1
|
Li N, Wang L, Hu X, Xu H, Yang B, Zhan L, Cai Y, Gu Y, Chen X, Zheng Y, Liu T, Gao Z, Xiong B. Conformational restriction enables discovering a series of chroman derivatives as potent and selective Na V1.8 inhibitors with improved pharmacokinetic properties. Eur J Med Chem 2025; 293:117697. [PMID: 40347793 DOI: 10.1016/j.ejmech.2025.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Voltage-gated sodium channel 1.8 (NaV1.8) is a promising analgesic target due to its unique biophysical characteristics and specific role in nociceptive sensation. VX-150 initially completed proof-of-concept studies in clinical trials, but with high dosages and frequent administration. Herein, based on VX-150, we report the design, synthesis and structure-activity relationship (SAR) study aiming to identify novel, potent and selective NaV1.8 inhibitors with improved pharmacokinetic properties. Conformational restriction strategy and subsequent optimization led to the identification of the chroman derivative (R)-40 as the most promising hNaV1.8 inhibitor showing an IC50 value of 5.9 ± 1.0 nM and good selectivity over other tested NaV channels and hERG channel. More importantly, (R)-40 showed good in vitro metabolic stability in liver microsomes across multiple species and excellent in vivo PK profiles in rats and dogs. Notably, (R)-40 exerted dose-dependent analgesic activities in both rat models with postoperative and inflammatory pain, and a wide safety margin in neurotoxicity evaluation. Overall, these results confirmed conformational restriction as an effective strategy to improve PK profile, and our detailed study provided a valuable foundation for developing novel NaV1.8 inhibitors.
Collapse
Affiliation(s)
- Na Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Linlin Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinyuan Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bowen Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongjie Cai
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yueling Gu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xueqin Chen
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhaobing Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Wood JN, Yan N, Huang J, Zhao J, Akopian A, Cox JJ, Woods CG, Nassar MA. Sensory neuron sodium channels as pain targets; from cocaine to Journavx (VX-548, suzetrigine). J Gen Physiol 2025; 157:e202513778. [PMID: 40294084 PMCID: PMC12036950 DOI: 10.1085/jgp.202513778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Voltage-gated sodium channels underpin electrical signaling in sensory neurons. Their activity is an essential element in the vast majority of pain conditions, making them significant drug targets. Sensory neuron sodium channels play roles not only in afferent signaling but also in a range of efferent regulatory mechanisms. Side effects through actions on other cell types and efferent signaling are thus important issues to address during analgesic drug development. As an example, the human genetic evidence for NaV1.7 as an ideal pain target contrasts with the side effects of NaV1.7 antagonists. In this review, we describe the history and progress toward the development of useful analgesic drugs and the renewed focus on NaV1.8 as a key target in pain treatment. NaV1.8 antagonists alone or in combination with other analgesics are likely to provide new opportunities for pain relief for the vast number of people (about 33% of the population) impacted by chronic pain, particularly present in aging populations.
Collapse
Affiliation(s)
- John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, UCL, London, UK
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, UCL, London, UK
| | - Armen Akopian
- Department of Endodontics, The School of the Dentistry, UTHSCSA, San Antonio, TX, USA
| | - James J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, UCL, London, UK
| | | | - Mohammed A. Nassar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Stewart RG, Osorno T, Fujita A, Jo S, Ferraiuolo A, Carlin K, Bean BP. Modulation of human dorsal root ganglion neuron firing by the Nav1.8 inhibitor suzetrigine. Proc Natl Acad Sci U S A 2025; 122:e2503570122. [PMID: 40424150 DOI: 10.1073/pnas.2503570122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Nav1.8 voltage-gated sodium channels are strongly expressed in human primary pain-sensing neurons (nociceptors) and a selective Nav1.8 inhibitor VX-548 (suzetrigine) has shown efficacy for treating acute pain in clinical trials. Nociceptors also express other sodium channels, notably Nav1.7, raising the question of how effectively excitability of the neurons is reduced by inhibition of Nav1.8 channels alone. We used VX-548 to explore this question, recording from dissociated human dorsal root ganglion neurons at 37 °C. Applying VX-548 at 10 nM (about 25 times the IC50 determined using cloned human Nav1.8 channels at 37 °C) had only small effects on action potential threshold and upstroke velocity but substantially reduced the peak and shoulder. Counterintuitively, VX-548 shortened the refractory period-likely reflecting reduced potassium channel activation by the smaller, narrower action potential-sometimes resulting in faster firing. Generally, repetitive firing during depolarizations was diminished but not eliminated by VX-548. Voltage clamp analysis suggested two reasons that repetitive firing often remains in 10 to 100 nM VX-548. First, many neurons had such large Nav1.8 currents that even 99% inhibition leaves nA-level Nav1.8 current that could help drive repetitive firing. Second, Nav1.7 current dominated during initial spikes and could also contribute to repetitive firing. The ability of human neurons to fire repetitively even with >99% inhibition of Nav1.8 channels may help explain the incomplete analgesia produced by even the largest concentrations of VX-548 in clinical studies.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Tomás Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | | | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Theys M, De Waele J, Garud S, Willegems K, Van Petegem F, Bosmans F. A robust expression system reveals distinct gating mechanisms and calmodulin regulation of Na V1.9 channels. SCIENCE ADVANCES 2025; 11:eadt9799. [PMID: 40435262 PMCID: PMC12118636 DOI: 10.1126/sciadv.adt9799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025]
Abstract
NaV1.9 is a voltage-gated Na+ channel subtype with unique gating properties that are poorly understood, partly due to the lack of reliable heterologous expression systems. Here, we present a transient expression protocol that produces robust mouse NaV1.9 currents, enabling direct electrophysiological comparisons with native dorsal root ganglion neurons. To further understand the low current density observed in human NaV1.9, we created chimeras with NaV1.5 and identified a role for the C-tail-specifically the IQ motif and EF-hand-in regulating current densities, likely due to a weak affinity for calmodulin. Isothermal titration calorimetry experiments indicated that, unlike other NaV channel subtypes, calmodulin binding to the C-tail is likely too weak to occur under physiological conditions. Markedly, the pre-IQ region did not influence channel expression but was responsible for conferring the characteristic depolarized voltage dependency of inactivation of NaV1.9. Our findings provide insights into the unique gating mechanisms of NaV1.9 and demonstrate the robustness of this platform for structure-function studies.
Collapse
Affiliation(s)
- Margaux Theys
- Molecular Physiology and Neurophysics group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, University of Ghent, Ghent 9000, Belgium
| | - Jolien De Waele
- Molecular Physiology and Neurophysics group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, University of Ghent, Ghent 9000, Belgium
| | - Sharang Garud
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Katrien Willegems
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Frank Bosmans
- Molecular Physiology and Neurophysics group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, University of Ghent, Ghent 9000, Belgium
- Experimental Pharmacology group (EFAR), Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
5
|
Stewart RG, Marquis MJ, Jo S, Harris BJ, Aberra AS, Cook V, Whiddon Z, Yarov-Yarovoy V, Ferns M, Sack JT. A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers. eLife 2025; 13:RP99410. [PMID: 40423692 PMCID: PMC12113274 DOI: 10.7554/elife.99410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (KCNB1) or Kv2.2 (KCNB2). Mammals have 10 KvS subunits: Kv5.1 (KCNF1), Kv6.1 (KCNG1), Kv6.2 (KCNG2), Kv6.3 (KCNG3), Kv6.4 (KCNG4), Kv8.1 (KCNV1), Kv8.2 (KCNV2), Kv9.1 (KCNS1), Kv9.2 (KCNS2), and Kv9.3 (KCNS3). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS heteromers and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find predominantly RY785-sensitive conductances consistent with channels composed entirely of Kv2 subunits. In contrast, RY785-resistant but GxTX-sensitive conductances consistent with Kv2/KvS heteromeric channels predominate in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs which distinguish KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Matthew James Marquis
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Brandon J Harris
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
| | - Aman S Aberra
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| | - Verity Cook
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Einstein Center for Neuroscience, Charité Universitätsmedizin BerlinHufelandwegGermany
| | - Zachary Whiddon
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Michael Ferns
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California DavisDavisUnited States
- Neurobiology Course, Marine Biological LaboratoryWoods HoleUnited States
- Department of Anesthesiology and Pain Medicine, University of California DavisDavisUnited States
| |
Collapse
|
6
|
Xie YF. Nav1.8 and Chronic Pain: From Laboratory Animals to Clinical Patients. Biomolecules 2025; 15:694. [PMID: 40427587 PMCID: PMC12108746 DOI: 10.3390/biom15050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
As a subtype of voltage-gated sodium channel and predominantly expressed in the sensory neurons located in the dorsal root ganglion (DRG), the Nav1.8 channel encoded by the SCN10A gene is found to have different variants in patients suffering chronic pain or insensitivity to pain due to the gain-of-function or loss-of-function of Nav1.8 channels. In animal models of chronic pain, Nav1.8 is also verified to be involved, suggesting that Nav1.8 may be a potential target for treatment of chronic pain. Another voltage-gated sodium channel, Nav1.7, is also proposed to be a target for chronic pain, supported by clinical findings in patients and laboratory animal models; however, there is no Nav1.7-specific drug that has passed clinical trials, although they demonstrated satisfactory effects in laboratory animals. This discrepancy between clinical and preclinical studies may be related to the differences between humans and laboratory animals or due to the degeneracy in different sodium channels governing the DRG neuronal excitability, which is thought of as the underlying machinery of chronic pain and mostly studied. This review summarizes recent findings of Nav1.8 in chronic pain from clinics and laboratories and discusses the difference, which may be helpful for future investigation of Nav1.8 in chronic pain, considering the dilemma of the Nav1.7 channel in chronic pain.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
7
|
Bescond J, Faivre JF, Jean A, Bois P, Chatelier A. Ion channel expression in intrinsic cardiac neurons: new players in cardiac channelopathies? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119983. [PMID: 40339354 DOI: 10.1016/j.bbamcr.2025.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
The autonomic nervous system is an important modulator of electrical disorders observed in cardiac pathologies through changes in the balance between sympathetic and parasympathetic tone. The final common pathway for cardiac neuronal autonomic control resides in the intrinsic cardiac nervous system (ICNS), composed of intracardiac neurons (ICN), and which allows sympathetic-parasympathetic efferent neuronal interactions at intracardiac sites. The ICNS is a complex system that plays a crucial role in the regulation of cardiac physiological parameters and has been shown to contribute to cardiac diseases, in particular cardiac arrhythmias. It is therefore crucial to understand the molecular determinants, such as ion channels, that control the excitability of the ICNS and their potential modulation in pathological conditions. This review discusses several ion channels expressed by ICN, including potassium channels (e.g., inward rectifier, calcium-dependent, voltage-activated, muscarinic-sensitive), voltage-gated sodium channels (VGSC), voltage-gated calcium channels (VGCC), hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and Transient Receptor Potential (TRP) Channels, and their potential involvement in cardiac pathologies. We highlight the need for further research on ICN ion channels, particularly under pathological conditions, to develop therapies for cardiac arrhythmias.
