1
|
Gaur VK, Nguyen-Vo TP, Islam T, Bassey BF, Kim M, Ainala SK, Shin K, Park S. Efficient bioproduction of poly(3-hydroxypropionate) homopolymer using engineered Escherichia coli strains. BIORESOURCE TECHNOLOGY 2024; 397:130469. [PMID: 38382722 DOI: 10.1016/j.biortech.2024.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
This study focuses on the development of a scalable method for producing poly(3-hydroxypropionate), a homopolymer with significant physico-mechanical properties, through the use of metabolically-engineered Escherichia coli K12 (MG1655) and externally supplied 3-hydroxypropionate. The polymer synthesis pathway was established and optimized through synthetic biology techniques, including the effects of overexpressing phasin and cell division proteins. The optimized strain achieved unprecedented production titers of 9.5 g/L in flask cultures and 80 g/L in fed-batch bioreactors within 45 h. The analysis of poly(3-hydroxypropionate) polymer properties revealed it possesses excellent elasticity (Young's modulus < 6 MPa) and tensile strength (∼80 MPa), positioning it within the category of elastomers or flexible plastics. These findings suggest a viable path for the sustainable, large-scale production of the poly(3-hydroxypropionate) biopolymer.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Thuan Phu Nguyen-Vo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Presently: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Tayyab Islam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Bassey Friday Bassey
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Miri Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Satish Kumar Ainala
- NOROO Bio R&D Center, NOROO Holdings Co., Ltd, Gyeonggi-do 16229, Republic of Korea
| | - Kyusoon Shin
- NOROO Bio R&D Center, NOROO Holdings Co., Ltd, Gyeonggi-do 16229, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
3
|
Cylke A, Serbanescu D, Banerjee S. Energy allocation theory for bacterial growth control in and out of steady state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574890. [PMID: 38260684 PMCID: PMC10802433 DOI: 10.1101/2024.01.09.574890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
In vitro assembly, positioning and contraction of a division ring in minimal cells. Nat Commun 2022; 13:6098. [PMID: 36243816 PMCID: PMC9569390 DOI: 10.1038/s41467-022-33679-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023] Open
Abstract
Constructing a minimal machinery for autonomous self-division of synthetic cells is a major goal of bottom-up synthetic biology. One paradigm has been the E. coli divisome, with the MinCDE protein system guiding assembly and positioning of a presumably contractile ring based on FtsZ and its membrane adaptor FtsA. Here, we demonstrate the full in vitro reconstitution of this machinery consisting of five proteins within lipid vesicles, allowing to observe the following sequence of events in real time: 1) Assembly of an isotropic filamentous FtsZ network, 2) its condensation into a ring-like structure, along with pole-to-pole mode selection of Min oscillations resulting in equatorial positioning, and 3) onset of ring constriction, deforming the vesicles from spherical shape. Besides demonstrating these essential features, we highlight the importance of decisive experimental factors, such as macromolecular crowding. Our results provide an exceptional showcase of the emergence of cell division in a minimal system, and may represent a step towards developing a synthetic cell.
Collapse
|
5
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
6
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Abstract
Bacterial persisters are nongrowing cells highly tolerant to bactericidal antibiotics. However, this tolerance is reversible and not mediated by heritable genetic changes. Lon, an ATP-dependent protease, has repeatedly been shown to play a critical role in fluoroquinolone persistence in Escherichia coli. Although lon deletion (Δlon) is thought to eliminate persister cells via accumulation of the cell division inhibitor protein SulA, the exact mechanism underlying this phenomenon is not yet elucidated. Here, we show that Lon is an important regulatory protein for the resuscitation of the fluoroquinolone persisters in E. coli, and lon deletion impairs the ability of persister cells to form colonies during recovery through a sulA- and ftsZ-dependent mechanism. Notably, this observed "viable but nonculturable" state of antibiotic-tolerant Δlon cells is transient, as environmental conditions, such as starvation, can restore their culturability. Our data further indicate that starvation-induced SulA degradation or expression of Lon during recovery facilitates Z-ring formation in Δlon persisters, and Z-ring architecture is important for persister resuscitation in both wild-type and Δlon strains. Our in-depth image analysis clearly shows that the ratio of cell length to number of FtsZ rings for each intact ofloxacin-treated cell predicts the probability of resuscitation and, hence, can be used as a potential biomarker for persisters. IMPORTANCE The ATP-dependent Lon protease is one of the most studied bacterial proteases. Although deletion of lon has been frequently shown to reduce fluoroquinolone persistence, the proposed mechanisms underlying this phenomenon are highly controversial. Here, we have shown that lon deletion in Escherichia coli impairs the ability of persister cells to form colonies during recovery and that this reduction of persister levels in lon-deficient cells can be transient. We also found that altered Z-ring architecture is a key biomarker in both wild-type and lon-deficient persister cells transitioning to a normal cell state. Collectively, our findings highlight the importance of differentiating persister formation mechanisms from resuscitation mechanisms and underscore the critical role of the nonculturable cell state in antibiotic tolerance.
