1
|
Muramatsu W, Maryanovich M, Akiyama T, Karagiannis GS. Thymus ad astra, or spaceflight-induced thymic involution. Front Immunol 2025; 15:1534444. [PMID: 39926601 PMCID: PMC11802524 DOI: 10.3389/fimmu.2024.1534444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Spaceflight imposes a constellation of physiological challenges-cosmic radiation, microgravity, disrupted circadian rhythms, and psychosocial stress-that critically compromise astronaut health. Among the most vulnerable organs is the thymus, a cornerstone of immune system functionality, tasked with generating naive T cells essential for adaptive immunity. The thymus is particularly sensitive to spaceflight conditions, as its role in maintaining immune homeostasis is tightly regulated by a balance of systemic and local factors easily disrupted in space. Cosmic radiation, an omnipresent hazard beyond Earth's magnetosphere, accelerates DNA damage and cellular senescence in thymic epithelial cells, impairing thymopoiesis and increasing the risk of immune dysregulation. Microgravity and circadian rhythm disruption exacerbate this by altering immune cell migration patterns and stromal support, critical for T-cell development. Psychosocial stressors, including prolonged isolation and mission-induced anxiety, further compound thymic atrophy by elevating systemic glucocorticoid levels. Ground-based analogs simulating cosmic radiation and microgravity have been instrumental in elucidating mechanisms of thymic involution and its downstream effects on immunity. These models reveal that long-duration missions result in diminished naive T-cell output, leaving astronauts vulnerable to infections and possibly at high risk for developing neoplasia. Advances in countermeasures, such as pharmacological interventions targeting thymic regeneration and bioengineering approaches to protect thymic architecture, are emerging as vital strategies to preserve immune resilience during prolonged space exploration. Focusing on the thymus as a central hub of immune vulnerability underscores its pivotal role in spaceflight-induced health risks. Understanding these dynamics will not only enhance the safety of human space missions but also provide critical insights into thymus biology under extreme conditions.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - George S. Karagiannis
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
2
|
Horikawa I, Nagai H, Taniguchi M, Chen G, Shinohara M, Suzuki T, Ishii S, Katayama Y, Kitaoka S, Furuyashiki T. Chronic stress alters lipid mediator profiles associated with immune-related gene expressions and cell compositions in mouse bone marrow and spleen. J Pharmacol Sci 2024; 154:279-293. [PMID: 38485346 DOI: 10.1016/j.jphs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.
Collapse
Affiliation(s)
- Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Masayuki Taniguchi
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Guowei Chen
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomohide Suzuki
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shinichi Ishii
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshio Katayama
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
3
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Guo Q, Chen N, Patel K, Wan M, Zheng J, Cao X. Unloading-Induced Skeletal Interoception Alters Hypothalamic Signaling to Promote Bone Loss and Fat Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305042. [PMID: 37880864 PMCID: PMC10724445 DOI: 10.1002/advs.202305042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Microgravity is the primary factor that affects human physiology in spaceflight, particularly bone loss and disturbances of the central nervous system. However, little is known about the cellular and molecular mechanisms of these effects. Here, it is reported that in mice hindlimb unloading stimulates expression of neuropeptide Y (NPY) and tyrosine hydroxylase (TH) in the hypothalamus, resulting in bone loss and altered fat metabolism. Enhanced expression of TH and NPY in the hypothalamus occurs downstream of a reduced prostaglandin E2 (PGE2)-mediated ascending interoceptive signaling of the skeletal interoception. Sympathetic antagonist propranolol or deletion of Adrb2 in osteocytes rescue bone loss in the unloading model. Moreover, depletion of TH+ sympathetic nerves or inhibition of norepinephrine release ameliorated bone resorption. Stereotactic inhibition of NPY expression in the hypothalamic neurons reduces the food intake with altered energy expenditure with a limited effect on bone, indicating hypothalamic neuroendocrine factor NPY in the facilitation of bone formation by sympathetic TH activity. These findings suggest that reduced PGE2-mediated interoceptive signaling in response to microgravity or unloading has impacts on the skeletal and central nervous systems that are reciprocally regulated.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Ningrong Chen
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Kalp Patel
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Junying Zheng
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
5
|
Osa S, Enoki Y, Miyajima T, Akiyama M, Fujiwara Y, Taguchi K, Kim YG, Matsumoto K. SCIATIC DENERVATION-INDUCED SKELETAL MUSCLE ATROPHY IS ASSOCIATED WITH PERSISTENT INFLAMMATION AND INCREASED MORTALITY DURING SEPSIS. Shock 2023; 59:417-425. [PMID: 36427072 DOI: 10.1097/shk.0000000000002053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Background: Patients with underlying skeletal muscle atrophy are likely to develop aggravated sepsis. However, no study has experimentally verified the association between the prognosis of sepsis and muscle atrophy, and the mechanism of aggravation of sepsis under muscle atrophy remains unclear. In this study, we investigated the effect of skeletal muscle atrophy induced by sciatic denervation (DN), an experimental muscle atrophy model, on sepsis prognosis. Methods: Skeletal muscle atrophy was induced by DN of the sciatic nerve in C57BL/6J male mice. Cecal ligation and puncture (CLP) was performed to induce sepsis. Results: The survival rates of the sham and DN groups 7 days after CLP were 63% and 35%, respectively, wherein an approximately 30% reduction was observed in the DN group ( P < 0.05, vs. sham-CLP). The DN group had a higher bacterial count in the blood 48 h after CLP ( P < 0.05, vs. sham-CLP). Notably, NOx (a metabolite of nitric oxide) concentrations in DN mice were higher than those in sham mice after CLP ( P < 0.05, vs. sham-CLP), whereas serum platelet levels were lower 48 h after CLP ( P < 0.05, vs. sham-CLP). In organ damage analysis, DN mice presented increased protein expression of the kidney injury molecule (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), a kidney injury marker, after CLP (NGAL 48 h after CLP, P < 0.05, vs. sham-CLP; KIM-1 24 h after CLP, P < 0.01, vs. sham-CLP). Furthermore, nitro tyrosine levels in the kidneys of DN mice were higher 48 h after CLP compared with those in sham-CLP mice, indicating the accumulation of nitrative stress ( P < 0.05, vs. sham-CLP). Serum cytokine levels were increased in both groups after CLP, but decreased in the sham group 48 h after CLP and remained consistently higher in the DN group (tumor necrosis factor [TNF]-α: P < 0.05, sham-CLP vs. DN-CLP; interleukin (IL)-1β: P < 0.01, sham-CLP vs. DN-CLP; IL-6: P < 0.05, DN vs. DN-CLP; IL-10: P < 0.05, sham-CLP vs. DN-CLP). Conclusions: We verified that skeletal muscle atrophy induced by DN is associated with poor prognosis after CLP-induced sepsis. Importantly, mice with skeletal muscle atrophy presented worsening sepsis prognosis at late onset, including prolonged infection, persistent inflammation, and kidney damage accumulation, resulting in delayed recovery.
