1
|
Tiemuer A, Zhao H, Chen J, Li H, Sun H. Lighting Up and Identifying Metal-Binding Proteins in Cells. JACS AU 2024; 4:4628-4638. [PMID: 39735929 PMCID: PMC11672145 DOI: 10.1021/jacsau.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024]
Abstract
Metal ions, either essential or therapeutic, play critical roles in life processes or in the treatment of diseases. Proteins and enzymes are involved in metal homeostasis and the action of metallodrugs. Imaging and identifying these metal-binding proteins will facilitate the elucidation of metal-mediated life processes. The emerging research field of metallomics and metalloproteomics has significantly advanced our understanding of metal homeostasis and the roles that metals play in biology and medicine. Fluorescence-based metalloproteomics offers the possibility of not only visualization but also identification of metal-binding proteins in living cells and tissues. Herein, we summarize different strategies of labeling and tracking of metal-binding proteins with the aid of fluorescent probes. We highlight several examples as showcases of how this fluorescence-based metalloproteomics approach could be utilized in metallobiology and chemical biology. In conclusion, we also discuss the advantages and limitations of fluorescence-based metalloproteomics approaches and point out future directions of metalloproteomics including development of more sensitive and selective fluorescence probes, integration with other omics approaches, as well as application of emerging advanced super-resolution imaging techniques that utilize fluorescent molecules or proteins. We aim to attract more scientists to engage in this exciting field.
Collapse
Affiliation(s)
- Aliya Tiemuer
- Department of Chemistry and HKU-CAS
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China
| | - Hongyu Zhao
- Department of Chemistry and HKU-CAS
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China
| | - Jingxin Chen
- Department of Chemistry and HKU-CAS
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China
| | - Hongyan Li
- Department of Chemistry and HKU-CAS
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China
| | - Hongzhe Sun
- Department of Chemistry and HKU-CAS
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China
| |
Collapse
|
2
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
3
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
4
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. ARXIV 2023:arXiv:2309.06907v3. [PMID: 37744466 PMCID: PMC10516112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium-release activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, Texas, USA, 77030
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| |
Collapse
|
5
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
6
|
Sueda S. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells. ACTA ACUST UNITED AC 2020; 69:156-166. [PMID: 32166307 DOI: 10.1093/jmicro/dfaa011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022]
Abstract
Various protein-labeling methods based on the specific interactions between genetically encoded tags and synthetic probes have been proposed to complement fluorescent protein-based labeling. In particular, labeling methods based on enzyme reactions have been intensively developed by taking advantage of the highly specific interactions between enzymes and their substrates. In this approach, the peptides or proteins are genetically attached to the target proteins as a tag, and the various labels are then incorporated into the tags by enzyme reactions with the substrates carrying those labels. On the other hand, we have been developing an enzyme-based protein-labeling system distinct from the existing ones. In our system, the substrate protein is attached to the target proteins as a tag, and the labels are incorporated into the tag by post-translational modification with an enzyme carrying those labels followed by tight complexation between the enzyme and the substrate protein. In this review, I summarize the enzyme-based protein-labeling systems with a focus on several typical methods and then describe our labeling system based on tight complexation between the enzyme and the substrate protein.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
7
|
Jiang N, Li H, Sun H. Recognition of Proteins by Metal Chelation-Based Fluorescent Probes in Cells. Front Chem 2019; 7:560. [PMID: 31448265 PMCID: PMC6695521 DOI: 10.3389/fchem.2019.00560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
Fluorescent probes such as thiol-reactive and Ni2+-nitrilotriacetate (NTA) based probes provide a powerful toolbox for real-time visualization of a protein and a proteome in living cells. Herein, we first went through basic principles and applications of thiol-reactive based probes in protein imaging and recognition. We then summarize a family of metal-NTA based fluorescence probes in the visualization of His6-tagged protein and identification of metalloproteins at proteome-wide scale. The pros and cons of the probes, as well as ways to optimize them, are discussed.
Collapse
Affiliation(s)
| | | | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019; 58:8278-8290. [PMID: 30919542 DOI: 10.1002/anie.201811293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/09/2023]
Abstract
With the advent of single-molecule methods, chemoselective and site-specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme-based tags or autofluorescent proteins are short peptide-based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine-tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single-molecule approaches.
