1
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Comaduran MF, Verbrugghe M, Xu JMS, Minotti S, Lynch J, Biswas J, Wu T, Durham HD, Yeo GW, Vera M. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. Nat Commun 2024; 15:10796. [PMID: 39737952 PMCID: PMC11685665 DOI: 10.1038/s41467-024-55055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhances HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites is impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured spinal cord mouse motor neurons or by expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Phuong Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Suleima Jacob-Tomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Mario Fernandez Comaduran
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - James Lynch
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tad Wu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Fernandez-Comaduran M, Verbrugghe M, Xu JSM, Minotti S, Lynch J, Biswas J, Wu T, Durham H, Yeo GW, Vera M. Localized synthesis of molecular chaperones sustains neuronal proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560761. [PMID: 37873158 PMCID: PMC10592939 DOI: 10.1101/2023.10.03.560761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.
Collapse
|
3
|
Analysis of the Expression and Subcellular Distribution of eEF1A1 and eEF1A2 mRNAs during Neurodevelopment. Cells 2022; 11:cells11121877. [PMID: 35741005 PMCID: PMC9220863 DOI: 10.3390/cells11121877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Neurodevelopment is accompanied by a precise change in the expression of the translation elongation factor 1A variants from eEF1A1 to eEF1A2. These are paralogue genes that encode 92% identical proteins in mammals. The switch in the expression of eEF1A variants has been well studied in mouse motor neurons, which solely express eEF1A2 by four weeks of postnatal development. However, changes in the subcellular localization of eEF1A variants during neurodevelopment have not been studied in detail in other neuronal types because antibodies lack perfect specificity, and immunofluorescence has a low sensitivity. In hippocampal neurons, eEF1A is related to synaptic plasticity and memory consolidation, and decreased eEF1A expression is observed in the hippocampus of Alzheimer's patients. However, the specific variant involved in these functions is unknown. To distinguish eEF1A1 from eEF1A2 expression, we have designed single-molecule fluorescence in-situ hybridization probes to detect either eEF1A1 or eEF1A2 mRNAs in cultured primary hippocampal neurons and brain tissues. We have developed a computational framework, ARLIN (analysis of RNA localization in neurons), to analyze and compare the subcellular distribution of eEF1A1 and eEF1A2 mRNAs at specific developmental stages and in mature neurons. We found that eEF1A1 and eEF1A2 mRNAs differ in expression and subcellular localization over neurodevelopment, and eEF1A1 mRNAs localize in dendrites and synapses during dendritogenesis and synaptogenesis. Interestingly, mature hippocampal neurons coexpress both variant mRNAs, and eEF1A1 remains the predominant variant in dendrites.
Collapse
|
4
|
Lee C, Roberts SE, Gladfelter AS. Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH. Methods 2015; 98:124-133. [PMID: 26690072 DOI: 10.1016/j.ymeth.2015.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
mRNA positioning in the cell is important for diverse cellular functions and proper development of multicellular organisms. Single-molecule RNA FISH (smFISH) enables quantitative investigation of mRNA localization and abundance at the level of individual molecules in the context of cellular features. Details about spatial mRNA patterning at various times, in different genetic backgrounds, at different developmental stages, and under varied environmental conditions provide invaluable insights into the mechanisms and functions of spatial regulation. Here, we describe detailed methods for performing smFISH along with immunofluorescence for two large, multinucleate cell types: the fungus Ashbya gossypii and cultured mouse myotubes. We also put forward a semi-automated image processing tool that systematically detects mRNAs from smFISH data and statistically analyzes the spatial pattern of mRNAs using a customized MATLAB code. These protocols and image analysis tools can be adapted to a wide variety of transcripts and cell types for systematically and quantitatively analyzing mRNA distribution in three-dimensional space.
Collapse
Affiliation(s)
- ChangHwan Lee
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha E Roberts
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
5
|
Shirinfar B, Ahmed N, Park YS, Cho GS, Youn IS, Han JK, Nam HG, Kim KS. Selective Fluorescent Detection of RNA in Living Cells by Using Imidazolium-Based Cyclophane. J Am Chem Soc 2012; 135:90-3. [DOI: 10.1021/ja3112274] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bahareh Shirinfar
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Nisar Ahmed
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Yu Shin Park
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Gun-Sik Cho
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Il Seung Youn
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Jin-Kwan Han
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Hong Gil Nam
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Kwang S. Kim
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| |
Collapse
|
6
|
Role of mitogen-activated protein kinase (MAPK) docking sites on Staufen2 protein in dendritic mRNA transport. Biochem Biophys Res Commun 2008; 372:525-9. [PMID: 18492489 DOI: 10.1016/j.bbrc.2008.05.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/09/2008] [Indexed: 11/24/2022]
Abstract
Although transport and subsequent translation of dendritic mRNA play an important role in neuronal synaptic plasticity, the underlying mechanisms for modulating dendritic mRNA transport are almost completely unknown. In this study, we identified and characterized an interaction between Staufen2 and mitogen-activated protein kinase (MAPK) with co-immunoprecipitation assays. Staufen2 utilized a docking (D) site to interact with ERK1/2; deleting the D-site decreased colocalization of Staufen2 with immunoreactive ERK1/2 in the cell body regions of cultured hippocampal neurons, and it reduced the amount of Staufen2-containing RNP complexes in the distal dendrites. In addition, the deletion completely abolished the depolarization-induced increase of Staufen2-containing RNP complexes. These results suggest that the MAPK pathway could modulate dendritic mRNA transport through its interaction with Staufen2.
