only the sequence required to form the proposed triplex, it behaved largely in the same way. Nonetheless, very rarely, high-force unfolding events characteristic of pseudoknot-like structures were observed. The rare occurrence of the triplex suggests that the hairpin is the functional stimulatory structure. The unusual heterogeneity of the hairpin dynamics under tension suggests a possible functional role in PRF similar to the dynamics of other stimulatory structures.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Tonia R Cappellano
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Collin Tittle
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Negar Rezajooei
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Logan Rouleau
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton AB T6G 2E1, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton AB T6G 2M9, Canada
| |
Collapse
|
23
|
Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers. Sci Rep 2017; 7:4832. [PMID: 28684757 PMCID: PMC5500579 DOI: 10.1038/s41598-017-04557-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 04/27/2017] [Indexed: 11/21/2022] Open
Abstract
We propose a nonlinear method for the analysis of the time series for the spatial position of a bead trapped in optical tweezers, which enables us to reconstruct its dynamical equation of motion. The main advantage of the method is that all the functions and parameters of the dynamics are determined directly (non-parametrically) from the measured series. It also allows us to determine, for the first time to our knowledge, the spatial-dependence of the diffusion coefficient of a bead in an optical trap, and to demonstrate that it is not in general constant. This is in contrast with the main assumption of the popularly-used power spectrum calibration method. The proposed method is validated via synthetic time series for the bead position with spatially-varying diffusion coefficients. Our detailed analysis of the measured time series reveals that the power spectrum analysis overestimates considerably the force constant.
Collapse
|
24
|
Zhong Z, Yang L, Zhang H, Shi J, Vandana JJ, Lam DTUH, Olsthoorn RCL, Lu L, Chen G. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation. Sci Rep 2016; 6:39549. [PMID: 28000744 PMCID: PMC5175198 DOI: 10.1038/srep39549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jiahao Shi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - J. Jeya Vandana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Do Thuy Uyen Ha Lam
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- St Andrew’s Junior College, 5 Sorby Adams Drive, 357691 Singapore
| | - René C. L. Olsthoorn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
25
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Amer AAA, Gurung JM, Costa TRD, Ruuth K, Zavialov AV, Forsberg Å, Francis MS. YopN and TyeA Hydrophobic Contacts Required for Regulating Ysc-Yop Type III Secretion Activity by Yersinia pseudotuberculosis. Front Cell Infect Microbiol 2016; 6:66. [PMID: 27446813 PMCID: PMC4914553 DOI: 10.3389/fcimb.2016.00066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022] Open
Abstract
Yersinia bacteria target Yop effector toxins to the interior of host immune cells by the Ysc-Yop type III secretion system. A YopN-TyeA heterodimer is central to controlling Ysc-Yop targeting activity. A + 1 frameshift event in the 3-prime end of yopN can also produce a singular secreted YopN-TyeA polypeptide that retains some regulatory function even though the C-terminal coding sequence of this YopN differs greatly from wild type. Thus, this YopN C-terminal segment was analyzed for its role in type III secretion control. Bacteria producing YopN truncated after residue 278, or with altered sequence between residues 279 and 287, had lost type III secretion control and function. In contrast, YopN variants with manipulated sequence beyond residue 287 maintained full control and function. Scrutiny of the YopN-TyeA complex structure revealed that residue W279 functioned as a likely hydrophobic contact site with TyeA. Indeed, a YopNW279G mutant lost all ability to bind TyeA. The TyeA residue F8 was also critical for reciprocal YopN binding. Thus, we conclude that specific hydrophobic contacts between opposing YopN and TyeA termini establishes a complex needed for regulating Ysc-Yop activity.
Collapse
Affiliation(s)
- Ayad A A Amer
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Jyoti M Gurung
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Kristina Ruuth
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Anton V Zavialov
- Department of Molecular Biology, Uppsala BioCenter, Swedish University of Agricultural SciencesUppsala, Sweden; Joint Biotechnology Laboratory, Department of Chemistry, University of TurkuTurku, Finland
| | - Åke Forsberg
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Laboratory for Molecular Infection Medicine Sweden, Umeå UniversityUmeå, Sweden
| | - Matthew S Francis
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
27
|
-1 Programmed Ribosomal Frameshifting as a Force-Dependent Process. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:45-72. [PMID: 26970190 PMCID: PMC7102820 DOI: 10.1016/bs.pmbts.2015.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
-1 Programmed ribosomal frameshifting is a translational recoding event in which ribosomes slip backward along messenger RNA presumably due to increased tension disrupting the codon-anticodon interaction at the ribosome's coding site. Single-molecule physical methods and recent experiments characterizing the physical properties of mRNA's slippery sequence as well as the mechanical stability of downstream mRNA structure motifs that give rise to frameshifting are discussed. Progress in technology, experimental assays, and data analysis methods hold promise for accurate physical modeling and quantitative understanding of -1 programmed ribosomal frameshifting.
