1
|
Fornasiero A, Feng T, Al-Bader N, Alsantely A, Mussurova S, Hoang NV, Misra G, Zhou Y, Fabbian L, Mohammed N, Rivera Serna L, Thimma M, Llaca V, Parakkal P, Kudrna D, Copetti D, Rajasekar S, Lee S, Talag J, Sobel-Sorenson C, Carpentier MC, Panaud O, McNally KL, Zhang J, Zuccolo A, Schranz ME, Wing RA. Oryza genome evolution through a tetraploid lens. Nat Genet 2025:10.1038/s41588-025-02183-5. [PMID: 40295881 DOI: 10.1038/s41588-025-02183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Oryza is a remarkable genus comprising 27 species and 11 genome types, with ~3.4-fold genome size variation, that possesses a virtually untapped reservoir of genes that can be used for crop improvement and neodomestication. Here we present 11 chromosome-level assemblies (nine tetraploid, two diploid) in the context of ~15 million years of evolution and show that the core Oryza (sub)genome is only ~200 Mb and largely syntenic, whereas the remaining nuclear fractions (~80-600 Mb) are intermingled, plastic and rapidly evolving. For the halophyte Oryza coarctata, we found that despite detection of gene fractionation in the subgenomes, homoeologous genes were expressed at higher levels in one subgenome over the other in a mosaic form, demonstrating subgenome equivalence. The integration of these 11 new reference genomes with previously published genome datasets provides a nearly complete view of the consequences of evolution for genome diversification across the genus.
Collapse
Affiliation(s)
- Alice Fornasiero
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Tao Feng
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Noor Al-Bader
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aseel Alsantely
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Center for Vegetation Development and Combating Desertification (NCVC), Riyadh, Saudi Arabia
| | - Saule Mussurova
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Gopal Misra
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Zhou
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leonardo Fabbian
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nahed Mohammed
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis Rivera Serna
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manjula Thimma
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, USA
| | | | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Chandler Sobel-Sorenson
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Kenneth L McNally
- Rice Breeding Innovations Department, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Andrea Zuccolo
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Institute of Crop Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Rod A Wing
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Venkatesan RT, Rani A, Umesh S, Sushil K, Kumar DA, Sowmya P, Kesavan M, Singh RB, Panchasara HH, Kumar SA, Chhaya R. Genome-wide scan for SNPs and selective sweeps reveals candidate genes and QTLs for milk production and reproduction traits in Indian Kankrej cattle. 3 Biotech 2025; 15:90. [PMID: 40092452 PMCID: PMC11909306 DOI: 10.1007/s13205-025-04263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Genome-wide identification and annotation of SNPs and selective sweeps was done in Kankrej cattle using the ddRAD sequencing method. Identified 1,983,581 SNPs and nearly half (48.81%) of the effects were found in intron region. Around 624 SNPs annotated in 215 candidate genes were associated with various milk production and reproduction traits. The degree of heterozygosity as 0.2907 against expected heterozygosity of 0.3216. Identified 300 candidate selective sweeps and functional profiling of genes in selective sweep regions resulted with 20 significant (adj p < 0.05) functions. Functional annotation revealed 53.2% of QTLs for milk association while 15.33% for production association, 10.68% for reproduction association, and 8.4% for exterior association. The functional enrichment analysis revealed the presence of significant QTLs in 14 chromosomes. The QTL for milk protein percentage was identified as the top most significant milk type along with the milk potassium content, milk casein percentage, milk yield, milk fat yield, etc. The interval to first estrus after calving, age at puberty, calving interval, conception rate, and birth index were some of the significant QTLs identified for reproduction traits. Genes related to keratinization indicated the selection signature in relation to environmental stressors contributing to adaptation of animals to tropical climatic condition. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04263-z.
Collapse
Affiliation(s)
| | - Alex Rani
- ICAR-National Dairy Research Institute, Karnal, Haryana India
| | - Singh Umesh
- Bihar Animal Sciences University, Patna, Bihar India
| | - Kumar Sushil
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| | - Das Achintya Kumar
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| | - Pulapet Sowmya
- Oneomics Private Limited, Bharathidasan University Technology Park, Khajamalai Campus, Tiruchirappalli, Tamil Nadu India
| | - Markkandan Kesavan
- Oneomics Private Limited, Bharathidasan University Technology Park, Khajamalai Campus, Tiruchirappalli, Tamil Nadu India
| | | | - H. H. Panchasara
- Livestock Research Station, Kamdhenu University, Dantiwada, Gujarat India
| | - Singh Amit Kumar
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| | - Rani Chhaya
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| |
Collapse
|
3
|
Li X, Schmitz RJ. Cis-regulatory dynamics in plant domestication. Trends Genet 2025:S0168-9525(25)00046-0. [PMID: 40140332 DOI: 10.1016/j.tig.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Cis-regulatory elements (CREs) are critical sequence determinants for spatiotemporal control of gene expression. Genetic variants within CREs have driven phenotypic transitions from wild to cultivated plants during domestication. This review summarizes our current understanding of genetic variants within CREs involved in plant domestication. We also propose avenues for studies to expand our understanding of both CRE biology and domestication processes, such as examining primary mechanisms that generate CRE genetic variants during plant domestication and investigating the roles of CREs in domestication syndrome. Additionally, we discuss existing challenges and highlight future opportunities for exploring CREs in plant domestication, emphasizing the potential of modifying CREs to contribute to crop improvement.
Collapse
Affiliation(s)
- Xiang Li
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Agata A. Genetic mechanisms underlying diverse panicle architecture in rice. Biosci Biotechnol Biochem 2025; 89:502-507. [PMID: 39658367 DOI: 10.1093/bbb/zbae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Rice panicle architecture exhibits remarkable diversity and is crucial in determining grain production. Recent advances in the understanding of the genetic mechanisms underlying panicle morphogenesis offer promising avenues for improving rice productivity. Here, I reviewed recent studies on the developmental regulatory genes responsible for panicle architecture and explored how these findings can be applied to crop breeding. I also discuss the potential of using wild Oryza genetic resources, highlighting their value not only for scientific exploration but also for breeding innovation. Isolating novel genes related to panicle development and understanding their function are essential for designing diverse panicle architectures by quantitative trait locus pyramiding or genome editing technology. The use of these genetic resources offers a sustainable means to improve rice plant architecture and their resilience to climate change.
Collapse
Affiliation(s)
- Ayumi Agata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
- National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
5
|
Campbell Q, Bedford JA, Yu Y, Halpin-McCormick A, Castaneda-Alvarez N, Runck B, Neyhart J, Ewing P, Ortiz-Barrientos D, Gao L, Wang D, Chapman MA, Rieseberg LH, Kantar MB. Agricultural landscape genomics to increase crop resilience. PLANT COMMUNICATIONS 2025; 6:101260. [PMID: 39849843 PMCID: PMC11897451 DOI: 10.1016/j.xplc.2025.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 01/25/2025]
Abstract
Populations are continually adapting to their environment. Knowledge of which populations and individuals harbor unique and agriculturally useful variations has the potential to accelerate crop adaptation to the increasingly challenging environments predicted for the coming century. Landscape genomics, which identifies associations between environmental and genomic variation, provides a means for obtaining this knowledge. However, despite extensive efforts to assemble and characterize ex situ collections of crops and their wild relatives, gaps remain in the genomic and environmental datasets needed to robustly implement this approach. This article outlines the history of landscape genomics, which, to date, has mainly been used in conservation and evolutionary studies, provides an overview of crops and wild relative collections that have the necessary data for implementation and identifies areas where new data generation is needed. We find that 60% of the crops covered by the International Treaty on Plant Genetic Resources for Food and Agriculture lack the data necessary to conduct this kind of analysis, necessitating identification of crops in need of more collections, sequencing, or phenotyping. By highlighting these aspects, we aim to help develop agricultural landscape genomics as a sub-discipline that brings together evolutionary genetics, landscape ecology, and plant breeding, ultimately enhancing the development of resilient and adaptable crops for future environmental challenges.
