1
|
Boulaamane Y, Bolivar Avila S, Hurtado JR, Touati I, Sadoq BE, Al-Mutairi AA, Irfan A, Al-Hussain SA, Maurady A, Zaki MEA. Computational screening of natural products as tryptophan 2,3-dioxygenase inhibitors: Insights from CNN-based QSAR, molecular docking, ADMET, and molecular dynamics simulations. Comput Biol Med 2025; 191:110199. [PMID: 40233673 DOI: 10.1016/j.compbiomed.2025.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Parkinson's disease (PD) is characterised by a complex array of motor, psychiatric, and gastrointestinal symptoms, many of which are linked to disruptions in neuroactive metabolites. Dysregulated activity of tryptophan 2,3-dioxygenase (TDO), a key enzyme in the kynurenine pathway (KP), has been implicated in these disturbances. TDO's regulation of tryptophan metabolism outside the central nervous system (CNS) plays a critical role in maintaining the balance between serotonin and kynurenine-derived metabolites, with its dysfunction contributing to the worsening of PD symptoms. Recent studies suggest that targeting TDO may help alleviate non-motor symptoms of PD, providing an alternative approach to conventional dopamine replacement therapies. In this study, a data-driven computational pipeline was employed to identify natural products as potential TDO inhibitors. Machine learning and convolutional neural network-based QSAR models were developed to predict TDO inhibitory activity. Molecular docking revealed strong binding affinities for several compounds, with docking scores ranging from -9.6 to -10.71 kcal/mol, surpassing that of tryptophan (-6.86 kcal/mol), and indicating favourable interactions. ADMET profiling assessed pharmacokinetic properties, confirming that the selected compounds could cross the blood-brain barrier (BBB), suggesting potential CNS activity. Molecular dynamics (MD) simulations provided further insight into the binding stability and dynamic behaviour of the top candidates within the TDO active site under physiological conditions. Notably, Peniciherquamide C maintained stronger and more stable interactions than the native substrate tryptophan throughout the simulation. MM/PBSA decomposition analysis highlighted the energetic contributions of van der Waals, electrostatic, and solvation forces, supporting the binding stability of key compounds. This integrated computational approach highlights the potential of natural products as TDO inhibitors, identifying promising leads that address PD symptoms beyond traditional dopamine-centric therapies. Nonetheless, experimental validation is necessary to confirm these findings.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Santiago Bolivar Avila
- Institute of Chemistry Rosario (IQUIR, CONICET-UNR) and Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, S2002LRK, Argentina
| | - Juan Rosales Hurtado
- National University of Central Buenos Aires Province, Center for Veterinary Research (CIVETAN), Tandil-Argentina, Argentina
| | - Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Badr-Edine Sadoq
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco; Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
2
|
Liu H, Forouhar F, Saneto R, Stockwell BR. Selective Small-Molecule Activator of Patient-Derived GPX4 Variant. ACS Chem Biol 2025; 20:1107-1122. [PMID: 40325618 DOI: 10.1021/acschembio.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Glutathione peroxidase 4 (GPX4) is distinguished from other members of the GPX family as being the enzyme capable of reducing phospholipid hydroperoxides within cellular membranes and therefore protecting cells from ferroptosis, a form of iron-driven cell death involving lipid peroxidation. We previously identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation and a substantial loss of GPX4 enzymatic activity, in patients with Sedaghatian-type spondylometaphyseal dysplasia (SSMD), an ultrarare progressive disorder. To explore whether selective binding and correction of the loss of enzyme activity observed with this variant is possible, we screened 2.8 billion compounds in a DNA-encoded chemical library and identified compounds with remarkably selective binding affinities with the R152H variant (GPX4R152H) over wild-type (GPX4WT). Our structural optimization of these compounds led to the identification of analogues with improved potency for R152H GPX4. The most promising compounds selectively restored the enzyme activity of GPX4R152H and specifically increased the viability of fibroblast and lymphoblast cells developed from an SSMD patient with the homozygous R152H variation but not control cells from a healthy parent or HEK293T cells undergoing ferroptosis induced by a wild-type GPX4 inhibitor. This approach represents a low-cost, high-throughput, and generalizable approach to identify targeted small-molecule therapeutics for missense variants, which features the potential to be broadly applied to diseases that bear point mutations on crucial proteins, including cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Farhad Forouhar
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, United States
| | - Russell Saneto
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington 98105, United States
- Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington 98105, United States
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, United States
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Irving Institute for Cancer Dynamics, Columbia University, New York, New York 10027, United States
- Department of Pathology and Cell Biology and Columbia University Digestive and Liver Disease Research Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
- Data Science Institute, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Chen CC, Yu ZP, Liu Z, Yao Y, Hagedoorn PL, Schmitz RA, Yang L, Yu L, Liu A, Sheng X, Su H, Ma Y, Wang T, Huang JW, Zhang L, Yan J, Bao J, Cui C, Li X, Shen P, Zhang W, Min J, Wang CY, Guo RT, Gao SS. Chanoclavine synthase operates by an NADPH-independent superoxide mechanism. Nature 2025; 640:840-846. [PMID: 40044871 PMCID: PMC12003167 DOI: 10.1038/s41586-025-08670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 04/13/2025]
Abstract
More than ten ergot alkaloids comprising both natural and semi-synthetic products are used to treat various diseases1,2. The central C ring forms the core pharmacophore for ergot alkaloids, giving them structural similarity to neurotransmitters, thus enabling their modulation of neurotransmitter receptors3. The haem catalase chanoclavine synthase (EasC) catalyses the construction of this ring through complex radical oxidative cyclization4. Unlike canonical catalases, which catalyse H2O2 disproportionation5,6, EasC and its homologues represent a broader class of catalases that catalyse O2-dependent radical reactions4,7. We have elucidated the structure of EasC by cryo-electron microscopy, revealing a nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-binding pocket and a haem pocket common to all haem catalases, with a unique homodimeric architecture that is, to our knowledge, previously unobserved. The substrate prechanoclavine unprecedentedly binds in the NADPH-binding pocket, instead of the previously suspected haem-binding pocket, and two pockets were connected by a slender tunnel. Contrary to the established mechanisms, EasC uses superoxide rather than the more generally used transient haem iron-oxygen complexes (such as compounds I, II and III)8,9, to mediate substrate transformation through superoxide-mediated cooperative catalysis of the two distant pockets. We propose that this reactive oxygen species mechanism could be widespread in metalloenzyme-catalysed reactions.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Zhi-Pu Yu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, People's Republic of China
| | - Ziwei Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peter-Leon Hagedoorn
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Rob Alexander Schmitz
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lujia Yang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China
| | - Lu Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Aokun Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Xiang Sheng
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China
| | - Hao Su
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China
| | - Yaqing Ma
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Te Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Jian-Wen Huang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Juzhang Yan
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China
| | - Jinping Bao
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China
| | - Chengsen Cui
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China
| | - Xian Li
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Panpan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Wuyuan Zhang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, People's Republic of China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, People's Republic of China
| | - Rey-Ting Guo
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Shu-Shan Gao
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Shin I, Nguyen RC, Montoya SR, Liu A. Structural insights into 2-oxindole-forming monooxygenase MarE: Divergent architecture and substrate positioning versus tryptophan dioxygenases. J Biol Chem 2025; 301:108241. [PMID: 39880093 PMCID: PMC11904535 DOI: 10.1016/j.jbc.2025.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-l-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.45 Å resolution. These structures establish MarE as a member of the heme-dependent aromatic oxygenase (HDAO) superfamily and reveal its evolutionary link to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). While MarE adopts a global structure resembling the homotetrameric TDO, it features a simplified α6 helix compared to TDO's more elaborate αE and αH helices with additional αF and αG regions. Despite differing oxygen activation outcomes, MarE shares a substrate binding mode similar to IDO and TDO, with the indole nitrogen of its substrate oriented toward the heme iron in the ternary cyano complex, interacting with His55. The substrate's carboxylate group engages Arg118, with mutational studies confirming the roles of these residues in substrate binding. However, the second-sphere interactions with the substrate's α-amino nitrogen differ between MarE and TDO, and the substrate's orientation in the binary complex remains ambiguous due to two possible conformations. Notably, TDO features an extensive hydrogen-bonding network around the heme propionate below the heme plane, which is absent in MarE, suggesting mechanistic differences. These structural insights lay a foundation for further mechanistic studies, particularly for understanding how heme-dependent enzymes oxygenate tryptophan-derived metabolites.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Samuel R Montoya
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States.