Collapse
Affiliation(s)
- Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| |
Collapse
|
9
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph Wieneke
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| | - Robert Tampé
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| |
Collapse
|
10
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
11
|
Chen X, Li F, Wu YW. Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells. Methods Mol Biol 2019; 2008:191-202. [PMID: 31124098 DOI: 10.1007/978-1-4939-9537-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein labeling is enormously useful for characterization of protein function in live cells and study of the related cellular processes. Covalent labeling of protein using affinity conjugation confers stable and selective labeling of protein in cells. Affinity conjugation combines a specific ligand-protein interaction with a proximity-induced reaction to selectively label the protein of interest (POI) in the cell. Therefore, either a fluorogenic probe is directly introduced to the POI or a bioorthogonal group is incorporated to the POI, which is subsequently labeled with a fluorescent probe. Here, we describe a method for affinity conjugation of protein with a fluorogenic probe and a "tagging-then-labeling" approach by a combination of affinity conjugation with bioorthogonal reactions.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, Dortmund, 44227, Germany.,Max Planck Institute for Molecular Physiology, Dortmund, 44227, Otto-Hahn-Str. 11, Germany
| | - Fu Li
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, Dortmund, 44227, Germany.,Max Planck Institute for Molecular Physiology, Dortmund, 44227, Otto-Hahn-Str. 11, Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, Dortmund, 44227, Germany. .,Max Planck Institute for Molecular Physiology, Dortmund, 44227, Otto-Hahn-Str. 11, Germany. .,Department of Chemistry, Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
12
|
Billerbeck S. Small Functional Peptides and Their Application in Superfunctionalizing Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sonja Billerbeck
- Columbia University; Department of Chemistry; 550 West 120th Street New York NY 10027 USA
| |
Collapse
|
13
|
Abstract
Probes are essential to visualize proteins in their cellular environment, both using light microscopy as well as electron microscopy (EM). Correlated light microscopy and electron microscopy (CLEM) requires probes that can be imaged simultaneously by both optical and electron-dense signals. Existing combinatorial probes often have impaired efficiency, need ectopic expression as a fusion protein, or do not target endogenous proteins. Here, we present FLIPPER-bodies to label endogenous proteins for CLEM. Fluorescent Indicator and Peroxidase for Precipitation with EM Resolution (FLIPPER), the combination of a fluorescent protein and a peroxidase, is fused to a nanobody against a target of interest. The modular nature of these probes allows an easy exchange of components to change its target or color. A general FLIPPER-body targeting GFP highlights histone2B-GFP both in fluorescence and in EM. Similarly, endogenous EGF receptors and HER2 are visualized at nm-scale resolution in ultrastructural context. The small and flexible FLIPPER-body outperforms IgG-based immuno-labeling, likely by better reaching the epitopes. Given the modular domains and possibilities of nanobody generation for other targets, FLIPPER-bodies have high potential to become a universal tool to identify proteins in immuno-CLEM with increased sensitivity compared to current approaches.
Collapse
|
14
|
Pode Z, Peri-Naor R, Georgeson JM, Ilani T, Kiss V, Unger T, Markus B, Barr HM, Motiei L, Margulies D. Protein recognition by a pattern-generating fluorescent molecular probe. NATURE NANOTECHNOLOGY 2017; 12:1161-1168. [PMID: 29035400 DOI: 10.1038/nnano.2017.175] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.
Collapse
Affiliation(s)
- Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Joseph M Georgeson
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladimir Kiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Haim M Barr
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Hwang JY, Shim S, Hwang GT. 4′,5′-Bis(dimethylamino)fluorescein Exhibits pH-Dependent Emission Behavior Distinct From That of Fluorescein. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Yeon Hwang
- Department of Chemistry; Kyungpook National University; 80 Daehakro Bukgu Daegu 41566 Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry; Sunchon National University; 255 Jungang-ro Sunchon Jeonnam 57922 Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry; Kyungpook National University; 80 Daehakro Bukgu Daegu 41566 Republic of Korea
| |
Collapse
|
16
|
Drebrin Regulation of Calcium Signaling in Immune Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28865026 DOI: 10.1007/978-4-431-56550-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Store-operated Ca2+ channels are plasma membrane channels that are activated by depletion of intracellular Ca2+ stores, resulting in an increase in intracellular Ca2+; however, little is known about their regulation. Our work has shown that the immunosuppressant compound BTP2, which blocks Ca2+ influx into cells, interacts with the actin-reorganizing protein, drebrin. Here we review the role of drebrin in the regulation of calcium signaling, with a focus on immune cells.