Collapse
Affiliation(s)
- Quinn Campbell
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - James A Bedford
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yue Yu
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Anna Halpin-McCormick
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Bryan Runck
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | | | - Daniel Ortiz-Barrientos
- School of the Environment and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diane Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
6
|
Alseekh S, Klemmer A, Yan J, Guo T, Fernie AR. Embracing plant plasticity or robustness as a means of ensuring food security. Nat Commun 2025; 16:461. [PMID: 39774717 PMCID: PMC11706996 DOI: 10.1038/s41467-025-55872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
The dual challenges of global population explosion and environmental deterioration represent major hurdles for 21st Century agriculture culminating in an unprecedented demand for food security. In this Review, we revisit historical concepts of plasticity and canalization before integrating them with contemporary studies of genotype-environment interactions (G×E) that are currently being carried out at the genome-wide level. In doing so we address both fundamental questions regarding G×E and potential strategies to best secure yields in both current and future climate scenarios.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
7
|
Zhang M, Song M, Cheng F, Han X, Cheng C, Yu X, Chen J, Lou Q. The mutation of ent-kaurenoic acid oxidase, a key enzyme involved in gibberellin biosynthesis, confers a dwarf phenotype to cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:12. [PMID: 39718570 DOI: 10.1007/s00122-024-04785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
KEY MESSAGE A dwarf mutant with short branches (csdf) was identified from EMS-induced mutagenesis. Bulked segregant analysis sequencing and map-based cloning revealed CsKAO encoding ent-kaurenoic acid oxidase as the causal gene. Plant architecture is the primary target of artificial selection during domestication and improvement based on the determinate function for fruit yield. Plant architecture is regulated by complicated genetic networks, more underlying mechanism remains to be elucidated. Here, we identified a dwarf mutant (csdf) in an EMS-induced cucumber population, and genetic analysis revealed the mutated phenotype is controlled by a single recessive gene. Optical microanalysis showed the decrease in cell length is mainly contribute to the dwarf phenotype. By strategy of BSA-seq combined with map-based cloning, CsaV3_6G006520 (CsKAO) on chromosome 6 was identified as the candidate gene for csdf. Gene cloning and sequence alignment revealed a G to A mutation in the sixth exon, which causes the premature stop codon in CsKAO of csdf. Expression analysis revealed CsKAO was expressed in various tissues with abundant transcripts, and has significant differences between WT and csdf. Gene annotation indicated CsKAO encodes a cytochrome P450 family ent-kaurenoic acid oxidase which functioned in GA biosynthesis. GA-relevant analysis showed that endogenous GA contents were significantly decreased and the dwarfism phenotype could be restored by exogenous GA3 treatment; while, some of the representative enzyme genes involved in the GA pathway were up-regulated in csdf. Besides, IAA content is decreased in the terminal bud and increased in the lateral bud in csdf as well as several IAA-related genes are differentially expressed. Overall, those findings suggest that CsKAO regulated plant height via the influence on GAs pathways, and IAA might interact with GAs on plant architecture morphogenesis in cucumber.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaoxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing, 210095, China.
| |
Collapse
|
8
|
Lobato C, de Freitas JM, Habich D, Kögl I, Berg G, Cernava T. Wild again: recovery of a beneficial Cannabis seed endophyte from low domestication genotypes. MICROBIOME 2024; 12:239. [PMID: 39548475 PMCID: PMC11568533 DOI: 10.1186/s40168-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Beyond carrying the plant embryo, seeds harbour intricate microbial communities whose transmission across successive plant generations can significantly influence the ecological and evolutionary dynamics of plant-microbe symbioses. The process of plant domestication has potential repercussions in genes involved in plant-microbiome interactions. However, the extent to which breeding can impact the seed microbiome is sparsely explored. Cannabis is a high-value crop but sparsely subjected to agricultural innovations established in other crop species during the last century. Here, we conduct a large-scale analysis of the bacterial seed microbiome of Cannabis across different domestication grades and investigate the potential of seed-associated endophytes as plant growth-promoting agents under both controlled and field conditions. RESULTS Analysis of Cannabis seed endophyte composition and diversity across 46 plant genotypes revealed 813 different bacterial genera with a predominance of Gammaproteobacteria, Bacilli, Actinobacteria and Alphaproteobacteria but a genotype-specific microbiome. The assessment of domestication and breeding on microbial assembly revealed a higher bacterial diversity in low domestication genotypes (Shannon index, H': 1.21 vs. 1.05) and a higher homogeneity in bacterial composition caused by line development. Further, a seed bacterial isolate (Bacillus frigoritolerans C1141) associated with low domestication genotypes, and with genes associated with bio-fertilization, bioremediation and phytohormone production, increased plant growth by 42.3% at the time of harvest, under field conditions. CONCLUSION This study addresses critical knowledge gaps related to the assembly of the Cannabis seed-endophytic microbiome. It reveals that Cannabis breeding is linked to alterations of seed microbial communities, which potentially led to the loss of bacteria with functional significance. These results highlight the importance of preserving seed microbiomes in plant breeding to support sustainable plant health and growth enhancement in Cannabis. Video Abstract.
Collapse
Affiliation(s)
- Carolina Lobato
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - João Machado de Freitas
- Institute for Signal Processing and Speech Communication, Graz University of Technology, Inffeldgasse 16C/EG, Graz, 8010, Austria
| | - Daniel Habich
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Isabella Kögl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 1446, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, 14476, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Highfield Campus, Southampton, SO17 1BJ, UK.
| |
Collapse
|
9
|
Ye W, Di Caprio L, Bruno P, Jaccard C, Bustos-Segura C, Arce CCM, Benrey B. Cultivar-Specific Defense Responses in Wild and Cultivated Squash Induced by Belowground and Aboveground Herbivory. J Chem Ecol 2024; 50:738-750. [PMID: 38914799 PMCID: PMC11543723 DOI: 10.1007/s10886-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Plant domestication often alters plant traits, including chemical and physical defenses against herbivores. In squash, domestication leads to reduced levels of cucurbitacins and leaf trichomes, influencing interactions with insects. However, the impact of domestication on inducible defenses in squash remains poorly understood. Here, we investigated the chemical and physical defensive traits of wild and domesticated squash (Cucurbita argyrosperma), and compared their responses to belowground and aboveground infestation by the root-feeding larvae and the leaf-chewing adults of the banded cucumber beetle Diabrotica balteata (Coleoptera: Chrysomelidae). Wild populations contained cucurbitacins in roots and cotyledons but not in leaves, whereas domesticated varieties lacked cucurbitacins in all tissues. Belowground infestation by D. balteata larvae did not increase cucurbitacin levels in the roots but triggered the expression of cucurbitacin biosynthetic genes, irrespective of domestication status, although the response varied among different varieties. Conversely, whereas wild squash had more leaf trichomes than domesticated varieties, the induction of leaf trichomes in response to herbivory was greater in domesticated plants. Leaf herbivory varied among varieties but there was a trend of higher leaf damage on wild squash than domesticated varieties. Overall, squash plants responded to both belowground and aboveground herbivory by activating chemical defense-associated gene expression in roots and upregulating their physical defense in leaves, respectively. While domestication suppressed both chemical and physical defenses, our findings suggest that it may enhance inducible defense mechanisms by increasing trichome induction in response to herbivory.
Collapse
Affiliation(s)
- Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Leandro Di Caprio
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Plant Production Systems, Route Des Eterpys 18, 1964, Agroscope, Conthey, Switzerland
| | - Charlyne Jaccard
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
10
|
Rolhauser AG, Isaac ME, Violle C, Martin AR, Vasseur F, Lemoine T, Mahaut L, Fort F, Rotundo JL, Vile D. Phenotypic limits of crop diversity: a data exploration of functional trait space. THE NEW PHYTOLOGIST 2024; 244:708-718. [PMID: 39183372 DOI: 10.1111/nph.20050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.