| |
Collapse
|
5
|
Geeraerts Z, Ishigami I, Gao Y, Yeh SR. Heme-based dioxygenases: Structure, function and dynamics. J Inorg Biochem 2024; 261:112707. [PMID: 39217822 PMCID: PMC11590650 DOI: 10.1016/j.jinorgbio.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yuan Gao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
6
|
Wujieti B, Feng X, Liu E, Li D, Hao M, Zhou L, Cui W. A theoretical study on the activity and selectivity of IDO/TDO inhibitors. Phys Chem Chem Phys 2024; 26:16747-16764. [PMID: 38818624 DOI: 10.1039/d3cp06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.
Collapse
Affiliation(s)
- Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Xinping Feng
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Erxia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Deqing Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Luqi Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| |
Collapse
|
7
|
Shi X, Zhao G, Li H, Zhao Z, Li W, Wu M, Du YL. Hydroxytryptophan biosynthesis by a family of heme-dependent enzymes in bacteria. Nat Chem Biol 2023; 19:1415-1422. [PMID: 37653171 DOI: 10.1038/s41589-023-01416-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Hydroxytryptophan serves as a chemical precursor to a variety of bioactive specialized metabolites, including the human neurotransmitter serotonin and the hormone melatonin. Although the human and animal routes to hydroxytryptophan have been known for decades, how bacteria catalyze tryptophan indole hydroxylation remains a mystery. Here we report a class of tryptophan hydroxylases that are involved in various bacterial metabolic pathways. These enzymes utilize a histidine-ligated heme cofactor and molecular oxygen or hydrogen peroxide to catalyze regioselective hydroxylation on the tryptophan indole moiety, which is mechanistically distinct from their animal counterparts from the nonheme iron enzyme family. Through genome mining, we also identify members that can hydroxylate the tryptophan indole ring at alternative positions. Our results not only reveal a conserved way to synthesize hydroxytryptophans in bacteria but also provide a valuable enzyme toolbox for biocatalysis. As proof of concept, we assemble a highly efficient pathway for melatonin in a bacterial host.
Collapse
Affiliation(s)
- Xinjie Shi
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guiyun Zhao
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Hu Li
- Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Zhijie Zhao
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yi-Ling Du
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.
| |
Collapse
|
8
|
Nguyen RC, Stagliano C, Liu A. Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes. Curr Opin Chem Biol 2023; 75:102332. [PMID: 37269676 PMCID: PMC10528533 DOI: 10.1016/j.cbpa.2023.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 06/05/2023]
Abstract
Half-of-sites reactivity in many homodimeric and homotetrameric metalloenzymes has been known for half a century, yet its benefit remains poorly understood. A recently reported cryo-electron microscopy structure has given some clues on the less optimized reactivity of Escherichia coli ribonucleotide reductase with an asymmetric association of α2β2 subunits during catalysis. Moreover, nonequivalence of enzyme active sites has been reported in many other enzymes, possibly as a means of regulation. They are often induced by substrate binding or caused by a critical component introduced from a neighboring subunit in response to substrate loadings, such as in prostaglandin endoperoxide H synthase, cytidine triphosphate synthase, glyoxalase, tryptophan dioxygenase, and several decarboxylases or dehydrogenases. Overall, half-of-sites reactivity is likely not an act of wasting resources but rather a method devised in nature to accommodate catalytic or regulatory needs.
Collapse
Affiliation(s)
- Romie C Nguyen
- Department of Chemistry, University of Texas, San Antonio, TX, 78249, USA
| | - Cassadee Stagliano
- Department of Chemistry, University of Texas, San Antonio, TX, 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, TX, 78249, USA.
| |
Collapse
|
9
|
Torres N, Tobón-Cornejo S, Velazquez-Villegas LA, Noriega LG, Alemán-Escondrillas G, Tovar AR. Amino Acid Catabolism: An Overlooked Area of Metabolism. Nutrients 2023; 15:3378. [PMID: 37571315 PMCID: PMC10421169 DOI: 10.3390/nu15153378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15. Col Belisario Domínguez-Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.T.); (S.T.-C.); (L.A.V.-V.); (L.G.N.); (G.A.-E.)
| |
Collapse
|
10
|
Biswas P, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through control of cell heme allocation by nitric oxide. J Biol Chem 2023; 299:104753. [PMID: 37116709 PMCID: PMC10220489 DOI: 10.1016/j.jbc.2023.104753] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygenase (TDO) catalyze the conversion of L-tryptophan to N-formyl-kynurenine and thus play primary roles in metabolism, inflammation, and tumor immune surveillance. Because their activities depend on their heme contents, which vary in biological settings and go up or down in a dynamic manner, we studied how their heme levels may be impacted by nitric oxide (NO) in mammalian cells. We utilized cells expressing TDO or IDO1 either naturally or via transfection and determined their activities, heme contents, and expression levels as a function of NO exposure. We found NO has a bimodal effect: a narrow range of low NO exposure promoted cells to allocate heme into the heme-free TDO and IDO1 populations and consequently boosted their heme contents and activities 4- to 6-fold, while beyond this range the NO exposure transitioned to have a negative impact on their heme contents and activities. NO did not alter dioxygenase protein expression levels, and its bimodal impact was observed when NO was released by a chemical donor or was generated naturally by immune-stimulated macrophage cells. NO-driven heme allocations to IDO1 and TDO required participation of a GAPDH-heme complex and for IDO1 required chaperone Hsp90 activity. Thus, cells can up- or downregulate their IDO1 and TDO activities through a bimodal control of heme allocation by NO. This mechanism has important biomedical implications and helps explain why the IDO1 and TDO activities in animals go up and down in response to immune stimulation.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Lara-Moreno A, Merchán F, Morillo E, Zampolli J, Di Gennaro P, Villaverde J. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in Stenotrophomonas indicatrix CPHE1. Phenanthrene mineralization in soils assisted by integrated approaches. Front Bioeng Biotechnol 2023; 11:1158177. [PMID: 37214282 PMCID: PMC10192627 DOI: 10.3389/fbioe.2023.1158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-β-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Esmeralda Morillo
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Jaime Villaverde
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
12
|
Wu Y, Xie Y, Feng Y, Xu Z, Ban S, Song H. Diversity-Oriented Biosynthesis Yields l-Kynurenine Derivative-Based Neurological Drug Candidate Collection. ACS Synth Biol 2023; 12:608-617. [PMID: 36749842 DOI: 10.1021/acssynbio.2c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Natural product libraries with a remarkable range of biological activities play pivotal roles in drug discoveries due to their extraordinary structural complexity and immense diversity. l-Kynurenine (l-Kyn)-based derivatives are privileged pharmacophores that exhibit diverse therapeutic implications in neurological disorders. However, the difficulty in obtaining l-Kyn analogues with different skeletal structures has recently led to a decline in its medicinal research. Herein, we report a two-step, one-pot protocol for diversity-oriented biosynthesis of a collection of previously intractable l-Kyn-like compounds. The success of these challenging transformations mainly depends on unlocking the new catalytic scope of tryptophan 2,3-dioxygenases, followed by rational site-directed mutagenesis to modify the substrate domains further. As a result, 18 kynurenine analogues with diverse molecular scaffolds can be rapidly assembled in a predictable manner with 20-83% isolated yields, which not only fill the voids of the catalytic profile of tryptophan 2,3-dioxygenases with an array of substituent groups (e.g., F, Cl, Br, I, CH3, OCH3, and NO2) but also update the current understanding of its substrate spectrum. Our work highlights the great potential of existing enzymes in addressing long-standing synthetic challenges for facilitating the development or discovery of new drug candidates. Furthermore, our approach enables translating the reaction parameters from Eppendorf tubes to 1 L scale, affording l-4-Cl-Kyn and l-5-Cl-Kyn both on a gram scale with more than 80% isolated yields, and provides a promising alternative to further industrial applications.