Collapse
Affiliation(s)
- J Bescond
- University of Poitiers, PRéTI Laboratory, Poitiers, France
| | - J-F Faivre
- University of Poitiers, PRéTI Laboratory, Poitiers, France
| | - A Jean
- University of Poitiers, PRéTI Laboratory, Poitiers, France
| | - P Bois
- University of Poitiers, PRéTI Laboratory, Poitiers, France
| | - A Chatelier
- University of Poitiers, PRéTI Laboratory, Poitiers, France; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
8
|
Eid AH. Pharmacological Frontiers: The Rise of Selective Na V1.8 Inhibition for Pain Management. CNS Drugs 2025:10.1007/s40263-025-01186-4. [PMID: 40325338 DOI: 10.1007/s40263-025-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Cho EB, Jiang C, Wang Z, Yu Y, Jiang J. Suzetrigine for moderate to severe acute pain. Trends Pharmacol Sci 2025; 46:480-481. [PMID: 40133193 PMCID: PMC12049257 DOI: 10.1016/j.tips.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Suzetrigine (VX-548), 2-pyridinecarboxamide, 4-[[[(2R ,3S ,4S ,5R )-3-(3,4-difluoro-2-methoxyphenyl)tetrahydro-4,5-dimethyl-5-(trifluoromethyl)-2-furanyl]carbonyl]amino]-, or 4-[[(2R ,3S ,4S ,5R )-3-(3,4-difluoro-2-methoxyphenyl)-4,5-dimethyl-5-(trifluoromethyl)oxolane-2-carbonyl]amino]pyridine-2-carboxamide, is a selective voltage-gated sodium channel NaV1.8 blocker that was recently approved by FDA as a non-opioid analgesic to treat moderate to severe acute pain. It has a molecular formula C21H20F5N3O4 and a molecular weight of 473.4 g/mol. The molecule has a chiral tetrahydrofuran core (2R ,3S ,4S ,5R ) that is conjugated to a picolinamide ring via an amide linker at position 2, a 3,4-difluoro-2-methoxyphenyl group at position 3, a methyl group at position 4, and both a trifluoromethyl group and a methyl group at position 5.
Collapse
Affiliation(s)
- Eun Bee Cho
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chenyao Jiang
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zihan Wang
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Alsaloum M, Dib-Hajj SD, Page DA, Ruben PC, Krainer AR, Waxman SG. Voltage-gated sodium channels in excitable cells as drug targets. Nat Rev Drug Discov 2025; 24:358-378. [PMID: 39901031 DOI: 10.1038/s41573-024-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
Excitable cells - including neurons, muscle cells and cardiac myocytes - are unique in expressing high densities of voltage-gated sodium (NaV) channels. This molecular adaptation enables these cells to produce action potentials, and is essential to their function. With the advent of the molecular revolution, the concept of 'the' sodium channel has been supplanted by understanding that excitable cells in mammals can express any of nine different forms of sodium channels (NaV1.1-NaV1.9). Selective expression in particular types of cells, together with a key role in controlling action potential firing, makes some of these NaV subtypes especially attractive molecular targets for drug development. Although these different channel subtypes display a common overall structure, differences in their amino acid sequences have provided a basis for the development of subtype-specific drugs. This approach has resulted in exciting progress in the development of drugs for epilepsy, cardiac disorders and pain. In this Review, we discuss recent progress in the development of drugs that selectively target each of the sodium channel subtypes.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Liu Y, Yuan Z, He H, Liu H, Wu Y, Xue S, Diao Z, Qiao H. TTX-R and TTX-S Sodium Channels in CGRP-Positive Dorsal Root Ganglia Neurons Mediate Referred Somatic Hyperalgesia in Ulcerative Colitis Mice. Neurogastroenterol Motil 2025:e70051. [PMID: 40273371 DOI: 10.1111/nmo.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) frequently co-exists with referred somatic hyperalgesia in clinical presentations. However, the peripheral neurophysiological mechanisms of visceral referred pain remain unclear. This study aimed to clarify the neurobiological mechanisms that underpin the referred somatic hyperalgesia associated with UC. METHODS A UC mouse model was constructed via the administration of dextran sulfate sodium (DSS). Referred somatic regions in these mice were identified by measuring the number of Evans blue extravasations and pain threshold levels. Electrophysiological and immunofluorescent staining approaches were applied to evaluate the alterations in kinetic properties and expression of TTX-R (Nav1.8) and TTX-S (Nav1.7) channels in calcitonin gene-related peptide (CGRP)-positive dorsal root ganglion (DRG) neurons in the referred regions. Pharmacological methods were utilized to elucidate the necessary role of the Nav1.8 and Nav1.7 channels in somatic referred hyperalgesia. KEY RESULTS Oral administration of DSS to mice for 7 days resulted in significant colon damage, neurogenic inflammation, and referred somatic hyperalgesia. The mechanisms underlying these effects may involve the activation of TTX-R and TTX-S channels, and the upregulation of co-expressed Nav1.8 and Nav1.7 with CGRP, resulting in an increased excitability of CGRP+ DRG neurons in sensitized regions. Selectively inhibiting either Nav1.8 or Nav1.7 channels could mitigate the referred somatic hyperalgesia induced by DSS. CONCLUSIONS AND INFERENCES The functional alterations in Nav1.8 and Nav1.7 channels within CGRP+ DRG neurons are pivotal to the development of neurogenic inflammation and referred somatic hyperalgesia. These findings lay a foundation for exploring novel therapeutic targets to relieve visceral referred pain.