Collapse
Affiliation(s)
- Andrés G Rolhauser
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, C1417DSE, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
- Department of Global Development Studies, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, ON, Canada
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Taina Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - José L Rotundo
- Corteva Agriscience, 7250 NW 62nd Ave., Johnston, 50310, IA, USA
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, 34000, France
| |
Collapse
|
11
|
Tong W, Wang Y, Li F, Zhai F, Su J, Wu D, Yi L, Gao Q, Wu Q, Xia E. Genomic variation of 363 diverse tea accessions unveils the genetic diversity, domestication, and structural variations associated with tea adaptation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2175-2190. [PMID: 38990113 DOI: 10.1111/jipb.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Domestication has shaped the population structure and agronomic traits of tea plants, yet the complexity of tea population structure and genetic variation that determines these traits remains unclear. We here investigated the resequencing data of 363 diverse tea accessions collected extensively from almost all tea distributions and found that the population structure of tea plants was divided into eight subgroups, which were basically consistent with their geographical distributions. The genetic diversity of tea plants in China decreased from southwest to east as latitude increased. Results also indicated that Camellia sinensis var. assamica (CSA) illustrated divergent selection signatures with Camellia sinensis var. sinensis (CSS). The domesticated genes of CSA were mainly involved in leaf development, flavonoid and alkaloid biosynthesis, while the domesticated genes in CSS mainly participated in amino acid metabolism, aroma compounds biosynthesis, and cold stress. Comparative population genomics further identified ~730 Mb novel sequences, generating 6,058 full-length protein-encoding genes, significantly expanding the gene pool of tea plants. We also discovered 217,376 large-scale structural variations and 56,583 presence and absence variations (PAVs) across diverse tea accessions, some of which were associated with tea quality and stress resistance. Functional experiments demonstrated that two PAV genes (CSS0049975 and CSS0006599) were likely to drive trait diversification in cold tolerance between CSA and CSS tea plants. The overall findings not only revealed the genetic diversity and domestication of tea plants, but also underscored the vital role of structural variations in the diversification of tea plant traits.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Didi Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Lianghui Yi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qijuan Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Computer and Artificial Intelligence, Hefei Normal University, Hefei, 230061, China
| | - Qiong Wu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
12
|
Cai M, Xiong Q, Mao R, Zhu C, Deng H, Zhang Z, Qiu F, Liu L. Determination of single or paired-kernel-rows is controlled by two quantitative loci during maize domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:227. [PMID: 39299955 DOI: 10.1007/s00122-024-04742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE qPEDS1, a major quantitative trait locus that determines kernel row number during domestication, harbors the proposed causal gene Zm00001d033675, which may affect jasmonic acid biosynthesis and determine the fate of spikelets. Maize domestication has achieved the production of maize with enlarged ears, enhancing grain productivity dramatically. Kernel row number (KRN), an important yield-related trait, has increased from two rows in teosinte to at least eight rows in modern maize. However, the genetic mechanisms underlying this process remain unclear. To understand KRN domestication, we developed a teosinte-maize BC2F7 population by introgressing teosinte into a maize background. We identified one line, Teosinte ear rank1 (Ter1), with only 5-7 kernel rows which is fewer than those in almost all maize inbred lines. We detected two quantitative trait loci underlying Ter1 and fine-mapped the major one to a 300-kb physical interval. Two candidate genes, Zm674 and Zm675, were identified from 26 maize reference genomes and teosinte bacterial artificial chromosome sequences. Finally, we proposed that Ter1 affects jasmonic acid biosynthesis in the developing ear to determine KRN by the fate of spikelets. This study provides novel insights into the genetic and molecular mechanisms underlying KRN domestication and candidates for de novo wild teosinte domestication.
Collapse
Affiliation(s)
- Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qing Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruijie Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Can Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hua Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
Cho Y, Kim JY, Kim SK, Kim SY, Kim N, Lee J, Park JL. Whole-genome sequencing analysis of soybean diversity across different countries and selection signature of Korean soybean accession. G3 (BETHESDA, MD.) 2024; 14:jkae118. [PMID: 38833595 PMCID: PMC11304964 DOI: 10.1093/g3journal/jkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5,000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America, and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.
Collapse
Affiliation(s)
- Youngbeom Cho
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Kyu Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Liu L, Zhan J, Yan J. Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design. J Genet Genomics 2024; 51:781-789. [PMID: 38531485 DOI: 10.1016/j.jgg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
16
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Wang X, Cheng F, Charlesworth D, Qian W. Insights into spinach domestication from genome sequences of two wild spinach progenitors, Spinacia turkestanica and Spinacia tetrandra. THE NEW PHYTOLOGIST 2024; 243:477-494. [PMID: 38715078 DOI: 10.1111/nph.19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Cultivated spinach (Spinacia oleracea) is a dioecious species. We report high-quality genome sequences for its two closest wild relatives, Spinacia turkestanica and Spinacia tetrandra, which are also dioecious, and are used to study the genetics of spinach domestication. Using a combination of genomic approaches, we assembled genomes of both these species and analyzed them in comparison with the previously assembled S. oleracea genome. These species diverged c. 6.3 million years ago (Ma), while cultivated spinach split from S. turkestanica 0.8 Ma. In all three species, all six chromosomes include very large gene-poor, repeat-rich regions, which, in S. oleracea, are pericentromeric regions with very low recombination rates in both male and female genetic maps. We describe population genomic evidence that the similar regions in the wild species also recombine rarely. We characterized 282 structural variants (SVs) that have been selected during domestication. These regions include genes associated with leaf margin type and flowering time. We also describe evidence that the downy mildew resistance loci of cultivated spinach are derived from introgression from both wild spinach species. Collectively, this study reveals the genome architecture of spinach assemblies and highlights the importance of SVs during the domestication of cultivated spinach.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Alam O, Purugganan MD. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. THE PLANT CELL 2024; 36:1227-1241. [PMID: 38243576 PMCID: PMC11062453 DOI: 10.1093/plcell/koae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices.
Collapse
Affiliation(s)
- Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, 10028, USA
| |
Collapse
|
18
|
Raas MWD, Dutheil JY. The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations. Mol Ecol 2024; 33:e16980. [PMID: 37157166 DOI: 10.1111/mec.16980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive (ω a ) and non-adaptive (ω na ) non-synonymous substitutions in protein-coding genes. We report an overall limited contribution of positive selection to S. cerevisiae protein evolution, albeit with higher rates of adaptive evolution in wild compared to domesticated populations. Our analyses revealed the signature of background selection and possibly Hill-Robertson interference, as recombination was found to be negatively correlated withω na and positively correlated withω a . However, the effect of recombination onω a was found to be labile, as it is only apparent after removing the impact of codon usage bias on the synonymous site frequency spectrum and disappears if we control for the correlation withω na , suggesting that it could be an artefact of the decreasing population size. Furthermore, the rate of adaptive non-synonymous substitutions is significantly correlated with the residue solvent exposure, a relation that cannot be explained by the population's demography. Together, our results provide a detailed characterisation of adaptive mutations in protein-coding genes across S. cerevisiae populations.
Collapse
Affiliation(s)
- Maximilian W D Raas
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Julien Y Dutheil
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Unité Mixte de Recherche 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
20
|
Liu C, Wang J, Ko YZ, Shiao MS, Wang Y, Sun J, Yuan Q, Wang L, Chiang YC, Guo L. Genetic diversities in wild and cultivated populations of the two closely-related medical plants species, Tripterygium Wilfordii and T. Hypoglaucum (Celastraceae). BMC PLANT BIOLOGY 2024; 24:195. [PMID: 38493110 PMCID: PMC10944624 DOI: 10.1186/s12870-024-04826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The sustainable supply of medicinal plants is important, and cultivating and domesticating them has been suggested as an optimal strategy. However, this can lead to a loss of genetic diversity. Tripterygium wilfordii Hook. f. is a medicinal plant commonly used in traditional Chinese medicine, but its wild populations are dwindling due to excessive harvesting. To protect the species and meet the increasing demand, it is urgent to cultivate it on a large scale. However, distinguishing between T. wilfordii and T. hypoglaucum, two similar species with different medicinal properties, is challenging. Therefore, it is crucial to understand the genetic diversity and population structure of these species for their sustainable utilization. RESULTS In this study, we investigated the genetic diversity and population structure of the two traditional medicinal semiwoody vines plant species, Tripterygium wilfordii and T. hypoglaucum, including wild and cultivated populations using chloroplast DNA (cpDNA) sequences and microsatellite loci. Our results indicated that the two species maintain a high level of genetic divergence, indicating possible genetic bases for the different contents of bioactive compounds of the two species. T. wilfordii showed lower genetic diversity and less subdivided population structures of both markers than T. hypoglaucum. The potential factors in shaping these interesting differences might be differentiated pollen-to-seed migration rates, interbreeding, and history of population divergence. Analyses of cpDNA and microsatellite loci supported that the two species are genetically distinct entities. In addition, a significant reduction of genetic diversity was observed for cultivated populations of the two species, which mainly resulted from the small initial population size and propagated vegetative practice during their cultivation. CONCLUSION Our findings indicate significant genetic divergence between T. wilfordii and T. hypoglaucum. The genetic diversity and population structure analyses provide important insights into the sustainable cultivation and utilization of these medicinal plants. Accurate identification and conservation efforts are necessary for both species to ensure the safety and effectiveness of crude drug use. Our study also highlighted the importance of combined analyses of different DNA markers in addressing population genetics of medicinal plants because of the contrasts of inheritance and rates of gene flow. Large-scale cultivation programs should consider preserving genetic diversity to enhance the long-term sustainability of T. wilfordii and T. hypoglaucum. Our study proposed that some populations showed higher genetic diversity and distinctness, which can be considered with priority for conservation and as the sources for future breeding and genetic improvement.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingyi Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lisong Wang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan.