Collapse
|
17
|
Hu X, Margadant FM, Yao M, Sheetz MP. Molecular stretching modulates mechanosensing pathways. Protein Sci 2017; 26:1337-1351. [PMID: 28474792 DOI: 10.1002/pro.3188] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023]
Abstract
For individual cells in tissues to create the diverse forms of biological organisms, it is necessary that they must reliably sense and generate the correct forces over the correct distances and directions. There is considerable evidence that the mechanical aspects of the cellular microenvironment provide critical physical parameters to be sensed. How proteins sense forces and cellular geometry to create the correct morphology is not understood in detail but protein unfolding appears to be a major component in force and displacement sensing. Thus, the crystallographic structure of a protein domain provides only a starting point to then analyze what will be the effects of physiological forces through domain unfolding or catch-bond formation. In this review, we will discuss the recent studies of cytoskeletal and adhesion proteins that describe protein domain dynamics. Forces applied to proteins can activate or inhibit enzymes, increase or decrease protein-protein interactions, activate or inhibit protein substrates, induce catch bonds and regulate interactions with membranes or nucleic acids. Further, the dynamics of stretch-relaxation can average forces or movements to reliably regulate morphogenic movements. In the few cases where single molecule mechanics are studied under physiological conditions such as titin and talin, there are rapid cycles of stretch-relaxation that produce mechanosensing signals. Fortunately, the development of new single molecule and super-resolution imaging methods enable the analysis of single molecule mechanics in physiologically relevant conditions. Thus, we feel that stereotypical changes in cell and tissue shape involve mechanosensing that can be analyzed at the nanometer level to determine the molecular mechanisms involved.
Collapse
Affiliation(s)
- Xian Hu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411.,Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | | | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Michael Patrick Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, 117411.,Department of Biological Sciences, University of Columbia, New York, 10027
| |
Collapse
|
18
|
Chao A, Jiang N, Yang Y, Li H, Sun H. A Ni-NTA-based red fluorescence probe for protein labelling in live cells. J Mater Chem B 2017; 5:1166-1173. [DOI: 10.1039/c6tb02848a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The great success of a His6-Ni-nitrilotriaceate (Ni-NTA) system in protein purification has inspired scientists to develop novel Ni-NTA based fluoresent probes for imaging of proteins in live cells.
Collapse
Affiliation(s)
- Ailun Chao
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Nan Jiang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Ya Yang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hongyan Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| |
Collapse
|
19
|
Willwacher J, Raj R, Mohammed S, Davis BG. Selective Metal-Site-Guided Arylation of Proteins. J Am Chem Soc 2016; 138:8678-81. [PMID: 27336299 DOI: 10.1021/jacs.6b04043] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe palladium-mediated S-arylation that exploits natural metal-binding motifs to ensure high site selectivity for a proximal reactive residue. This allows the chemical identification not only of proteins that bind metals but also the environment of the metal-binding site itself through proteomic analysis of arylation sites. The transformation is easy to perform under standard conditions, does not require the isolation of a reactive Ar-Pd complex, is broad in scope, and is applicable in cell lysates as well as to covalent inhibition/modulation of metal-dependent enzymatic activity.
Collapse
Affiliation(s)
- Jens Willwacher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Ritu Raj
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Shabaz Mohammed
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Benjamin G Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
20
|
Abstract
Over the years, there have been remarkable efforts in the development of selective protein labeling strategies. In this review, we deliver a comprehensive overview of the currently available bioorthogonal and chemoselective reactions. The ability to introduce bioorthogonal handles to proteins is essential to carry out bioorthogonal reactions for protein labeling in living systems. We therefore summarize the techniques that allow for site-specific "installation" of bioorthogonal handles into proteins. We also highlight the biological applications that have been achieved by selective chemical labeling of proteins.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | | |
Collapse
|
21
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG. Peptide-tags for site-specific protein labelling in vitro and in vivo. MOLECULAR BIOSYSTEMS 2016; 12:1731-45. [DOI: 10.1039/c6mb00023a] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.