Collapse
Affiliation(s)
- Sumika Osa
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Taichi Miyajima
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto Chuo-ku, Kumamoto, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| |
Collapse
|
6
|
Lin YM, Hegde S, Cong Y, Shi XZ. Mechanisms of lymphoid depletion in bowel obstruction. Front Physiol 2022; 13:1005088. [PMID: 36213246 PMCID: PMC9533077 DOI: 10.3389/fphys.2022.1005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Bowel obstruction (BO) causes not only gastrointestinal dysfunctions but also systemic responses such as sepsis, infections, and immune impairments. The mechanisms involved are not well understood. In this study, we tested the hypothesis that BO leads to lymphoid depletion in primary and peripheral lymphoid organs, which may contribute to systemic responses. We also sought to uncover mechanisms of lymphoid depletion in BO. Methods: Partial colon obstruction was induced with a band in the distal colon of Sprague-Dawley rats, and wild-type and osteopontin knockout (OPN-/-) mice. Obstruction was maintained for 7 days in rats and 4 days in mice. Thymus, bone marrow, spleen, and mesenteric lymph node (MLN) were taken for flow cytometry analysis. Results: The weight of thymus, spleen, and MLN was significantly decreased in BO rats, compared to sham. B and T lymphopoiesis in the bone marrow and thymus was suppressed, and numbers of lymphocytes, CD4+, and CD8+ T cells in the spleen and MLN were all decreased in BO. Depletion of gut microbiota blocked BO-associated lymphopenia in the MLN. Corticosterone antagonism partially attenuated BO-associated reduction of lymphocytes in the thymus and bone marrow. Plasma OPN levels and OPN expression in the distended colon were increased in BO. Deletion of the OPN gene did not affect splenic lymphopenia, but attenuated suppression of lymphopoiesis in the bone marrow and thymus in BO. Conclusions: BO suppresses lymphocyte generation and maintenance in lymphoid organs. Mechanical distention-induced OPN, corticosterone, and gut microbiota are involved in the immune phenotype in BO.
Collapse
Affiliation(s)
- You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shrilakshmi Hegde
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,*Correspondence: Xuan-Zheng Shi,
| |
Collapse
|
7
|
Lee W, Milewski TM, Dwortz MF, Young RL, Gaudet AD, Fonken LK, Champagne FA, Curley JP. Distinct immune and transcriptomic profiles in dominant versus subordinate males in mouse social hierarchies. Brain Behav Immun 2022; 103:130-144. [PMID: 35447300 DOI: 10.1016/j.bbi.2022.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Social status is a critical factor determining health outcomes in human and nonhuman social species. In social hierarchies with reproductive skew, individuals compete to monopolize resources and increase mating opportunities. This can come at a significant energetic cost leading to trade-offs between different physiological systems. In particular, changes in energetic investment in the immune system can have significant short and long-term effects on fitness and health. We have previously found that dominant alpha male mice living in social hierarchies have increased metabolic demands related to territorial defense. In this study, we tested the hypothesis that high-ranking male mice favor adaptive immunity, while subordinate mice show higher investment in innate immunity. We housed 12 groups of 10 outbred CD-1 male mice in a social housing system. All formed linear social hierarchies and subordinate mice had higher concentrations of plasma corticosterone (CORT) than alpha males. This difference was heightened in highly despotic hierarchies. Using flow cytometry, we found that dominant status was associated with a significant shift in immunophenotypes towards favoring adaptive versus innate immunity. Using Tag-Seq to profile hepatic and splenic transcriptomes of alpha and subordinate males, we identified genes that regulate metabolic and immune defense pathways that are associated with status and/or CORT concentration. In the liver, dominant animals showed a relatively higher expression of specific genes involved in major urinary production and catabolic processes, whereas subordinate animals showed relatively higher expression of genes promoting biosynthetic processes, wound healing, and proinflammatory responses. In spleen, subordinate mice showed relatively higher expression of genes facilitating oxidative phosphorylation and DNA repair and CORT was negatively associated with genes involved in lymphocyte proliferation and activation. Together, our findings suggest that dominant and subordinate animals adaptively shift immune profiles and peripheral gene expression to match their contextual needs.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, CA, USA
| | - Tyler M Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Madeleine F Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Rebecca L Young
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Gaudet
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of Neurology, University of Texas at Austin, Austin, TX, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | | | - James P Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
A mouse model of disuse osteoporosis based on a movable noninvasive 3D-printed unloading device. J Orthop Translat 2022; 33:1-12. [PMID: 35070713 PMCID: PMC8753063 DOI: 10.1016/j.jot.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Objective Disuse osteoporosis is a major type of bone loss disease characterized by regional bone loss and microstructure alterations. The condition is induced by a marked decrease in weight bearing over time, which usually occurs due to limb immobilization, therapeutic bed rest or space flight. To date, the most commonly used mouse model of disuse osteoporosis is constructed using the classical tail suspension method, which causes tail injury, movement inconvenience and mental stress. This study aimed to propose a noninvasive and effective method for the establishment of a mouse model of disuse osteoporosis and compared this method with the tail suspension method. Methods 3D printing technology was applied to construct a movable unloading device. A movable noninvasive 3D-printed unloading device (3D-ULD) was used to unload the hindlimbs of the mice. The bone microstructure and bone volume of unloaded femurs were analysed through micro-CT and H&E staining, and von Kossa staining was performed for the detection of bone mineralization in the femurs. TRAP staining, IHC-CTSK and Q-PCR were performed for evaluation of the bone resorption ability, and double labelling, IHC-DMP1, ALP staining and Q-PCR assays were conducted to assess the osteogenic ability. The mechanical properties of disused bone were detected using the three-point bending test. The body, thymus and spleen weights of the mice were recorded, and the serum corticosterone level of the mice was assayed by enzyme-linked immunosorbent assay (ELISA). Results The micro-CT results showed significant trabecular bone loss, and 3D-ULD induced cortical bone loss in disused femurs as well as a decrease in the bone mineral density in the unloaded mice. TRAP staining and IHC-CTSK staining results indicated increases in the osteoclast number per bone perimeter (Oc.N/B.Pm) and the osteoclast surface per bone surface (Oc.S/BS) in the unloaded mice. The Ctsk, Trap and Mmp9 expression levels were significantly increased in the unloaded mice. Decreases in the ratio of the mineral surface to bone surface (MS/BS), mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS) were found in unloaded mice in the 3D-ULD by double labelling. The IHC-DMP1 and ALP staining results showed decreases in the osteoblast number per bone perimeter (Ob.N/B.Pm) and osteoblast surface per bone surface (Ob. S/BS) in the mice unloaded in the 3D-ULD, and these mice also showed decreased Runx2, Alp and Dmp1 expression levels. Three-point bending test results showed that the mechanical properties were attenuated in the disused femurs of the unloaded mice. Less skin rupture and rare alterations in the thymus and spleen weights were found in the unloaded mice in the 3D-ULD. The ELISA results indicated the serum corticosterone level of the mice unloaded in the 3D-ULD was significantly lower than that of mice suspended by their tail. Conclusion This new disuse osteoporosis mouse model based on 3D-ULD could induce effective disuse bone loss with significantly alleviated side effects. Translational potential of this article This study proposes a new disuse osteoporosis mouse model based on 3D-ULD that can be used to better understand disuse bone loss in the future.