- The Multidisciplinary and Data Science Research Center(MDSRC), National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
21
|
Zhang X, Su J, Jia F, He Y, Liao Y, Wang Z, Jiang J, Guan Z, Fang W, Chen F, Zhang F. Genetic architecture and genomic prediction of plant height-related traits in chrysanthemum. HORTICULTURE RESEARCH 2024; 11:uhad236. [PMID: 38222820 PMCID: PMC10782495 DOI: 10.1093/hr/uhad236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2024]
Abstract
Plant height (PH) is a crucial trait determining plant architecture in chrysanthemum. To better understand the genetic basis of PH, we investigated the variations of PH, internode number (IN), internode length (IL), and stem diameter (SD) in a panel of 200 cut chrysanthemum accessions. Based on 330 710 high-quality SNPs generated by genotyping by sequencing, a total of 42 associations were identified via a genome-wide association study (GWAS), and 16 genomic regions covering 2.57 Mb of the whole genome were detected through selective sweep analysis. In addition, two SNPs, Chr1_339370594 and Chr18_230810045, respectively associated with PH and SD, overlapped with the selective sweep regions from FST and π ratios. Moreover, candidate genes involved in hormones, growth, transcriptional regulation, and metabolic processes were highlighted based on the annotation of homologous genes in Arabidopsis and transcriptomes in chrysanthemum. Finally, genomic selection for four PH-related traits was performed using a ridge regression best linear unbiased predictor model (rrBLUP) and six marker sets. The marker set constituting the top 1000 most significant SNPs identified via GWAS showed higher predictabilities for the four PH-related traits, ranging from 0.94 to 0.97. These findings improve our knowledge of the genetic basis of PH and provide valuable markers that could be applied in chrysanthemum genomic selection breeding programs.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Feifei Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Yuan Liao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
22
|
Shemesh-Mayer E, Faigenboim A, Sherman A, Gao S, Zeng Z, Liu T, Kamenetsky-Goldstein R. Deprivation of Sexual Reproduction during Garlic Domestication and Crop Evolution. Int J Mol Sci 2023; 24:16777. [PMID: 38069099 PMCID: PMC10706073 DOI: 10.3390/ijms242316777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Zheng Zeng
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Hanjiang District, Yangzhou 225012, China; (S.G.); (Z.Z.); (T.L.)
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; (E.S.-M.); (A.F.); (A.S.)
| |
Collapse
|
23
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Klimova A, Ruiz Mondragón KY, Aguirre-Planter E, Valiente A, Lira R, Eguiarte LE. Genomic analysis unveils reduced genetic variability but increased proportion of heterozygotic genotypes of the intensively managed mezcal agave, Agave angustifolia. AMERICAN JOURNAL OF BOTANY 2023; 110:e16216. [PMID: 37478873 DOI: 10.1002/ajb2.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
PREMISE The central Oaxaca Basin has a century-long history of agave cultivation and is hypothesized to be the region of origin of other cultivated crops. Widely cultivated for mezcal production, the perennial crop known as "espadín" is putatively derived from wild Agave angustifolia. Nevertheless, little is known about its genetic relationship to the wild A. angustifolia or how the decades-long clonal propagation has affected its genetics. METHODS Using restriction-site-associated DNA sequencing and over 8000 single-nucleotide polymorphisms, we studied aspects of the population genomics of wild and cultivated A. angustifolia in Puebla and Oaxaca, Mexico. We assessed patterns of genetic diversity, inbreeding, distribution of genetic variation, and differentiation among and within wild populations and plantations. RESULTS Genetic differentiation between wild and cultivated plants was strong, and both gene pools harbored multiple unique alleles. Nevertheless, we found several cultivated individuals with high genetic affinity with wild samples. Higher heterozygosity was observed in the cultivated individuals, while in total, they harbored considerably fewer alleles and presented higher linkage disequilibrium compared to the wild plants. Independently of geographic distance among sampled plantations, the genetic relatedness of the cultivated plants was high, suggesting a common origin and prevalent role of clonal propagation. CONCLUSIONS The considerable heterozygosity found in espadín is contained within a network of highly related individuals, displaying high linkage disequilibrium generated by decades of clonal propagation and possibly by the accumulation of somatic mutations. Wild A. angustifolia, on the other hand, represents a significant genetic diversity reservoir that should be carefully studied and conserved.
Collapse
Affiliation(s)
- Anastasia Klimova
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karen Y Ruiz Mondragón
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Erika Aguirre-Planter
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfonso Valiente
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael Lira
- Laboratorio de Recursos Naturales, Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis E Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
25
|
Sun S, Ye X, Zou Q. Editorial: Machine learning on understanding the epigenetic mechanisms underlying plant adaptation and domestication. FRONTIERS IN PLANT SCIENCE 2023; 14:1236787. [PMID: 37469779 PMCID: PMC10352903 DOI: 10.3389/fpls.2023.1236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Shanwen Sun
- College of Life Science, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Flint-Garcia S, Feldmann MJ, Dempewolf H, Morrell PL, Ross-Ibarra J. Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes. PLoS Biol 2023; 21:e3002235. [PMID: 37440605 PMCID: PMC10368281 DOI: 10.1371/journal.pbio.3002235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2023] [Indexed: 07/15/2023] Open
Abstract
Crop production is becoming an increasing challenge as the global population grows and the climate changes. Modern cultivated crop species are selected for productivity under optimal growth environments and have often lost genetic variants that could allow them to adapt to diverse, and now rapidly changing, environments. These genetic variants are often present in their closest wild relatives, but so are less desirable traits. How to preserve and effectively utilize the rich genetic resources that crop wild relatives offer while avoiding detrimental variants and maladaptive genetic contributions is a central challenge for ongoing crop improvement. This Essay explores this challenge and potential paths that could lead to a solution.
Collapse
Affiliation(s)
- Sherry Flint-Garcia
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, United States of America
| | - Mitchell J. Feldmann
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | | | - Peter L. Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology, and Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
27
|
Conrady M, Lampei C, Bossdorf O, Hölzel N, Michalski S, Durka W, Bucharova A. Plants cultivated for ecosystem restoration can evolve toward a domestication syndrome. Proc Natl Acad Sci U S A 2023; 120:e2219664120. [PMID: 37155873 PMCID: PMC10193954 DOI: 10.1073/pnas.2219664120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The UN Decade on Ecosystem Restoration calls for upscaling restoration efforts, but many terrestrial restoration projects are constrained by seed availability. To overcome these constraints, wild plants are increasingly propagated on farms to produce seeds for restoration projects. During on-farm propagation, the plants face non-natural conditions with different selection pressures, and they might evolve adaptations to cultivation that parallel those of agricultural crops, which could be detrimental to restoration success. To test this, we compared traits of 19 species grown from wild-collected seeds to those from their farm-propagated offspring of up to four cultivation generations, produced by two European seed growers, in a common garden experiment. We found that some plants rapidly evolved across cultivated generations towards increased size and reproduction, lower within-species variability, and more synchronized flowering. In one species, we found evolution towards less seed shattering. These trait changes are typical signs of the crop domestication syndrome, and our study demonstrates that it can also occur during cultivation of wild plants, within only few cultivated generations. However, there was large variability between cultivation lineages, and the observed effect sizes were generally rather moderate, which suggests that the detected evolutionary changes are unlikely to compromise farm-propagated seeds for ecosystem restoration. To mitigate the potential negative effects of unintended selection, we recommend to limit the maximum number of generations the plants can be cultivated without replenishing the seed stock from new wild collections.