Collapse
|
8
|
Salinas-Almaguer S, Mell M, Almendro-Vedia VG, Calero M, Robledo-Sánchez KCM, Ruiz-Suarez C, Alarcón T, Barrio RA, Hernández-Machado A, Monroy F. Membrane rigidity regulates E. coli proliferation rates. Sci Rep 2022; 12:933. [PMID: 35042922 PMCID: PMC8766614 DOI: 10.1038/s41598-022-04970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
Combining single cell experiments, population dynamics and theoretical methods of membrane mechanics, we put forward that the rate of cell proliferation in E. coli colonies can be regulated by modifiers of the mechanical properties of the bacterial membrane. Bacterial proliferation was modelled as mediated by cell division through a membrane constriction divisome based on FtsZ, a mechanically competent protein at elastic interaction against membrane rigidity. Using membrane fluctuation spectroscopy in the single cells, we revealed either membrane stiffening when considering hydrophobic long chain fatty substances, or membrane softening if short-chained hydrophilic molecules are used. Membrane stiffeners caused hindered growth under normal division in the microbial cultures, as expected for membrane rigidification. Membrane softeners, however, altered regular cell division causing persistent microbes that abnormally grow as long filamentous cells proliferating apparently faster. We invoke the concept of effective growth rate under the assumption of a heterogeneous population structure composed by distinguishable individuals with different FtsZ-content leading the possible forms of cell proliferation, from regular division in two normal daughters to continuous growing filamentation and budding. The results settle altogether into a master plot that captures a universal scaling between membrane rigidity and the divisional instability mediated by FtsZ at the onset of membrane constriction.
Collapse
Affiliation(s)
- Samuel Salinas-Almaguer
- Centro de Investigación y de Estudios Avanzados, Unidad Monterrey, Vía del Conocimiento 201, PIIT, 66600, Apodaca, NL, Mexico
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Michael Mell
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Victor G Almendro-Vedia
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (IMAS12), Av. Andalucía S/N, 28041, Madrid, Spain
| | | | - Carlos Ruiz-Suarez
- Centro de Investigación y de Estudios Avanzados, Unidad Monterrey, Vía del Conocimiento 201, PIIT, 66600, Apodaca, NL, Mexico
| | - Tomás Alarcón
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - Rafael A Barrio
- Instituto de Fisica, U.N.A.M., Apartado Postal 20-364, 01000, Mexico, D.F., Mexico
| | - Aurora Hernández-Machado
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain.
- Departament Fisica de la Materia Condensada, Facultat de Fisica, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain.
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (IMAS12), Av. Andalucía S/N, 28041, Madrid, Spain.
| |
Collapse
|
9
|
Computational modeling of unphosphorylated CtrA: Cori binding in the Caulobacter cell cycle. iScience 2021; 24:103413. [PMID: 34901785 PMCID: PMC8640480 DOI: 10.1016/j.isci.2021.103413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
In the alphaproteobacterium, Caulobacter crescentus, phosphorylated CtrA (CtrA∼P), a master regulatory protein, binds directly to the chromosome origin (Cori) to inhibit DNA replication. Using a mathematical model of CtrA binding at Cori site [d], we provide computational evidence that CtrAU can displace CtrA∼P from Cori at the G1-S transition. Investigation of this interaction within a detailed model of the C. crescentus cell cycle suggests that CckA phosphatase may clear Cori of CtrA∼P by altering the [CtrAU]/[CtrA∼P] ratio rather than by completely depleting CtrA∼P. Model analysis reveals that the mechanism allows for a speedier transition into S phase, stabilizes the timing of chromosome replication under fluctuating rates of CtrA proteolysis, and may contribute to the viability of numerous mutant strains. Overall, these results suggest that CtrAU enhances the robustness of chromosome replication. More generally, our proposed regulation of CtrA:Cori dynamics may represent a novel motif for molecular signaling in cell physiology.
Collapse
|
10
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
11
|
Wong F, Wilson S, Helbig R, Hegde S, Aftenieva O, Zheng H, Liu C, Pilizota T, Garner EC, Amir A, Renner LD. Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Front Microbiol 2021; 12:712007. [PMID: 34421870 PMCID: PMC8372035 DOI: 10.3389/fmicb.2021.712007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor.
Collapse
Affiliation(s)
- Felix Wong
- Department of Biological Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ralf Helbig
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olha Aftenieva
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Hai Zheng
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| |
Collapse
|
12
|
Ramirez-Diaz DA, Merino-Salomón A, Meyer F, Heymann M, Rivas G, Bramkamp M, Schwille P. FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nat Commun 2021; 12:3310. [PMID: 34083531 PMCID: PMC8175707 DOI: 10.1038/s41467-021-23387-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.