Collapse
|
9
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
10
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
11
|
Rubinstein L, Paul AM, Houseman C, Abegaz M, Tabares Ruiz S, O’Neil N, Kunis G, Ofir R, Cohen J, Ronca AE, Globus RK, Tahimic CGT. Placenta-Expanded Stromal Cell Therapy in a Rodent Model of Simulated Weightlessness. Cells 2021; 10:940. [PMID: 33921854 PMCID: PMC8073415 DOI: 10.3390/cells10040940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.
Collapse
Affiliation(s)
- Linda Rubinstein
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Charles Houseman
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Steffy Tabares Ruiz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Nathan O’Neil
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Gilad Kunis
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Racheli Ofir
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Jacob Cohen
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - April E. Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Wake Forest Medical School, Winston-Salem, NC 27101, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Candice G. T. Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- KBR, Houston, TX 77002, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
12
|
Sadhukhan R, Majumdar D, Garg S, Landes RD, McHargue V, Pawar SA, Chowdhury P, Griffin RJ, Narayanasamy G, Boerma M, Dobretsov M, Hauer-Jensen M, Pathak R. Simultaneous exposure to chronic irradiation and simulated microgravity differentially alters immune cell phenotype in mouse thymus and spleen. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:66-73. [PMID: 33612181 PMCID: PMC7900614 DOI: 10.1016/j.lssr.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Deep-space missions may alter immune cell phenotype in the primary (e.g., thymus) and secondary (e.g., spleen) lymphoid organs contributing to the progression of a variety of diseases. In deep space missions, astronauts will be exposed to chronic low doses of HZE radiation while being in microgravity. Ground-based models of long-term uninterrupted exposures to HZE radiation are not yet available. To obtain insight in the effects of concurrent exposure to microgravity and chronic irradiation (CIR), mice received a cumulative dose of chronic 0.5 Gy gamma rays over one month ± simulated microgravity (SMG). To obtain insight in a dose rate effect, additional mice were exposed to single acute irradiation (AIR) at 0.5 Gy gamma rays. We measured proportions of immune cells relative to total number of live cells in the thymus and spleen, stress level markers in plasma, and change in body weight, food consumption, and water intake. CIR affected thymic CD3+/CD335+ natural killer T (NK-T) cells, CD25+ regulatory T (Treg) cells, CD27+/CD335- natural killer (NK1) cells and CD11c+/CD11b- dendritic cells (DCs) differently in mice subjected to SMG than in mice with normal loading. No such effects of CIR on SMG as compared to normal loading were observed in cell types from the spleen. Differences between CIR and AIR groups (both under normal loading) were found in thymic Treg and DCs. Food consumption, water intake, and body weight were less after coexposure than singular or no exposure. Compared to sham, all treatment groups exhibited elevated plasma levels of the stress marker catecholamines. These data suggest that microgravity and chronic irradiation may interact with each other to alter immune cell phenotypes in an organ-specific manner and appropriate strategies are required to reduce the health risk of crewmembers.
Collapse
Affiliation(s)
- Ratan Sadhukhan
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Debajyoti Majumdar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Reid D Landes
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Victoria McHargue
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Parimal Chowdhury
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Robert J Griffin
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Ganesh Narayanasamy
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Maxim Dobretsov
- Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Sankt-Petersburg, Russian Federation
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
13
|
Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J. RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1595. [PMID: 33437794 PMCID: PMC7791259 DOI: 10.21037/atm-20-7400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Weightlessness-induced skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, has potentially damaged consequences. However, there is still an insufficient effective strategy to treat skeletal muscle atrophy. Therefore, exploring the molecular mechanisms regulating skeletal muscle atrophy and effective protection is necessary. Methods RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in the soleus muscle at 12, 24, 36 hours, three days, and seven days after hindlimb unloading in rats. Pearson correlation heatmaps and principal component analysis (PCA) were applied to analyze DEGs’ expression profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for cluster analysis of DEGs. Ingenuity pathway analysis (IPA) was used to analyze specific biological processes further. Results At different time points (12, 24, 36 hours, three days, seven days) after hindlimb unloading, the expression levels of 712, 1,109, 1,433, 1,162, and 1,182 genes in rat soleus muscle were upregulated, respectively, whereas the expression levels of 1,186, 1,324, 1,632, 1,446, and 1,596 genes were downregulated, respectively. PCA revealed that rat soleus muscle showed three different transcriptional phases within seven days after hindlimb unloading. KEGG and GO annotation indicated that the first transcriptional phase primarily involved the activation of stress responses, including oxidative stress, and the inhibition of cell proliferation and angiogenesis; the second transcriptional phase primarily involved the activation of proteolytic systems and, to a certain degree, inflammatory responses; and the third transcriptional phase primarily involved extensive activation of the proteolytic system, significant inhibition of energy metabolism, and activation of the aging process and slow-to-fast muscle conversion. Conclusions Different physiological processes in rat skeletal muscles were activated sequentially after unloading. From these activated biological processes, the three transcriptional phases after skeletal muscle unloading can be successively defined as the stress response phase, the atrophic initiation phase, and the atrophic phase. Our study not only helps in the understanding of the molecular mechanisms underlying weightlessness-induced muscle atrophy but may also provide an important time window for the treatment and prevention of weightlessness-induced muscle atrophy.
Collapse
Affiliation(s)
- Qihao Cui
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Yang
- Department of Neurosurgery, People's Hospital of Binhai County, Yancheng, China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
15
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
16
|
Microgravity versus Microgravity and Irradiation: Investigating the Change of Neuroendocrine-Immune System and the Antagonistic Effect of Traditional Chinese Medicine Formula. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2641324. [PMID: 32566675 PMCID: PMC7273471 DOI: 10.1155/2020/2641324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022]
Abstract
During spaceflight, the homeostasis of the living body is threatened with cosmic environment including microgravity and irradiation. Traditional Chinese medicine could ameliorate the internal imbalance during spaceflight, but its mechanism is still unclear. In this article, we compared the difference of neuroendocrine-immune balance between simulated microgravity (S) and simulated microgravity and irradiation (SAI) environment. We also observed the antagonistic effect of SAI using a traditional Chinese medicine formula (TCMF). Wistar rats were, respectively, exposed under S using tail suspending and SAI using tail suspending and 60Co-gama irradiation exposure. The SAI rats were intervened with TCMF. The changes of hypothalamic–pituitary–adrenal (HPA) axis, splenic T-cell, celiac macrophages, and related cytokines were observed after 21 days. Compared with the normal group, the hyperfunction of HPA axis and celiac macrophages, as well as the hypofunction of splenic T-cells, was observed in both the S and SAI group. Compared with the S group, the levels of plasmatic corticotropin-releasing hormone (CRH), macrophage activity, and serous interleukin-6 (IL-6) in the SAI group were significantly reduced. The dysfunctional targets were mostly reversed in the TCMF group. Both S and SAI could lead to NEI imbalance. Irradiation could aggravate the negative feedback inhibition of HPA axis and macrophages caused by S. TCMF could ameliorate the NEI dysfunction caused by SAI.