Collapse
Affiliation(s)
- Yunbin Wu
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yongze Xie
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yinyin Feng
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Zhiqin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Heng Song
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China.,Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong Province 518000, China
| |
Collapse
|
13
|
Hou Z, Zhou X, Zhao Z, Dong W, Wang H, Liu H, Zeng Z, Xie J. Advanced aromatic organic compounds removal from refractory coking wastewater in a step-feed three-stage integrated A/O bio-filter: Spectrum characterization and biodegradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116140. [PMID: 36070652 DOI: 10.1016/j.jenvman.2022.116140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Extensive presence of aromatic organic compounds (AOCs) is a major course for the non-biodegradability of coking wastewater (COW). In-depth understanding of bio-degradation of AOCs is crucial for optimizing the design and operation of COW biological treatment systems in practical applications. Herein, the behavior and fate of AOCs were explored in a lab-scale step-feed three-stage integrated A/O biofilter (SFTIAOB) treating synthetic COW. Long-term operation demonstrated that COD, phenol, indole, quinoline and pyridine could be simultaneously removed. Phenol and indole were chiefly removed by anoxic zones, while quinoline and pyridine removal occurred in both anoxic and aerobic zones. Ultraviolet-visible spectrum observed that initial carboxylation and subsequent ring cracking and mineralization. Infrared spectroscopy also confirmed that key functional groups were cracked and produced during AOCs bio-degradation. Three-dimensional fluorescence spectrum indicated that significant transformation and elimination of tryptophan and humic acid with high molecular weight. Ring cleavage, distinct degradation and even complete mineralization of complex AOCs were further verified by gas chromatography-mass spectrometry. Moreover, functional degrading bacteria and aromatic ring-cleavage enzymes was successfully identified. Finally, AOCs biodegradation mechanisms by alternating anoxic and aerobic treatment was unraveled. This research provides thorough insights on AOCs biodegradation using a step-feed multi-stage alternating anoxic/oxic COW treatment process.
Collapse
Affiliation(s)
- Zilong Hou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| |
Collapse
|
14
|
Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellios LV1. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Matern J, Fernández Z, Bäumer N, Fernández G. Expanding the Scope of Metastable Species in Hydrogen Bonding-Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202203783. [PMID: 35362184 PMCID: PMC9321731 DOI: 10.1002/anie.202203783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 12/23/2022]
Abstract
We reveal unique hydrogen (H-) bonding patterns and exploit them to control the kinetics, pathways and length of supramolecular polymers (SPs). New bisamide-containing monomers were designed to elucidate the role of competing intra- vs. intermolecular H-bonding interactions on the kinetics of supramolecular polymerization (SP). Remarkably, two polymerization-inactive metastable states were discovered. Contrary to previous examples, the commonly assumed intramolecularly H-bonded monomer does not evolve into intermolecularly H-bonded SPs via ring opening, but rather forms a metastable dimer. In this dimer, all H-bonding sites are saturated, either intra- or intermolecularly, hampering elongation. The dimers exhibit an advantageous preorganization, which upon opening of the intramolecular portion of the H-bonding motif facilitates SP in a consecutive process. The retardation of spontaneous self-assembly as a result of two metastable states enables length control in SP by seed-mediated growth.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Zulema Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
16
|
Zhang R, Wang Y, Liu D, Luo Q, Du P, Zhang H, Wu W. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice. Front Pharmacol 2022; 13:870848. [PMID: 35571116 PMCID: PMC9091350 DOI: 10.3389/fphar.2022.870848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Although the antitumor efficacy of immune checkpoint blockade (ICB) has been proved in colorectal cancer (CRC), the results are unsatisfactory, presumably owing to the presence of tryptophan metabolism enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2). However, only a few dual inhibitors for IDO1 and TDO2 have been reported. Here, we discovered that sodium tanshinone IIA sulfonate (STS), a sulfonate derived from tanshinone IIA (TSN), reduced the enzymatic activities of IDO1 and TDO2 with a half inhibitory concentration (IC50) of less than 10 μM using enzymatic assays for natural product screening. In IDO1- or TDO2- overexpressing cell lines, STS decreased kynurenine (kyn) synthesis. STS also reduced the percentage of forkhead box P3 (FOXP3) T cells in lymphocytes from the mouse spleen cocultured with CT26. In vivo, STS suppressed tumor growth and enhanced the antitumor effect of the programmed cell death 1 (PD1) antibody. Compared with anti-PD1 (α-PD1) monotherapy, combined with STS had lower level of plasma kynurenine. Immunofluorescence assay suggested that STS decreased the number of FOXP3+ T cells and increased the number of CD8+ T cells in tumors. Flow cytometry analysis of immune cells in tumor tissues demonstrated an increase in the percentage of tumor-infiltrating CD8+ T cells. According to our findings, STS acts as an immunotherapy agent in CRC by inhibiting both IDO1 and TDO2.
Collapse
Affiliation(s)
- Rongjie Zhang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuanfeiyi Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Dan Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qing Luo
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Peixin Du
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Haiyan Zhang
- Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China.,The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Kondo HX, Kanematsu Y, Takano Y. Structure of Heme-binding Pocket in Heme Protein is Generally Rigid and can be Predicted by AlphaFold2. CHEM LETT 2022. [DOI: 10.1246/cl.220172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroko X. Kondo
- Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
| | - Yusuke Kanematsu
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
- Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yu Takano
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
| |
Collapse
|
18
|
Inflammation and serotonin deficiency in major depressive disorder: Molecular docking of antidepressant and antiinflammatory drugs to tryptophan and indoleamine 2,3-dioxygenases. Biosci Rep 2022; 42:231266. [PMID: 35506370 PMCID: PMC9142829 DOI: 10.1042/bsr20220426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The roles of the kynurenine pathway (KP) of tryptophan (Trp) degradation in serotonin deficiency in major depressive disorder (MDD) and the associated inflammatory state are considered in the present study. Using molecular docking in silico, we demonstrate binding of antidepressants to the crystal structure of tryptophan 2,3-dioxygenase (TDO), but not to indoleamine 2,3-dioxygenase (IDO). TDO is inhibited by a wide range of antidepressant drugs. The rapidly acting antidepressant ketamine does not dock to either enzyme, but may act by inhibiting kynurenine monooxygenase thereby antagonising glutamatergic activation to normalise serotonin function. Antidepressants with antiinflammatory properties are unlikely to act by direct inhibition of IDO, but may inhibit IDO induction by lowering levels of proinflammatory cytokines in immune-activated patients. Of 6 antiinflammatory drugs tested, only salicylate docks strongly to TDO and apart from celecoxib, the other 5 dock to IDO. TDO inhibition remains the major common property of antidepressants and TDO induction the most likely mechanism of defective serotonin synthesis in MDD. TDO inhibition and increased free Trp availability by salicylate may underpin the antidepressant effect of aspirin and distinguish it from other nonsteroidal antiinflammatory drugs. The controversial findings with IDO in MDD patients with an inflammatory state can be explained by IDO induction being overridden by changes in subsequent KP enzymes influencing glutamatergic function. The pathophysiology of MDD may be underpinned by the interaction of serotonergic and glutamatergic activities.