Collapse
Affiliation(s)
- Diego A Ramirez-Diaz
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany
| | - Adrián Merino-Salomón
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- International Max Planck Research School for Molecular Life Sciences (IMPRS-LS), Munich, Germany
| | - Fabian Meyer
- Institute of General Microbiology, Christian-Albrechts-Unversity, Kiel, Germany
| | - Michael Heymann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Marc Bramkamp
- Institute of General Microbiology, Christian-Albrechts-Unversity, Kiel, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
13
|
Effect of membrane potential on entry of lactoferricin B-derived 6-residue antimicrobial peptide into single Escherichia coli cells and lipid vesicles. J Bacteriol 2021; 203:JB.00021-21. [PMID: 33558393 PMCID: PMC8092161 DOI: 10.1128/jb.00021-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimicrobial peptide (AMP) derived from lactoferricin B, LfcinB (4-9) (RRWQWR), and lissamine rhodamine B red-labeled peptide (Rh-LfcinB (4-9)) exhibit strong antimicrobial activities, and they can enter Escherichia coli cells without damaging the cell membranes. Thus, these peptides are cell-penetrating peptide (CPP) -type AMPs. In this study, to elucidate the effect of the membrane potential (Δφ) on the action of the CPP-type AMP, Rh-LfcinB (4-9), we investigated the interactions of Rh-LfcinB (4-9) with single E. coli cells and spheroplasts containing calcein in the cytosol using confocal laser scanning microscopy. At low peptide concentrations, Rh-LfcinB (4-9) entered the cytosol of single E. coli cells and spheroplasts without damaging the cell membranes, and the H+-ionophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) suppressed its entry. The studies using the time-kill method indicate that these low concentrations of peptide exhibit antimicrobial activity but CCCP inhibits this activity. Next, we investigated the effect of Δφ on the interaction of Rh-LfcinB (4-9) with single giant unilamellar vesicles (GUVs) comprising E. coli polar lipid extracts and containing a fluorescent probe, Alexa Fluor 647 hydrazide. At low concentrations (0.2-0.5 μM), Rh-LfcinB (4-9) showed significant entry to the single GUV lumen without pore formation in the presence of Δφ. The fraction of entry of peptide increased with increasing negative membrane potential, indicating that the rate of peptide entry into the GUV lumen increased with increasing negative membrane potential. These results indicate that Δφ enhances the entry of Rh-LfcinB (4-9) into single E. coli cells, spheroplasts, and GUVs and its antimicrobial activity.IMPORTANCE: Bacterial cells have a membrane potential (Δφ), but the effect of Δφ on action of cell-penetrating peptide-type antimicrobial peptides (AMPs) is not clear. Here, we investigated the effect of Δφ on the action of fluorescent probe-labeled AMP derived from lactoferricin B, Rh-LfcinB (4-9). At low peptide concentrations, Rh-LfcinB (4-9) enters the cytosol of Escherichia coli cells and spheroplasts without damaging their cell membrane, but a protonophore suppresses this entry and its antimicrobial activity. The rate of entry of Rh-LfcinB (4-9) into the giant unilamellar vesicles (GUVs) comprising E. coli lipids without pore formation increases with increasing Δφ. These results indicate that Δφ enhances the antimicrobial activity of Rh-LfcinB (4-9) and hence LfcinB (4-9) by increasing the rate of their entry into the cytosol.
Collapse
|
14
|
FtsZ: The Force Awakens. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Abstract
Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.
Collapse
|
16
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
17
|
Harper CE, Hernandez CJ. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng 2020; 4:021501. [PMID: 32266323 PMCID: PMC7113033 DOI: 10.1063/1.5135585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Physical forces play a profound role in the survival and function of all known forms of life. Advances in cell biomechanics and mechanobiology have provided key insights into the physiology of eukaryotic organisms, but much less is known about the roles of physical forces in bacterial physiology. This review is an introduction to bacterial mechanics intended for persons familiar with cells and biomechanics in mammalian cells. Bacteria play a major role in human health, either as pathogens or as beneficial commensal organisms within the microbiome. Although bacteria have long been known to be sensitive to their mechanical environment, understanding the effects of physical forces on bacterial physiology has been limited by their small size (∼1 μm). However, advancements in micro- and nano-scale technologies over the past few years have increasingly made it possible to rigorously examine the mechanical stress and strain within individual bacteria. Here, we review the methods currently used to examine bacteria from a mechanical perspective, including the subcellular structures in bacteria and how they differ from those in mammalian cells, as well as micro- and nanomechanical approaches to studying bacteria, and studies showing the effects of physical forces on bacterial physiology. Recent findings indicate a large range in mechanical properties of bacteria and show that physical forces can have a profound effect on bacterial survival, growth, biofilm formation, and resistance to toxins and antibiotics. Advances in the field of bacterial biomechanics have the potential to lead to novel antibacterial strategies, biotechnology approaches, and applications in synthetic biology.
Collapse
Affiliation(s)
- Christine E. Harper
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
18
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
19
|
Roy P, Achom M, Wilkinson H, Lagunas B, Gifford ML. Symbiotic Outcome Modified by the Diversification from 7 to over 700 Nodule-Specific Cysteine-Rich Peptides. Genes (Basel) 2020; 11:E348. [PMID: 32218172 PMCID: PMC7230169 DOI: 10.3390/genes11040348] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022] Open
Abstract
Legume-rhizobium symbiosis represents one of the most successfully co-evolved mutualisms. Within nodules, the bacterial cells undergo distinct metabolic and morphological changes and differentiate into nitrogen-fixing bacteroids. Legumes in the inverted repeat lacking clade (IRLC) employ an array of defensin-like small secreted peptides (SSPs), known as nodule-specific cysteine-rich (NCR) peptides, to regulate bacteroid differentiation and activity. While most NCRs exhibit bactericidal effects in vitro, studies confirm that inside nodules they target the bacterial cell cycle and other cellular pathways to control and extend rhizobial differentiation into an irreversible (or terminal) state where the host gains control over bacteroids. While NCRs are well established as positive regulators of effective symbiosis, more recent findings also suggest that NCRs affect partner compatibility. The extent of bacterial differentiation has been linked to species-specific size and complexity of the NCR gene family that varies even among closely related species, suggesting a more recent origin of NCRs followed by rapid expansion in certain species. NCRs have diversified functionally, as well as in their expression patterns and responsiveness, likely driving further functional specialisation. In this review, we evaluate the functions of NCR peptides and their role as a driving force underlying the outcome of rhizobial symbiosis, where the plant is able to determine the outcome of rhizobial interaction in a temporal and spatial manner.