Collapse
|
17
|
Aghajari S, Mortazavi SMJ, Kalani M, Nematolahi S, Habibzadeh P, Farjadian S. The Immunomodulatory Effect of Radiofrequency Electromagnetic Field on Serum Cytokine Levels in A Mouse Model of Hindlimb Unloading. CELL JOURNAL 2020; 22:401-405. [PMID: 32347032 PMCID: PMC7211291 DOI: 10.22074/cellj.2021.6856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022]
Abstract
Objective Astronauts are exposed to a wide range of environmental stresses during spaceflights that reduce their
immune responses and make them more susceptible to infections and malignancies. Exposure to a low dose of a
certain stress induces an adaptive response, which leads to resistance to higher doses of the same or other types
of stress. We designed this study to investigate the effect of radiofrequency electromagnetic field (RF-EMF)-induced
adaptive response on immune system modulation in a mouse model of hindlimb unloading (HU) as a ground-based
animal model of spaceflight conditions.
Materials and Methods In this experimental study, serum levels of T helper (Th)-mediated cytokines were determined
by the multiplex cytometric bead assay in four groups of mice (n=10 per group): HU mice, RF-EMF-treated mice, HU
mice pre-exposed to RF-EMF; and untreated controls. Mice were exposed to 2450 MHz RF-EMF with SAR 0.478 W/
kg for 12 hours/day for three successive days.
Results Tumor necrosis factor-alpha (TNF-α), interleukin-9 (IL-9) and IL-22 were significantly decreased in HU mice.
Comparison between HU mice and RF-EMF-treated mice showed an opposite change in IL-6, while IL-9, IL-22, IFN-γ
and TNF-α decreased in both groups. However, just interferon gamma (IFN-γ) was significantly decreased in HU mice
that were pre-exposed to RF-EMF compared to the control group.
Conclusion The effect of RF-EMF in elevating IL-6 and reducing IL-9 in opposite directions in HU mice suggest a
modulating effect of RF-EMF on HU-induced changes in these cytokines, as Th2 and Th9 eventually returned to normal
levels and balances in cytokine ratios were also restored in HU mice pre-exposed to RF-EMF.
Collapse
Affiliation(s)
- Sima Aghajari
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Kalani
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.,Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Nematolahi
- Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Habibzadeh
- R and D Department, Persian BayanGene Research and Training Center, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic Address:
| |
Collapse
|
18
|
Dai X, Ye S, Chen X, Jiang T, Huang H, Li W, Yu H, Bao J, Chen H. Rodent retinal microcirculation and visual electrophysiology following simulated microgravity. Exp Eye Res 2020; 194:108023. [PMID: 32222454 DOI: 10.1016/j.exer.2020.108023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022]
Abstract
How the absence of gravity affects the physiology of human beings is generating global research interest as space exploration, including missions aboard the International Space Station, continues to push boundaries. Here, we examined changes in retinal microcirculation and visual electrophysiology in mice suspended by their tails to simulate the cephalad movement of blood that occurs under microgravity conditions. Tail suspension was performed with a head-down tilt with a recommended angle of 30°. Mice in the control groups were similarly attached to a tether but could maintain a normal position. Morphologically, the 15-day tail-suspended mice showed retinal microvascular dilation, tortuosity, and a relatively long fluorescence retention; however, the average diameter of the major retinal vessels was not notably changed. In addition, optical coherence tomography showed their optic nerve head had an increased diameter. However, the mice could adapt to the change, with microcirculation and the optic nerve head recovering following 30-day tail suspension. Expression of rhodopsin and cone-opsins was not notably changed, and no retinal apoptotic-positive cells were detected between 15- and 30-day tail suspensions. Moreover, the three experimental groups of suspended mice showed normal retinal layers and thickness. Functionally, following 15-day tail suspension, scotopic electroretinograms showed a decline in the oscillatory potentials (OPs), but not in the b wave; simultaneously, the peak time of flash visual evoked potential component N1 was delayed compared to its baseline and the time-matched control. Following 30-day tail suspension, the OPs (O2) amplitude recovered to approximately 97% of its baseline or 86% of the time-matched control level. By simulating cephalad shifting of blood, short-term tail suspension can affect rodent retinal microcirculation, the optic nerve head, and disturb visual electrophysiology. However, the change is reversible with no permanent injury observed in the retina. The mice could adapt to the short-term change of retinal microcirculation, indicating new conditions that could be combined with, or could enhance, simulated microgravity for further studying the impact of short- or long-term outer space conditions on the retina.
Collapse
Affiliation(s)
- Xufeng Dai
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Siming Ye
- New York University Shanghai, Shanghai, 200120, China
| | - Xiaoping Chen
- Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Ting Jiang
- Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Haixiao Huang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenjiong Li
- Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Hongqiang Yu
- Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jinhua Bao
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Hao Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
19
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
20
|
Yang J, Li J, Cui X, Li W, Xue Y, Shang P, Zhang H. Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone 2020; 130:115108. [PMID: 31704341 DOI: 10.1016/j.bone.2019.115108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Bone loss has been supposed to be the greatest damage to the health of astronauts. It is generally believed that the mechanical unloading induced by microgravity is the main cause of bone loss. However, besides mechanical unloading, many evidences from animal models and spaceflight missions indicate that microgravity conditions can cause some stress reactions and elevated endogenous glucocorticoid (GC) levels. High levels of GCs can lead to bone loss. This study aimed to investigate whether elevated GC levels are involved in hindlimb unloading (HLU)-induced bone loss in mice. Col2.3-11β-hydroxysteroid dehydrogenase type 2 (Col2.3-11β-HSD2) transgenic mice which are characterized by specific blocking GC signaling in mature osteoblasts and osteocytes were used. Male 14-week-old Col2.3-11β-HSD2 transgenic mice and wild type littermates were tail-suspended or kept under ambulatory conditions. At the endpoint, the tibias were examined by micro-computed tomography and histomorphometry, and bone turnover was analyzed by serum biochemistry, histochemistry staining, immunohistochemistry, and real-time PCR. Mice exposed to unloading occurred a significant increase in serum GC concentrations. Compared with non-unloaded controls, HLU led to a severe damage in cortical bone microstructure and bone strength of the tibia in wild type mice but not transgenic littermates. Osteoblast activity and bone formation were inhibited, whereas osteoclast activity and bone resorption were promoted in the tibial cortical bone of wild type mice following HLU, features absented in transgenic mice. Furthermore, HLU resulted in a significant increase in the number of sclerostin-producing and receptor activator of nuclear factor-κ B ligand (RANKL)-positive osteocytes, and apoptotic osteoblasts and osteocytes in wild type mice of unloading but not in unloaded transgenic mice. In conclusion, cortical bone loss during HLU is mediated through enhancing GC signaling in osteoblasts and osteocytes and subsequently restraining bone formation and activating bone resorption. It suggests that elevated GC levels play an important role in cortical bone loss in response to mechanical unloading.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Jingbao Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobin Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Wenbin Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yanru Xue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China.