Collapse
|
19
|
Matern J, Fernandez Z, Bäumer N, Fernandez G. Expanding the Scope of Metastable Species in Hydrogen Bonding‐Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Zulema Fernandez
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
20
|
Kelly BJ, Diez-Cecilia E, Pan L, Sweeting B, Villar L, Kreft A, Gupta M, Johnson SL, Weaver D. A Privileged Dual Action Alzheimer’s Disease Therapeutic Platform Targeting Immunopathic and Proteopathic Mechanisms: (E)-3-Styrylindoles as Inhibitors of Indoleamine 2,3-Dioxygenase-Mediated Tryptophan Metabolism and β-Amyloid Aggregation. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The design of potent indoleamine 2,3-dioxygenase 1 (IDO1) enzyme inhibitors targeting immunopathic neuroinflammation has emerged as an area of interest for the treatment of Alzheimer’s disease (AD); additionally, recent findings on the clinical benefits of antibodies preventing β-amyloid (Aβ) aggregation have renewed efforts to discover small molecule anti-aggregants targeting proteopathic protein misfolding. Exploiting an endogenous tryptophan-like scaffold, we describe the design and synthesis of small molecule inhibitors of both immunopathic and proteopathic processes, thus presenting the possibility of single therapeutics acting simultaneously on multiple AD pathogeneses. Specifically, investigations on compounds that inhibit both IDO1 (in human recombinant enzyme, transfected HEK293 cells and interferon-γ stimulated human microglia assays) and Aβ aggregation (in thioflavin-T and biotinylated-Aβ oligomeric assays) are presented. Five compounds have been identified with high potency against both targets, identifying (E)-3-styryl indoles as useful tool compounds for developing Alzheimer’s therapeutics. Brain penetration of these compounds via passive diffusion or active transport was predicted using Blood-Brain Barrier (BBB) Score and Brain Exposure Efficiency (BEE) Score calculations, respectively; the effects of efflux (pgp, BCRP) and influx (OCT1, OCT2) transporters were similarly predicted. Structure-activity relationships were rationalized with molecular docking and molecular dynamics simulations, which also provide insights for future lead compound optimization.
Collapse
Affiliation(s)
| | - Elena Diez-Cecilia
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
| | - Luzhe Pan
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
| | - Braden Sweeting
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
| | - Laura Villar
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
| | - Alexander Kreft
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
| | - Mayuri Gupta
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
| | | | - Donald Weaver
- University Health Network, 7989, Krembil Research Institute, Toronto, Ontario, Canada
- University of Toronto Faculty of Arts & Science, 98586, Chemistry, Medicine and Pharmaceutical Sciences, Toronto, Canada
| |
Collapse
|
21
|
Biswas P, Dai Y, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic Biol Med 2022; 180:179-190. [PMID: 35051612 PMCID: PMC11389873 DOI: 10.1016/j.freeradbiomed.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygense (TDO) are heme-containing dioxygenases that catalyze the conversion of tryptophan to N-formyl-kynurenine and thus enable generation of l-kynurenine and related metabolites that govern the immune response and broadly impact human biology. Given that TDO and IDO1 activities are directly proportional to their heme contents, it is important to understand their heme delivery and insertion processes. Early studies established that TDO and IDO1 heme levels are sub-saturating in vivo and subject to change but did not identify the cellular mechanisms that provide their heme or enable dynamic changes in their heme contents. We investigated the potential involvement of GAPDH and chaperone Hsp90, based on our previous studies linking these proteins to intracellular heme allocation. We studied heme delivery and insertion into IDO1 and TDO expressed in both normal and heme-deficient HEK293T cells and into IDO1 naturally expressed in HeLa cells in response to IFN-γ, and also investigated the interactions of TDO and IDO1 with GAPDH and Hsp90 in cells and among their purified forms. We found that GAPDH delivered both mitochondrially-generated and exogenous heme to apo-IDO1 and apo-TDO in cells, potentially through a direct interaction with either enzyme. In contrast, we found Hsp90 interacted with apo-IDO1 but not with apo-TDO, and was only needed to drive heme insertion into apo-IDO1. By uncovering the cellular processes that allocate heme to IDO1 and TDO, our study provides new insight on how their activities and l-kynurenine production may be controlled in health and disease.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
22
|
Röhrig UF, Michielin O, Zoete V. Structure and Plasticity of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2021; 64:17690-17705. [PMID: 34907770 DOI: 10.1021/acs.jmedchem.1c01665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the discovery of the implication of indoleamine 2,3-dioxygenase 1 (IDO1) in tumoral immune resistance in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies, supported by the publication of the first crystal structure of IDO1 in 2006. More recently, it has become clear that IDO1 is an important player in various biological pathways and diseases ranging from neurodegenerative diseases to infection and autoimmunity. Its inhibition may lead to clinical benefit in different therapeutic settings. At present, over 50 experimental structures of IDO1 in complex with different ligands are available in the Protein Data Bank. Our analysis of this wealth of structural data sheds new light on several open issues regarding IDO1's structure and function.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research─Lausanne Branch, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland
| |
Collapse
|
23
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
24
|
Basran J, Booth ES, Campbell LP, Thackray SJ, Jesani MH, Clayden J, Moody PCE, Mowat CG, Kwon H, Raven EL. Binding of l-kynurenine to X. campestris tryptophan 2,3-dioxygenase. J Inorg Biochem 2021; 225:111604. [PMID: 34571402 DOI: 10.1016/j.jinorgbio.2021.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.
Collapse
Affiliation(s)
- Jaswir Basran
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Elizabeth S Booth
- Department of Chemistry, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura P Campbell
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Sarah J Thackray
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Peter C E Moody
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Christopher G Mowat
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Hanna Kwon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Emma L Raven
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
25
|
Li S, Li S, Zhao Y, Zhang B, Wang X, Yang X, Wang Y, Jia C, Chang Y, Wei W. A comprehensive analysis of TDO2 expression in immune cells and characterization of immune cell phenotype in TDO2 knockout mice. Transgenic Res 2021; 30:781-797. [PMID: 34529208 DOI: 10.1007/s11248-021-00281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO2) was an initial rate-limiting enzyme of the kynurenine (Kyn) pathway in tryptophan (Trp) metabolism. We undertook this study to determine a comprehensive analysis of TDO2 expression in immune cells and assess the characterization of immune cell phenotype in TDO2 knockout mice. The expression of TDO2 in various tissues of DBA/1 mice was detected by quantitative real-time PCR (qPCR) and immunohistochemistry. Both flow cytometry and immunofluorescence were used to analyze the expression of TDO2 in immune cells. Furthermore, TDO2 knockout (KO) mice were generated by CRISPR/Cas9 technology to detect immune cell phenotype. TDO2 protein level in liver was tested by western blot. High-performance liquid chromatography was used to detect the level of Trp and Kyn. Flow cytometry was used to test the proportions of splenic lymphocyte subsets in wild-type (WT) and TDO2 KO mice. We found that TDO2 was expressed in various tissues and immune cells, and TDO2 staining was mainly observed in the cytoplasm of cells. There was no difference in the development of immune cells between TDO2 KO mice and WT mice, including T cells, B cells, memory B cells, plasma cells, dendritic cells, and natural killer cells. Interestingly, the reduced M1/M2 ratio was observed in the peritoneal macrophages of TDO2 KO mice. Taken together, these findings enriched the known expression profile of TDO2, especially its expression in immune cells. Our study suggested that TDO2-mediated Trp-Kyn metabolism pathway might be involved in the immune response.