Collapse
|
28
|
Gupta A, Bansal M. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. Phys Chem Chem Phys 2016; 18:28767-28780. [DOI: 10.1039/c6cp04617g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work highlights a sequence dependent unfolding pathway of an RNA pseudoknot under force-induced pulling conditions.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
29
|
Brandon HE, Friedt JR, Glaister GD, Kharey SK, Smith DD, Stinson ZK, Wieden HJ. Introducing a class of standardized and interchangeable parts utilizing programmed ribosomal frameshifts for synthetic biology applications. ACTA ACUST UNITED AC 2015; 3:e1112458. [PMID: 26824028 DOI: 10.1080/21690731.2015.1112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Synthetic biology and the rational design of biological devices depend on the availability of standardized and interchangeable biological parts with diverse range of functions. Reliable access to different reading frames during translation has largely been overlooked as functionality for bioengineering applications. Here we report the construction and initial characterization of the first member of such a class of biological parts that conforms to the BioBrick Standard (RFC25), allowing its interchangeable use in biological devices. Using our standardized frameshifting signal consisting of a UUUAAAG slippery sequence, a 6 nt spacer and an engineered pseudoknot based on the infectious bronchitis virus pseudoknot PK401 embedded in a dual reporter construct, we confirm that the frameshifting activity is comparable to the previously published frequency despite the introduced sequence changes. The frameshifting activity is demonstrated using SDS-PAGE and fluorescence spectroscopy. Standardized programmable ribosomal frameshift parts with specific frameshifting frequencies will be of utility for applications such as double coding DNA sequences by expanding the codable space into the -1 frame. Programmed shifting into the -1 frame to bypass a stop codon allows labeling of a protein pool with a fixed stoichiometry of fusion protein, as well as the construction of multi-enzyme expression constructs with specific expression ratios. A detailed understanding of the structural basis of programmed frameshifting will provide the opportunities to rationally design frameshifting elements with a wide range of applications in synthetic biology, including signals that are regulated by small ligands.
Collapse
Affiliation(s)
- Harland E Brandon
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| | - Jenna R Friedt
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| | - Graeme D Glaister
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| | - Suneet K Kharey
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| | - Dustin D Smith
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| | - Zak K Stinson
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| | - Hans-Joachim Wieden
- The Alberta RNA Research and Training Institute; Department of Chemistry and Biochemistry; University of Lethbridge ; Lethbridge, Alberta, Canada
| |
Collapse
|
30
|
Ritchie DB, Woodside MT. Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 2015; 34:43-51. [PMID: 26189090 PMCID: PMC7126019 DOI: 10.1016/j.sbi.2015.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada; National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G2M9, Canada.
| |
Collapse
|
31
|
Abstract
The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also, abound in viral DNA packaged inside bacteriophages. RNA molecules, however, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the several thousand RNA structures present in the Protein Data Bank (PDB). The search identified no more than three deeply knotted RNA molecules. These entries are rRNAs of about 3,000 nt solved by cryo-EM. Their genuine knotted state is, however, doubtful based on the detailed structural comparison with homologs of higher resolution, which are all unknotted. Compared with the case of proteins and viral DNA, the observed incidence of knots in available RNA structures is, therefore, practically negligible. This fact suggests that either evolutionary selection or thermodynamic and kinetic folding mechanisms act toward minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. A possible general strategy for designing synthetic RNA sequences capable of self-tying in a twist-knot fold is finally proposed.