| | - Hao Zhang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| |
Collapse
|
21
|
Horie K, Kato T, Kudo T, Sasanuma H, Miyauchi M, Akiyama N, Miyao T, Seki T, Ishikawa T, Takakura Y, Shirakawa M, Shiba D, Hamada M, Jeon H, Yoshida N, Inoue JI, Muratani M, Takahashi S, Ohno H, Akiyama T. Impact of spaceflight on the murine thymus and mitigation by exposure to artificial gravity during spaceflight. Sci Rep 2019; 9:19866. [PMID: 31882694 PMCID: PMC6934594 DOI: 10.1038/s41598-019-56432-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. Thymic size was significantly reduced after spaceflight. Notably, exposure of mice to 1 × g using centrifugation cages in the ISS significantly mitigated the reduction in thymic size. Although spaceflight caused thymic atrophy, the global thymic structure was not largely changed. However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.
Collapse
Affiliation(s)
- Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hiroki Sasanuma
- Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yuki Takakura
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Nobuaki Yoshida
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.,Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.,Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
| |
Collapse
|
22
|
Tahimic CGT, Paul AM, Schreurs AS, Torres SM, Rubinstein L, Steczina S, Lowe M, Bhattacharya S, Alwood JS, Ronca AE, Globus RK. Influence of Social Isolation During Prolonged Simulated Weightlessness by Hindlimb Unloading. Front Physiol 2019; 10:1147. [PMID: 31572207 PMCID: PMC6753329 DOI: 10.3389/fphys.2019.01147] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
The hindlimb unloading (HU) model has been used extensively to simulate the cephalad fluid shift and musculoskeletal disuse observed in spaceflight with its application expanding to study immune, cardiovascular and central nervous system responses, among others. Most HU studies are performed with singly housed animals, although social isolation also can substantially impact behavior and physiology, and therefore may confound HU experimental results. Other HU variants that allow for paired housing have been developed although no systematic assessment has been made to understand the effects of social isolation on HU outcomes. Hence, we aimed to determine the contribution of social isolation to tissue responses to HU. To accomplish this, we developed a refinement to the traditional NASA Ames single housing HU system to accommodate social housing in pairs, retaining desirable features of the original design. We conducted a 30-day HU experiment with adult, female mice that were either singly or socially housed. HU animals in both single and social housing displayed expected musculoskeletal deficits versus housing matched, normally loaded (NL) controls. However, select immune and hypothalamic-pituitary-adrenal (HPA) axis responses were differentially impacted by the HU social environment relative to matched NL controls. HU led to a reduction in % CD4+ T cells in singly housed, but not in socially housed mice. Unexpectedly, HU increased adrenal gland mass in socially housed but not singly housed mice, while social isolation increased adrenal gland mass in NL controls. HU also led to elevated plasma corticosterone levels at day 30 in both singly and socially housed mice. Thus, musculoskeletal responses to simulated weightlessness are similar regardless of social environment with a few differences in adrenal and immune responses. Our findings show that combined stressors can mask, not only exacerbate, select responses to HU. These findings further expand the utility of the HU model for studying possible combined effects of spaceflight stressors.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,KBR, Houston, TX, United States
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,KBR, Houston, TX, United States
| | - Samantha M Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
23
|
Jiang W, Li Y, Li ZZ, Sun J, Li JW, Wei W, Li L, Zhang C, Huang C, Yang SY, Yang J, Kong GY, Li ZF. Chronic restraint stress promotes hepatocellular carcinoma growth by mobilizing splenic myeloid cells through activating β-adrenergic signaling. Brain Behav Immun 2019; 80:825-838. [PMID: 31125710 DOI: 10.1016/j.bbi.2019.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
Psychological stress promotes tumor progression and has a large impact on the immune system, particularly the spleen. The spleen plays an important role in tumor behavior. However, the role and mechanism of the spleen in hepatocellular carcinoma progression induced by stress is unclear. Here, we showed that the spleen plays a critical role in hepatocellular carcinoma growth induced by restraint stress. Our results demonstrated that restraint stress promoted hepatocellular carcinoma growth, changed the spleen structure, and redistributed splenic myeloid cells to tumor tissues. Interestingly, we found that splenectomy could inhibit hepatocellular carcinoma growth and prevent increases in myeloid cells and macrophages in tumor tissues in stressed mice. Restraint stress significantly elevated the concentration of norepinephrine in the spleen, serum and tumor tissues. Meanwhile, propranolol, an inhibitor of β-adrenergic signaling, could inhibit hepatocellular carcinoma growth and prevent the redistribution of splenic myeloid cells induced by restraint stress, suggesting that restraint stress promotes hepatocellular carcinoma growth and redistributes splenic myeloid cells through β-adrenergic signaling. Mechanistic studies revealed that restraint stress upregulated the expressions of CXCL2/CXCL3 in tumor tissues and changed the expression of CXCR2 in myeloid cells. SB225002, an inhibitor of CXCR2, could prevent the recruitment of myeloid cells in tumor tissues and inhibit tumor growth in stressed mice. Together, these data indicate that chronic restraint stress promotes hepatocellular carcinoma growth by mobilizing splenic myeloid cells to tumor tissues via activating β-adrenergic signaling. The CXCR2-CXCL2/CXCL3 axis contributed to the recruitment of myeloid cells in tumor tissues induced by restraint stress.
Collapse
MESH Headings
- Adrenergic Agents
- Animals
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Chemokine CXCL2
- Chemokines, CXC
- Liver Neoplasms/metabolism
- Macrophages/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Myeloid Cells/immunology
- Myeloid Cells/pathology
- Propranolol/pharmacology
- Receptors, Adrenergic, beta/metabolism
- Receptors, Interleukin-8B
- Restraint, Physical
- Signal Transduction/drug effects
- Spleen/immunology
- Spleen/pathology
- Stress, Physiological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen-Zhen Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiang-Wei Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wei
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuan-Ying Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
24
|
P. Vempati R, M. Reddy H. Psychoneuroimmunology and Genetics. Immunogenetics 2019. [DOI: 10.5772/intechopen.82557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Down-regulation of GATA1-dependent erythrocyte-related genes in the spleens of mice exposed to a space travel. Sci Rep 2019; 9:7654. [PMID: 31114014 PMCID: PMC6529412 DOI: 10.1038/s41598-019-44067-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes.