Collapse
Affiliation(s)
- Yongbin Liu
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Ziyan Yuan
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Hongzhou He
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Yuwei Wu
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Simeng Xue
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Zhijun Diao
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Haifa Qiao
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| |
Collapse
|
12
|
Yi J, Yang L, Widman AJ, Toliver A, Bertels Z, Del Rosario JS, Slivicki RA, Payne M, Dourson AJ, Li JN, Kumar R, Gupta P, Mwirigi JM, Chamessian A, Lemen J, Copits BA, Gereau RW. Human sensory neurons exhibit cell-type-specific, pain-associated differences in intrinsic excitability and expression of SCN9A and SCN10A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645367. [PMID: 40196681 PMCID: PMC11974934 DOI: 10.1101/2025.03.25.645367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite the prevalence of chronic pain, the approval of novel, non-opioid therapeutics has been slow. A major translational challenge in analgesic development is the difference in gene expression and functional properties between human and rodent dorsal root ganglia (DRG) sensory neurons. Extensive work in rodents suggests that sensitization of nociceptors in the DRG is essential for the pathogenesis and persistence of pain; however, direct evidence demonstrating similar physiological sensitization in humans is limited. Here, we examine whether pain history is associated with nociceptor hyperexcitability in human DRG (hDRG). We identified three electrophysiologically distinct clusters (E-types) of hDRG neurons based on firing properties and membrane excitability. Combining electrophysiological recordings and single-cell RNA-sequencing ("Patch-seq"), we linked these E-types to specific transcriptionally defined nociceptor subpopulations. Comparing hDRG neurons from donors with and without evident pain history revealed cluster-specific, pain history-associated differences in hDRG excitability. Finally, we found that hDRG from donors with pain history express higher levels of transcripts encoding voltage-gated sodium channel 1.7 (NaV1.7) and 1.8 (NaV1.8) which specifically regulate nociceptor excitability. These findings suggest that donors with pain history exhibit distinct hDRG electrophysiological profiles compared to those without pain history and further validate NaV1.7 and 1.8 as targets for analgesic development.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexa Toliver
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Adam J. Dourson
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jun-Nan Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Rakesh Kumar
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Prashant Gupta
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Juliet M. Mwirigi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Lemen
- Mid-America Transplant, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
13
|
Chen R, Liu Y, Qian L, Yi M, Yin H, Wang S, Xiang B. Sodium channels as a new target for pain treatment. Front Pharmacol 2025; 16:1573254. [PMID: 40206072 PMCID: PMC11979154 DOI: 10.3389/fphar.2025.1573254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Voltage-gated sodium channels, especially the Nav1.7, Nav1.8, and Nav1.9 subtypes, play a crucial role in the transmission of pain signals. Nav1.7 is considered a threshold channel that regulates the generation of action potentials and is closely associated with various hereditary pain disorders. Nav1.8 primarily participates in inflammatory and neuropathic pain within the peripheral nervous system. Its characteristic of not involving the central nervous system makes it a potential target for non-addictive analgesics. Nav1.9 has shown significant involvement in cold pain sensing and small fiber neuropathy, although its mechanism of action is still under further investigation. Currently, despite promising results from preclinical studies, sodium channel inhibitors have not fully met expectations in clinical trials due to issues such as drug selectivity, dosing, and safety. The development of Nav1.7 and Nav1.8 inhibitors faces challenges such as drug intolerance, insufficient target occupancy, and off-target side effects. Future research may promote the development of non-opioid analgesics through combined inhibition strategies targeting multiple Nav subtypes, as well as improving drug selectivity and bioavailability. Overall, sodium channel inhibitors remain a key area of research in pain management, but their clinical application prospects still require further exploration.
Collapse
Affiliation(s)
- Rui Chen
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yiran Liu
- Nursing Department, Cujin Community Health Service Center, Chengdu, China
| | - Liu Qian
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingliang Yi
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hong Yin
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Shun Wang
- Department of Anesthesiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bingbing Xiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Vardigan JD, Pall PS, McDevitt DS, Huang C, Clements MK, Li Y, Kraus RL, Breslin MJ, Bungard CJ, Nemenov MI, Klukinov M, Burgey CS, Layton ME, Stachel SJ, Lange HS, Savitz AT, Santarelli VP, Henze DA, Uslaner JM. Analgesia and peripheral c-fiber modulation by selective Na v 1.8 inhibition in rhesus. Pain 2025; 166:631-643. [PMID: 39382325 PMCID: PMC11808707 DOI: 10.1097/j.pain.0000000000003404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT Voltage-gated sodium (Na v ) channels present untapped therapeutic value for better and safer pain medications. The Na v 1.8 channel isoform is of particular interest because of its location on peripheral pain fibers and demonstrated role in rodent preclinical pain and neurophysiological assays. To-date, no inhibitors of this channel have been approved as drugs for treating painful conditions in human, possibly because of challenges in developing a sufficiently selective drug-like molecule with necessary potency not only in human but also across preclinical species critical to the preclinical development path of drug discovery. In addition, the relevance of rodent pain assays to the human condition is under increasing scrutiny as a number of mechanisms (or at the very least molecules) that are active in rodents have not translated to humans, and direct impact on pain fibers has not been confirmed in vivo. In this report, we have leveraged numerous physiological end points in nonhuman primates to evaluate the analgesic and pharmacodynamic activity of a novel, potent, and selective Na v 1.8 inhibitor compound, MSD199. These pharmacodynamic biomarkers provide important confirmation of the in vivo impact of Na v 1.8 inhibition on peripheral pain fibers in primates and have high translational potential to the clinical setting. These findings may thus greatly improve success of translational drug discovery efforts toward better and safer pain medications, as well as the understanding of primate biology of Na v 1.8 inhibition broadly.
Collapse
Affiliation(s)
- Joshua D. Vardigan
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Parul S. Pall
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Dillon S. McDevitt
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - ChienJung Huang
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Michelle K. Clements
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Yuxing Li
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Richard L. Kraus
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Michael J. Breslin
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | | | | | | | - Chritopher S. Burgey
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Mark E. Layton
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Shawn J. Stachel
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Henry S. Lange
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Alan T. Savitz
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | | | - Darrell A. Henze
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Jason M. Uslaner
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| |
Collapse
|
15
|
Poslusney M, Ernst G, Huang Y, Gerlach AC, Chapman ML, Santos S, Barrow JC. Development and characterization of pyridyl carboxamides as potent and highly selective Na v1.8 inhibitors. Bioorg Med Chem Lett 2025; 117:130059. [PMID: 39644938 DOI: 10.1016/j.bmcl.2024.130059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The voltage-gated sodium channel Nav1.8 (SCN10A) has strong genetic and pharmacological validation as a potential target for treating acute and chronic pain. While several different chemotypes have been advanced as selective inhibitors, a quinoxaline carboxamide core structure was identified as a particularly attractive core structure due to very high sodium channel subtype selectivity. However, poor solubility and overall ADME properties need to be improved. Scaffold hopping to a central trifluoromethyl pyridine followed by optimization of distal substituents resulted in improved overall properties. Several advanced lead compounds have been identified with excellent potency, selectivity, solubility, and pharmacokinetics. Preliminary mechanism of action studies suggest that this class of compounds are voltage and state independent inhibitors that bind to a novel site on the Nav1.8 channel.
Collapse
Affiliation(s)
- Michael Poslusney
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Glen Ernst
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Yifang Huang
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aaron C Gerlach
- OmniAb, Inc., 1035 Swabia Ct, Suite 110, Durham, NC 27703, USA
| | - Mark L Chapman
- OmniAb, Inc., 1035 Swabia Ct, Suite 110, Durham, NC 27703, USA
| | - Sónia Santos
- OmniAb, Inc., 1035 Swabia Ct, Suite 110, Durham, NC 27703, USA
| | - James C Barrow
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025; 27:201-220. [PMID: 39752054 PMCID: PMC11829917 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Shehab S, Hamad MIK, Emerald BS. A novel approach to completely alleviate peripheral neuropathic pain in human patients: insights from preclinical data. Front Neuroanat 2025; 18:1523095. [PMID: 39839257 PMCID: PMC11747518 DOI: 10.3389/fnana.2024.1523095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain. Current treatments for neuropathic pain are generally inadequate, and prevention remains elusive. In this review, we provide an overview of current treatments, their limitations, and a discussion on the potential of capsaicin and its analog, resiniferatoxin (RTX), for complete alleviation of nerve injury-induced neuropathic pain. In an animal model of neuropathic pain where the fifth lumbar (L5) spinal nerve is unilaterally ligated and cut, resulting in ipsilateral hyperalgesia, allodynia, and spontaneous pain akin to human neuropathic pain. The application of capsaicin or RTX to the adjacent uninjured L3 and L4 nerves completely alleviated and prevented mechanical and thermal hyperalgesia following the L5 nerve injury. The effects of this treatment were specific to unmyelinated fibers (responsible for pain sensation), while thick myelinated nerve fibers (responsible for touch and mechanoreceptor sensations) remained intact. Here, we propose to translate these promising preclinical results into effective therapeutic interventions in humans by direct application of capsaicin or RTX to adjacent uninjured nerves in patients who suffer from neuropathic pain due to peripheral nerve injury, following surgical interventions, diabetic neuropathy, trauma, vertebral disc herniation, nerve entrapment, ischemia, postherpetic lesion, and spinal cord injury.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
18
|
Zhang B, Shi X, Liu X, Liu Y, Li X, Wang Q, Huang D, Zhao W, Cui J, Cao Y, Chai X, Wang J, Zhang Y, Wang X, Jia Q. Discovery of E0199: A novel compound targeting both peripheral Na V and K V7 channels to alleviate neuropathic pain. J Pharm Anal 2025; 15:101132. [PMID: 39906690 PMCID: PMC11791318 DOI: 10.1016/j.jpha.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
This research study focuses on addressing the limitations of current neuropathic pain (NP) treatments by developing a novel dual-target modulator, E0199, targeting both NaV1.7, NaV1.8, and NaV1.9 and KV7 channels, a crucial regulator in controlling NP symptoms. The objective of the study was to synthesize a compound capable of modulating these channels to alleviate NP. Through an experimental design involving both in vitro and in vivo methods, E0199 was tested for its efficacy on ion channels and its therapeutic potential in a chronic constriction injury (CCI) mouse model. The results demonstrated that E0199 significantly inhibited NaV1.7, NaV1.8, and NaV1.9 channels with a particularly low half maximal inhibitory concentration (IC50) for NaV1.9 by promoting sodium channel inactivation, and also effectively increased KV7.2/7.3, KV7.2, and KV7.5 channels, excluding KV7.1 by promoting potassium channel activation. This dual action significantly reduced the excitability of dorsal root ganglion neurons and alleviated pain hypersensitivity in mice at low doses, indicating a potent analgesic effect without affecting heart and skeletal muscle ion channels critically. The safety of E0199 was supported by neurobehavioral evaluations. Conclusively, E0199 represents a ground-breaking approach in NP treatment, showcasing the potential of dual-target small-molecule compounds in providing a more effective and safe therapeutic option for NP. This study introduces a promising direction for the future development of NP therapeutics.