Collapse
|
32
|
Novel hypovirulence-associated RNA mycovirus in the plant-pathogenic fungus Botrytis cinerea: molecular and biological characterization. Appl Environ Microbiol 2015; 81:2299-310. [PMID: 25595766 DOI: 10.1128/aem.03992-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botrytis cinerea is a pathogenic fungus causing gray mold on numerous economically important crops and ornamental plants. This study was conducted to characterize the biological and molecular features of a novel RNA mycovirus, Botrytis cinerea RNA virus 1 (BcRV1), in the hypovirulent strain BerBc-1 of B. cinerea. The genome of BcRV1 is 8,952 bp long with two putative overlapped open reading frames (ORFs), ORF1 and ORF2, coding for a hypothetical polypeptide (P1) and RNA-dependent RNA polymerase (RdRp), respectively. A -1 frameshifting region (designated the KNOT element) containing a shifty heptamer, a heptanucleotide spacer, and an H-type pseudoknot was predicted in the junction region of ORF1 and ORF2. The -1 frameshifting role of the KNOT element was experimentally confirmed through determination of the production of the fusion protein red fluorescent protein (RFP)-green fluorescent protein (GFP) by the plasmid containing the construct dsRed-KNOT-eGFP in Escherichia coli. BcRV1 belongs to a taxonomically unassigned double-stranded RNA (dsRNA) mycovirus group. It is closely related to grapevine-associated totivirus 2 and Sclerotinia sclerotiorum nonsegmented virus L. BcRV1 in strain BerBc-1 was found capable of being transmitted vertically through macroconidia and horizontally to other B. cinerea strains through hyphal contact. The presence of BcRV1 was found to be positively correlated with hypovirulence in B. cinerea, with the attenuation effects of BcRV1 on mycelial growth and pathogenicity being greatly affected by the accumulation level of BcRV1.
Collapse
|
33
|
Wang G, Yang Y, Huang X, Du Z. Possible involvement of coaxially stacked double pseudoknots in the regulation of −1 programmed ribosomal frameshifting in RNA viruses. J Biomol Struct Dyn 2014; 33:1547-57. [DOI: 10.1080/07391102.2014.956149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Single-molecule measurements of the CCR5 mRNA unfolding pathways. Biophys J 2014; 106:244-52. [PMID: 24411256 DOI: 10.1016/j.bpj.2013.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/07/2023] Open
Abstract
Secondary or tertiary structure in an mRNA, such as a pseudoknot, can create a physical barrier that requires the ribosome to generate additional force to translocate. The presence of such a barrier can dramatically increase the probability that the ribosome will shift into an alternate reading frame, in which a different set of codons is recognized. The detailed biophysical mechanism by which frameshifting is induced remains unknown. Here we employ optical trapping techniques to investigate the structure of a -1 programmed ribosomal frameshift (-1 PRF) sequence element located in the CCR5 mRNA, which encodes a coreceptor for HIV-1 and is, to our knowledge, the first known human -1 PRF signal of nonviral origin. We begin by presenting a set of computationally predicted structures that include pseudoknots. We then employ what we believe to be new analytical techniques for measuring the effective free energy landscapes of biomolecules. We find that the -1 PRF element manifests several distinct unfolding pathways when subject to end-to-end force, one of which is consistent with a proposed pseudoknot conformation, and another of which we have identified as a folding intermediate. The dynamic ensemble of conformations that CCR5 mRNA exhibits in the single-molecule experiments may be a significant feature of the frameshifting mechanism.
Collapse
|
35
|
Bailey BL, Visscher K, Watkins J. A stochastic model of translation with -1 programmed ribosomal frameshifting. Phys Biol 2014; 11:016009. [PMID: 24501223 DOI: 10.1088/1478-3975/11/1/016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
Collapse
Affiliation(s)
- Brenae L Bailey
- Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
36
|
Anti-frameshifting ligand reduces the conformational plasticity of the SARS virus pseudoknot. J Am Chem Soc 2014; 136:2196-9. [PMID: 24446874 DOI: 10.1021/ja410344b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) stimulated by mRNA pseudoknots regulates gene expression in many viruses, making pseudoknots potential targets for anti-viral drugs. The mechanism by which pseudoknots trigger -1 PRF, however, remains controversial, with several competing models. Recent work showed that high -1 PRF efficiency was linked to high pseudoknot conformational plasticity via the formation of alternate conformers. We tested whether pseudoknots bound with an anti-frameshifting ligand exhibited a similar correlation between conformational plasticity and -1 PRF efficiency by measuring the effects of a ligand that was found to inhibit -1 PRF in the SARS coronavirus on the conformational dynamics of the SARS pseudoknot. Using single-molecule force spectroscopy to unfold pseudoknots mechanically, we found that the ligand binding effectively abolished the formation of alternate conformers. This result extends the connection between -1 PRF and conformational dynamics and, moreover, suggests that targeting the conformational dynamics of pseudoknots may be an effective strategy for anti-viral drug design.