Collapse
Affiliation(s)
- Jonathan Lotze
- Institut für Biochemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Ulrike Reinhardt
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | - Oliver Seitz
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | | |
Collapse
|
23
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal Bioanal Chem 2015; 407:8627-45. [DOI: 10.1007/s00216-015-8981-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 01/04/2023]
|
25
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
26
|
Yan Q, Bruchez MP. Advances in chemical labeling of proteins in living cells. Cell Tissue Res 2015; 360:179-94. [PMID: 25743694 PMCID: PMC4380784 DOI: 10.1007/s00441-015-2145-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
Abstract
The pursuit of quantitative biological information via imaging requires robust labeling approaches that can be used in multiple applications and with a variety of detectable colors and properties. In addition to conventional fluorescent proteins, chemists and biologists have come together to provide a range of approaches that combine dye chemistry with the convenience of genetic targeting. This hybrid-tagging approach amalgamates the rational design of properties available through synthetic dye chemistry with the robust biological targeting available with genetic encoding. In this review, we discuss the current range of approaches that have been exploited for dye targeting or for targeting and activation and some of the recent applications that are uniquely permitted by these hybrid-tagging approaches.
Collapse
Affiliation(s)
- Qi Yan
- Sharp Edge Laboratories, Inc. Pittsburgh, PA
| | - Marcel P. Bruchez
- Sharp Edge Laboratories, Inc. Pittsburgh, PA
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
27
|
Abstract
Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.
Collapse
|
28
|
Kubota R, Hamachi I. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem Soc Rev 2015; 44:4454-71. [DOI: 10.1039/c4cs00381k] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review describes the recognition and sensing techniques of proteins and their building blocks by use of small synthetic binders.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Katsura
- Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Katsura
- Japan
| |
Collapse
|
29
|
Zhang X, Zhang W, González-Cobos JC, Jardin I, Romanin C, Matrougui K, Trebak M. Complex role of STIM1 in the activation of store-independent Orai1/3 channels. ACTA ACUST UNITED AC 2014; 143:345-59. [PMID: 24567509 PMCID: PMC3933941 DOI: 10.1085/jgp.201311084] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Orai proteins contribute to Ca(2+) entry into cells through both store-dependent, Ca(2+) release-activated Ca(2+) (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca(2+) (ARC) and leukotriene C4 (LTC4)-regulated Ca(2+) (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum-resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels.
Collapse
Affiliation(s)
- Xuexin Zhang
- Nanobioscience Constellation, State University of New York College of Nanoscale Science and Engineering, Albany, NY 12203
| | | | | | | | | | | | | |
Collapse
|
30
|
Takahira I, Fuchida H, Tabata S, Shindo N, Uchinomiya S, Hamachi I, Ojida A. Design of a binuclear Ni(II)-iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag fused proteins. Bioorg Med Chem Lett 2014; 24:2855-8. [PMID: 24835629 DOI: 10.1016/j.bmcl.2014.04.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Selective protein labeling with a small molecular probe is a versatile method for elucidating protein functions under live-cell conditions. In this Letter, we report the design of the binuclear Ni(II)-iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag-fused proteins. We found that the Ni(II)-IDA complex 1-2Ni(II) binds to the His6-tag (HHHHHH) with a strong binding affinity (Kd=24 nM), the value of which is 16-fold higher than the conventional Ni(II)-NTA complex (Kd=390 nM). The strong binding affinity of the Ni(II)-IDA complex was successfully used in the covalent labeling and fluorescence bioimaging of a His-tag fused GPCR (G-protein coupled receptor) located on the surface of living cells.