Collapse
Affiliation(s)
- Susu Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Siyu Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yingjie Zhao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Bingjie Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xinwei Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yueye Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chengyan Jia
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
26
|
Zheng M, Han H, Shi J, Zhang Z, Ma W, Xu C. Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe 3O 4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125387. [PMID: 33676245 DOI: 10.1016/j.jhazmat.2021.125387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In current study, nano-Fe3O4@activated coke enhanced bio-system (FEBS) under limited-oxygen condition was applied for efficient treatment of aromatic organics in coal pyrolysis wastewater. Metagenomic analyses revealed functional microbiome linkages and mechanism involved in aromatic ring-cleavage. Based on biodegradation efficiency in different reactors, FEBS supplementation conferred the best organic removal (avg. 92.29%). It also showed a remarkable advantage in biodegradability maintenance (>40%) over control reactors. Metagenomics profiling revealed the degradation processes were driven by Fe3O4 redox reactions and microbial biofilm, while the suspended sludge was the principal force for aromatic mineralization. Based on the analysis of functional species and genes, most bacteria cleaved the benzene ring preferably through the aerobic pathways, mediated by catechol 1, 2-dioxygenase, catechol 2, 3-dioxygenase and protocatechuate 3, 4-dioxygenase (66-84%). Ecological network showed that Comamonas testosterone-centered microbiome and Azotobacter linked to the nitrogen (N)-heterocyclic ring-cleavage. Network linkage further demonstrated that Alicycliphilus and Acidovorax were the key tone taxa involved in benzene ring-cleavage. Finally, combined with analysis of degradation products, bacteria degraded N-heterocyclic ring containing organic aromatic compounds (quinoline) mainly through anaerobic processes, whereas cleavage of benzene ring preferred aerobic pathways. The enriched functional species were the primary reason for the enhanced biodegradation in FEBS.
Collapse
Affiliation(s)
- Mengqi Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingxin Shi
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengwen Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wencheng Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chunyan Xu
- Harbin Gongchuang Environmental Protection Technology Company, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
27
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Volz NB, Hanna DL, Stintzing S, Zhang W, Yang D, Cao S, Ning Y, Matsusaka S, Sunakawa Y, Berger MD, Cremolini C, Loupakis F, Falcone A, Lenz HJ. Polymorphisms within Immune Regulatory Pathways Predict Cetuximab Efficacy and Survival in Metastatic Colorectal Cancer Patients. Cancers (Basel) 2020; 12:2947. [PMID: 33065994 PMCID: PMC7601940 DOI: 10.3390/cancers12102947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cetuximab, an IgG1 EGFR-directed antibody, promotes antibody-dependent cell-mediated cytotoxicity. We hypothesized that single-nucleotide polymorphisms (SNPs) in immune regulatory pathways may predict outcomes in patients with metastatic colorectal cancer treated with cetuximab-based regimens. A total of 924 patients were included: 105 received cetuximab in IMCL-0144 and cetuximab/irinotecan in GONO-ASL608LIOM01 (training cohort), 225 FOLFIRI/cetuximab in FIRE-3 (validation cohort 1), 74 oxaliplatin/cetuximab regimens in JACCRO CC-05/06 (validation cohort 2), and 520 FOLFIRI/bevacizumab in FIRE-3 and TRIBE (control cohorts). Twelve SNPs in five genes (IDO1; PD-L1; PD-1; CTLA-4; CD24) were evaluated by PCR-based direct sequencing. We analyzed associations between genotype and clinical outcomes. In the training cohort; patients with the CD24 rs52812045 A/A genotype had a significantly shorter median PFS and OS than those with the G/G genotype (PFS 1.3 vs. 3.6 months; OS 2.3 vs. 7.8 months) in univariate (PFS HR 3.62; p = 0.001; OS HR 3.27; p = 0.0004) and multivariate (PFS HR 3.18; p = 0.009; OS HR 4.93; p = 0.001) analyses. Similarly; any A allele carriers in the JACCRO validation cohort had a significantly shorter PFS than G/G carriers (9.2 vs. 11.8 months; univariate HR 1.90; p = 0.011; multivariate HR 2.12; p = 0.018). These associations were not demonstrated in the control cohorts. CD24 genetic variants may help select patients with metastatic colorectal cancer most likely to benefit from cetuximab-based therapy.
Collapse
Affiliation(s)
- Nico B. Volz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
- Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana L. Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Sebastian Stintzing
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
- Department of Medicine III, University Hospital LMU Munich, 80539 Munich, Germany
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (D.Y.); (S.C.)
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (D.Y.); (S.C.)
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Yu Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Martin D. Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Chiara Cremolini
- U.O. Oncologia Medica 2—Aziendo Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.C.); (F.L.); (A.F.)
| | - Fotios Loupakis
- U.O. Oncologia Medica 2—Aziendo Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.C.); (F.L.); (A.F.)
| | - Alfredo Falcone
- U.O. Oncologia Medica 2—Aziendo Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.C.); (F.L.); (A.F.)
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| |
Collapse
|
29
|
Geng J, Weitz AC, Dornevil K, Hendrich MP, Liu A. Kinetic and Spectroscopic Characterization of the Catalytic Ternary Complex of Tryptophan 2,3-Dioxygenase. Biochemistry 2020; 59:2813-2822. [PMID: 32659080 DOI: 10.1021/acs.biochem.0c00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first step of the kynurenine pathway for l-tryptophan (l-Trp) degradation is catalyzed by heme-dependent dioxygenases, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase. In this work, we employed stopped-flow optical absorption spectroscopy to study the kinetic behavior of the Michaelis complex of Cupriavidus metallidurans TDO (cmTDO) to improve our understanding of oxygen activation and initial oxidation of l-Trp. On the basis of the stopped-flow results, rapid freeze-quench (RFQ) experiments were performed to capture and characterize this intermediate by Mössbauer spectroscopy. By incorporating the chlorite dismutase-chlorite system to produce high concentrations of solubilized O2, we were able to capture the Michaelis complex of cmTDO in a nearly quantitative yield. The RFQ-Mössbauer results confirmed the identity of the Michaelis complex as an O2-bound ferrous species. They revealed remarkable similarities between the electronic properties of the Michaelis complex and those of the O2 adduct of myoglobin. We also found that the decay of this reactive intermediate is the rate-limiting step of the catalytic reaction. An inverse α-secondary substrate kinetic isotope effect was observed with a kH/kD of 0.87 ± 0.03 when (indole-d5)-l-Trp was employed as the substrate. This work provides an important piece of spectroscopic evidence of the chemical identity of the Michaelis complex of bacterial TDO.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kednerlin Dornevil
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Aimin Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
30
|
Gualdoni GS, Jacobo PV, Sobarzo CM, Pérez CV, Matzkin ME, Höcht C, Frungieri MB, Hill M, Anegon I, Lustig L, Guazzone VA. Role of indoleamine 2,3-dioxygenase in testicular immune-privilege. Sci Rep 2019; 9:15919. [PMID: 31685866 PMCID: PMC6828782 DOI: 10.1038/s41598-019-52192-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Male meiotic germ cell including the spermatozoa represent a great challenge to the immune system, as they appear long after the establishment of normal immune tolerance mechanisms. The capacity of the testes to tolerate autoantigenic germ cells as well as survival of allogeneic organ engrafted in the testicular interstitium have led to consider the testis an immunologically privileged site. Disruption of this immune privilege following trauma, tumor, or autoimmune orchitis often results in male infertility. Strong evidence indicates that indoleamine 2,3-dioxygenase (IDO) has been implicated in fetal and allograft tolerance, tumor immune resistance, and regulation of autoimmune diseases. IDO and tryptophan 2,3-dioxygenase (TDO) catalyze the same rate-limiting step of tryptophan metabolism along a common pathway, which leads to tryptophan starvation and generation of catabolites collectively known as kynurenines. However, the relevance of tryptophan metabolism in testis pathophysiology has not yet been explored. Here we assessed the in vivo role of IDO/TDO in experimental autoimmune orchitis (EAO), a model of autoimmune testicular inflammation and immunologically impaired spermatogenesis. EAO was induced in adult Wistar rats with testicular homogenate and adjuvants. Control (C) rats injected with saline and adjuvants and normal untreated rats (N) were also studied. mRNA expression of IDO decreased in whole testes and in isolated Sertoli cells during EAO. TDO and IDO localization and level of expression in the testis were analyzed by immunostaining and Western blot. TDO is expressed in granulomas from EAO rats, and similar protein levels were observed in N, C, and EAO groups. IDO was detected in mononuclear and endothelial cells and reduced IDO expression was detected in EAO group compared to N and C rats. This phenomenon was concomitant with a significant reduction of IDO activity in EAO testis measured by tryptophan and kynurenine concentrations (HPLC). Finally, in vivo inhibition of IDO with 1-methyl-tryptophan increased severity of the disease, demonstrating down regulation of IDO-based tolerance when testicular immune regulation was disrupted. We present evidence that an IDO-based mechanism is involved in testicular immune privilege.