Collapse
|
26
|
PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc Natl Acad Sci U S A 2018; 116:277-286. [PMID: 30578322 DOI: 10.1073/pnas.1811938116] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial intramembrane rhomboid protease PARL has been implicated in diverse functions in vitro, but its physiological role in vivo remains unclear. Here we show that Parl ablation in mouse causes a necrotizing encephalomyelopathy similar to Leigh syndrome, a mitochondrial disease characterized by disrupted energy production. Mice with conditional PARL deficiency in the nervous system, but not in muscle, develop a similar phenotype as germline Parl KOs, demonstrating the vital role of PARL in neurological homeostasis. Genetic modification of two major PARL substrates, PINK1 and PGAM5, do not modify this severe neurological phenotype. Parl -/- brain mitochondria are affected by progressive ultrastructural changes and by defects in Complex III (CIII) activity, coenzyme Q (CoQ) biosynthesis, and mitochondrial calcium metabolism. PARL is necessary for the stable expression of TTC19, which is required for CIII activity, and of COQ4, which is essential in CoQ biosynthesis. Thus, PARL plays a previously overlooked constitutive role in the maintenance of the respiratory chain in the nervous system, and its deficiency causes progressive mitochondrial dysfunction and structural abnormalities leading to neuronal necrosis and Leigh-like syndrome.
Collapse
|
27
|
Takahashi A, Wakihata S, Ma L, Adachi T, Hirose H, Yoshida Y, Ohira Y. Temporary Loading Prevents Cancer Progression and Immune Organ Atrophy Induced by Hind-Limb Unloading in Mice. Int J Mol Sci 2018; 19:ijms19123959. [PMID: 30544854 PMCID: PMC6321260 DOI: 10.3390/ijms19123959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Although the body's immune system is altered during spaceflight, the effects of microgravity (μG) on tumor growth and carcinogenesis are, as yet, unknown. To assess tumor proliferation and its effects on the immune system, we used a hind-limb unloading (HU) murine model to simulate μG during spaceflight. HU mice demonstrated significantly increased tumor growth, metastasis to the lung, and greater splenic and thymic atrophy compared with mice in constant orthostatic suspension and standard housing controls. In addition, mice undergoing temporary loading during HU (2 h per day) demonstrated no difference in cancer progression and immune organ atrophy compared with controls. Our findings suggest that temporary loading can prevent cancer progression and immune organ atrophy induced by HU. Further space experiment studies are warranted to elucidate the precise effects of μG on systemic immunity and cancer progression.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Shoto Wakihata
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Liqiu Ma
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Takuya Adachi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Hiroki Hirose
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Yoshinobu Ohira
- Faculty and Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
28
|
Horie K, Kudo T, Yoshinaga R, Akiyama N, Sasanuma H, Kobayashi TJ, Shimbo M, Jeon H, Miyao T, Miyauchi M, Shirakawa M, Shiba D, Yoshida N, Muratani M, Takahashi S, Akiyama T. Long-term hindlimb unloading causes a preferential reduction of medullary thymic epithelial cells expressing autoimmune regulator (Aire). Biochem Biophys Res Commun 2018; 501:745-750. [PMID: 29753741 DOI: 10.1016/j.bbrc.2018.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022]
Abstract
Hindlimb unloading (HU) of rodents has been used as a ground-based model of spaceflight. In this study, we investigated the detailed impact of 14-day HU on the murine thymus. Thymic mass and cell number were significantly reduced after 14 days of hindlimb unloading, which was accompanied by an increment of plasma corticosterone. Although corticosterone reportedly causes selective apoptosis of CD4+CD8+ thymocytes (CD4+CD8+DPs) in mice treated with short-term HU, the reduction of thymocyte cellularity after the 14-day HU was not selective for CD4+CD8+DPs. In addition to the thymocyte reduction, the cellularity of thymic epithelial cells (TECs) was also reduced by the 14-day HU. Flow cytometric and RNA-sequencing analysis suggested that medullary TECs (mTECs) were preferentially reduced after HU. Moreover, immunohistochemical staining suggested that the 14-day HU caused a reduction of the mTECs expressing autoimmune regulator (Aire). Our data suggested that HU impacts both thymocytes and TECs. Consequently, these data imply that thymic T cell repertoire formation could be disturbed during spaceflight-like stress.
Collapse
Affiliation(s)
- Kenta Horie
- Center for Integrative Medical Science, RIKEN, Yokohama 230-0045, Japan; Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Takashi Kudo
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Laboratory Animal Resource Center and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Riko Yoshinaga
- Center for Integrative Medical Science, RIKEN, Yokohama 230-0045, Japan; Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Nobuko Akiyama
- Center for Integrative Medical Science, RIKEN, Yokohama 230-0045, Japan; Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Hiroki Sasanuma
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Miki Shimbo
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Laboratory Animal Resource Center and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hyojung Jeon
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Laboratory Animal Resource Center and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takahisa Miyao
- Center for Integrative Medical Science, RIKEN, Yokohama 230-0045, Japan
| | - Maki Miyauchi
- Center for Integrative Medical Science, RIKEN, Yokohama 230-0045, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki 305-8505, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki 305-8505, Japan
| | - Nobuaki Yoshida
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan; Laboratory Animal Resource Center and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Taishin Akiyama
- Center for Integrative Medical Science, RIKEN, Yokohama 230-0045, Japan; Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan.
| |
Collapse
|
29
|
Li Y, Jiang W, Li ZZ, Zhang C, Huang C, Yang J, Kong GY, Li ZF. Repetitive restraint stress changes spleen immune cell subsets through glucocorticoid receptor or β-adrenergic receptor in a stage dependent manner. Biochem Biophys Res Commun 2018; 495:1108-1114. [PMID: 29175389 DOI: 10.1016/j.bbrc.2017.11.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022]
Abstract
Immune system is sensitive to stress. Spleen is the largest peripheral immune organ innervated with sympathetic nerves and controlled by adrenomedullary system in the body. However, the alterations and mechanism of spleen immune cell subsets caused by repetitive restraint stress (RRS) is poorly understood. In this study, we found that RRS reduced spleen index in mice, and induced an expansion of white pulp and involution of the red pulp. Meanwhile, the percentage of CD3+CD8+ T lymphocytes, CD11b+F4/80+ macrophages, CD11b+Ly-6G-Ly-6Chi monocytic myeloid derived suppressor cells (mMDSCs) and CD11b+Ly-6G+Ly-6Cint granulocytic myeloid derived suppressor cells (gMDSCs) in spleen were significantly changed by RRS. Mechanistically, we found that the expression of norepinephrine (NE) and β-adrenergic receptor (β-AR) in spleen were up-regulated after 21 days of RRS, but not 7 days. The expression of corticosterone (CORT) and glucocorticoid receptor (GR) in spleen were up-regulated after 7 days of RRS but were lower after 21 days of RRS, even though they were still higher than that in mice without stress. By treating the stressed mice with RU486 (antagonist of GR) or propranolol (antagonist of β-AR), we demonstrated that GR was responsible for the changes of spleen induced by 7 days of RRS and β-AR was for 21 days of RRS. Our data suggest that RRS changes spleen immune cell subsets through GR or β-AR in a stage dependent manner.