Collapse
Affiliation(s)
- Ikuko Takahira
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hirokazu Fuchida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigekazu Tabata
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Uchinomiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
You C, Piehler J. Multivalent chelators for spatially and temporally controlled protein functionalization. Anal Bioanal Chem 2014; 406:3345-57. [DOI: 10.1007/s00216-014-7803-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
|
32
|
Liu W, Li F, Chen X, Hou J, Yi L, Wu YW. A Rapid and Fluorogenic TMP-AcBOPDIPY Probe for Covalent Labeling of Proteins in Live Cells. J Am Chem Soc 2014; 136:4468-71. [DOI: 10.1021/ja500170h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wei Liu
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Fu Li
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | | | | | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| |
Collapse
|
33
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
34
|
Wang Z, Ding X, Li S, Shi J, Li Y. Engineered fluorescence tags for in vivo protein labelling. RSC Adv 2014. [DOI: 10.1039/c3ra46991c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivoprotein labelling with a peptide tag–fluorescent probe system is an important chemical biology strategy for studying protein distribution, interaction and function.
Collapse
Affiliation(s)
- Zhipeng Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| | - Xiaozhe Ding
- Department of Chemistry
- School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Sijian Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
| | - Jing Shi
- Department of Chemistry
- University of Science and Technology of China
- Hefei, China
| | - Yiming Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| |
Collapse
|
35
|
Yuan Y, Wang X, Mei B, Zhang D, Tang A, An L, He X, Jiang J, Liang G. Labeling thiols on proteins, living cells, and tissues with enhanced emission induced by FRET. Sci Rep 2013; 3:3523. [PMID: 24343586 PMCID: PMC3865488 DOI: 10.1038/srep03523] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/29/2013] [Indexed: 11/24/2022] Open
Abstract
Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved.
Collapse
Affiliation(s)
- Yue Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bin Mei
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Dongxin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Anming Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Linna An
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jun Jiang
- 1] Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China [2] Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Normal College, Guiyang 550018, China
| | - Gaolin Liang
- 1] CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China [2] State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
36
|
Jung D, Min K, Jung J, Jang W, Kwon Y. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. MOLECULAR BIOSYSTEMS 2013; 9:862-72. [PMID: 23318293 DOI: 10.1039/c2mb25422k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | | | | | | | | |
Collapse
|
37
|
Uchinomiya S, Ojida A, Hamachi I. Peptide Tag/Probe Pairs Based on the Coordination Chemistry for Protein Labeling. Inorg Chem 2013; 53:1816-23. [DOI: 10.1021/ic401612z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shohei Uchinomiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate
School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maedashi,
Higashi-ku, Fukuoka 819-0395, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate
School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Japan Science and Technology Agency (JST), CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
38
|
Takaoka Y, Ojida A, Hamachi I. Organische Proteinchemie und ihre Anwendung für Markierungen und Engineering in Lebendzellsystemen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207089] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Takaoka Y, Ojida A, Hamachi I. Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew Chem Int Ed Engl 2013; 52:4088-106. [PMID: 23426903 DOI: 10.1002/anie.201207089] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Indexed: 12/11/2022]
Abstract
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry-based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test-tube settings; 2) the bioorthogonal reactions of proteins with non-natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag-probe pair for labeling natural amino acids; and 4) ligand-directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2-4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
40
|
You Y, Nam W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: beyond electroluminescence. Chem Soc Rev 2012; 41:7061-7084. [PMID: 22797418 DOI: 10.1039/c2cs35171d] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The development of cyclometalated Ir(III) complexes has enabled important breakthroughs in electroluminescence because such complexes permit the efficient population of triplet excited states that give rise to luminescent transitions. The triplet states of Ir(III) complexes are advantageous over those of other transition metal complexes in that their electronic transitions and charge-transfer characteristics are tunable over wide ranges. These favorable properties suggest that Ir(III) complexes have significant potential in a variety of photofunctions other than electroluminescence. In this critical review, we describe recent photonic applications of novel Ir(III) complexes. Ir(III) complexes have been shown to affect the exciton statistics in the active layers of organic photovoltaic cells, thereby improving the photon-to-current conversion efficiencies. Nonlinear optical applications that take advantage of the strong charge-transfer properties of triplet transitions are also discussed. The tunability of the electrochemical potentials facilitates the development of efficient photocatalysis in the context of water photolysis or organic syntheses. The photoredox reactivities of Ir(III) complexes have been employed in studies of charge migration along DNA chains. The photoinduced cytotoxicity of Ir(III) complexes on live cells suggests that the complexes may be useful in photodynamic therapy. Potential biological applications of the complexes include phosphorescence labeling and sensing. Intriguing platforms based on cyclometalated Ir(III) complexes potentially provide novel protein tagging and ratiometric detection. We envision that future research into the photofunctionality of Ir(III) complexes will provide important breakthroughs in a variety of photonic applications.