Collapse
Affiliation(s)
- Gisela S Gualdoni
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Patricia V Jacobo
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cristian M Sobarzo
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cecilia V Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Christian Höcht
- Cátedra de Farmacología. Facultad de Farmacia y Bioquímica, UBA, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Marcelo Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, 11800, Montevideo, Uruguay
| | - Ignacio Anegon
- Inserm, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, Nantes, France, INSERM UMR 1064, France
| | - Livia Lustig
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Vanesa A Guazzone
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| |
Collapse
|
31
|
Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism. iScience 2019; 19:1291-1336. [PMID: 31402257 PMCID: PMC6831821 DOI: 10.1016/j.isci.2019.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Although in recent years there has been an increased awareness of the widespread nature of biofluorescence in the marine environment, the diversity of the molecules responsible for this luminescent phenotype has been mostly limited to green fluorescent proteins (GFPs), GFP-like proteins, and fluorescent fatty acid-binding proteins (FABPs). In the present study, we describe a previously undescribed group of brominated tryptophan-kynurenine small molecule metabolites responsible for the green biofluorescence in two species of sharks and provide their structural, antimicrobial, and spectral characterization. Multi-scale fluorescence microscopy studies guided the discovery of metabolites that were differentially produced in fluorescent versus non-fluorescent skin, as well as the species-specific structural details of their unusual light-guiding denticles. Overall, this study provides the detailed description of a family of small molecules responsible for marine biofluorescence and opens new questions related to their roles in central nervous system signaling, resilience to microbial infections, and photoprotection. We describe a new form of biofluorescence from the skin of catsharks Bromo-tryptophan-kynurenines are biofluorescent and show antimicrobial activities Specific dermal denticles in the chain catshark act as optical light-guides This study opens questions related to biological function of shark fluorescence
Collapse
|
32
|
Yanagisawa S, Kayama K, Hara M, Sugimoto H, Shiro Y, Ogura T. UV Resonance Raman Characterization of a Substrate Bound to Human Indoleamine 2,3-Dioxygenase 1. Biophys J 2019; 117:706-716. [PMID: 31405517 DOI: 10.1016/j.bpj.2019.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
Human indoleamine 2,3-dioxygenase 1 (IDO) is a heme enzyme that catalyzes the first reaction of the main metabolic pathway of L-tryptophan (Trp) to produce N-formylkynurenin. The reaction involves cleavage of the C2=C3 bond in the Trp indole ring and insertion of two atomic oxygens from the iron-bound O2 into the indole 2 and 3 position. For establishment of the chemical mechanism of this unique enzymatic reaction, it is necessary to determine the conformation and electronic state of the substrate Trp bound to IDO. In this study, we measured the ultraviolet resonance Raman spectra of IDO in the presence of Trp to detect the vibrational modes of the substrate Trp. We compared the ultraviolet resonace Raman spectra of Trp in a ternary complex (Trp-bound cyanide enzyme) and a binary complex (Trp-bound reduced enzyme) of IDO with that of free Trp in solution and found that binding to IDO influences the conformation of Trp, resulting in similar changes in the two complexes, especially around the C3-Cβ bond. However, the presence of the diatomic ligand at the heme sixth coordination site in the ternary complex significantly alters the mobility and electronic structure of Trp, most likely resulting in the C2=C3 bond cleavage in the enzymatic reaction.
Collapse
Affiliation(s)
- Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan.
| | - Kure'e Kayama
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Masayuki Hara
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | | | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| |
Collapse
|
33
|
Yuasa HJ. A comprehensive comparison of the metazoan tryptophan degrading enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140247. [PMID: 31276825 DOI: 10.1016/j.bbapap.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple IDO paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate IDO1. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the G-helix (G9th), are crucial for the high affinity/catalytic efficiency of these 'high performance' invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan 'low performance' IDOs. In human IDO1, G9th is Ser167, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser167 could not be substituted by His because the human IDO1 Ser167His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Applied Science, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
34
|
Winters M, DuHadaway JB, Pham KN, Lewis-Ballester A, Badir S, Wai J, Sheikh E, Yeh SR, Prendergast GC, Muller AJ, Malachowski WP. Diaryl hydroxylamines as pan or dual inhibitors of indoleamine 2,3-dioxygenase-1, indoleamine 2,3-dioxygenase-2 and tryptophan dioxygenase. Eur J Med Chem 2019; 162:455-464. [PMID: 30469041 PMCID: PMC6318801 DOI: 10.1016/j.ejmech.2018.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/06/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Tryptophan (Trp) catabolizing enzymes play an important and complex role in the development of cancer. Significant evidence implicates them in a range of inflammatory and immunosuppressive activities. Whereas inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) have been reported and analyzed in the clinic, fewer inhibitors have been described for tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase-2 (IDO2) which also have been implicated more recently in cancer, inflammation and immune control. Consequently the development of dual or pan inhibitors of these Trp catabolizing enzymes may represent a therapeutically important area of research. This is the first report to describe the development of dual and pan inhibitors of IDO1, TDO and IDO2.
Collapse
Affiliation(s)
- Maria Winters
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 Lancaster Ave, Wynnewood, PA 19096, USA
| | - Khoa N Pham
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Shorouk Badir
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - Jenny Wai
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - Eesha Sheikh
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, 19010, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - George C Prendergast
- Lankenau Institute for Medical Research, 100 Lancaster Ave, Wynnewood, PA 19096, USA; Department of Pathology, Anatomy & Cell Biology and, Philadelphia, PA 19104, USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19104, USA.
| | - Alexander J Muller
- Lankenau Institute for Medical Research, 100 Lancaster Ave, Wynnewood, PA 19096, USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Lukas RV, Juhász C, Wainwright DA, James CD, Kennedy E, Stupp R, Lesniak MS. Imaging tryptophan uptake with positron emission tomography in glioblastoma patients treated with indoximod. J Neurooncol 2019; 141:111-120. [PMID: 30415456 PMCID: PMC6414051 DOI: 10.1007/s11060-018-03013-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the central nervous system, accounting for over 50% of all primary malignant gliomas arising in the adult brain. Even after surgical resection, adjuvant radiotherapy (RT) and temozolomide (TMZ) chemotherapy, as well as tumor-treating fields, the median survival is only 15-20 months. We have identified a pathogenic mechanism that contributes to the tumor-induced immunosuppression in the form of increased indoleamine 2,3 dioxygenase 1 (IDO1) expression; an enzyme that metabolizes the essential amino acid, tryptophan (Trp), into kynurenine (Kyn). However, real-time measurements of IDO1 activity has yet to become mainstream in clinical protocols for assessing IDO1 activity in GBM patients. METHODS Pre-treatment and on-treatment α-[11C]-methyl-L-Trp (AMT) positron emission tomography (PET) with co-registered MRI was performed on patients with recurrent GBM treated with the IDO1 pathway inhibitor indoximod (D1-MT) and TMZ. RESULTS Regional intratumoral variability of AMT within enhancing and non-enhancing tumor was noted at baseline. On treatment imaging revealed decreased regional uptake suggesting IDO1 pathway modulation with treatment. CONCLUSIONS Here, we have validated the ability to use PET of the Trp probe, AMT, for use in visualizing and quantifying intratumoral Trp uptake in GBM patients treated with an IDO1 pathway inhibitor. These data serve as rationale to utilize AMT-PET imaging in the future evaluation of GBM patients treated with IDO1 enzyme inhibitors.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.
- Lurie Cancer Center, Northwestern University, Chicago, USA.