Collapse
Affiliation(s)
- Boxuan Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoxing Shi
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xingang Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Liu
- Department of Pharmaceutical Experimental Teaching Center, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Li
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi Wang
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd., College of Software, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongyang Huang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weidong Zhao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junru Cui
- The Center for New Drug Safety Evaluation and Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yawen Cao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xu Chai
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiahao Wang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiangyu Wang
- Hebei Medical University Postdoctoral Mobile Station of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
- Departments of Clinic Pharmacy, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingzhong Jia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
19
|
Saini RS, Binduhayyim RIH, Kuruniyan MS, Heboyan A. In silico exploration of bioactive secondary metabolites with anesthetic effects on sodium channels Nav 1.7, 1.8, and 1.9 in painful human dental pulp. Mol Pain 2025; 21:17448069251327824. [PMID: 40070109 PMCID: PMC11938900 DOI: 10.1177/17448069251327824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
AIM To investigate the efficacy of medicinal plant bioactive secondary metabolites as inhibitors of voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) in managing painful states of dental pulps. METHODOLOGY Molecular docking, ADME prediction, toxicity profiling, and pharmacophore modeling were used to assess the binding affinities, pharmacokinetic properties, toxicological profiles, and active pharmacophores of the selected bioactive compounds. RESULTS Three compounds (Sepaconitine, Lappaconitine, and Ranaconitine) showed binding affinities (ΔG = -8.95 kcal/mol, -7.77 kcal/mol, and -7.44 kcal/mol, respectively) with all three Nav1.7, Nav1.8, and Nav1.9 sodium channels. The sepaconitine amine group formed hydrophobic interactions with key residues. The Lappaconitine benzene ring contributed to hydrophobic interactions and hydrogen bond acceptor interactions. The hydrophobic interactions of the ranaconitine amine group play a critical role with specific residues on Nav1.8 and Nav1.9. CONCLUSION The natural fusicoccane diterpenoid derivatives Sepaconitine, Lappaconitine, and Ranaconitine are potential lead compounds for the development of novel analgesics as selective antihyperalgesic drugs, which will provide a new dental pharmacological intervention for managing painful dental pulp conditions. Further experimental validation and clinical studies that confirm the efficacy and safety of these compounds will strengthen their applicability in dental practice.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Allied Dental Health Sciences, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | | | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| |
Collapse
|
20
|
Pulskamp TG, Johnson LM, Berlau DJ. Novel non-opioid analgesics in pain management. Pain Manag 2024; 14:641-651. [PMID: 39692452 PMCID: PMC11702995 DOI: 10.1080/17581869.2024.2442292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
Effective pain management has long been hindered by the limitations and risks associated with opioid analgesics, necessitating the exploration of novel, non-opioid alternatives. A comprehensive literature search was conducted using PubMed and Google Scholar during October and November 2024 to identify studies on emerging non-opioid pain management therapeutics. This review evaluates three promising classes of mechanism-specific therapeutics: nerve growth factor (NGF) monoclonal antibodies, transient receptor potential vanilloid 1 (TRPV1) antagonists, and selective sodium channel blockers. By targeting distinct pathways involved in pain sensation, these therapies aim to provide relief for various pain types, including chronic, inflammatory, and neuropathic pain, with potentially fewer side effects. Through a detailed analysis of their mechanisms of action and current evidence, this review highlights the clinical potential of each class, addressing both their efficacy and safety challenges. Ultimately, these emerging therapies represent significant advancements in non-opioid pain management, with the potential to reshape standard approaches to patient care.
Collapse
|
21
|
Wang H, Huang J, Zang J, Jin X, Yan N. Drug discovery targeting Na v1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol 2024; 83:102538. [PMID: 39418835 DOI: 10.1016/j.cbpa.2024.102538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Voltage-gated sodium (Nav) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Nav1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Nav1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Nav1.8. In this review, we summarize the latest developments in Nav1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Nav1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.
Collapse
Affiliation(s)
- Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Jie Zang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Guangming District, Shenzhen 518132, Guangdong Province, China.
| |
Collapse
|
22
|
Xiao Y, Chang Y, Liu YY, Li TT, Qu WR, Yuan C, Chen L, Huang S, Zhou XL. Biologically active franchetine-type diterpenoid alkaloids: Isolation, synthesis, anti-inflammatory, agalgesic activities, and molecular docking. Bioorg Chem 2024; 153:107834. [PMID: 39332071 DOI: 10.1016/j.bioorg.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
In this study, four franchetine-type diterpenoid alkaloids (1-4) were isolated from Aconitum sinoaxillare, and fourteen diverse franchetine analogs (5-18) were synthesized. Compounds 1, 2, 7 and 16 exhibited stronger inhibitory effects on NO production when compared to celecoxib. Among them, compound 1 had the best inhibitory effect on iNOS and COX-2 inflammatory proteins. The in vitro studies displayed that the anti-inflammatory effect of the most active compound 1 was ascribed to the inhibition of the TLR4-MyD88/NF-κB/MAPKs signalling pathway. Consequently, this led to a inhibition in the expression of inflammatory factors or mediators including NO, ROS, TNF-α, IL-6, IL-1β, iNOS, and COX-2. Additionally, compound 1 had low toxicity (LD50 > 20 mg/kg) in mice, and it had notable analgesic effects on acetic acid-induced visceral pain (ED50 = 2.15 ± 0.07 mg/kg). Moreover, compound 1 exhibited a distinct reduction in the NaV1.7 and NaV1.8 channel currents during both resting and half-inactivated states at 50 μM. The present study enriches the pharmacological activities of franchetine derivatives and provides valuable insights for the development of novel anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Ye Chang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yu-Yan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China
| | - Ting-Ting Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Wen-Rong Qu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Cheng Yuan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; School of School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| |
Collapse
|
23
|
Vaelli P, Fujita A, Jo S, Zhang HXB, Osorno T, Ma X, Bean BP. State-Dependent Inhibition of Nav1.8 Sodium Channels by VX-150 and VX-548. Mol Pharmacol 2024; 106:298-308. [PMID: 39322410 PMCID: PMC11585256 DOI: 10.1124/molpharm.124.000944] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Nav1.8 sodium channels (Nav1.8) are an attractive therapeutic target for pain because they are prominent in primary pain-sensing neurons with little expression in most other kinds of neurons. Recently, two Nav1.8-targeted compounds, VX-150 and VX-548, have shown efficacy in clinical trials for reducing pain. We examined the characteristics of Nav1.8 inhibition by these compounds. The active metabolite form of VX-150 (VX-150m) inhibited human Nav1.8 channels with an IC50 of 15 nM. VX-548 (suzetrigine) was even more potent (IC50 0.27 nM). Both VX-150m and VX-548 had the unusual property of "reverse use-dependence," whereby inhibition could be relieved by repetitive depolarizations, a property seen before with another Nav1.8 inhibitor, A-887826. The relief of VX-548 inhibition by large depolarizations occurred with a time constant of ∼40 milliseconds that was not concentration-dependent. Reinhibition at negative voltages occurred with a rate that was nearly proportional to drug concentration, consistent with the idea that relief of inhibition reflects dissociation of drug from the channel and reinhibition reflects rebinding. The relief of inhibition by depolarization suggests a remarkably strong and unusual state-dependence for both VX-150m and VX-548, with very weak binding to channels with fully activated voltage sensors despite very tight binding to channels with voltage sensors in the resting state. SIGNIFICANCE STATEMENT: The Nav1.8 sodium channel (Nav1.8) is a current target for new drugs for pain. This work describes the potency, selectivity, and state-dependent characteristics of inhibition of Nav1.8 channels by VX-150 and VX-548, compounds that have recently shown efficacy for relief of pain in clinical trials but whose mechanism of interaction with channels has not been described. The results show that the compounds share an unusual property whereby inhibition is relieved by depolarization, demonstrating a state-dependence different from most sodium channel inhibitors.