Collapse
|
7
|
Moser JJ, Eystathioy T, Chan EKL, Fritzler MJ. Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies. J Neurosci Res 2008; 85:3619-31. [PMID: 17663465 DOI: 10.1002/jnr.21439] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GW bodies (GWBs) are unique cytoplasmic structures that contain the mRNA binding protein GW182 and other proteins involved in mRNA processing pathways. The rationale for this study arose from clinical studies indicating that 33% of patients with GWB autoantibodies have a motor/sensory neuropathy and/or ataxia. The novelty of this study is the identification of GWBs in astrocytes and astrocytoma cells within cell bodies and cytoplasmic projections. Astrocytoma GWBs exhibit complex heterogeneity with combinations of LSm4 and XRN1 as well as Ago2 and Dicer, key proteins involved in mRNA degradation and RNA interference, respectively. GWB subsets contained the mRNA transport and stabilization proteins SYNCRIP, hnRNPA1, and FMRP, not previously described as part of the GWB complex. Immunoprecipitation of astrocytoma GWBs suggested that Dicer, hDcp, LSm4, XRN1, SYNCRIP, and FMRP form a multiprotein complex. GWBs are likely involved in a number of regulatory mRNA pathways in astrocytes and astrocytoma cells.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
9
|
Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 2003. [PMID: 12843282 DOI: 10.1523/jneurosci.23-13-05778.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staufen1, the mammalian homolog of Drosophila Staufen, assembles into ribonucleoprotein particles (RNPs), which are thought to transport and localize RNA into dendrites of mature hippocampal neurons. We therefore investigated whether additional components of the RNA localization complex besides Staufen are conserved. One candidate is the mammalian homolog of Drosophila Barentsz (Btz), which is essential for the localization of oskar mRNA to the posterior pole of the Drosophila oocyte and is a component of the oskar RNA localization complex along with Staufen. In this study, we report the characterization of mammalian Btz, which behaves like a nucleocytoplasmic shuttling protein. When expressed in the Drosophila egg chamber, mammalian Btz is still able to interact with Drosophila Staufen and reach the posterior pole in the wild-type oocyte, but does not rescue the btz mutant phenotype. Most interestingly, we show by immunoprecipitation assays that Btz interacts with mammalian Staufen in an RNA-dependent manner through a conserved domain, which encompasses the region of homology to the Drosophila Btz protein and contains a novel conserved motif. One candidate for an RNA that mediates this interaction is the dendritically localized brain cytoplasmic 1 transcript. In addition, Btz and Staufen1 colocalize within particles in the cell body and, to a more variable extent, in dendrites of mature hippocampal neurons. Together, our data suggest that the mRNA transport machinery is conserved during evolution, and that mammalian Btz is an additional component of the dendritic RNPs in hippocampal neurons.
Collapse
|
10
|
Macchi P, Kroening S, Palacios IM, Baldassa S, Grunewald B, Ambrosino C, Goetze B, Lupas A, St Johnston D, Kiebler M. Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 2003; 23:5778-88. [PMID: 12843282 PMCID: PMC6741274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Staufen1, the mammalian homolog of Drosophila Staufen, assembles into ribonucleoprotein particles (RNPs), which are thought to transport and localize RNA into dendrites of mature hippocampal neurons. We therefore investigated whether additional components of the RNA localization complex besides Staufen are conserved. One candidate is the mammalian homolog of Drosophila Barentsz (Btz), which is essential for the localization of oskar mRNA to the posterior pole of the Drosophila oocyte and is a component of the oskar RNA localization complex along with Staufen. In this study, we report the characterization of mammalian Btz, which behaves like a nucleocytoplasmic shuttling protein. When expressed in the Drosophila egg chamber, mammalian Btz is still able to interact with Drosophila Staufen and reach the posterior pole in the wild-type oocyte, but does not rescue the btz mutant phenotype. Most interestingly, we show by immunoprecipitation assays that Btz interacts with mammalian Staufen in an RNA-dependent manner through a conserved domain, which encompasses the region of homology to the Drosophila Btz protein and contains a novel conserved motif. One candidate for an RNA that mediates this interaction is the dendritically localized brain cytoplasmic 1 transcript. In addition, Btz and Staufen1 colocalize within particles in the cell body and, to a more variable extent, in dendrites of mature hippocampal neurons. Together, our data suggest that the mRNA transport machinery is conserved during evolution, and that mammalian Btz is an additional component of the dendritic RNPs in hippocampal neurons.
Collapse
Affiliation(s)
- Paolo Macchi
- Max-Planck-Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|