Collapse
Affiliation(s)
- Proyash Roy
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1205, Bangladesh
| | - Mingkee Achom
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, NY 14853, USA
| | - Helen Wilkinson
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| | - Beatriz Lagunas
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| | - Miriam L. Gifford
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| |
Collapse
|
20
|
The evolution of spherical cell shape; progress and perspective. Biochem Soc Trans 2020; 47:1621-1634. [PMID: 31829405 PMCID: PMC6925525 DOI: 10.1042/bst20180634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Bacterial cell shape is a key trait governing the extracellular and intracellular factors of bacterial life. Rod-like cell shape appears to be original which implies that the cell wall, division, and rod-like shape came together in ancient bacteria and that the myriad of shapes observed in extant bacteria have evolved from this ancestral shape. In order to understand its evolution, we must first understand how this trait is actively maintained through the construction and maintenance of the peptidoglycan cell wall. The proteins that are primarily responsible for cell shape are therefore the elements of the bacterial cytoskeleton, principally FtsZ, MreB, and the penicillin-binding proteins. MreB is particularly relevant in the transition between rod-like and spherical cell shape as it is often (but not always) lost early in the process. Here we will highlight what is known of this particular transition in cell shape and how it affects fitness before giving a brief perspective on what will be required in order to progress the field of cell shape evolution from a purely mechanistic discipline to one that has the perspective to both propose and to test reasonable hypotheses regarding the ecological drivers of cell shape change.
Collapse
|
21
|
Phenotypic plasticity of Escherichia coli upon exposure to physical stress induced by ZnO nanorods. Sci Rep 2019; 9:8575. [PMID: 31189961 PMCID: PMC6561948 DOI: 10.1038/s41598-019-44727-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022] Open
Abstract
Evolution of bacteria to selective chemical pressure (e.g. antibiotics) is well studied in contrast to the influence of physical stressors. Here we show that instantaneous physical stress in a homogeneous environment (without concentration gradient) induces fast adaptation of Escherichia coli. We exposed E. coli to a large number of collisions of around 105 per bacterium per second with sharp ZnO nanorods. The pressure exerted on the bacterial cell wall was up to 10 GPa and induced phenotype changes. The bacteria’s shape became more spherical, the density of their periplasm increased by around 15% and the average thickness of the cell wall by 30%. Such E. coli cells appeared almost as Gram-positive bacteria in the standard Gram staining. Additionally, we observed a combination of changes occurring at the genomic level (mutations identified in form of single nucleotide polymorphisms) and down-regulation of expression of 61 genes encoding proteins involved in β-oxidation of fatty acids, glycolysis, the citric acid cycle, as well as uptake of amino acids and enzyme cofactors. Thus, we show that bacteria undergo phenotypic changes upon instantaneous, acute physical stress without any obviously available time for gradual adaptation.
Collapse
|
22
|
Wong F, Amir A. Mechanics and Dynamics of Bacterial Cell Lysis. Biophys J 2019; 116:2378-2389. [PMID: 31174849 DOI: 10.1016/j.bpj.2019.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/20/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
Abstract
Membrane lysis, or rupture, is a cell death pathway in bacteria frequently caused by cell wall-targeting antibiotics. Although previous studies have clarified the biochemical mechanisms of antibiotic action, a physical understanding of the processes leading to lysis remains lacking. Here, we analyze the dynamics of membrane bulging and lysis in Escherichia coli, in which the formation of an initial, partially subtended spherical bulge ("bulging") after cell wall digestion occurs on a characteristic timescale of 1 s and the growth of the bulge ("swelling") occurs on a slower characteristic timescale of 100 s. We show that bulging can be energetically favorable due to the relaxation of the entropic and stretching energies of the inner membrane, cell wall, and outer membrane and that the experimentally observed timescales are consistent with model predictions. We then show that swelling is mediated by the enlargement of wall defects, after which cell lysis is consistent with both the inner and outer membranes exceeding characteristic estimates of the yield areal strains of biological membranes. These results contrast biological membrane physics and the physics of thin, rigid shells. They also have implications for cellular morphogenesis and antibiotic discovery across different species of bacteria.
Collapse
Affiliation(s)
- Felix Wong
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
23
|
Kopacz MM, Lorenzoni ASG, Polaquini CR, Regasini LO, Scheffers D. Purification and characterization of FtsZ from the citrus canker pathogen Xanthomonas citri subsp. citri. Microbiologyopen 2019; 8:e00706. [PMID: 30085414 PMCID: PMC6528577 DOI: 10.1002/mbo3.706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/04/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xac) is the causative agent of citrus canker, a plant disease that significantly impacts citriculture. In earlier work, we showed that alkylated derivatives of gallic acid have antibacterial action against Xac and target both the cell division protein FtsZ and membrane integrity in Bacillus subtilis. Here, we have purified native XacFtsZ and characterized its GTP hydrolysis and polymerization properties. In a surprising manner, inhibition of XacFtsZ activity by alkyl gallates is not as strong as observed earlier with B. subtilis FtsZ. As the alkyl gallates efficiently permeabilize Xac membranes, we propose that this is the primary mode of antibacterial action of these compounds.