Collapse
Affiliation(s)
- Youngmin You
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.
| | | |
Collapse
|
41
|
Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13:549-65. [PMID: 22914293 DOI: 10.1038/nrm3414] [Citation(s) in RCA: 537] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal interaction molecule (STIM) proteins function in cells as dynamic coordinators of cellular calcium (Ca(2+)) signals. Spanning the endoplasmic reticulum (ER) membrane, they sense tiny changes in the levels of Ca(2+) stored within the ER lumen. As ER Ca(2+) is released to generate primary Ca(2+) signals, STIM proteins undergo an intricate activation reaction and rapidly translocate into junctions formed between the ER and the plasma membrane. There, STIM proteins tether and activate the highly Ca(2+)-selective Orai channels to mediate finely controlled Ca(2+) signals and to homeostatically balance cellular Ca(2+). Details are emerging on the remarkable organization within these STIM-induced junctional microdomains and the identification of new regulators and alternative target proteins for STIM.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
42
|
Thompson JL, Shuttleworth TJ. A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel. Channels (Austin) 2012; 6:370-8. [PMID: 22992514 PMCID: PMC3508776 DOI: 10.4161/chan.21947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.
Collapse
Affiliation(s)
- Jill L Thompson
- Department of Pharmacology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
43
|
McKeown L, Moss NK, Turner P, Li J, Heath N, Burke D, O’Regan D, Gilthorpe MS, Porter KE, Beech DJ. Platelet-derived growth factor maintains stored calcium through a nonclustering Orai1 mechanism but evokes clustering if the endoplasmic reticulum is stressed by store depletion. Circ Res 2012; 111:66-76. [PMID: 22556336 PMCID: PMC3605802 DOI: 10.1161/circresaha.111.263616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Calcium entry through Orai1 channels drives vascular smooth muscle cell migration and neointimal hyperplasia. The channels are activated by the important growth factor platelet-derived growth factor (PDGF). Channel activation is suggested to depend on store depletion, which redistributes and clusters stromal interaction molecule 1 (STIM1), which then coclusters and activates Orai1. OBJECTIVE To determine the relevance of STIM1 and Orai1 redistribution in PDGF responses. METHODS AND RESULTS Vascular smooth muscle cells were cultured from human saphenous vein. STIM1 and Orai1 were tagged with green and red fluorescent proteins to track them in live cells. Under basal conditions, the proteins were mobile but mostly independent of each other. Inhibition of sarco-endoplasmic reticulum calcium ATPase led to store depletion and dramatic redistribution of STIM1 and Orai1 into coclusters. PDGF did not evoke redistribution, even though it caused calcium release and Orai1-mediated calcium entry in the same time period. After chemical blockade of Orai1-mediated calcium entry, however, PDGF caused redistribution. Similarly, mutagenic disruption of calcium flux through Orai1 caused PDGF to evoke redistribution, showing that calcium flux through the wild-type channels had been filling the stores. Acidification of the extracellular medium to pH 6.4 caused inhibition of Orai1-mediated calcium entry and conferred capability for PDGF to evoke complete redistribution and coclustering. CONCLUSIONS The data suggest that PDGF has a nonclustering mechanism by which to activate Orai1 channels and maintain calcium stores replete. Redistribution and clustering become important, however, when the endoplasmic reticulum stress signal of store depletion arises, for example when acidosis inhibits Orai1 channels.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Calcium/metabolism
- Calcium Channels/metabolism
- Cells, Cultured
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydrogen-Ion Concentration
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Video
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- ORAI1 Protein
- Platelet-Derived Growth Factor/metabolism
- Protein Transport
- Recombinant Fusion Proteins/metabolism
- Saphenous Vein/metabolism
- Stress, Physiological
- Stromal Interaction Molecule 1
- Thapsigargin/pharmacology
- Time Factors
- Transfection
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Lynn McKeown
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas K Moss
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Turner
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing Li
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikki Heath
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dermot Burke
- Leeds Teaching Hospitals, General Infirmary, Great George Street, Leeds, LS1 3EX
| | - David O’Regan
- Leeds Teaching Hospitals, General Infirmary, Great George Street, Leeds, LS1 3EX
| | - Mark S Gilthorpe