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, USA.
| | - Csaba Juhász
- Neurology, and Neurosurgery, Department of Pediatrics, Wayne State University, Detroit, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, USA
| | - Derek A Wainwright
- Department of Neurosurgery, Northwestern University, Chicago, USA
- Lurie Cancer Center, Northwestern University, Chicago, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, USA
| | - Charles David James
- Department of Neurosurgery, Northwestern University, Chicago, USA
- Lurie Cancer Center, Northwestern University, Chicago, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, USA
| | | | - Roger Stupp
- Department of Neurology, Northwestern University, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA
- Department of Neurosurgery, Northwestern University, Chicago, USA
- Lurie Cancer Center, Northwestern University, Chicago, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, USA
| | - Maciej S Lesniak
- Department of Neurosurgery, Northwestern University, Chicago, USA
- Lurie Cancer Center, Northwestern University, Chicago, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, USA
| |
Collapse
|
36
|
Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur J Med Chem 2018; 160:133-145. [DOI: 10.1016/j.ejmech.2018.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
|
37
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
38
|
Effects of 1-Methyltryptophan on Immune Responses and the Kynurenine Pathway after Lipopolysaccharide Challenge in Pigs. Int J Mol Sci 2018; 19:ijms19103009. [PMID: 30279361 PMCID: PMC6213023 DOI: 10.3390/ijms19103009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
An enhanced indoleamine 2,3-dioxygenase 1 (IDO1) activity is associated with an increased mortality risk in sepsis patients. Thus, the preventive inhibition of IDO1 activity may be a promising strategy to attenuate the severity of septic shock. 1-methyltryptophan (1-MT) is currently in the interest of research due to its potential inhibitory effects on IDO1 and immunomodulatory properties. The present study aims to investigate the protective and immunomodulatory effects of 1-methyltryptophan against endotoxin-induced shock in a porcine in vivo model. Effects of 1-MT were determined on lipopolysaccharide (LPS)-induced tryptophan (TRP) degradation, immune response and sickness behaviour. 1-MT increased TRP and its metabolite kynurenic acid (KYNA) in plasma and tissues, suppressed the LPS-induced maturation of neutrophils and increased inactivity of the animals. 1-MT did not inhibit the LPS-induced degradation of TRP to kynurenine (KYN)-a marker for IDO1 activity-although the increase in KYNA indicates that degradation to one branch of the KYN pathway is facilitated. In conclusion, our findings provide no evidence for IDO1 inhibition but reveal the side effects of 1-MT that may result from the proven interference of KYNA and 1-MT with aryl hydrocarbon receptor signalling. These effects should be considered for therapeutic applications of 1-MT.
Collapse
|
39
|
Abstract
Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.
Collapse
Affiliation(s)
- Daojing Yan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
40
|
Zhang LL, Wang XY, Jiang KY, Zhao BY, Yan HM, Zhang XY, Zhang ZX, Guo Z, Che CM. A theoretical study on the oxidation of alkenes to aldehydes catalyzed by ruthenium porphyrins using O 2 as the sole oxidant. Dalton Trans 2018; 47:5286-5297. [PMID: 29569676 DOI: 10.1039/c8dt00614h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Density functional theory (DFT) calculations were used to study the ruthenium porphyrin-catalyzed oxidation of styrene to generate an aldehyde. The results indicate that two reactive oxidants, dioxoruthenium and monooxoruthenium-superoxo porphyrins, participate in the catalytic oxidation. In the mechanism, the resultant monooxoruthenium porphyrin acts in the tandem epoxide isomerization (E-I) to selectively yield an aldehyde and generate a dioxoruthenium porphyrin, thereby triggering new oxidation reaction cycles. In this calculation, several key elements responsible for the observed oxidative ability have been established by using Frontier molecular orbital (FMO) theory, natural bond orbital (NBO) analysis, etc., which include the reaction energy, the spin exchange effect, the spin-state conversion process, and the energy level of the lowest unoccupied molecular orbitals (LUMOs) of the reactive oxidants. The comparative oxidative abilities of the ruthenium-oxo/superoxo compounds with different axial ligands are also investigated. The results suggest that the ruthenium-oxo/superoxo species featuring a chlorine axial ligand is more reactive than that substituted with oxygen. This tuneable reactivity can be understood when considering the different electronic characters of the two ligands and the effective atomic number rule (EAN).
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiang-Yun Wang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Kun-Yao Jiang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Bing-Yuan Zhao
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Hui-Min Yan
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiao-Yun Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhu-Xia Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhen Guo
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Chi-Ming Che
- Department of Chemistry, the University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
41
|
Shin I, Ambler BR, Wherritt D, Griffith WP, Maldonado AC, Altman RA, Liu A. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening. J Am Chem Soc 2018; 140:4372-4379. [PMID: 29506384 PMCID: PMC5874177 DOI: 10.1021/jacs.8b00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1H NMR, 13C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Brett R. Ambler
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Daniel Wherritt
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Amanda C. Maldonado
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
42
|
Song F, Liu N, Liu M, Chen Y, Huang Y. Identification and Characterization of Mycemycin Biosynthetic Gene Clusters in Streptomyces olivaceus FXJ8.012 and Streptomyces sp. FXJ1.235. Mar Drugs 2018; 16:md16030098. [PMID: 29558441 PMCID: PMC5867642 DOI: 10.3390/md16030098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/05/2022] Open
Abstract
Mycemycins A–E are new members of the dibenzoxazepinone (DBP) family, derived from the gntR gene-disrupted deep sea strain Streptomyces olivaceus FXJ8.012Δ1741 and the soil strain Streptomyces sp. FXJ1.235. In this paper, we report the identification of the gene clusters and pathways’ inference for mycemycin biosynthesis in the two strains. Bioinformatics analyses of the genome sequences of S. olivaceus FXJ8.012Δ1741 and S. sp. FXJ1.235 predicted two divergent mycemycin gene clusters, mym and mye, respectively. Heterologous expression of the key enzyme genes of mym and genetic manipulation of mye as well as a feeding study in S. sp. FXJ1.235 confirmed the gene clusters and led to the proposed biosynthetic pathways for mycemycins. To the best of our knowledge, this is the first report on DBP biosynthetic gene clusters and pathways.
Collapse
Affiliation(s)
- Fangying Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
43
|
Alexandre JAC, Swan MK, Latchem MJ, Boyall D, Pollard JR, Hughes SW, Westcott J. New 4-Amino-1,2,3-Triazole Inhibitors of Indoleamine 2,3-Dioxygenase Form a Long-Lived Complex with the Enzyme and Display Exquisite Cellular Potency. Chembiochem 2018; 19:552-561. [PMID: 29240291 DOI: 10.1002/cbic.201700560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/09/2022]
Abstract
Indoleamine-2,3 dioxygenase 1 (IDO1) has emerged as a central regulator of immune responses in both normal and disease biology. Due to its established role in promoting tumour immune escape, IDO1 has become an attractive target for cancer treatment. A novel series of highly cell potent IDO1 inhibitors based on a 4-amino-1,2,3-triazole core have been identified. Comprehensive kinetic, biochemical and structural studies demonstrate that compounds from this series have a noncompetitive kinetic mechanism of action with respect to the tryptophan substrate. In co-complex crystal structures, the compounds bind in the tryptophan pocket and make a direct ligand interaction with the haem iron of the porphyrin cofactor. It is proposed that these data can be rationalised by an ordered-binding mechanism, in which the inhibitor binds an apo form of the enzyme that is not competent to bind tryptophan. These inhibitors also form a very tight, long-lived complex with the enzyme, which partially explains their exquisite cellular potency. This novel series represents an attractive starting point for the future development of potent IDO1-targeted drugs.