Collapse
Affiliation(s)
- Malte Conrady
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
- Department of Biology, Philipps-University Marburg, 35043Marburg, Germany
| | - Christian Lampei
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
- Department of Biology, Philipps-University Marburg, 35043Marburg, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, 72076Tübingen, Germany
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
| | - Stefan Michalski
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120Halle, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103Leipzig, Germany
| | - Anna Bucharova
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
- Department of Biology, Philipps-University Marburg, 35043Marburg, Germany
| |
Collapse
|
28
|
Lopez-Moreno H, Basurto-Garduño AC, Torres-Meraz MA, Diaz-Valenzuela E, Arellano-Arciniega S, Zalapa J, Sawers RJH, Cibrián-Jaramillo A, Diaz-Garcia L. Genetic analysis and QTL mapping of domestication-related traits in chili pepper ( Capsicum annuum L .). Front Genet 2023; 14:1101401. [PMID: 37255716 PMCID: PMC10225550 DOI: 10.3389/fgene.2023.1101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 06/01/2023] Open
Abstract
Chili pepper (Capsicum annuum L.) is one of the oldest and most phenotypically diverse pre-Columbian crops of the Americas. Despite the abundance of genetic resources, the use of wild germplasm and landraces in chili pepper breeding is limited. A better understanding of the evolutionary history in chili peppers, particularly in the context of traits of agronomic interest, can contribute to future improvement and conservation of genetic resources. In this study, an F2:3 mapping population derived from a cross between a C. annuum wild accession (Chiltepin) and a cultivated variety (Puya) was used to identify genomic regions associated with 19 domestication and agronomic traits. A genetic map was constructed consisting of 1023 single nucleotide polymorphism (SNP) markers clustered into 12 linkage groups and spanning a total of 1,263.87 cM. A reciprocal translocation that differentiates the domesticated genome from its wild ancestor and other related species was identified between chromosomes 1 and 8. Quantitative trait locus (QTL) analysis detected 20 marker-trait associations for 13 phenotypes, from which 14 corresponded to previously identified loci, and six were novel genomic regions related to previously unexplored domestication-syndrome traits, including form of unripe fruit, seedlessness, deciduous fruit, and growth habit. Our results revealed that the genetic architecture of Capsicum domestication is similar to other domesticated species with few loci with large effects, the presence of QTLs clusters in different genomic regions, and the predominance of domesticated recessive alleles. Our analysis indicates the domestication process in chili pepper has also had an effect on traits not directly related to the domestication syndrome. The information obtained in this study provides a more complete understanding of the genetic basis of Capsicum domestication that can potentially guide strategies for the exploitation of wild alleles.
Collapse
Affiliation(s)
- Hector Lopez-Moreno
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Mexico
| | - Ana Celia Basurto-Garduño
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Mexico
| | | | - Eric Diaz-Valenzuela
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Mexico
| | - Sergio Arellano-Arciniega
- Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias Campo Experimental AGS, Pabellón de Arteaga, Mexico
| | - Juan Zalapa
- Department of Horticulture, University of WI-Madison, Madison, WI, United States
- USDA-ARS Vegetable Crops Research Unit, Department of Horticulture University of WI-Madison, Madison, WI, United States
| | - Ruairidh J. H. Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
| | - Angelica Cibrián-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genomica Avanzada (Langebio), Irapuato, Mexico
| | - Luis Diaz-Garcia
- Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias Campo Experimental AGS, Pabellón de Arteaga, Mexico
| |
Collapse
|
29
|
Ge F, Xie P, Wu Y, Xie Q. Genetic architecture and molecular regulation of sorghum domestication. ABIOTECH 2023; 4:57-71. [PMID: 37220542 PMCID: PMC10199992 DOI: 10.1007/s42994-022-00089-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 05/25/2023]
Abstract
Over time, wild crops have been domesticated by humans, and the knowledge gained from parallel selection and convergent domestication-related studies in cereals has contributed to current techniques used in molecular plant breeding. Sorghum (Sorghum bicolor (L.) Moench) is the world's fifth-most popular cereal crop and was one of the first crops cultivated by ancient farmers. In recent years, genetic and genomic studies have provided a better understanding of sorghum domestication and improvements. Here, we discuss the origin, diversification, and domestication processes of sorghum based on archeological discoveries and genomic analyses. This review also comprehensively summarized the genetic basis of key genes related to sorghum domestication and outlined their molecular mechanisms. It highlights that the absence of a domestication bottleneck in sorghum is the result of both evolution and human selection. Additionally, understanding beneficial alleles and their molecular interactions will allow us to quickly design new varieties by further de novo domestication.
Collapse
Affiliation(s)
- Fengyong Ge
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
30
|
Baekelandt A, Saltenis VLR, Nacry P, Malyska A, Cornelissen M, Nanda AK, Nair A, Rogowsky P, Pauwels L, Muller B, Collén J, Blomme J, Pribil M, Scharff LB, Davies J, Wilhelm R, Rolland N, Harbinson J, Boerjan W, Murchie EH, Burgess AJ, Cohan J, Debaeke P, Thomine S, Inzé D, Lankhorst RK, Parry MAJ. Paving the way towards future‐proofing our crops. Food Energy Secur 2023. [DOI: 10.1002/fes3.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ. Montpellier, INRAE, CNRS, Institut Agro Montpellier France
| | | | | | - Amrit Kaur Nanda
- Plants for the Future' European Technology Platform Brussels Belgium
| | - Abhishek Nair
- Marketing and Consumer Behaviour Group Wageningen University Wageningen Gelderland Netherlands
| | - Peter Rogowsky
- INRAE, UMR Plant Reproduction and Development Lyon France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Bertrand Muller
- Université de Montpellier – LEPSE – INRAE – Institut Agro Montpellier France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff Sorbonne Université Roscoff France
| | - Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
- Phycology Research Group, Department of Biology Ghent University Ghent Belgium
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Denmark
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Denmark
| | - Jessica Davies
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology Julius Kühn‐Institut – Federal Research Centre for Cultivated Plants Quedlinburg Germany
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble Alpes, INRAE, CNRS, CEA Grenoble France
| | - Jeremy Harbinson
- Laboratory of Biophysics Wageningen University & Research Wageningen The Netherlands
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | | | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC) Université Paris‐Saclay, CEA, CNRS Gif‐sur‐Yvette France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | |
Collapse
|
31
|
Ghildiyal K, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Lei C, Bhushan B, Dutt T. Selection signatures for fiber production in commercial species: A review. Anim Genet 2023; 54:3-23. [PMID: 36352515 DOI: 10.1111/age.13272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Natural fibers derived from diverse animal species have gained increased attention in recent years due to their favorable environmental effects, long-term sustainability benefits, and remarkable physical and mechanical properties that make them valuable raw materials used for textile and non-textile production. Domestication and selective breeding for the economically significant fiber traits play an imperative role in shaping the genomes and, thus, positively impact the overall productivity of the various fiber-producing species. These selection pressures leave unique footprints on the genome due to alteration in the allelic frequencies at specific loci, characterizing selective sweeps. Recent advances in genomics have enabled the discovery of selection signatures across the genome using a variety of methods. The increased demand for 'green products' manufactured from natural fibers necessitates a detailed investigation of the genomes of the various fiber-producing plant and animal species to identify the candidate genes associated with important fiber attributes such as fiber diameter/fineness, color, length, and strength, among others. The objective of this review is to present a comprehensive overview of the concept of selection signature and selective sweeps, discuss the main methods used for its detection, and address the selection signature studies conducted so far in the diverse fiber-producing animal species.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
32
|
Salgotra RK, Chauhan BS. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes (Basel) 2023; 14:174. [PMID: 36672915 PMCID: PMC9859222 DOI: 10.3390/genes14010174] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Plant genetic resources (PGRs) are the total hereditary material, which includes all the alleles of various genes, present in a crop species and its wild relatives. They are a major resource that humans depend on to increase farming resilience and profit. Hence, the demand for genetic resources will increase as the world population increases. There is a need to conserve and maintain the genetic diversity of these valuable resources for sustainable food security. Due to environmental changes and genetic erosion, some valuable genetic resources have already become extinct. The landraces, wild relatives, wild species, genetic stock, advanced breeding material, and modern varieties are some of the important plant genetic resources. These diverse resources have contributed to maintaining sustainable biodiversity. New crop varieties with desirable traits have been developed using these resources. Novel genes/alleles linked to the trait of interest are transferred into the commercially cultivated varieties using biotechnological tools. Diversity should be maintained as a genetic resource for the sustainable development of new crop varieties. Additionally, advances in biotechnological tools, such as next-generation sequencing, molecular markers, in vitro culture technology, cryopreservation, and gene banks, help in the precise characterization and conservation of rare and endangered species. Genomic tools help in the identification of quantitative trait loci (QTLs) and novel genes in plants that can be transferred through marker-assisted selection and marker-assisted backcrossing breeding approaches. This article focuses on the recent development in maintaining the diversity of genetic resources, their conservation, and their sustainable utilization to secure global food security.