Collapse
Affiliation(s)
- Patric Vaelli
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Akie Fujita
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Sooyeon Jo
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Han-Xiong Bear Zhang
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Tomás Osorno
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Xiao Ma
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Bruce P Bean
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Kaye AD, Everett ES, Lehuquet AM, Mason JW, Maitski R, Plessala MJ, Barrie S, Baptiste CJ, Mychaskiw G, Ahmadzadeh S, Shekoohi S, Varrassi G. Frontiers in Acute Pain Management: Emerging Concepts in Pain Pathways and the Role of VX-548 as a Novel NaV1.8 Inhibitor: A Narrative Review. Curr Pain Headache Rep 2024; 28:1135-1143. [PMID: 38963514 DOI: 10.1007/s11916-024-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE OF REVIEW Despite ongoing research into alternative postsurgical pain treatments, opioids remain widely used analgesics regardless of associated adverse effects, including dependence and overdose, as demonstrated throughout the current opioid crisis. This is likely related to a failure in proving the efficacy of alternative analgesics in clinical trials, despite strong evidence supporting the potential for effective analgesia through in vitro studies. While NaV1.7 and NaV1.8 channels have shown to be key components of pain perception, studies regarding pharmacological agents utilizing these channels as targets have largely failed to demonstrate the efficacy of these proposed analgesics when compared to current multimodal pain treatment regimens. RECENT FINDINGS However, the novel NaV1.8 channel inhibitor, VX-548 has surpassed previously studied NaV1.8 inhibitors in clinical trials and continues to hold promise of a novel efficacious analgesic to potentially be utilized in multimodal pain treatment on postsurgical patients. Additionally, NaV1.8 is encoded by the SCN10A, which has been shown to be minimally expressed in the brain, suggesting a lower likelihood of adverse effects in the CNS, including dependence and abuse. Novel pharmacologic analgesics that are efficacious without the significant side effects associated with opioids have lacked meaningful development. However, recent clinical trials have shown promising results in the safety and efficacy of the pharmacological agent VX-548. Still, more clinical trials directly comparing the efficacy of VX-548 to standard of care post-surgical drugs, including opioids like morphine and hydromorphone are needed to demonstrate the long-term viability of the agent replacing current opioids with an unfavorable side effect profile.
Collapse
Affiliation(s)
- Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Erin S Everett
- Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Arianna M Lehuquet
- Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Joseph W Mason
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier St, New Orleans, LA, USA
| | - Rebecca Maitski
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier St, New Orleans, LA, USA
| | - Michael J Plessala
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier St, New Orleans, LA, USA
| | - Sonnah Barrie
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Carlo Jean Baptiste
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - George Mychaskiw
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
| | | |
Collapse
|
25
|
Qi B, Xie Z, Shen D, Song Y, Liu S, Wang Q, Zhou J, Ge J. Blocking Na V1.8 regulates atrial fibrillation inducibility and cardiac conduction after myocardial infarction. BMC Cardiovasc Disord 2024; 24:605. [PMID: 39472780 PMCID: PMC11520513 DOI: 10.1186/s12872-024-04261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The role of NaV1.8 impacts in atrial fibrillation susceptibility after myocardial infarction remains only partially understood. We studied the effect of blocking NaV1.8 in the cardiac ganglionated plexi (GP) on the atrial fibrillation inducibility and cardiac conduction in the myocardial infarction model. METHODS Eighteen male beagles were randomly enrolled. Left anterior descending coronary artery was ligated to created myocardial infarction model. Four weeks after surgery, NaV1.8 blocker A-803,467 (n = 9) or DMSO (n = 9, control) was injected into the four cardiac major GPs. Sinus rate, ventricular rate during atrial fibrillation, PR interval, atrial effective refractory period, atrial fibrillation duration and the cumulative window of atrial vulnerability were measured before and 60 min after A-803,467 injection. RESULTS Administration of A-803,467 significantly increased sinus rate, shortened PR interval and increased ventricular rate during atrial fibrillation compared to control. A-803,467 also significantly shortened atrial effective refractory period, prolonged atrial fibrillation duration and increased the cumulative window of atrial vulnerability. A-803,467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, which was used as the surrogate marker for GP function. Double staining of ChAT and NaV1.8 demonstrated colocalization of ChAT and NaV1.8 in canine GPs. CONCLUSIONS Blocking NaV1.8 in the cardiac GP may modulate atrial fibrillation inducibility and cardiac conduction after myocardial infarction, and the underlying mechanism may be associated with the regulation of the neural activity of the cardiac GP.
Collapse
Affiliation(s)
- Baozhen Qi
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital (Xiamen), Fudan University, 668 Jinhu Road, Xiamen, 361015, China
| | - Zhonglei Xie
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Dongli Shen
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Yu Song
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Shaowen Liu
- Department of Cardiology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Qibing Wang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| |
Collapse
|
26
|
Dai SP, Yang CC, Chin Y, Sun WH. T cell death-associated gene 8-mediated distinct signaling pathways modulate the early and late phases of neuropathic pain. iScience 2024; 27:110955. [PMID: 39381739 PMCID: PMC11460492 DOI: 10.1016/j.isci.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injury alters the transduction of nociceptive signaling. The coordination of neurons, glia, and immune cells results in persistent pain and inflammation. T cell death-associated gene 8 (TDAG8), located at nociceptors and immune cells, is involved in inflammatory pain and arthritis-induced pain. Here, we employed TDAG8-deficient mice, pharmacological approaches, and calcium/sodium imaging to elucidate how TDAG8-mediated signaling modulates neuron activities in a mouse model of chronic constriction injury-induced neuropathic pain. We demonstrated that TDAG8 participated alone in mechanical allodynia induced by constriction injury. (1) TDAG8-Nav1.8 signaling in small-diameter isolectin B4-positive [IB4(+)] neurons initiates mechanical allodynia; it also modulated substance P release from IB4(-) neurons to facilitate the development of early mechanical allodynia. (2) TDAG8-mediated signaling increased medium-to large-diameter IB4(-) neuron activity to maintain late mechanical allodynia; it also modulated substance P release in soma to reduce satellite glial number and Nav1.7 expression, thus attenuating chronic mechanical allodynia.
Collapse
Affiliation(s)
- Shih-Ping Dai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chieh Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yin Chin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Nascimento de Lima AP, Zhang H, Chen L, Effraim PR, Gomis-Perez C, Cheng X, Huang J, Waxman SG, Dib-Hajj SD. Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia. Brain 2024; 147:3157-3170. [PMID: 38447953 DOI: 10.1093/brain/awae071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.
Collapse
Affiliation(s)
- Ana Paula Nascimento de Lima
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Huiran Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Philip R Effraim
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carolina Gomis-Perez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
28
|
Hang Kong AY, Tan HS, Habib AS. VX-548 in the treatment of acute pain. Pain Manag 2024; 14:477-486. [PMID: 39552600 PMCID: PMC11721852 DOI: 10.1080/17581869.2024.2421749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Acute pain management requires balancing analgesia with adverse effects risk. The voltage-gated sodium channel NaV1.8 plays an important role in pain physiology, and its inhibition was shown to have analgesic effects. VX-548 is a new oral NaV1.8-specific inhibitor that received United States Food and Drug Administration Fast Track and Breakthrough Therapy designations. Its efficacy was demonstrated in two Phase II trials of patients who underwent abdominoplasty and bunionectomy. These showed that VX-548, when given as an oral loading dose of 100 mg followed by 50 mg 12-hly, significantly decreased pain scores compared with placebo. Similarly, two Phase III trials of patients who underwent abdominoplasty and bunionectomy comparing VX-548 with hydrocodone bitartrate-acetaminophen and placebo reported significantly reduced pain scores compared with placebo, but no improvement compared with hydrocodone bitartrate-acetaminophen. Evidence from Phase II and III trials suggest that VX-548 is well-tolerated, with headache, nausea, constipation and dizziness being the most common adverse effects. However, the safety of prolonged VX-548 administration is uncertain; a Phase II trial of patients with diabetic neuropathy who received high-dose VX-548 over 12 weeks reported decreased creatinine clearance. Data pertaining to VX-548 safety and efficacy within the context of multimodal analgesia and pregnancy are also needed.
Collapse
Affiliation(s)
- Aaron Yik Hang Kong
- Department of Women's Anesthesia, KK Women's & Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Hon Sen Tan
- Department of Women's Anesthesia, KK Women's & Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Ashraf S Habib
- Department of Anesthesiology, Division of Women's Anesthesia, Duke University Medical Center Box 3094, Durham, NC27710, USA
| |
Collapse
|
29
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
30
|
Kamei T, Kudo T, Yamane H, Ishibashi F, Takada Y, Honda S, Maezawa Y, Ikeda K, Oyamada Y. Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230. Biochem Biophys Res Commun 2024; 721:150126. [PMID: 38776832 DOI: 10.1016/j.bbrc.2024.150126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.