Collapse
Affiliation(s)
- Malgorzata M. Kopacz
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Department of Chemical EngineeringBiotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark
| | - André S. G. Lorenzoni
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Carlos R. Polaquini
- Laboratory of Antibiotics and ChemotherapeuticsDepartment of Chemistry and Environmental SciencesInstitute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoSPBrazil
| | - Luis O. Regasini
- Laboratory of Antibiotics and ChemotherapeuticsDepartment of Chemistry and Environmental SciencesInstitute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoSPBrazil
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
24
|
Nguyen LT, Oikonomou CM, Ding HJ, Kaplan M, Yao Q, Chang YW, Beeby M, Jensen GJ. Simulations suggest a constrictive force is required for Gram-negative bacterial cell division. Nat Commun 2019; 10:1259. [PMID: 30890709 PMCID: PMC6425016 DOI: 10.1038/s41467-019-09264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/28/2019] [Indexed: 11/16/2022] Open
Abstract
To divide, Gram-negative bacterial cells must remodel cell wall at the division site. It remains debated, however, whether this cell wall remodeling alone can drive membrane constriction, or if a constrictive force from the tubulin homolog FtsZ is required. Previously, we constructed software (REMODELER 1) to simulate cell wall remodeling during growth. Here, we expanded this software to explore cell wall division (REMODELER 2). We found that simply organizing cell wall synthesis complexes at the midcell is not sufficient to cause invagination, even with the implementation of a make-before-break mechanism, in which new hoops of cell wall are made inside the existing hoops before bonds are cleaved. Division can occur, however, when a constrictive force brings the midcell into a compressed state before new hoops of relaxed cell wall are incorporated between existing hoops. Adding a make-before-break mechanism drives division with a smaller constrictive force sufficient to bring the midcell into a relaxed, but not necessarily compressed, state.
Collapse
Affiliation(s)
- Lam T Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - H Jane Ding
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Morgan Beeby
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
25
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Holden S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Curr Opin Microbiol 2018; 43:84-91. [DOI: 10.1016/j.mib.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
|
27
|
He Z, Guo K. Exploration of cell division times during bacterial cytokinesis. Phys Chem Chem Phys 2018; 19:32038-32046. [PMID: 29181464 DOI: 10.1039/c7cp05050j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filamenting temperature-sensitive mutant Z (FtsZ), an essential cell division protein in bacteria, has recently emerged as an important and exploitable antibacterial target. The perturbation of FtsZ assembly is found to have an effect on cell cytokinesis and cell survival. Cell division time is an important physical parameter in cell cytokinesis. Here, the theoretical framework that has been developed by combining a phase field model for rod-shaped cells with a kinetic description for FtsZ ring maintenance is extended to explore cell division times during bacterial cytokinesis. The cell division times of around 72 s in the numerical studies have the same magnitude as the division time of several minutes observed physiologically. The dependence of the cell division time on parameters such as the initial state of rod-shaped cells and various kinetic rates of FtsZ assembly dynamics is thoroughly investigated. The theoretical analysis of the relations between the cell division time and these parameters is found to coincide well with the numerical calculated results.
Collapse
Affiliation(s)
- Zi He
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | | |
Collapse
|
28
|
Osawa M, Erickson HP. Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division. Front Microbiol 2018; 9:111. [PMID: 29445369 PMCID: PMC5797765 DOI: 10.3389/fmicb.2018.00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Bacterial cytokinesis begins with the assembly of FtsZ into a Z ring at the center of the cell. The Z-ring constriction in Gram-negative bacteria may occur in an environment where the periplasm and the cytoplasm are isoosmotic, but in Gram-positive bacteria the constriction may have to overcome a substantial turgor pressure. We address three potential sources of invagination force. (1) FtsZ itself may generate force by curved protofilaments bending the attached membrane. This is sufficient to constrict liposomes in vitro. However, this force is on the order of a few pN, and would not be enough to overcome turgor. (2) Cell wall (CW) synthesis may generate force by pushing the plasma membrane from the outside. However, this would probably require some kind of Brownian ratchet to separate the CW and membrane sufficiently to allow a glycan strand to slip in. The elastic element is not obvious. (3) Excess membrane production has the potential to contribute significantly to the invagination force. If the excess membrane is produced under the CW, it would force the membrane to bleb inward. We propose here that a combination of FtsZ pulling from the inside, and excess membrane pushing membrane inward may generate a substantial constriction force at the division site. This combined force generation mechanism may be sufficient to overcome turgor pressure. This would abolish the need for a Brownian ratchet for CW growth, and would permit CW to operate by reinforcing the constrictions generated by FtsZ and excess membrane.
Collapse
Affiliation(s)
- Masaki Osawa
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Harold P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
29
|
Yap LW, Endres RG. A model of cell-wall dynamics during sporulation in Bacillus subtilis. SOFT MATTER 2017; 13:8089-8095. [PMID: 29057401 DOI: 10.1039/c7sm00818j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.
Collapse
Affiliation(s)
- Li-Wei Yap
- Department of Life Sciences, Imperial College, London, UK.
| | | |
Collapse
|
30
|
Ruiz-Martinez A, Bartol TM, Sejnowski TJ, Tartakovsky DM. Efficient Multiscale Models of Polymer Assembly. Biophys J 2017; 111:185-96. [PMID: 27410746 DOI: 10.1016/j.bpj.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/24/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Protein polymerization and bundling play a central role in cell physiology. Predictive modeling of these processes remains an open challenge, especially when the proteins involved become large and their concentrations high. We present an effective kinetics model of filament formation, bundling, and depolymerization after GTP hydrolysis, which involves a relatively small number of species and reactions, and remains robust over a wide range of concentrations and timescales. We apply this general model to study assembly of FtsZ protein, a basic element in the division process of prokaryotic cells such as Escherichia coli, Bacillus subtilis, or Caulobacter crescentus. This analysis demonstrates that our model outperforms its counterparts in terms of both accuracy and computational efficiency. Because our model comprises only 17 ordinary differential equations, its computational cost is orders-of-magnitude smaller than the current alternatives consisting of up to 1000 ordinary differential equations. It also provides, to our knowledge, a new insight into the characteristics and functioning of FtsZ proteins at high concentrations. The simplicity and versatility of our model render it a powerful computational tool, which can be used either as a standalone descriptor of other biopolymers' assembly or as a component in more complete kinetic models.