Collapse
Affiliation(s)
- Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu 180009, India
| | - Bhagirath Singh Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
33
|
Jahed KR, Hirst PM. Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1122397. [PMID: 37123845 PMCID: PMC10130390 DOI: 10.3389/fpls.2023.1122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Fruit growth and development are physiological processes controlled by several internal and external factors. This complex regulatory mechanism comprises a series of events occurring in a chronological order over a growing season. Understanding the underlying mechanism of fruit development events, however, requires consideration of the events occurring prior to fruit development such as flowering, pollination, fertilization, and fruit set. Such events are interrelated and occur in a sequential order. Recent advances in high-throughput sequencing technology in conjunction with improved statistical and computational methods have empowered science to identify some of the major molecular components and mechanisms involved in the regulation of fruit growth and have supplied encouraging successes in associating genotypic differentiation with phenotypic observations. As a result, multiple approaches have been developed to dissect such complex regulatory machinery and understand the genetic basis controlling these processes. These methods include transcriptomic analysis, quantitative trait loci (QTLs) mapping, whole-genome approach, and epigenetics analyses. This review offers a comprehensive overview of the molecular, genomic and epigenetics perspective of apple fruit growth and development that defines the final fruit size and provides a detailed analysis of the mechanisms by which fruit growth and development are controlled. Though the main emphasis of this article is on the molecular, genomic and epigenetics aspects of fruit growth and development, we will also deliver a brief overview on events occurring prior to fruit growth.
Collapse
|
34
|
Luong NH, Balkunde SG, Shim KC, Adeva C, Lee HS, Kim HJ, Ahn SN. Characterization of Domestication Loci Associated with Awn Development in Rice. RICE (NEW YORK, N.Y.) 2022; 15:61. [PMID: 36449175 PMCID: PMC9712879 DOI: 10.1186/s12284-022-00607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa L.) is a widely studied domesticated model plant. Seed awning is an unfavorable trait during rice harvesting and processing. Hence, loss of awn was one of the target characters selected during domestication. However, the genetic mechanisms underlying awn development in rice are not well understood. In this study, we analyzed and characterized the genes for awn development using a mapping population derived from a cross between the Korean indica cultivar 'Milyang23' and a near-isogenic line NIL4/9 derived from a cross between 'Hwaseong' and Oryza minuta. Two quantitative trait loci (QTLs), qAwn4 and qAwn9, mapped on chromosomes 4 and 9, respectively, increased awn length in an additive manner. Through comparative sequencing analyses of the parental lines, LABA1 was determined as the causal gene underlying qAwn4. qAwn9 was mapped to a 199-kb physical region between markers RM24663 and RM24679. Within this interval, 27 annotated genes were identified, and five genes, including a basic leucine zipper transcription factor 76 (OsbZIP76), were considered as candidate genes for qAwn9 based on their functional annotations and sequence variations. Haplotype analysis using the candidate gene revealed tropical-japonica specific sequence variants in the qAwn9 region, which partly explains the non-detection of qAwn9 in previous studies that used progenies from interspecific crosses. This provides further evidence that OsbZIP76 is possibly a causal gene for qAwn9. The O. minuta qAwn9 allele was identified as a major QTL, providing an important molecular target for understanding the genetic control of awn development in rice. Our results lay the foundation for further cloning of the awn gene underlying qAwn9.
Collapse
Affiliation(s)
- Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | | | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, 55365, South Korea
| | | | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
35
|
Zhang H, Mascher M, Abbo S, Jayakodi M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. PLANT & CELL PHYSIOLOGY 2022; 63:1540-1553. [PMID: 35534441 PMCID: PMC9680859 DOI: 10.1093/pcp/pcac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Grain legumes were domesticated in parallel with cereals in several regions of the world and formed the economic basis of early farming cultures. Since then, legumes have played a vital role in human and animal diets and in fostering agrobiodiversity. Increasing grain legume cultivation will be crucial to safeguard nutritional security and the resilience of agricultural ecosystems across the globe. A better understanding of the molecular underpinnings of domestication and crop evolution of grain legumes may be translated into practical approaches in modern breeding programs to stabilize yield, which is threatened by evolving pathogens and changing climates. During recent decades, domestication research in all crops has greatly benefited from the fast progress in genomic technologies. Yet still, many questions surrounding the domestication and diversification of legumes remain unanswered. In this review, we assess the potential of genomic approaches in grain legume research. We describe the centers of origin and the crucial domestication traits of grain legumes. In addition, we survey the effect of domestication on both above-ground and below-ground traits that have economic importance. Finally, we discuss open questions in grain legume domestication and diversification and outline how to bridge the gap between the preservation of historic crop diversity and their utilization in modern plant breeding.
Collapse
Affiliation(s)
- Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| |
Collapse
|
36
|
Pisias MT, Bakala HS, McAlvay AC, Mabry ME, Birchler JA, Yang B, Pires JC. Prospects of Feral Crop De Novo Redomestication. PLANT & CELL PHYSIOLOGY 2022; 63:1641-1653. [PMID: 35639623 DOI: 10.1093/pcp/pcac072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication-the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs-is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case 'redomestication'. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.
Collapse
Affiliation(s)
- Michael T Pisias
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Harmeet Singh Bakala
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO 63132, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
37
|
Genetic diversity, asexual reproduction and conservation of the edible fruit tree Spondias purpurea L. (Anacardiaceae) in the Costa Rican tropical dry forest. PLoS One 2022; 17:e0277439. [PMID: 36395193 PMCID: PMC9671346 DOI: 10.1371/journal.pone.0277439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The term circa situm has been used to describe different conservation strategies within agricultural landscapes. Circa situm conserves planted or remnant species in farmlands, where natural vegetation has been modified through anthropogenic intervention. It has been proposed that trees planted or retained under circa situm conditions may contribute to maintaining genetic diversity, however information on the role of this strategy in preserving genetic diversity is scarce. The aim of this study was to determine the levels of genetic diversity and structure, and mating patterns in planted and unmanaged stands of the tropical fruit tree Spondias purpurea L. in north western Costa Rica. In three localities, we used seven polymorphic microsatellite loci and genotyped 201 adults and 648 seeds from planted and wild stands. We found no differences in genetic diversity among planted and wild stands. Genetic structure analysis revealed that gene flow occurs among planted and wild stands within localities. Clones were present and their diversity and evenness were both high and similar between planted and wild stands. The number of pollen donors per progeny array was low (Nep = 1.01) which resulted in high levels of correlated paternity (rp = 0.9). Asexual seeds were found in 4.6% of the progeny arrays, which had multilocus genotypes that were identical to the maternal trees. Our results show that although planted stands under circa situm conditions can maintain similar levels of genetic diversity than wild stands, the low number of sires and asexual seed formation could threaten the long term persistence of populations.
Collapse
|
38
|
Zeibig F, Kilian B, Frei M. The grain quality of wheat wild relatives in the evolutionary context. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4029-4048. [PMID: 34919152 PMCID: PMC9729140 DOI: 10.1007/s00122-021-04013-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.
Collapse
Affiliation(s)
- Frederike Zeibig
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
39
|
Zingale S, Guarnaccia P, Matarazzo A, Lagioia G, Ingrao C. A systematic literature review of life cycle assessments in the durum wheat sector. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157230. [PMID: 35809725 DOI: 10.1016/j.scitotenv.2022.157230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
It is recognised today that the global food system does not always deliver good nutrition for all human beings, and, additionally, dramatically contributes to climate change, environmental degradation, and biodiversity loss. In particular, the cereal sector threatens biodiversity and ecosystem functions, due to environmentally harmful farming activities, that critically alter climate conditions, along with energy, land, and water resources. According to this paper's authors' opinion, this supports the rationale of conducting a systematic literature review of Life Cycle Assessments (LCAs) in the durum wheat (DW) sector, to highlight environmental hotspots and improvement potentials in the phases of cultivation and processing into finished products like pasta and bread. Methodological aspects were also discussed in this paper, to provide useful insights on how to best perform LCA in such agri-food supply chains. Given the findings from the papers reviewed, the authors could document that the cultivation phase is the primary environmental hotspot of DW-derived food products and suggested several mitigation and improvements solution including, organic farming practices, diversified cropping systems, reduction of N fertilisers and pesticides application, and irrigation optimisation strategies. Furthermore, the review highlighted that there exist two main gaps in the literature, mainly related to the scarce attention on the organic farming sector and DW landraces, and the lack of nutritional-property accounting in LCAs. Finally, although specific, the review may be of interest to researchers, LCA practitioners, farmers and producers, policy- and decision-makers, and other stakeholders, and could support the promotion of environmental sustainability in the DW sector.