Collapse
Affiliation(s)
- Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen-Zhen Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Jiang W, Li Y, Sun J, Li L, Li JW, Zhang C, Huang C, Yang J, Kong GY, Li ZF. Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci Rep 2017; 7:6501. [PMID: 28747688 PMCID: PMC5529540 DOI: 10.1038/s41598-017-06956-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Psychological stress has great impacts on the immune system, particularly the leukocytes distribution. Although the impacts of acute stress on blood leukocytes distribution are well studied, however, it remains unclear how chronic stress affects leukocytes distribution in peripheral circulation. Furthermore, there is no report about the role of spleen in the blood leukocytes distribution induced by stress. Here we show that spleen contributes to the alteration of restraint stress induced blood leukocytes distribution. Our data confirmed that restraint stress induced anxiety-like behavior in mice. Furthermore, we found that restraint stress decreased the CD4/CD8 ratio and elevated the percentages of natural killer cells, monocytes and polymorphonuclear myeloid-derived suppressor cell. We demonstrated that activation of hypothalamic-pituitary-adrenal axis (HPA) and sympathetic nervous system (SNS) contributes to restraint stress induced alteration of blood leukocyte distribution. Interestingly, we found that splenectomy could reverse the change of CD4/CD8 ratio induced by restraint stress. Together, our findings suggest that activation of HPA axis and SNS was responsible for the blood leukocyte subsets changes induced by restraint stress. Spleen, at least in part, contributed to the alteration in peripheral circulation induced by restraint stress.
Collapse
Affiliation(s)
- Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Jiang-Wei Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Pathology, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Engineering Research Center of Biotherapy & Translational Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China.
- Department of General Surgery, The second affiliated hospital of Xi' an Jiaotong University, Xi'an, China.
| |
Collapse
|
31
|
Cheng YP, Zhang HJ, Su YT, Meng XX, Xie XP, Chang YM, Bao JX. Acid sphingomyelinase/ceramide regulates carotid intima-media thickness in simulated weightless rats. Pflugers Arch 2017; 469:751-765. [PMID: 28357491 DOI: 10.1007/s00424-017-1969-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 11/29/2022]
Abstract
Structural adaptation of arteries to weightlessness might lower the working ability or even threaten the physical health of astronauts, but the underlying mechanism is unclear. Acid sphingomyelinase (ASM) catalyzes ceramide (Cer) generation controlling arterial remodeling through multiple signaling pathways. In the present study, we aimed to investigate the contribution of ASM/Cer to the changes of common carotid artery intima-media thickness (CIMT) induced by simulated weightlessness. Hindlimb-unloaded tail-suspended (HU) rats were used to simulate the effect of weightlessness. Morphology of the carotid artery (CA) was examined by hematoxylin-eosin staining. Protein content of ASM or proliferating cell nuclear antigen (PCNA) was detected by Western blot. Cer level was measured by immunohistochemistry analysis. Apoptosis events were observed by transferase-mediated dUTP nick end labeling (TUNEL) staining. During 4 weeks of tail suspension, CIMT was increased gradually in HU but not in their synchronous control rats (P < 0.05). Correspondingly, the CA of HU rats had a lower apoptosis and higher proliferation of vascular smooth muscle cells (VSMCs). As compared to the control, both ASM protein expression and Cer content were reduced significantly in CA of HU rats (P < 0.05), incubation of which with permeable Cer reversed the changes in apoptosis and proliferation substantially. Furthermore, when the ASM protein content as well as Cer level in CA of control rats was diminished by using an ASM inhibitor, an increase of CIMT along with reduced apoptosis and enhanced proliferation of VSMCs was found. Our results suggest that by controlling the balance between apoptosis and proliferation, ASM/Cer plays an important role in the regulation of CIMT during simulated weightlessness.
Collapse
Affiliation(s)
- Yao-Ping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hai-Jun Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yu-Ting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xing-Xing Meng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Ping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jun-Xiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
32
|
Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity Stress: Bone and Connective Tissue. Compr Physiol 2016; 6:645-86. [PMID: 27065165 DOI: 10.1002/cphy.c130027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions.
Collapse
Affiliation(s)
- Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Daniel A Martinez
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Ramon D Boudreaux
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Anita V Mantri
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA.,Health Science Center School of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
33
|
Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 2016; 120:1196-206. [PMID: 26869711 DOI: 10.1152/japplphysiol.00997.2015] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.
Collapse
Affiliation(s)
- Ruth K Globus
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Emily Morey-Holton
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| |
Collapse
|
34
|
Matsumoto Y, Tousen Y, Nishide Y, Tadaishi M, Kato K, Ishimi Y. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice. J Clin Biochem Nutr 2016; 58:141-5. [PMID: 27013781 PMCID: PMC4788396 DOI: 10.3164/jcbn.14-137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/02/2015] [Indexed: 11/24/2022] Open
Abstract
We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6–8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts.
Collapse
Affiliation(s)
- Yu Matsumoto
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Yoriko Nishide
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Miki Tadaishi
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Ken Kato
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama 350-1165, Japan
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| |
Collapse
|
35
|
Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during spaceflight. PLoS One 2015; 10:e0120126. [PMID: 25793272 PMCID: PMC4368688 DOI: 10.1371/journal.pone.0120126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/04/2015] [Indexed: 12/31/2022] Open
Abstract
A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body’s defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.
Collapse
|
36
|
FORTIS S, KHADAROO RG, HAITSMA JJ, ZHANG H. Osteopontin is associated with inflammation and mortality in a mouse model of polymicrobial sepsis. Acta Anaesthesiol Scand 2015; 59:170-5. [PMID: 25328143 DOI: 10.1111/aas.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteopontin (OPN) is a multifunctional glycoprotein with pro-inflammatory properties. In severe sepsis, levels of plasma OPN are significantly higher in non-survivors than in survivors. We hypothesized that OPN results in greater inflammation and worse outcome through modulation of endogenous glucocorticoid production in sepsis. METHODS AND RESULTS Sepsis was induced by cecal ligation and puncture (CLP) in wild type (WT) and OPN gene knockout (OPN(-/-) ) mice. In response to sepsis, the OPN(-/-) mice had lower levels of plasma cytokines and chemokines than the WT mice. The levels of corticosterone in plasma were similar between WT and OPN(-/-) sham animals but they increased 24 h after CLP induction in the WT mice, but not in the OPN(-/-) mice. The mortality rate was lower in the OPN(-/-) mice than in the WT mice. CONCLUSION OPN is associated with greater inflammatory response and increased mortality, despite the higher corticosterone levels in plasma. Corticosterone production is not impaired in the absence of OPN.