Collapse
|
37
|
Wu YJ, Wu CH, Yeh AYC, Wen JD. Folding a stable RNA pseudoknot through rearrangement of two hairpin structures. Nucleic Acids Res 2014; 42:4505-15. [PMID: 24459133 PMCID: PMC3985624 DOI: 10.1093/nar/gkt1396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Folding messenger RNA into specific structures is a common regulatory mechanism involved in translation. In Escherichia coli, the operator of the rpsO gene transcript folds into a pseudoknot or double-hairpin conformation. S15, the gene product, binds only to the pseudoknot, thereby repressing its own synthesis when it is present in excess in the cell. The two RNA conformations have been proposed to exist in equilibrium. However, it remained unclear how structural changes can be achieved between these two topologically distinct conformations. We used optical tweezers to study the structural dynamics and rearrangements of the rpsO operator RNA at the single-molecule level. We discovered that the two RNA structures can be interchanged spontaneously and the pseudoknot can exist in conformations that exhibit various levels of stability. Conversion from the double hairpin to a pseudoknot through potential hairpin–hairpin interactions favoured the high-stability conformation. By contrast, mutations that blocked the formation of a hairpin typically resulted in alternative low-stability pseudoknots. These results demonstrate that specific tertiary interactions of RNA can be established and modulated based on the interactions and rearrangements between secondary structural components. Our findings provide new insight into the RNA folding pathway that leads to a regulatory conformation for target protein binding.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan, Department of Life Science, National Taiwan University, Taipei 10617, Taiwan and Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
38
|
A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses. BIOMED RESEARCH INTERNATIONAL 2013; 2013:984028. [PMID: 24298557 PMCID: PMC3835772 DOI: 10.1155/2013/984028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/21/2013] [Indexed: 02/01/2023]
Abstract
Programmed −1 ribosomal frameshifting (PRF) and stop codon readthrough are two translational recoding mechanisms utilized by some RNA viruses to express their structural and enzymatic proteins at a defined ratio. Efficient recoding usually requires an RNA pseudoknot located several nucleotides downstream from the recoding site. To assess the strategic importance of the recoding pseudoknots, we have carried out a large scale genome-wide analysis in which we used an in-house developed program to detect all possible H-type pseudoknots within the genomic mRNAs of 81 animal viruses. Pseudoknots are detected downstream from ~85% of the recoding sites, including many previously unknown pseudoknots. ~78% of the recoding pseudoknots are the most stable pseudoknot within the viral genomes. However, they are not as strong as some designed pseudoknots that exhibit roadblocking effect on the translating ribosome. Strong roadblocking pseudoknots are not detected within the viral genomes. These results indicate that the decoding pseudoknots have evolved to possess optimal stability for efficient recoding. We also found that the sequence at the gag-pol frameshift junction of HIV1 harbors potential elaborated pseudoknots encompassing the frameshift site. A novel mechanism is proposed for possible involvement of the elaborated pseudoknots in the HIV1 PRF event.
Collapse
|
39
|
Xie P. A dynamical model of programmed −1 ribosomal frameshifting. J Theor Biol 2013; 336:119-31. [DOI: 10.1016/j.jtbi.2013.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
40
|
Yu CH, Teulade-Fichou MP, Olsthoorn RCL. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res 2013; 42:1887-92. [PMID: 24178029 PMCID: PMC3919603 DOI: 10.1093/nar/gkt1022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Guanine-rich sequences can fold into four-stranded structures of stacked guanine-tetrads, so-called G-quadruplexes (G4). These unique motifs have been extensively studied on the DNA level; however, exploration of the biological roles of G4s at the RNA level is just emerging. Here we show that G4 RNA when introduced within coding regions are capable of stimulating -1 ribosomal frameshifting (-1 FS) in vitro and in cultured cells. Systematic manipulation of the loop length between each G-tract revealed that the -1 FS efficiency positively correlates with G4 stability. Addition of a G4-stabilizing ligand, PhenDC3, resulted in higher -1 FS. Further, we demonstrated that the G4s can stimulate +1 FS and stop codon readthrough as well. These results suggest a potentially novel translational gene regulation mechanism mediated by G4 RNA.