Collapse
Affiliation(s)
- Tatsuya Kamei
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan.
| | - Takehiro Kudo
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Hana Yamane
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan
| | - Fumiaki Ishibashi
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Platform Technology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Yoshinori Takada
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Global Corporate Strategy, Sumitomo Pharma Co., Ltd., Tokyo, 104-8356, Japan
| | - Shigeyuki Honda
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Sumika Chemical Analysis Service, Ltd., Osaka, 554-0022, Japan
| | - Yasuyo Maezawa
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Kazuhito Ikeda
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Platform Technology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Yoshihiro Oyamada
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; AlphaNavi Pharma Inc., Osaka, 564-0053, Japan
| |
Collapse
|
31
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
32
|
Heinle JW, Dalessio S, Janicki P, Ouyang A, Vrana KE, Ruiz-Velasco V, Coates MD. Insights into the voltage-gated sodium channel, Na V1.8, and its role in visceral pain perception. Front Pharmacol 2024; 15:1398409. [PMID: 38855747 PMCID: PMC11158627 DOI: 10.3389/fphar.2024.1398409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Pain is a major issue in healthcare throughout the world. It remains one of the major clinical issues of our time because it is a common sequela of numerous conditions, has a tremendous impact on individual quality of life, and is one of the top drivers of cost in medicine, due to its influence on healthcare expenditures and lost productivity in those affected by it. Patients and healthcare providers remain desperate to find new, safer and more effective analgesics. Growing evidence indicates that the voltage-gated sodium channel Nav1.8 plays a critical role in transmission of pain-related signals throughout the body. For that reason, this channel appears to have strong potential to help develop novel, more selective, safer, and efficacious analgesics. However, many questions related to the physiology, function, and clinical utility of Nav1.8 remain to be answered. In this article, we discuss the latest studies evaluating the role of Nav1.8 in pain, with a particular focus on visceral pain, as well as the steps taken thus far to evaluate its potential as an analgesic target. We also review the limitations of currently available studies related to this topic, and describe the next scientific steps that have already been undertaken, or that will need to be pursued, to fully unlock the capabilities of this potential therapeutic target.
Collapse
Affiliation(s)
- J. Westley Heinle
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Piotr Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Ann Ouyang
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Matthew D. Coates
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
33
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
34
|
McDougall JJ, O'Brien MS. Analgesic potential of voltage gated sodium channel modulators for the management of pain. Curr Opin Pharmacol 2024; 75:102433. [PMID: 38277942 DOI: 10.1016/j.coph.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Neuronal electrochemical signals involve the flux of sodium ions through voltage-gated sodium channels (NaV) located in the neurolemma. Of the nine sodium channel subtypes, NaV-1.7, 1.8, and 1.9 are predominantly located on nociceptors, making them prime targets to control pain. This review highlights some of the latest discoveries targeting NaV channel activity, including: (1) charged local anaesthetic derivatives; (2) NaV channel toxins and associated small peptide blockers; (3) regulation of NaV channel accessory proteins; and (4) genetic manipulation of NaV channel function. While the translation of preclinical findings to a viable treatment in humans has remained a challenge, a greater understanding of NaV channel physiology could lead to the development of a new stream of therapies aimed at alleviating chronic pain.
Collapse
Affiliation(s)
- Jason J McDougall
- Department of Pharmacology and Department of Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Melissa S O'Brien
- Department of Pharmacology and Department of Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
35
|
Messina DN, Peralta ED, Acosta CG. Complex alterations in inflammatory pain and analgesic sensitivity in young and ageing female rats: involvement of ASIC3 and Nav1.8 in primary sensory neurons. Inflamm Res 2024; 73:669-691. [PMID: 38483556 DOI: 10.1007/s00011-024-01862-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE AND DESIGN Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1β up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1β had this effect only on young and aged neurons, respectively. CONCLUSION Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.
Collapse
Affiliation(s)
- Diego N Messina
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Emanuel D Peralta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina
| | - Cristian G Acosta
- Laboratory of Neurobiology of Pain, Faculty of Medical Sciences, IHEM (Instituto de Histologia y Embriologia Mendoza, Dr. Mario H Burgos), Cuyo National University, Av. Del Libertador 80, 5500, Mendoza, Argentina.
| |
Collapse
|
36
|
Wang Q, Ye Y, Yang L, Xiao L, Liu J, Zhang W, Du G. Painful diabetic neuropathy: The role of ion channels. Biomed Pharmacother 2024; 173:116417. [PMID: 38490158 DOI: 10.1016/j.biopha.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Painful diabetic neuropathy (PDN) is a common chronic complication of diabetes that causes neuropathic pain and negatively affects the quality of life. The management of PDN is far from satisfactory. At present, interventions are primarily focused on symptomatic treatment. Ion channel disorders are a major cause of PDN, and a complete understanding of their roles and mechanisms may provide better options for the clinical treatment of PDN. Therefore, this review summarizes the important role of ion channels in PDN and the current drug development targeting these ion channels.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Ye
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lifan Xiao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guizhi Du
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Tian J, Bavencoffe AG, Zhu MX, Walters ET. Readiness of nociceptor cell bodies to generate spontaneous activity results from background activity of diverse ion channels and high input resistance. Pain 2024; 165:893-907. [PMID: 37862056 PMCID: PMC10950548 DOI: 10.1097/j.pain.0000000000003091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT Nociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. Using mouse nociceptors, we show that DSFs are associated with high somal input resistance over a wide range of membrane potentials, including depolarized levels where DSFs approach action potential (AP) threshold. Input resistance and both the amplitude and frequency of DSFs were increased in neurons exhibiting spontaneous activity. Ion substitution experiments indicated that the depolarizing phase of DSFs is generated by spontaneous opening of channels permeable to Na + or Ca 2+ and that Ca 2+ -permeable channels are especially important for larger DSFs. Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.
Collapse
Affiliation(s)
- Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
38
|
Liu PW, Zhang H, Werley CA, Pichler M, Ryan SJ, Lewarch CL, Jacques J, Grooms J, Ferrante J, Li G, Zhang D, Bremmer N, Barnett A, Chantre R, Elder AE, Cohen AE, Williams LA, Dempsey GT, McManus OB. A phenotypic screening platform for chronic pain therapeutics using all-optical electrophysiology. Pain 2024; 165:922-940. [PMID: 37963235 PMCID: PMC10950549 DOI: 10.1097/j.pain.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/30/2023] [Indexed: 11/16/2023]
Abstract
ABSTRACT Chronic pain associated with osteoarthritis (OA) remains an intractable problem with few effective treatment options. New approaches are needed to model the disease biology and to drive discovery of therapeutics. We present an in vitro model of OA pain, where dorsal root ganglion (DRG) sensory neurons were sensitized by a defined mixture of disease-relevant inflammatory mediators, here called Sensitizing PAin Reagent Composition or SPARC. Osteoarthritis-SPARC components showed synergistic or additive effects when applied in combination and induced pain phenotypes in vivo. To measure the effect of OA-SPARC on neural firing in a scalable format, we used a custom system for high throughput all-optical electrophysiology. This system enabled light-based membrane voltage recordings from hundreds of neurons in parallel with single cell and single action potential resolution and a throughput of up to 500,000 neurons per day. A computational framework was developed to construct a multiparameter OA-SPARC neuronal phenotype and to quantitatively assess phenotype reversal by candidate pharmacology. We screened ∼3000 approved drugs and mechanistically focused compounds, yielding data from over 1.2 million individual neurons with detailed assessment of functional OA-SPARC phenotype rescue and orthogonal "off-target" effects. Analysis of confirmed hits revealed diverse potential analgesic mechanisms including ion channel modulators and other mechanisms including MEK inhibitors and tyrosine kinase modulators. Our results suggest that the Raf-MEK-ERK axis in DRG neurons may integrate the inputs from multiple upstream inflammatory mediators found in osteoarthritis patient joints, and MAPK pathway activation in DRG neurons may contribute to chronic pain in patients with osteoarthritis.
Collapse
Affiliation(s)
- Pin W. Liu
- Quiver Bioscience, Cambridge, MA, United States
| | | | | | | | | | | | | | | | | | - Guangde Li
- Quiver Bioscience, Cambridge, MA, United States
| | - Dawei Zhang
- Quiver Bioscience, Cambridge, MA, United States
| | | | | | | | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | | | | | | |
Collapse
|
39
|
Kapur MM, Soliman M, Blanke EN, Herold PB, Janicki PK, Vrana KE, Coates MD, Ruiz-Velasco V. Heterologous expression of the human wild-type and variant Na V 1.8 (A1073V) in rat sensory neurons. Neurogastroenterol Motil 2024; 36:e14748. [PMID: 38263802 PMCID: PMC10922522 DOI: 10.1111/nmo.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Silent inflammatory bowel disease (IBD) is a condition in which individuals with the active disease experience minor to no pain. Voltage-gated Na+ (NaV ) channels expressed in sensory neurons play a major role in pain perception. Previously, we reported that a NaV 1.8 genetic polymorphism (A1073V, rs6795970) was more common in a cohort of silent IBD patients. The expression of this variant (1073V) in rat sympathetic neurons activated at more depolarized potentials when compared to the more common variant (1073A). In this study, we investigated whether expression of either NaV 1.8 variant in rat sensory neurons would exhibit different biophysical characteristics than previously observed in sympathetic neurons. METHODS Endogenous NaV 1.8 channels were first silenced in DRG neurons and then either 1073A or 1073V human NaV 1.8 cDNA constructs were transfected. NaV 1.8 currents were recorded with the whole-cell patch-clamp technique. KEY RESULTS The results indicate that 1073A and 1073V NaV 1.8 channels exhibited similar activation values. However, the slope factor (k) for activation determined for this same group of neurons decreased by 5 mV, suggesting an increase in voltage sensitivity. Comparison of inactivation parameters indicated that 1073V channels were shifted to more depolarized potentials than 1073A-expressing neurons, imparting a proexcitatory characteristic. CONCLUSIONS AND INFERENCES These findings differ from previous observations in other expression models and underscore the challenges with heterologous expression systems. Therefore, the use of human sensory neurons derived from induced pluripotent stem cells may help address these inconsistencies and better determine the effect of the polymorphism present in IBD patients.