Collapse
Affiliation(s)
| | - Michael Kenneth Swan
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Mike John Latchem
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Dean Boyall
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - John Robert Pollard
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Stuart Wynn Hughes
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - James Westcott
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| |
Collapse
|
44
|
Nienhaus K, Nienhaus GU. Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases. Front Mol Biosci 2018; 4:94. [PMID: 29354636 PMCID: PMC5758539 DOI: 10.3389/fmolb.2017.00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
The human heme enzymes tryptophan 2,3-dioxygenase (hTDO) and indoleamine 2,3 dioxygenase (hIDO) catalyze the initial step in L-tryptophan (L-Trp) catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
45
|
Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat Commun 2017; 8:358. [PMID: 28842561 PMCID: PMC5572459 DOI: 10.1038/s41467-017-00541-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.
Collapse
|
46
|
Zhang Y, Zou Y, Brock NL, Huang T, Lan Y, Wang X, Deng Z, Tang Y, Lin S. Characterization of 2-Oxindole Forming Heme Enzyme MarE, Expanding the Functional Diversity of the Tryptophan Dioxygenase Superfamily. J Am Chem Soc 2017; 139:11887-11894. [PMID: 28809552 DOI: 10.1021/jacs.7b05517] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
3-Substituted 2-oxindoles are important structural motifs found in many biologically active natural products and pharmaceutical lead compounds. Here, we report an enzymatic formation of the 3-substituted 2-oxindoles catalyzed by MarE in the maremycin biosynthetic pathway in Streptomyces sp. B9173. MarE is a homologue of FeII/heme-dependent tryptophan 2,3-dioxygenases (TDOs). Typical TDOs usually catalyze the insertion of two oxygen atoms from O2 into an indole ring to generate N-formylkynurenine (NFK)-like products. In contrast, MarE catalyzes the insertion of a single oxygen atom from O2 into an indole ring, to probably generate an epoxyindole intermediate that undergoes an unprecedented 2,3-hydride migration to form 2-oxindole structure. MarE shows substrate robustness to catalyze the conversion of a series of 3-substituted indoles into their corresponding 3-substituted 2-oxindoles. Although containing most key amino acid residues conserved in well-known TDO homologues, MarE falls into a separate new subgroup in the phylogenetic tree. The characterization of MarE and its homologue enriches the functional diversities of TDO superfamily and provides a new strategy for discovering novel natural products containing 3-substituted 2-oxindole pharmacophores by genome mining.
Collapse
Affiliation(s)
- Yuyang Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles , 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Nelson L Brock
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yingxia Lan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles , 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
47
|
Nienhaus K, Hahn V, Hüpfel M, Nienhaus GU. Substrate Binding Primes Human Tryptophan 2,3-Dioxygenase for Ligand Binding. J Phys Chem B 2017; 121:7412-7420. [PMID: 28715185 DOI: 10.1021/acs.jpcb.7b03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human heme enzyme tryptophan 2,3-dioxygenase (hTDO) catalyzes the insertion of dioxygen into its cognate substrate, l-tryptophan (l-Trp). Its active site structure is highly dynamic, and the mechanism of enzyme-substrate-ligand complex formation and the ensuing enzymatic reaction is not yet understood. Here we have studied complex formation in hTDO by using time-resolved optical and infrared spectroscopy with carbon monoxide (CO) as a ligand. We have observed that both substrate-free and substrate-bound hTDO coexist in two discrete conformations with greatly different ligand binding rates. In the fast rebinding hTDO conformation, there is facile ligand access to the heme iron, but it is greatly hindered in the slowly rebinding conformation. Spectroscopic evidence implicates active site solvation as playing a crucial role for the observed kinetic differences. Substrate binding shifts the conformational equilibrium markedly toward the fast species and thus primes the active site for subsequent ligand binding, ensuring that formation of the ternary complex occurs predominantly by first binding l-Trp and then the ligand. Consequently, the efficiency of catalysis is enhanced because O2 binding prior to substrate binding, resulting in nonproductive oxidation of the heme iron, is greatly suppressed.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Vincent Hahn
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Manuel Hüpfel
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology (INT) and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign , 1110 W. Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
48
|
Wang LT, Chiou SS, Chai CY, Hsi E, Yokoyama KK, Wang SN, Huang SK, Hsu SH. Intestine-Specific Homeobox Gene ISX Integrates IL6 Signaling, Tryptophan Catabolism, and Immune Suppression. Cancer Res 2017. [PMID: 28625979 DOI: 10.1158/0008-5472.can-17-0090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intestine-specific homeobox transcription factor intestine-specific homeobox (ISX) is an IL6-inducible proto-oncogene implicated in the development of hepatocellular carcinoma, but its mechanistic contributions to this process are undefined. In this study, we provide evidence that ISX mediates a positive feedback loop integrating inflammation, tryptophan catabolism, and immune suppression. We found that ISX-mediated IL6-induced expression of the tryptophan catabolic enzymes Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase in hepatocellular carcinoma cells, resulting in an ISX-dependent increase in the tryptophan catabolite kynurenine and its receptor aryl hydrocarbon receptor (AHR). Activation of this kynurenine/AHR signaling axis acted through a positive feedback mechanism to increase ISX expression and enhance cellular proliferation and tumorigenic potential. RNAi-mediated attenuation of ISX or AHR reversed these effects. In an IDO1-dependent manner, ectopic expression of ISX induced expression of genes encoding the critical immune modulators CD86 (B7-2) and programmed death ligand-1 (PD-L1), through which ISX conferred a significant suppressive effect on the CD8+ T-cell response. In hepatocellular carcinoma specimens, expression of IDO1, kynurenine, AHR, and PD-L1 correlated negatively with survival. Overall, our results identified a feed-forward mechanism of immune suppression in hepatocellular carcinoma organized by ISX, which involves kynurenine-AHR signaling and PD-L1, offering insights into immune escape by hepatocellular carcinoma, which may improve its therapeutic management. Cancer Res; 77(15); 4065-77. ©2017 AACR.
Collapse
Affiliation(s)
- Li-Ting Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Surgery, Pingtung Hospital, Ministry of Health and Welfare, Yuan, Taiwan.,Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.,Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Nienhaus K, Nickel E, Nienhaus GU. Substrate binding in human indoleamine 2,3-dioxygenase 1: A spectroscopic analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:453-463. [DOI: 10.1016/j.bbapap.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 11/27/2022]
|
50
|
Michels H, Seinstra RI, Uitdehaag JCM, Koopman M, van Faassen M, Martineau CN, Kema IP, Buijsman R, Nollen EAA. Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase. Sci Rep 2016; 6:39199. [PMID: 27995966 PMCID: PMC5171515 DOI: 10.1038/srep39199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 01/25/2023] Open
Abstract
The enzyme TDO (tryptophan 2,3-dioxygenase; TDO-2 in Caenorhabditis elegans) is a potential therapeutic target to cancer but is also thought to regulate proteotoxic events seen in the progression of neurodegenerative diseases. To better understand its function and develop specific compounds that target TDO we need to understand the structure of this molecule. In C. elegans we compared multiple different CRISPR/Cas9-induced tdo-2 deletion mutants and identified a motif of three amino acids (PLD) that is required for the enzymatic conversion of tryptophan to N-formylkynurenine. Loss of TDO-2’s enzymatic activity in PDL deletion mutants was accompanied by an increase in motility during aging and a prolonged lifespan, which is in line with the previously observed phenotypes induced by a knockdown of the full enzyme. Comparison of sequence structures suggests that blocking this motif might interfere with haem binding, which is essential for the enzyme’s activity. The fact that these three residues are situated in an evolutionary conserved structural loop of the enzyme suggests that the findings can be translated to humans. The identification of this specific loop region in TDO-2–essential for its catalytic function–will aid in the design of novel inhibitors to treat diseases in which the TDO enzyme is overexpressed or hyperactive.
Collapse
Affiliation(s)
- Helen Michels
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | - Renée I Seinstra
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | | | - Mandy Koopman
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | - Martijn van Faassen
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, The Netherlands
| | - Céline N Martineau
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | - Ido P Kema
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, The Netherlands
| | - Rogier Buijsman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| |
Collapse
|