Collapse
Affiliation(s)
- Silvia Zingale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia, 100-95123 Catania, Italy
| | - Paolo Guarnaccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia, 100-95123 Catania, Italy
| | - Agata Matarazzo
- Department of Economics and Business, University of Catania, Corso Italia, 55-95129 Catania, Italy
| | - Giovanni Lagioia
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53-70124 Bari, Italy
| | - Carlo Ingrao
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53-70124 Bari, Italy.
| |
Collapse
|
40
|
Sardos J, Breton C, Perrier X, Van den Houwe I, Carpentier S, Paofa J, Rouard M, Roux N. Hybridization, missing wild ancestors and the domestication of cultivated diploid bananas. FRONTIERS IN PLANT SCIENCE 2022; 13:969220. [PMID: 36275535 PMCID: PMC9586208 DOI: 10.3389/fpls.2022.969220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 06/08/2023]
Abstract
Hybridization and introgressions are important evolutionary forces in plants. They contribute to the domestication of many species, including understudied clonal crops. Here, we examine their role in the domestication of a clonal crop of outmost importance, banana (Musa ssp.). We used genome-wide SNPs generated for 154 diploid banana cultivars and 68 samples of the wild M. acuminata to estimate and geo-localize the contribution of the different subspecies of M. acuminata to cultivated banana. We further investigated the wild to domesticate transition in New Guinea, an important domestication center. We found high levels of admixture in many cultivars and confirmed the existence of unknown wild ancestors with unequal contributions to cultivated diploid. In New Guinea, cultivated accessions exhibited higher diversity than their direct wild ancestor, the latter recovering from a bottleneck. Introgressions, balancing selection and positive selection were identified as important mechanisms for banana domestication. Our results shed new lights on the radiation of M. acuminata subspecies and on how they shaped banana domestication. They point candidate regions of origin for two unknown ancestors and suggest another contributor in New Guinea. This work feed research on the evolution of clonal crops and has direct implications for conservation, collection, and breeding.
Collapse
Affiliation(s)
- Julie Sardos
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Catherine Breton
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Xavier Perrier
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | | | - Janet Paofa
- Papua New Guinea (PNG) National Agricultural Research Institute, Southern Regional Centre, Laloki, Port Moresby, Papua New Guinea
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| |
Collapse
|
41
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
42
|
Mostert‐O'Neill MM, Tate H, Reynolds SM, Mphahlele MM, van den Berg G, Verryn SD, Acosta JJ, Borevitz JO, Myburg AA. Genomic consequences of artificial selection during early domestication of a wood fibre crop. THE NEW PHYTOLOGIST 2022; 235:1944-1956. [PMID: 35657639 PMCID: PMC9541791 DOI: 10.1111/nph.18297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
From its origins in Australia, Eucalyptus grandis has spread to every continent, except Antarctica, as a wood crop. It has been cultivated and bred for over 100 yr in places such as South Africa. Unlike most annual crops and fruit trees, domestication of E. grandis is still in its infancy, representing a unique opportunity to interrogate the genomic consequences of artificial selection early in the domestication process. To determine how a century of artificial selection has changed the genome of E. grandis, we generated single nucleotide polymorphism genotypes for 1080 individuals from three advanced South African breeding programmes using the EUChip60K chip, and investigated population structure and genome-wide differentiation patterns relative to wild progenitors. Breeding and wild populations appeared genetically distinct. We found genomic evidence of evolutionary processes known to have occurred in other plant domesticates, including interspecific introgression and intraspecific infusion from wild material. Furthermore, we found genomic regions with increased linkage disequilibrium and genetic differentiation, putatively representing early soft sweeps of selection. This is, to our knowledge, the first study of genomic signatures of domestication in a timber species looking beyond the first few generations of cultivation. Our findings highlight the importance of intra- and interspecific hybridization during early domestication.
Collapse
Affiliation(s)
- Marja M. Mostert‐O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Hannah Tate
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - S. Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Makobatjatji M. Mphahlele
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
- Mondi Forests, Tree Improvement Technology Programme, Trahar Technology Centre – TTCMountain Home Estate, Off Dennis Shepstone Dr.Hilton3245South Africa
| | - Gert van den Berg
- Sappi Forests Research, Shaw Research CentrePO Box 473Howick3290South Africa
| | - Steve D. Verryn
- Creation Breeding Innovations75 Kafue St.Lynnwood Glen0081South Africa
| | - Juan J. Acosta
- Camcore, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityPO Box 7626RaleighNC27695USA
| | - Justin O. Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy BiologyAustralian National UniversityCanberraACT0200Australia
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
43
|
Martínez-Fortún J, Phillips DW, Jones HD. Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing. Front Genome Ed 2022; 4:937853. [PMID: 36072906 PMCID: PMC9441798 DOI: 10.3389/fgeed.2022.937853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional breeding has successfully selected beneficial traits for food, feed, and fibre crops over the last several thousand years. The last century has seen significant technological advancements particularly in marker assisted selection and the generation of induced genetic variation, including over the last few decades, through mutation breeding, genetic modification, and genome editing. While regulatory frameworks for traditional varietal development and for genetic modification with transgenes are broadly established, those for genome editing are lacking or are still evolving in many regions. In particular, the lack of "foreign" recombinant DNA in genome edited plants and that the resulting SNPs or INDELs are indistinguishable from those seen in traditional breeding has challenged development of new legislation. Where products of genome editing and other novel breeding technologies possess no transgenes and could have been generated via traditional methods, we argue that it is logical and proportionate to apply equivalent legislative oversight that already exists for traditional breeding and novel foods. This review analyses the types and the scale of spontaneous and induced genetic variation that can be selected during traditional plant breeding activities. It provides a base line from which to judge whether genetic changes brought about by techniques of genome editing or other reverse genetic methods are indeed comparable to those routinely found using traditional methods of plant breeding.
Collapse
Affiliation(s)
| | | | - Huw D. Jones
- IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
44
|
Hurgobin B, Lewsey MG. Applications of cell- and tissue-specific 'omics to improve plant productivity. Emerg Top Life Sci 2022; 6:163-173. [PMID: 35293572 PMCID: PMC9023014 DOI: 10.1042/etls20210286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023]
Abstract
The individual tissues and cell types of plants each have characteristic properties that contribute to the function of the plant as a whole. These are reflected by unique patterns of gene expression, protein and metabolite content, which enable cell-type-specific patterns of growth, development and physiology. Gene regulatory networks act within the cell types to govern the production and activity of these components. For the broader organism to grow and reproduce successfully, cell-type-specific activity must also function within the context of surrounding cell types, which is achieved by coordination of signalling pathways. We can investigate how gene regulatory networks are constructed and function using integrative 'omics technologies. Historically such experiments in plant biological research have been performed at the bulk tissue level, to organ resolution at best. In this review, we describe recent advances in cell- and tissue-specific 'omics technologies that allow investigation at much improved resolution. We discuss the advantages of these approaches for fundamental and translational plant biology, illustrated through the examples of specialised metabolism in medicinal plants and seed germination. We also discuss the challenges that must be overcome for such approaches to be adopted widely by the community.
Collapse
Affiliation(s)
- Bhavna Hurgobin
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Mathew G. Lewsey
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| |
Collapse
|
45
|
Alves-Pereira A, Zucchi MI, Clement CR, Viana JPG, Pinheiro JB, Veasey EA, de Souza AP. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties. Sci Rep 2022; 12:1268. [PMID: 35075210 PMCID: PMC8786832 DOI: 10.1038/s41598-022-05160-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge about genetic diversity is essential to promote effective use and conservation of crops, because it enables farmers to adapt their crops to specific needs and is the raw material for breeding. Manioc (Manihot esculenta ssp. esculenta) is one of the world's major food crops and has the potential to help achieve food security in the context of on-going climate changes. We evaluated single nucleotide polymorphisms in traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We assessed genome-wide diversity and identified selective signatures contrasting varieties from different biomes with samples of manioc's wild ancestor M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses that might have been important for the crop's domestication and diversification resulting from cultivation in different environments. Additionally, high neutral genetic diversity within groups of varieties from different biomes and low genetic divergence among biomes reflect the complexity of manioc's evolutionary dynamics under traditional cultivation. Our results exemplify how smallholder practices contribute to conserve manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.