Collapse
Affiliation(s)
- Alvaro Ruiz-Martinez
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California
| | - Thomas M Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California; The Division of Biological Studies Sciences, University of California-San Diego, La Jolla, California.
| | - Daniel M Tartakovsky
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California.
| |
Collapse
|
31
|
Beltrán-Heredia E, Almendro-Vedia VG, Monroy F, Cao FJ. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure. Front Physiol 2017; 8:312. [PMID: 28579960 PMCID: PMC5437162 DOI: 10.3389/fphys.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/30/2017] [Indexed: 11/13/2022] Open
Abstract
Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous curvatures, low or negative membrane tension and hypertonic media. Conditions for spontaneous constriction at a given constriction force are also determined. The implications of these results for biological cell division are discussed. This work contributes to a better quantitative understanding of the mechanical pathway of cellular division, and could assist the design of artificial divisomes in vesicle-based self-actuated microsystems obtained from synthetic biology approaches.
Collapse
Affiliation(s)
- Elena Beltrán-Heredia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain.,Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain
| | - Víctor G Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain.,Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense de MadridMadrid, Spain.,Translational Biophysics, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)Madrid, Spain
| | - Francisco J Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
32
|
Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis. Sci Rep 2017; 7:46052. [PMID: 28378797 PMCID: PMC5380956 DOI: 10.1038/srep46052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/07/2017] [Indexed: 11/09/2022] Open
Abstract
Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7–254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle–ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH < 45%) for its elastic behaviour, and the Kelvin–Voigt model (RH > 45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.
Collapse
|
33
|
Haranahalli K, Tong S, Ojima I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg Med Chem 2016; 24:6354-6369. [PMID: 27189886 PMCID: PMC5157688 DOI: 10.1016/j.bmc.2016.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5years, but also includes significant findings in previous years.
Collapse
Affiliation(s)
| | - Simon Tong
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
34
|
Coltharp C, Xiao J. Beyond force generation: Why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? Bioessays 2016; 39:1-11. [PMID: 28004447 DOI: 10.1002/bies.201600179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose that the essential function of the most highly conserved protein in bacterial cytokinesis, FtsZ, is not to generate a mechanical force to drive cell division. Rather, we suggest that FtsZ acts as a signal-processing hub to coordinate cell wall synthesis at the division septum with a diverse array of cellular processes, ensuring that the cell divides smoothly at the correct time and place, and with the correct septum morphology. Here, we explore how the polymerization properties of FtsZ, which have been widely attributed to force generation, can also be advantageous in this signal processing role. We suggest mechanisms by which FtsZ senses and integrates both mechanical and biochemical signals, and conclude by proposing experiments to investigate how FtsZ contributes to the remarkable spatial and temporal precision of bacterial cytokinesis.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Deng S, Gao E, Wang Y, Sen S, Sreenivasan ST, Behura S, Král P, Xu Z, Berry V. Confined, Oriented, and Electrically Anisotropic Graphene Wrinkles on Bacteria. ACS NANO 2016; 10:8403-8412. [PMID: 27391776 DOI: 10.1021/acsnano.6b03214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curvature-induced dipole moment and orbital rehybridization in graphene wrinkles modify its electrical properties and induces transport anisotropy. Current wrinkling processes are based on contraction of the entire substrate and do not produce confined or directed wrinkles. Here we show that selective desiccation of a bacterium under impermeable and flexible graphene via a flap-valve operation produces axially aligned graphene wrinkles of wavelength 32.4-34.3 nm, consistent with modified Föppl-von Kármán mechanics (confinement ∼0.7 × 4 μm(2)). Further, an electrophoretically oriented bacterial device with confined wrinkles aligned with van der Pauw electrodes was fabricated and exhibited an anisotropic transport barrier (ΔE = 1.69 meV). Theoretical models were developed to describe the wrinkle formation mechanism. The results obtained show bio-induced production of confined, well-oriented, and electrically anisotropic graphene wrinkles, which can be applied in electronics, bioelectromechanics, and strain patterning.
Collapse
Affiliation(s)
- Shikai Deng
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Enlai Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University , Beijing 100084, China
| | - Yanlei Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University , Beijing 100084, China
| | - Soumyo Sen
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | | | - Sanjay Behura
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
- Department of Physics and Biopharmaceutical Sciences, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University , Beijing 100084, China
| | - Vikas Berry
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
36
|
Xiao J, Goley ED. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr Opin Microbiol 2016; 34:90-96. [PMID: 27620716 DOI: 10.1016/j.mib.2016.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/05/2023]
Abstract
In most bacteria, cell division relies on the functions of an essential protein, FtsZ. FtsZ polymerizes at the future division site to form a ring-like structure, termed the Z-ring, that serves as a scaffold to recruit all other division proteins, and possibly generates force to constrict the cell. The scaffolding function of the Z-ring is well established, but the force generating function has recently been called into question. Additionally, new findings have demonstrated that the Z-ring is more directly linked to cell wall metabolism than simply recruiting enzymes to the division site. Here we review these advances and suggest that rather than generating a rate-limiting constrictive force, the Z-ring's function may be redefined as an orchestrator of septum synthesis.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Abstract
We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to describe the interplay between shape, growth and division in bacterial cells.