Collapse
Affiliation(s)
- Maryam M. Kapur
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Emily N. Blanke
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Paul B. Herold
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Piotr K. Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew D. Coates
- Department of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
40
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
41
|
Mohamed FE, Al-Jasmi F. Exploring the efficacy and safety of Ambroxol in Gaucher disease: an overview of clinical studies. Front Pharmacol 2024; 15:1335058. [PMID: 38414738 PMCID: PMC10896849 DOI: 10.3389/fphar.2024.1335058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the GBA1 gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different GBA1 genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.
Collapse
Affiliation(s)
- Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
42
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
43
|
Makau CM, Towett PK, Kanui TI, Abelson KSP. Effects of inhibition of Nav1.3, Nav1.7, and Nav1.8 channels on pain-related behavior in Speke's hinge-back tortoise (Kinixys spekii). J Neurosci Res 2024; 102:e25274. [PMID: 38284848 DOI: 10.1002/jnr.25274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Comparative studies using reptiles as experimental animals in pain research could expand our knowledge on the evolution and adaptation of pain mechanisms. Currently, there are no data reported on the involvement of voltage-gated sodium ion channels on nociception in reptiles. The aim of this study was to investigate the involvement of Nav1.3, Nav1.7, and Nav1.8 ion channels in nociception in Speke's hinge-back tortoise. ICA 121341 (selective blocker for Nav1.1/Nav1.3), NAV 26 (selective blocker for Nav1.7), and A803467 (selective blocker for Nav1.8) were used to investigate the involvement of Nav1.3, Nav1.7, and Nav1.8, respectively. The chemicals were administered intracoelomically thirty minutes before the start of nociceptive tests. ICA 121341 did not cause a significant decrease in the time spent in pain-related behavior in all the nociceptive tests. NAV 26 and A8034667 caused a statistically significant decrease in the mean time spent in pain-related behavior in the formalin and capsaicin tests. Only A803467 caused a statistically significant increase in the mean latency to pain-related behavior in the hot plate test. NAV 26 and A803467 had no observable side effects. In conclusion, Nav1.7 and Nav1.8 are involved in the processing of chemically induced inflammatory pain in Speke's hinge back tortoise. In addition, Nav1.8 are also significantly involved in the development of thermal-induced pain-related behavior in this species of reptile. However, our results do not support the involvement of Nav1.3 on the development of chemical or thermal induced pain-related behavior in the Speke's hinge back tortoise.
Collapse
Affiliation(s)
- Christopher M Makau
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Philemon K Towett
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Titus I Kanui
- School of Agriculture and Veterinary Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Klas S P Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Lu H, Cao P. Neural Mechanisms Underlying the Coughing Reflex. Neurosci Bull 2023; 39:1823-1839. [PMID: 37606821 PMCID: PMC10661548 DOI: 10.1007/s12264-023-01104-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023] Open
Abstract
Breathing is an intrinsic natural behavior and physiological process that maintains life. The rhythmic exchange of gases regulates the delicate balance of chemical constituents within an organism throughout its lifespan. However, chronic airway diseases, including asthma and chronic obstructive pulmonary disease, affect millions of people worldwide. Pathological airway conditions can disrupt respiration, causing asphyxia, cardiac arrest, and potential death. The innervation of the respiratory tract and the action of the immune system confer robust airway surveillance and protection against environmental irritants and pathogens. However, aberrant activation of the immune system or sensitization of the nervous system can contribute to the development of autoimmune airway disorders. Transient receptor potential ion channels and voltage-gated Na+ channels play critical roles in sensing noxious stimuli within the respiratory tract and interacting with the immune system to generate neurogenic inflammation and airway hypersensitivity. Although recent studies have revealed the involvement of nociceptor neurons in airway diseases, the further neural circuitry underlying airway protection remains elusive. Unraveling the mechanism underpinning neural circuit regulation in the airway may provide precise therapeutic strategies and valuable insights into the management of airway diseases.
Collapse
Affiliation(s)
- Haicheng Lu
- National Institute of Biological Sciences, Beijing, 102206, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| |
Collapse
|
45
|
Bian Y, Tuo J, He L, Li W, Li S, Chu H, Zhao Y. Voltage-gated sodium channels in cancer and their specific inhibitors. Pathol Res Pract 2023; 251:154909. [PMID: 37939447 DOI: 10.1016/j.prp.2023.154909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Voltage-gated sodium channels (VGSCs) participate in generating and spreading action potentials in electrically excited cells such as neurons and muscle fibers. Abnormal expression of VGSCs has been observed in various types of tumors, while they are either not expressed or expressed at a low level in the matching normal tissue. Hence, this abnormal expression suggests that VGSCs confer some advantage or viability on tumor cells, making them a valuable indicator for identifying tumor cells. In addition, overexpression of VGSCs increased the ability of cancer cells to metastasize and invade, as well as correlated with the metastatic behavior of different cancers. Therefore, blocking VGSCs presents a new strategy for the treatment of cancers. A portion of this review summarizes the structure and function of VGSCs and also describes the correlation between VGSCs and cancers. Most importantly, we provide an overview of current research on various subtype-selective VGSC inhibitors and updates on ongoing clinical studies.
Collapse
Affiliation(s)
- Yuan Bian
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Liangpeng He
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shangxiao Li
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, PR China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
46
|
Nair SS, Pavelkova N, Murphy CM, Kollarik M, Taylor-Clark TE. Action potential conduction in the mouse and rat vagus nerve is dependent on multiple voltage-gated sodium channels (Na V1s). J Neurophysiol 2023; 130:684-693. [PMID: 37584077 PMCID: PMC10635471 DOI: 10.1152/jn.00041.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Action potential (AP) conduction depends on voltage-gated sodium channels, of which there are nine subtypes. The vagus nerve, comprising sensory afferent fibers and efferent parasympathetic fibers, provides autonomic regulation of visceral organs, but the voltage-gated sodium channels (NaV1) subtypes involved in its AP conduction are poorly defined. We studied the A- and C-waves of electrically stimulated compound action potentials (CAPs) of the mouse and rat vagus nerves with and without NaV1 inhibitor administration: tetrodotoxin (TTX), PF-05089771 (mouse NaV1.7), ProTX-II (NaV1.7), ICA-121341 (NaV1.1, NaV1.3, and NaV1.6), LSN-3049227 (NaV1.2, NaV1.6, and NaV1.7), and A-803467 (NaV1.8). We show that TTX-sensitive NaV1 channels are essential for all vagal AP conduction. PF-05089771 but not ICA-121341 inhibited the mouse A-wave, which was abolished by LSN-3049227, suggesting roles for NaV1.7 and NaV1.2. The mouse C-wave was abolished by LSN-3049227 and a combination of PF-05089771 and ICA-121341, suggesting roles for NaV1.7 and NaV1.6. The rat A-wave was inhibited by ProTX-II, ICA-121341, and a combination of these inhibitors but only abolished by LSN-3049227, suggesting roles for NaV1.7, NaV1.6, and NaV1.2. The rat C-wave was abolished by LSN-3049227 and a combination of ProTX-II and ICA-121341, suggesting roles for NaV1.7 and NaV1.6. A-803467 also inhibited the mouse and rat CAP suggesting a cooperative role for the TTX-resistant NaV1.8. Overall, our data demonstrate that multiple NaV1 subtypes contribute to vagal CAPs, with NaV1.7 and NaV1.8 playing predominant roles and NaV1.6 and NaV1.2 contributing to a different extent based on nerve fiber type and species. Inhibition of these NaV1 may impact autonomic regulation of visceral organs.NEW & NOTEWORTHY Distinct NaV1 channels are involved in action potential (AP) initiation and conduction from afferent terminals within specific organs. Here, we have identified the NaV1 necessary for AP conduction in the entire murine and rat vagus nerve. We show TTX-sensitive channels are essential for all AP conduction, predominantly NaV1.7 with NaV1.2 and NaV1.6 playing lesser roles depending on the species and fiber type. In addition, we show that NaV1.8 is also essential for most axonal AP conduction.