Collapse
Affiliation(s)
- Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia Dos Agronegócios (APTA), Pólo Centro-Sul. Rodovia SP 127, km 30, Piracicaba, SP, 13400-970, Brazil
| | - Charles R Clement
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - João Paulo Gomes Viana
- Department of Crop Sciences, University of Illinois at Urbana-Champaign (UIUC), AW-101 Turner Hall, 1102 South Goodwin Avenue, Urbana, IL, 61801-4798, USA
| | - José Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil. .,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
46
|
Duarte AG, Maherali H. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecol Evol 2022; 12:e8518. [PMID: 35127032 PMCID: PMC8796888 DOI: 10.1002/ece3.8518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Climate change and other anthropogenic activities have the potential to alter the dynamics of resource exchange in the mutualistic symbiosis between plants and mycorrhizal fungi, potentially altering its stability. Arbuscular mycorrhizal (AM) fungi, which interact with most plant species, are less cold-tolerant than other groups of fungi; warming might therefore lead to increased fungal-mediated nutrient transfers to plants, which could strengthen the mutualism. By stimulating photosynthesis, rising CO2 could reduce the carbon cost of supporting AM fungi, which may also strengthen the mutualism. Furthermore, rising temperature and CO2 could have stronger effects on the mutualism in wild plants than in domesticated plants because the process of domestication can reduce the dependence of plants on mycorrhizal fungi. We conducted a multi-level random effects meta-analysis of experiments that quantified the strength of the mutualism as plant growth response to AM fungal inoculation (i.e., mycorrhizal growth response) under contrasting temperature and CO2 treatments that spanned the Last Glacial Maximum (LGM) to those expected with future climate change. We tested predictions using a three-level mixed effects meta-regression model with temperature or CO2, domestication status and their interaction as moderators. Increases from subambient to ambient temperature stimulated mycorrhizal growth response only for wild, but not for domesticated plant species. An increase from ambient to superambient temperature stimulated mycorrhizal growth response in both wild and domesticated plants, but the overall temperature effect was not statistically significant. By contrast, increased CO2 concentration, either from subambient to ambient or ambient to super ambient levels, did not affect mycorrhizal growth response in wild or domesticated plants. These results suggest the mutualism between wild plants and AM fungi was likely strengthened as temperature rose from the past to the present and that forecasted warming due to climate change may have modest positive effects on the mutualistic responses of plants to AM fungi. Mutualistic benefits obtained by plants from AM fungi may not have been altered by atmospheric CO2 increases from the past to the present, nor are they likely to be affected by a forecasted CO2 increase. This meta-analysis also identified gaps in the literature. In particular, (i) a large majority of studies that examined temperature effects on the mutualism focus on domesticated species (>80% of all trials) and (ii) very few studies examine how rising temperature and CO2, or other anthropogenic effects, interact to influence the mutualism. Therefore, to predict the stability of the mycorrhizal mutualism in the Anthropocene, future work should prioritize wild plant species as study subjects and focus on identifying how climate change factors and other human activities interact to affect plant responses to AM fungi.
Collapse
Affiliation(s)
| | - Hafiz Maherali
- Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
47
|
Dhariwal R, Hiebert CW, Sorrells ME, Spaner D, Graf RJ, Singh J, Randhawa HS. Mapping pre-harvest sprouting resistance loci in AAC Innova × AAC Tenacious spring wheat population. BMC Genomics 2021; 22:900. [PMID: 34911435 PMCID: PMC8675488 DOI: 10.1186/s12864-021-08209-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. Results Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. Conclusions Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08209-6.
Collapse
Affiliation(s)
- Raman Dhariwal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Mark E Sorrells
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, 240 Emerson Hall, Ithaca, NY, 14853, USA
| | - Dean Spaner
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Robert J Graf
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Harpinder S Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
48
|
Lusty C, Sackville Hamilton R, Guarino L, Richards C, Jamora N, Hawtin G. Envisaging an Effective Global Long-Term Agrobiodiversity Conservation System That Promotes and Facilitates Use. PLANTS 2021; 10:plants10122764. [PMID: 34961233 PMCID: PMC8706931 DOI: 10.3390/plants10122764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/16/2023]
Abstract
Genebanks were established out of a recognised need not just to provide genetic variation to support breeding objectives but to prevent crop diversity from being lost entirely for future users. Such conservation objectives may have led, over the past few decades, to a gradually diminishing connection between genebanks and current users of diversity. While there continues to be large-scale distribution of germplasm from genebanks to recipients worldwide, relatively little is known or published about the detailed trends in the demand for genebank materials. Meanwhile, the rapid expansion of the applications and uses of modern genomic technologies and approaches is, undoubtedly, having a transformational impact on breeding, research and the demand for certain genetic resources and associated data. These trends will require genebanks to be responsive and to adapt. They also provide important opportunities for genebanks to reorganize and become more efficient individually and as a community. Ultimately, future challenges and opportunities are likely to drive more demand for genetic diversity and provide an important basis for genebanks to gear up.
Collapse
Affiliation(s)
- Charlotte Lusty
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany; (R.S.H.); (L.G.); (N.J.)
- Correspondence:
| | | | - Luigi Guarino
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany; (R.S.H.); (L.G.); (N.J.)
| | - Chris Richards
- USDA National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Colorado State University Campus, Fort Collins, CO 80521, USA;
| | - Nelissa Jamora
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany; (R.S.H.); (L.G.); (N.J.)
| | - Geoffrey Hawtin
- Alliance of Bioversity International and the International Center for Tropical Agriculture, Via di San Domenico, 1, 00153 Rome, Italy;
| |
Collapse
|
49
|
How Can India Leverage Its Botanic Gardens for the Conservation and Sustainable Utilization of Wild Food Plant Resources through the Implementation of a Global Strategy for Plant Conservation? JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wild food plants (WFPs) are consumed by the indigenous communities in various parts of the world for food, nutrition, and medicinal purposes. They are usually collected from the wild and sometimes grown in the vicinity of the forests and the dwellings of the indigenous people in a way such that they are not far from their natural habitats. WFPs are important for the food and nutritional requirements of the indigenous communities. The WFPs are seasonal and collected from the wild whenever they are available. Therefore, the food menu of the tribal co mmunities changes with the seasons. A number of studies have demonstrated various WFPs consumed by indigenous communities including India. The results show that an enormous diversity of WFPs is consumed by the indigenous people of India. However, a few studies also suggest that the consumption of WFPs among the indigenous communities is declining along with the dwindling of traditional ethnobotanical knowledge linked to the collection, processing, cooking, storage, and limited cultivation of WFPs. India can leverage the network of its botanic gardens for the conservation of its wild food plant resources, the traditional and indigenous knowledge linked to it, and its popularization among the citizens within the framework of Global Strategy for Plant Conservation (GSPC). This article provided an overview of the need to focus on WFPs, limitations of current studies, and role of botanic gardens in the conservation of wild food plants through the implementation of GSPC. This article further provided a framework for the role of botanic gardens in the popularization of WFPs, increasing the awareness about their importance, documentation, and preservation of the traditional knowledge linked to various aspects of WFPs within the GPSC framework.
Collapse
|
50
|
Zhao P, Li X, Sun H, Zhao X, Wang X, Ran R, Zhao J, Wei Y, Liu X, Chen G. Healthy values and de novo domestication of sand rice ( Agriophyllum squarrosum), a comparative view against Chenopodium quinoa. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34755571 DOI: 10.1080/10408398.2021.1999202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sand rice (Agriophyllum squarrosum) is prized for its well-balanced nutritional properties, broad adaptability in Central Asia and highly therapeutic potentials. It has been considered as a potential climate-resilient crop. Its seed has comparable metabolite profile with Chenopodium quinoa and is rich in proteins, essential amino acids, minerals, polyunsaturated fatty acids, and phenolics, but low in carbohydrates. Phenolics like protocatechuic acid and quercetins have been characterized with biological functions on regulation of lipid and glucose metabolism in addition to anti-inflammatory and antioxidant activities. Sand rice is thus an important source for developing functional and nutraceutical products. Though historical consumption has been over 1300 years, sand rice has undergone few agronomic improvements until recently. Breeding by individual selection has been performed and yield of the best genotype can reach up to 1295.5 kg/ha. Furthermore, chemical mutagenesis has been used to modify the undesirable traits and a case study of a dwarf line (dwarf1), which showed the Green Revolution-like phenotypes, is presented. Utilization of both breeding methodologies will accelerate its domestication process. As a novel crop, sand rice research is rather limited compared with quinoa. More scientific input is urgently required if the nutritional and commercial potentials are to be fully realized.
Collapse
Affiliation(s)
- Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China.,Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R. China
| | - Xiaofeng Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Sun
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China
| | - Xiaohua Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R. China
| | - Ruilan Ran
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jiecai Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China.,Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R. China
| | - Yuming Wei
- Animal Husbandry Pasture and Green Agriculture Institute of Gansu Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Guoxiong Chen
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R, China.,Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, P.R. China
| |
Collapse
|