Collapse
|
38
|
In Vivo study of naturally deformed Escherichia coli bacteria. J Bioenerg Biomembr 2016; 48:281-91. [PMID: 27026097 DOI: 10.1007/s10863-016-9658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
A combination of light-microscopy and image processing has been applied to study naturally deformed Escherichia coli under in vivo condition and at the order of sub-pixel high-resolution accuracy. To classify deflagellated non-dividing E. coli cells to the rod-shape and bent-shape, a geometrical approach has been applied. From the analysis of the geometrical data which were obtained of image processing, we estimated the required effective energy for shaping a rod-shape to a bent-shape with the same size. We evaluated the energy of deformation in the naturally deformed bacteria with minimum cell manipulation, under in vivo condition, and with minimum influence of any external force, torque and pressure. Finally, we have also elaborated on the possible scenario to explain how naturally deformed bacteria are formed from initial to final-stage.
Collapse
|
39
|
Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB. Targeting the Bacterial Division Protein FtsZ. J Med Chem 2016; 59:6975-98. [DOI: 10.1021/acs.jmedchem.5b01098] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine A. Hurley
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriella M. Nepomuceno
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Valerie Huynh
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Abstract
Bacterial cytokinesis is accomplished by the essential 'divisome' machinery. The most widely conserved divisome component, FtsZ, is a tubulin homolog that polymerizes into the 'FtsZ-ring' ('Z-ring'). Previous in vitro studies suggest that Z-ring contraction serves as a major constrictive force generator to limit the progression of cytokinesis. Here, we applied quantitative superresolution imaging to examine whether and how Z-ring contraction limits the rate of septum closure during cytokinesis in Escherichia coli cells. Surprisingly, septum closure rate was robust to substantial changes in all Z-ring properties proposed to be coupled to force generation: FtsZ's GTPase activity, Z-ring density, and the timing of Z-ring assembly and disassembly. Instead, the rate was limited by the activity of an essential cell wall synthesis enzyme and further modulated by a physical divisome-chromosome coupling. These results challenge a Z-ring-centric view of bacterial cytokinesis and identify cell wall synthesis and chromosome segregation as limiting processes of cytokinesis.
Collapse
|
41
|
Lunov O, Zablotskii V, Churpita O, Jäger A, Polívka L, Syková E, Dejneka A, Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 2015; 82:71-83. [PMID: 26761777 DOI: 10.1016/j.biomaterials.2015.12.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023]
Abstract
Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully explored. Here, we report on the molecular mechanisms of non-thermal plasma-induced bacteria inactivation in both Gram-positive and Gram-negative strains. We demonstrate that depending on the exposure time plasma induces either direct physical destruction of bacteria or triggers programmed cell death (PCD) that exhibits characteristic features of apoptosis. The interplay between physical disruption and PCD is on the one hand driven by physical plasma parameters, and on the other hand by biological and physical properties of bacteria. The explored possibilities of the tuneable bacteria deactivation provide a basis for the development of advanced plasma-based therapies. To a great extent, our study opens new possibilities for controlled non-thermal plasma interactions with living systems.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Physics AS CR, Prague, Czech Republic.
| | | | | | - Ales Jäger
- Institute of Physics AS CR, Prague, Czech Republic
| | - Leoš Polívka
- Institute of Physics AS CR, Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | | | - Šárka Kubinová
- Institute of Physics AS CR, Prague, Czech Republic; Institute of Experimental Medicine AS CR, Prague, Czech Republic
| |
Collapse
|
42
|
Jung YW, Mascagni M. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism. J Chem Phys 2015; 141:125101. [PMID: 25273478 DOI: 10.1063/1.4896164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.
Collapse
Affiliation(s)
- Yong-Woon Jung
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | - Michael Mascagni
- Departments of Computer Science, Mathematics and Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4530, USA
| |
Collapse
|
43
|
Bacterial growth and form under mechanical compression. Sci Rep 2015; 5:11367. [PMID: 26086542 PMCID: PMC4471898 DOI: 10.1038/srep11367] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/22/2015] [Indexed: 11/08/2022] Open
Abstract
A combination of physical and chemical processes is involved in determining the bacterial cell shape. In standard medium, Escherichia coli cells are rod-shaped, and maintain a constant diameter during exponential growth. Here, we demonstrate that by applying compressive forces to growing E. coli, cells no longer retain their rod-like shapes but grow and divide with a flat pancake-like geometry. The deformation is reversible: deformed cells can recover back to rod-like shapes in several generations after compressive forces are removed. During compression, the cell elongation rate, proliferation rate, DNA replication rate, and protein synthesis are not significantly altered from those of the normal rod-shaped cells. Quantifying the rate of cell wall growth under compression reveals that the cell wall growth rate depends on the local cell curvature. MreB not only influences the rate of cell wall growth, but also influences how the growth rate scales with cell geometry. The result is consistent with predictions of a mechanochemical model, and suggests an active mechanical role for MreB during cell wall growth. The developed compressive device is also useful for studying a variety of cells in unique geometries.