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen E Porter
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
44
|
Ercan E, Chung SH, Bhardwaj R, Seedorf M. Di-Arginine Signals and the K-Rich Domain Retain the Ca2+Sensor STIM1 in the Endoplasmic Reticulum. Traffic 2012; 13:992-1003. [DOI: 10.1111/j.1600-0854.2012.01359.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Shan-Hua Chung
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| | - Rajesh Bhardwaj
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| | - Matthias Seedorf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| |
Collapse
|
45
|
Orai1 calcium channels in the vasculature. Pflugers Arch 2012; 463:635-47. [PMID: 22402985 PMCID: PMC3323825 DOI: 10.1007/s00424-012-1090-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Orai1 was discovered in T cells as a calcium-selective channel that is activated by store depletion. Recent studies suggest that it is expressed and functionally important also in blood vessels, not only because haematopoietic cells can incorporate in the vascular wall but also because Orai1 is expressed and functional in vascular smooth muscle cells and endothelial cells. This article summarises the arising observations in this new area of vascular research and debates underlying issues and challenges for future investigations. The primary focus is on vascular smooth muscle cells and endothelial cells. Specific topics include Orai1 expression; Orai1 roles in store-operated calcium entry and ionic currents of store-depleted cells; blockade of Orai1-related signals by Synta 66 and other pharmacology; activation or regulation of Orai1-related signals by physiological substances and compartments; stromal interaction molecules and the relationship of Orai1 to other ion channels, transporters and pumps; transient receptor potential canonical channels and their contribution to store-operated calcium entry; roles of Orai1 in vascular tone, remodelling, thrombus formation and inflammation; and Orai2 and Orai3. Overall, the observations suggest the existence of an additional, previously unrecognised, calcium channel of the vascular wall that is functionally important particularly in remodelling but probably also in certain vasoconstrictor contexts.
Collapse
|
46
|
Ritchie MF, Samakai E, Soboloff J. STIM1 is required for attenuation of PMCA-mediated Ca2+ clearance during T-cell activation. EMBO J 2012; 31:1123-33. [PMID: 22246182 DOI: 10.1038/emboj.2011.495] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/12/2011] [Indexed: 01/09/2023] Open
Abstract
T-cell activation involves a complex signalling cascade uniquely dependent on elevated cytosolic Ca(2+) levels. Further, the spatiotemporal characteristics of this Ca(2+) signal play a critical role in this process via selective activation of transcription factors. In T cells, store-operated Ca(2+) entry (SOCe) is the primary Ca(2+) influx pathway; however, cytosolic Ca(2+) concentration depends upon the balance between Ca(2+) influx and extrusion. The plasma membrane Ca(2+) ATPase (PMCA) has previously been identified as a critical player in Ca(2+) clearance in T cells. Here, we provide data revealing both functional and physical links between the activation of stromal interacting molecule 1 (STIM1) and PMCA-mediated Ca(2+) clearance. Due to the ubiquitous expression of both STIM1 and PMCA, these findings have wide-ranging implications for Ca(2+) signalling in multiple cell types.
Collapse
Affiliation(s)
- Michael F Ritchie
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
47
|
Bogeski I, Al-Ansary D, Qu B, Niemeyer BA, Hoth M, Peinelt C. Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert Rev Clin Pharmacol 2012; 3:291-303. [PMID: 22111611 DOI: 10.1586/ecp.10.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Store-operated Ca(2+) entry is a major Ca(2+) entry mechanism that is present in most cell types. In immune cells, store-operated Ca(2+) entry is almost exclusively mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels. Ca(2+) entry through these channels and the corresponding cytosolic Ca(2+) signals are required for many immune cell functions, including all aspects of T-cell activation. ORAI proteins are the molecular correlates for the CRAC channels. The three human members, ORAI1, ORAI2 and ORAI3, are activated through the stromal interaction molecules (STIM)1 and 2 following depletion of endoplasmic reticulum Ca(2+) stores. Different combinations of STIM and ORAI can form different CRAC channels with distinct biophysical properties. In this article, we review and discuss mechanistic and functional implications of two important CRAC/ORAI inhibitors, 2-APB and BTP2, and the antibiotic G418 that has also been reported to interfere with ORAI channel function. The use of pharmacological tools should help to assign distinct physiological and pathophysiological functions to different STIM-ORAI protein complexes.