Collapse
Affiliation(s)
- Chien-Hung Yu
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, The Netherlands and Institut Curie, UMR 176-CNRS, Bât 110, Université Paris-Sud, 91405 Orsay, France
| | | | | |
Collapse
|
41
|
Amer AAA, Costa TRD, Farag SI, Avican U, Forsberg Å, Francis MS. Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis. PLoS One 2013; 8:e77767. [PMID: 24098594 PMCID: PMC3789692 DOI: 10.1371/journal.pone.0077767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022] Open
Abstract
Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.
Collapse
Affiliation(s)
- Ayad A. A. Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Tiago R. D. Costa
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ummehan Avican
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
42
|
Yu CH, Luo J, Iwata-Reuyl D, Olsthoorn RCL. Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting. ACS Chem Biol 2013; 8:733-40. [PMID: 23327288 DOI: 10.1021/cb300629b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Knowing the molecular details of the interaction between riboswitch aptamers and their corresponding metabolites is important to understand gene expression. Here we report on a novel in vitro assay to study preQ(1) riboswitch aptamers upon binding of 7-aminomethyl-7-deazaguanine (preQ(1)). The assay is based on the ability of the preQ(1) aptamer to fold, upon ligand binding, into a pseudoknotted structure that is capable of stimulating -1 ribosomal frameshifting (-1 FS). Aptamers from three different species were found to induce between 7% and 20% of -1 FS in response to increasing preQ(1) levels, whereas preQ(1) analogues were 100-1000-fold less efficient. In depth mutational analysis of the Fusobacterium nucleatum aptamer recapitulates most of the structural details previously identified for preQ(1) aptamers from other bacteria by crystallography and/or NMR spectroscopy. In addition to providing insight into the role of individual nucleotides of the preQ(1) riboswitch aptamer in ligand binding, the presented system provides a valuable tool to screen small molecules against bacterial riboswitches in a eukaryotic background.
Collapse
Affiliation(s)
| | | | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon 97201,
United States
| | | |
Collapse
|
43
|
Guo Y, Zhang W. Molecular dynamics simulation of RNA pseudoknot unfolding pathway. WUHAN UNIVERSITY JOURNAL OF NATURAL SCIENCES 2013. [PMCID: PMC7149040 DOI: 10.1007/s11859-013-0905-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many biological functions of RNA molecules are related to their pseudoknot structures. It is significant for predicting the structure and function of RNA that learning about the stability and the process of RNA pseudoknot folding and unfolding. The structural features of mouse mammary tumor virus (MMTV) RNA pseudoknot in different ion concentration, the unfolding process of the RNA pseudoknot, and the two hairpin helices that constitute the RNA pseudoknot were studied with all atom molecule dynamics simulation method in this paper. We found that the higher cation concentration can cause structure of the RNA molecules more stable, and ions played an indispensable role in keeping the structure of RNA molecules stable; the unfolding process of hairpin structure was corresponding to the antiprocess of its folding process. The main pathway of pseudoknot unfolding was that the inner base pair opened first, and then, the two helices, which formed the RNA pseudoknot opened decussately, while the folding pathway of the RNA pseudoknot was a helix folding after formation of the other helix. Therefore, the unfolding process of RNA pseudoknot is different from the antiprocess of its folding process, and the unfolding process of each helix in the RNA pseudoknot is similar to the hairpin structure’s unfolding process, which means that both are the unzipping process.
Collapse
|
44
|
Huang Q, Purzycka KJ, Lusvarghi S, Li D, LeGrice SF, Boeke JD. Retrotransposon Ty1 RNA contains a 5'-terminal long-range pseudoknot required for efficient reverse transcription. RNA (NEW YORK, N.Y.) 2013; 19:320-32. [PMID: 23329695 PMCID: PMC3677243 DOI: 10.1261/rna.035535.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/26/2012] [Indexed: 05/04/2023]
Abstract
Ty1 retrotransposon RNA has the potential to fold into a variety of distinct structures, mutation of which affects retrotransposition frequencies. We show here that one potential functional structure is located at the 5' end of the genome and can assume a pseudoknot conformation. Chemoenzymatic probing of wild-type and mutant mini-Ty1 RNAs supports the existence of such a structure, while molecular genetic analyses show that mutations disrupting pseudoknot formation interfere with retrotransposition, indicating that it provides a critical biological function. These defects are enhanced at higher temperatures. When these mutants are combined with compensatory changes, retrotransposition is restored, consistent with pseudoknot architecture. Analyses of mutants suggest a defect in Ty1 reverse transcription. Collectively, our data allow modeling of a three-dimensional structure for this novel critical cis-acting signal of the Ty1 genome.