Collapse
|
44
|
Dover RS, Bitler A, Shimoni E, Trieu-Cuot P, Shai Y. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nat Commun 2015; 6:7193. [PMID: 26018339 PMCID: PMC4458890 DOI: 10.1038/ncomms8193] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022] Open
Abstract
Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria. The peptidoglycan (PG) layer of the Gram-positive bacteria cell wall resists turgor pressure, but the architecture of this layer is largely unknown. Here the authors use high resolution atomic force microscopy to image the PG layer from live Streptococcus to reveal a net-like arrangement that resists osmotic challenge by stretching and stiffening.
Collapse
Affiliation(s)
- Ron Saar Dover
- Department of Biological Chemistry, 8 Ulman Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arkady Bitler
- Department of Chemical Research Support, Surface Analysis Unit, Goldwurm Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Electron Microscopy Unit, Issac Wolfson Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patrick Trieu-Cuot
- Department of Microbiology, Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS ERL3526, Paris 75015, France
| | - Yechiel Shai
- Department of Biological Chemistry, 8 Ulman Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Wu Y, Sims RC, Zhou A. AFM resolves effects of ethambutol on nanomechanics and nanostructures of single dividing mycobacteria in real-time. Phys Chem Chem Phys 2015; 16:19156-64. [PMID: 24965038 DOI: 10.1039/c4cp01317d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dynamic nanomechanics and nanostructures of dividing and anti-mycobacterial drug treated mycobacterium remain to be fully elucidated. Atomic force microscopy (AFM) is a promising nanotechnology tool for characterization of these dynamic alterations, especially at the single cell level. In this work, single dividing mycobacterium JLS (M.JLS) before and after anti-mycobacterial drug (ethambutol, EMB) treatment was in situ quantitatively analyzed, suggesting that nanomechanics would be referred as a sensitive indicator for evaluating efficacy of anti-mycobacterial drugs. Dynamic evidence on the contractile ring and septal furrow of dividing M.JLS implied that inhibition of contractile ring formation would be a crucial process for EMB to disturb M.JLS division. These results could facilitate further explaining the regulation mechanism of the contractile ring as well as nanomechanical roles of the cell wall in the course of mycobacterial division. This work describe a new way for further elucidating the mechanisms of mycobacterial division and anti-mycobacterial drug action, as well as the drug-resistance developing mechanism of pathogenic mycobacteria.
Collapse
Affiliation(s)
- Yangzhe Wu
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, USA.
| | | | | |
Collapse
|
46
|
Intergenerational continuity of cell shape dynamics in Caulobacter crescentus. Sci Rep 2015; 5:9155. [PMID: 25778096 PMCID: PMC4894450 DOI: 10.1038/srep09155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.
Collapse
|
47
|
Broughton CE, Roper DI, Van Den Berg HA, Rodger A. Bacterial cell division: experimental and theoretical approaches to the divisome. Sci Prog 2015; 98:313-45. [PMID: 26790174 PMCID: PMC10365498 DOI: 10.3184/003685015x14461391862881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell division is a key event in the bacterial life cycle. It involves constriction at the midcell, so that one cell can give rise to two daughter cells. This constriction is mediated by a ring composed offibrous multimers of the protein FtsZ. However a host of additional factors is involved in the formation and dynamics of this "Z-ring" and this complicated apparatus is collectively known as the "divisome". We review the literature, with an emphasis on mathematical modelling, and show how such theoretical efforts have helped experimentalists to make sense of the at times bewildering data, and plan further experiments.
Collapse
|
48
|
He Z, Liu Z, Guo K, Ding L. Effects of various kinetic rates of FtsZ filaments on bacterial cytokinesis. Phys Chem Chem Phys 2015; 17:31966-77. [DOI: 10.1039/c5cp00183h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell morphodynamics during bacterial cytokinesis is extensively investigated by a combination of phase field model for rod-shaped cells and a kinetic description for FtsZ ring maintenance.
Collapse
Affiliation(s)
- Zi He
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Zhuan Liu
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Kunkun Guo
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Lina Ding
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
49
|
Buske PJ, Mittal A, Pappu RV, Levin PA. An intrinsically disordered linker plays a critical role in bacterial cell division. Semin Cell Dev Biol 2014; 37:3-10. [PMID: 25305578 DOI: 10.1016/j.semcdb.2014.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/13/2014] [Indexed: 02/07/2023]
Abstract
In bacteria, animals, fungi, and many single celled eukaryotes, division is initiated by the formation of a ring of cytoskeletal protein at the nascent division site. In bacteria, the tubulin-like GTPase FtsZ serves as the foundation for the cytokinetic ring. A conserved feature of FtsZ is an intrinsically disordered peptide known as the C-terminal linker. Chimeric experiments suggest the linker acts as a flexible boom allowing FtsZ to associate with the membrane through a conserved C-terminal domain and also modulates interactions both between FtsZ subunits and between FtsZ and modulatory proteins in the cytoplasm.
Collapse
Affiliation(s)
- P J Buske
- Department of Cellular and Molecular Pharmacology and The Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Anuradha Mittal
- Department of Biomedical Engineering & Center for Biological Systems Engineering, Saint Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering & Center for Biological Systems Engineering, Saint Louis, MO 63130, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
50
|
Turnbull L, Strauss MP, Liew ATF, Monahan LG, Whitchurch CB, Harry EJ. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM). J Vis Exp 2014:51469. [PMID: 25286090 PMCID: PMC4672958 DOI: 10.3791/51469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.
Collapse
|