Collapse
Affiliation(s)
- Ivan Bogeski
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Yano Y, Kawano K, Omae K, Matsuzaki K. Coiled-coil tag-probe labeling methods for live-cell imaging of membrane receptors. Methods Enzymol 2012; 504:355-70. [PMID: 22264544 DOI: 10.1016/b978-0-12-391857-4.00018-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Tag-probe labeling methods have advantages over conventional fusion with fluorescent proteins in terms of smaller labels, surface specificity, availability of pulse labeling, and ease of multicolor labeling. With this method, the gene of the target protein is fused with a short tag sequence, expressed in cells, and the protein is labeled with exogenous fluorescent probes that specifically bind to the tag. Various labeling principles, such as protein-ligand interaction, peptide-peptide interaction, peptide-metal interaction, and enzymatic reactions, have been applied to the tag-probe labeling of membrane receptors. We describe our coiled-coil tag-probe method in detail, including the design and synthesis of the tag and probe, labeling procedures, and observations by confocal microscopy. Applications to the analysis of receptor internalization and oligomerization are also introduced.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
49
|
Fujishima SH, Nonaka H, Uchinomiya SH, Kawase YA, Ojida A, Hamachi I. Design of a multinuclear Zn(II) complex as a new molecular probe for fluorescence imaging of His-tag fused proteins. Chem Commun (Camb) 2011; 48:594-6. [PMID: 22113378 DOI: 10.1039/c1cc16263b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Zn(II) complex (Zn(II)-Ida) was designed as the new fluorescent probe for His-tag fused proteins. Thanks to the tight binding ability to histidine-rich sequences and bright fluorescence property of the Cy5-appended Zn(II)-Ida probes, selective and clear fluorescent imaging of the His-tag fused G-protein coupled receptors on live cell surfaces was carried out.
Collapse
Affiliation(s)
- Sho-hei Fujishima
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto, 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Hirabayashi K, Hanaoka K, Shimonishi M, Terai T, Komatsu T, Ueno T, Nagano T. Selective two-step labeling of proteins with an off/on fluorescent probe. Chemistry 2011; 17:14763-71. [PMID: 22106092 DOI: 10.1002/chem.201102664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Indexed: 11/09/2022]
Abstract
We present a novel design strategy for off/on fluorescent probes suitable for selective two-step labeling of proteins. To validate this strategy, we designed and synthesized an off/on fluorescent probe, 1-Ni(2+), which targets a cysteine-modified hexahistidine (His) tag. The probe consists of dichlorofluorescein conjugated with nitrilotriacetic acid (NTA)-Ni(2+) as the His-tag recognition site and a 2,4-dinitrophenyl ether moiety, which quenches the probe's fluorescence by photoinduced electron transfer (PeT) from the excited fluorophore to the 2,4-dinitrophenyl ether (donor-excited PeT; d-PeT) and also has reactivity with cysteine. His-tag recognition by the NTA-Ni(2+) moiety is followed by removal of the 2,4-dinitrophenyl ether quencher by proximity-enhanced reaction with the cysteine residue of the modified tag; this results in a marked fluorescence increase. Addition of His-tag peptide bearing a cysteine residue to aqueous probe solution resulted in about 20-fold fluorescence increment within 10 min, which is the largest fluorescence enhancement so far obtained with a visible light-excitable fluorescent probe for a His-based peptide tag. Further, we successfully visualized CysHis(6)-peptide tethered to microbeads without any washing step. The probe also showed a large fluorescence increment in the presence of His(6)Cys-tagged enhanced blue fluorescent protein (EBFP), but not His(6)-tagged EBFP. We consider this system is superior to large fluorescence tags (e.g., green fluorescent protein: 27 kDa), which can perturb protein folding, trafficking and function, and also to existing small tags, which generally show little fluorescence increase upon target recognition and therefore require a washout step. This strategy should also be applicable to other tags.
Collapse
Affiliation(s)
- Kazuhisa Hirabayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|