Collapse
Affiliation(s)
- Qing Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Katarzyna J. Purzycka
- National Cancer Institute, Frederick, Maryland 21702, USA
- Laboratory of Structural Chemistry of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | | | - Donghui Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Jef D. Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
45
|
Ishimaru D, Plant EP, Sims AC, Yount BL, Roth BM, Eldho NV, Pérez-Alvarado GC, Armbruster DW, Baric RS, Dinman JD, Taylor DR, Hennig M. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Nucleic Acids Res 2012; 41:2594-608. [PMID: 23275571 PMCID: PMC3575852 DOI: 10.1093/nar/gks1361] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through ‘kissing’ loop–loop interactions. We also show that loop–loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop–loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis.
Collapse
Affiliation(s)
- Daniella Ishimaru
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mouzakis KD, Lang AL, Vander Meulen KA, Easterday PD, Butcher SE. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res 2012; 41:1901-13. [PMID: 23248007 PMCID: PMC3561942 DOI: 10.1093/nar/gks1254] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV) requires a programmed −1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem–loop structure. Here we investigate the role of the RNA structure in promoting the −1 frameshift. The stem–loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3–4 bp in the stem–loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Frameshifting results from two main mechanisms: genomic insertions or deletions (indels) or programmed ribosomal frameshifting. Whereas indels can disrupt normal protein function, programmed ribosomal frameshifting can result in dual-coding genes, each of which can produce multiple functional products. Here, I summarize technical advances that have made it possible to identify programmed ribosomal frameshifting events in a systematic way. The results of these studies suggest that such frameshifting occurs in all genomes, and I will discuss methods that could help characterize the resulting alternative proteomes.
Collapse
Affiliation(s)
- Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, Translational Research Resource Centre, University College London London, UK
| |
Collapse
|
48
|
Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc Natl Acad Sci U S A 2012; 109:16167-72. [PMID: 22988073 DOI: 10.1073/pnas.1204114109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Programmed -1 frameshifting, whereby the reading frame of a ribosome on messenger RNA is shifted in order to generate an alternate gene product, is often triggered by a pseudoknot structure in the mRNA in combination with an upstream slippery sequence. The efficiency of frameshifting varies widely for different sites, but the factors that determine frameshifting efficiency are not yet fully understood. Previous work has suggested that frameshifting efficiency is related to the resistance of the pseudoknot against mechanical unfolding. We tested this hypothesis by studying the mechanical properties of a panel of pseudoknots with frameshifting efficiencies ranging from 2% to 30%: four pseudoknots from retroviruses, two from luteoviruses, one from a coronavirus, and a nonframeshifting bacteriophage pseudoknot. Using optical tweezers to apply tension across the RNA, we measured the distribution of forces required to unfold each pseudoknot. We found that neither the average unfolding force, nor the unfolding kinetics, nor the parameters describing the energy landscape for mechanical unfolding of the pseudoknot (energy barrier height and distance to the transition state) could be correlated to frameshifting efficiency. These results indicate that the resistance of pseudoknots to mechanical unfolding is not a primary determinant of frameshifting efficiency. However, increased frameshifting efficiency was correlated with an increased tendency to form alternate, incompletely folded structures, suggesting a more complex picture of the role of the pseudoknot involving the conformational dynamics.
Collapse
|
49
|
Madadi E, Samadi A, Cheraghian M, Reihani SNS. Polarization-induced stiffness asymmetry of optical tweezers. OPTICS LETTERS 2012; 37:3519-3521. [PMID: 22940935 DOI: 10.1364/ol.37.003519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A tightly focused, linearly polarized laser beam, so-called optical tweezers, is proven to be a useful micromanipulation tool. It is known that there is a stiffness asymmetry in the direction perpendicular to the optical axis inherited from the polarization state of the laser. In this Letter, we report our experimental results of stiffness asymmetry for different bead sizes measured at the optimal trapping condition. We also provide the results of our generalized Lorenz-Mie based calculations, which are in good agreement with our experimental results. We also compare our results with previous reports.
Collapse
Affiliation(s)
- Ebrahim Madadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159, Iran
| | | | | | | |
Collapse
|
50
|
Lin Z, Gilbert RJC, Brierley I. Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res 2012; 40:8674-89. [PMID: 22743270 PMCID: PMC3458567 DOI: 10.1093/nar/gks629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U6A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U6A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.
Collapse
Affiliation(s)
- Zhaoru Lin
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|