Collapse
Affiliation(s)
- Sanjay S Nair
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Nikoleta Pavelkova
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Claire M Murphy
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Marian Kollarik
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
47
|
Jones J, Correll DJ, Lechner SM, Jazic I, Miao X, Shaw D, Simard C, Osteen JD, Hare B, Beaton A, Bertoch T, Buvanendran A, Habib AS, Pizzi LJ, Pollak RA, Weiner SG, Bozic C, Negulescu P, White PF. Selective Inhibition of Na V1.8 with VX-548 for Acute Pain. N Engl J Med 2023; 389:393-405. [PMID: 37530822 DOI: 10.1056/nejmoa2209870] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND The NaV1.8 voltage-gated sodium channel, expressed in peripheral nociceptive neurons, plays a role in transmitting nociceptive signals. The effect of VX-548, an oral, highly selective inhibitor of NaV1.8, on control of acute pain is being studied. METHODS After establishing the selectivity of VX-548 for NaV1.8 inhibition in vitro, we conducted two phase 2 trials involving participants with acute pain after abdominoplasty or bunionectomy. In the abdominoplasty trial, participants were randomly assigned in a 1:1:1:1 ratio to receive one of the following over a 48-hour period: a 100-mg oral loading dose of VX-548, followed by a 50-mg maintenance dose every 12 hours (the high-dose group); a 60-mg loading dose of VX-548, followed by a 30-mg maintenance dose every 12 hours (the middle-dose group); hydrocodone bitartrate-acetaminophen (5 mg of hydrocodone bitartrate and 325 mg of acetaminophen every 6 hours); or oral placebo every 6 hours. In the bunionectomy trial, participants were randomly assigned in a 2:2:1:2:2 ratio to receive one of the following over a 48-hour treatment period: oral high-dose VX-548; middle-dose VX-548; low-dose VX-548 (a 20-mg loading dose, followed by a 10-mg maintenance dose every 12 hours); oral hydrocodone bitartrate-acetaminophen (5 mg of hydrocodone bitartrate and 325 mg of acetaminophen every 6 hours); or oral placebo every 6 hours. The primary end point was the time-weighted sum of the pain-intensity difference (SPID) over the 48-hour period (SPID48), a measure derived from the score on the Numeric Pain Rating Scale (range, 0 to 10; higher scores indicate greater pain) at 19 time points after the first dose of VX-548 or placebo. The main analysis compared each dose of VX-548 with placebo. RESULTS A total of 303 participants were enrolled in the abdominoplasty trial and 274 in the bunionectomy trial. The least-squares mean difference between the high-dose VX-548 and placebo groups in the time-weighted SPID48 was 37.8 (95% confidence interval [CI], 9.2 to 66.4) after abdominoplasty and 36.8 (95% CI, 4.6 to 69.0) after bunionectomy. In both trials, participants who received lower doses of VX-548 had results similar to those with placebo. Headache and constipation were common adverse events with VX-548. CONCLUSIONS As compared with placebo, VX-548 at the highest dose, but not at lower doses, reduced acute pain over a period of 48 hours after abdominoplasty or bunionectomy. VX-548 was associated with adverse events that were mild to moderate in severity. (Funded by Vertex Pharmaceuticals; VX21-548-101 and VX21-548-102 ClinicalTrials.gov numbers, NCT04977336 and NCT05034952.).
Collapse
Affiliation(s)
- Jim Jones
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Darin J Correll
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Sandra M Lechner
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Ina Jazic
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Xiaopeng Miao
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - David Shaw
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Christopher Simard
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Jeremiah D Osteen
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Brian Hare
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Alina Beaton
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Todd Bertoch
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Asokumar Buvanendran
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Ashraf S Habib
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Lois J Pizzi
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Richard A Pollak
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Scott G Weiner
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Carmen Bozic
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Paul Negulescu
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Paul F White
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| |
Collapse
|
48
|
Maqoud F, Tricarico D, Mallamaci R, Orlando A, Russo F. The Role of Ion Channels in Functional Gastrointestinal Disorders (FGID): Evidence of Channelopathies and Potential Avenues for Future Research and Therapeutic Targets. Int J Mol Sci 2023; 24:11074. [PMID: 37446251 DOI: 10.3390/ijms241311074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Several gastrointestinal (GI) tract abnormalities, including visceral hypersensitivity, motility, and intestinal permeability alterations, have been implicated in functional GI disorders (FGIDs). Ion channels play a crucial role in all the functions mentioned above. Hormones and natural molecules modulate these channels and represent targets of drugs and bacterial toxins. Mutations and abnormal functional expression of ion channel subunits can lead to diseases called channelopathies. These channelopathies in gastroenterology are gaining a strong interest, and the evidence of co-relationships is increasing. In this review, we describe the correlation status between channelopathies and FGIDs. Different findings are available. Among others, mutations in the ABCC7/CFTR gene have been described as a cause of constipation and diarrhea. Mutations of the SCN5A gene are instead associated with irritable bowel syndrome. In contrast, mutations of the TRPV1 and TRPA genes of the transient receptor potential (TRP) superfamily manifest hypersensitivity and visceral pain in sensory nerves. Recently, mice and humans affected by Cantu syndrome (CS), which is associated with the mutations of the KCNJ8 and ABCC9 genes encoding for the Kir6.1 and SUR2 subunits, showed dysfunction of contractility throughout the intestine and death in the mice after the weaning on solid food. The discovery of a correlation between channelopathies and FIGD opens new avenues for discovering new direct drug targets for specific channelopathies, leading to significant implications for diagnosing and treating functional GI diseases.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
49
|
Xu YM, Wijeratne EMK, Calderon-Rivera A, Loya-López S, Perez-Miller S, Khanna R, Gunatilaka AAL. Argentatin C Analogues with Potential Antinociceptive Activity and Other Triterpenoid Constituents from the Aerial Parts of Parthenium incanum. ACS OMEGA 2023; 8:20085-20095. [PMID: 37305315 PMCID: PMC10249386 DOI: 10.1021/acsomega.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Four new triterpenes, 25-dehydroxy-25-methoxyargentatin C (1), 20S-hydroxyargentatin C (2), 20S-hydroxyisoargentatin C (3), and 24-epi-argentatin C (4), together with 10 known triterpenes (5-14) were isolated from the aerial parts of Parthenium incanum. The structures of 1-4 were elucidated by detailed analysis of their spectroscopic data, and the known compounds 5-14 were identified by comparison of their spectroscopic data with those reported. Since argentatin C (11) was found to exhibit antinociceptive activity by decreasing the excitability of rat and macaque dorsal root ganglia (DRG) neurons, 11 and its new analogues 1-4 were evaluated for their ability to decrease the excitability of rat DRG neurons. Of the argentatin C analogues tested, 25-dehydroxy-25-methoxyargentatin C (1) and 24-epi-argentatin C (4) decreased neuronal excitability in a manner comparable to 11. Preliminary structure-activity relationships for the action potential-reducing effects of argentatin C (11) and its analogues 1-4, and their predicted binding sites in pain-relevant voltage-gated sodium and calcium channels (VGSCs and VGCCs) in DRG neurons are presented.
Collapse
Affiliation(s)
- Ya-ming Xu
- Southwest
Center for Natural Products Research, School of Natural Resources
and the Environment, College of Agriculture and Life Sciences, University of Arizona, 1064 E. Lowell St., Tucson, Arizona 85719, United States
| | - E. M. Kithsiri Wijeratne
- Southwest
Center for Natural Products Research, School of Natural Resources
and the Environment, College of Agriculture and Life Sciences, University of Arizona, 1064 E. Lowell St., Tucson, Arizona 85719, United States
| | - Aida Calderon-Rivera
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
| | - Santiago Loya-López
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
| | - Samantha Perez-Miller
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
| | - Rajesh Khanna
- NYU
Pain Research Center and Department of Molecular Pathobiology, College
of Dentistry, New York University, 433 First Avenue, New York, New York 10010, United States
- Department
of Neuroscience and Physiology and Neuroscience Institute, School
of Medicine, New York University, New York, New York 10010, United States
| | - A. A. Leslie Gunatilaka
- Southwest
Center for Natural Products Research, School of Natural Resources
and the Environment, College of Agriculture and Life Sciences, University of Arizona, 1064 E. Lowell St., Tucson, Arizona 85719, United States
| |
Collapse
|
50
|
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, Yan N. Structural mapping of Na v1.7 antagonists. Nat Commun 2023; 14:3224. [PMID: 37270609 DOI: 10.1038/s41467-023-38942-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Voltage-gated sodium (Nav) channels are targeted by a number of widely used and investigational drugs for the treatment of epilepsy, arrhythmia, pain, and other disorders. Despite recent advances in structural elucidation of Nav channels, the binding mode of most Nav-targeting drugs remains unknown. Here we report high-resolution cryo-EM structures of human Nav1.7 treated with drugs and lead compounds with representative chemical backbones at resolutions of 2.6-3.2 Å. A binding site beneath the intracellular gate (site BIG) accommodates carbamazepine, bupivacaine, and lacosamide. Unexpectedly, a second molecule of lacosamide plugs into the selectivity filter from the central cavity. Fenestrations are popular sites for various state-dependent drugs. We show that vinpocetine, a synthetic derivative of a vinca alkaloid, and hardwickiic acid, a natural product with antinociceptive effect, bind to the III-IV fenestration, while vixotrigine, an analgesic candidate, penetrates the IV-I fenestration of the pore domain. Our results permit building a 3D structural map for known drug-binding sites on Nav channels summarized from the present and previous structures.
Collapse
Affiliation(s)
- Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Kan Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaao Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|