Collapse
Affiliation(s)
- S. FORTIS
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Anaesthesia; University of Toronto; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - R. G. KHADAROO
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Anaesthesia; University of Toronto; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - J. J. HAITSMA
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
| | - H. ZHANG
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Anaesthesia; University of Toronto; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
| |
Collapse
|
37
|
Ezura Y, Nagata J, Nagao M, Hemmi H, Hayata T, Rittling S, Denhardt DT, Noda M. Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral circulation associated with OPN expression in circulating blood cells. J Bone Miner Metab 2015; 33:48-54. [PMID: 24831120 DOI: 10.1007/s00774-014-0568-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/09/2014] [Indexed: 02/02/2023]
Abstract
Rodent hindlimb unloading (HU) by tail-suspension is a model to investigate disuse-induced bone loss in vivo. Previously, we have shown that osteopontin (OPN, also known as Spp1) is required for unloading-induced bone loss. However, how unloading affects OPN expression in the body is not fully understood. Here, we examined OPN expression in peripheral blood of mice subjected to HU. Real-time RT-PCR analysis indicated that OPN expression is increased in circulating peripheral blood cells. This HU-induced increase in OPN mRNA expression was specific in circulating peripheral blood cells, as OPN was not increased in the blood cells in bone marrow. HU-induced enhancement in OPN expression in peripheral blood cells was associated with an increase in the fraction of monocyte/macrophage lineage cells in the peripheral blood. In contrast, HU decreased the fraction size of B-lymphocytes in the peripheral blood. We further examined if B-lymphogenesis is affected in the mice deficient for osteopontin subjected to HU. In bone marrow, HU decreased the population of the B-lymphocyte lineage cells significantly, whereas it did not alter the population of monocyte/macrophage lineage cells. HU also increased the cells in T-lymphocyte lineage in bone marrow. Interestingly, these changes were observed similarly both in OPN-deficient and wild-type mice. These results indicate for the first time that HU increases OPN expression in circulating cells and suppresses bone marrow B-lymphogenesis.
Collapse
Affiliation(s)
- Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 5-45 Yushima 1-Chome, Bunkyo-ku, Tokyo, 113-8510, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakamura T, Shinriki S, Jono H, Ueda M, Nagata M, Guo J, Hayashi M, Yoshida R, Ota T, Ota K, Kawahara K, Nakagawa Y, Yamashita S, Nakayama H, Hiraki A, Shinohara M, Ando Y. Osteopontin-integrin α(v)β(3) axis is crucial for 5-fluorouracil resistance in oral squamous cell carcinoma. FEBS Lett 2014; 589:231-9. [PMID: 25497015 DOI: 10.1016/j.febslet.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 01/13/2023]
Abstract
Clinical applications of a chemotherapeutic agent, 5-fluorouracil (5-FU) in oral squamous cell carcinoma (OSCC) have been limited because of drug resistance. This study aimed to identify novel mechanisms of 5-FU resistance. Here we found increased osteopontin (OPN) gene expression in OSCC tissues with resistance to 5-FU-based chemoradiotherapy. OPN overexpression in OSCC cells led to 5-FU resistance and abrogated the prosurvival effect of the drug in a mouse xenograft model. OPN-induced 5-FU resistance required integrin αvβ3. Targeting integrin αvβ3 reversed the resistance in a 5-FU-resistant clone highly expressing OPN. Our data suggest that the OPN-integrin αvβ3 axis is crucial for 5-FU resistance in OSCC.
Collapse
Affiliation(s)
- Takuya Nakamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Satoru Shinriki
- Department of Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan.
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pharmacy, Kumamoto University Hospital, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Jianying Guo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Mitsuhiro Hayashi
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Tomoko Ota
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Kazutoshi Ota
- Department of Oral and Maxillofacial Surgery, Kumamoto City Hospital, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Yoshihiro Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Akimitsu Hiraki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| |
Collapse
|
39
|
Lescale C, Schenten V, Djeghloul D, Bennabi M, Gaignier F, Vandamme K, Strazielle C, Kuzniak I, Petite H, Dosquet C, Frippiat JP, Goodhardt M. Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging. FASEB J 2014; 29:455-63. [PMID: 25376832 DOI: 10.1096/fj.14-259770] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Within the bone marrow, the endosteal niche plays a crucial role in B-cell differentiation. Because spaceflight is associated with osteoporosis, we investigated whether changes in bone microstructure induced by a ground-based model of spaceflight, hind limb unloading (HU), could affect B lymphopoiesis. To this end, we analyzed both bone parameters and the frequency of early hematopoietic precursors and cells of the B lineage after 3, 6, 13, and 21 d of HU. We found that limb disuse leads to a decrease in both bone microstructure and the frequency of B-cell progenitors in the bone marrow. Although multipotent hematopoietic progenitors were not affected by HU, a decrease in B lymphopoiesis was observed as of the common lymphoid progenitor (CLP) stage with a major block at the progenitor B (pro-B) to precursor B (pre-B) cell transition (5- to 10-fold decrease). The modifications in B lymphopoiesis were similar to those observed in aged mice and, as with aging, decreased B-cell generation in HU mice was associated with reduced expression of B-cell transcription factors, early B-cell factor (EBF) and Pax5, and an alteration in STAT5-mediated IL-7 signaling. These findings demonstrate that mechanical unloading of hind limbs results in a decrease in early B-cell differentiation resembling age-related modifications in B lymphopoiesis.
Collapse
Affiliation(s)
- Chloé Lescale
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Véronique Schenten
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Dounia Djeghloul
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Meriem Bennabi
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Fanny Gaignier
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Katleen Vandamme
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Catherine Strazielle
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Isabelle Kuzniak
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Hervé Petite
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Christine Dosquet
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Jean-Pol Frippiat
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| | - Michele Goodhardt
- *Institut Universitaire d'Hématologie, Université Paris 7 Denis Diderot, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-940, Paris, France; EA7300, Stress Immunity Pathogens Laboratory, Lorraine University, Vandœuvre-lès-Nancy, France; and UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-articulaires, Faculté de Médecine Lariboisière, Paris, France
| |
Collapse
|
40
|
Osteopontin: At the cross-roads of myocyte survival and myocardial function. Life Sci 2014; 118:1-6. [PMID: 25265596 DOI: 10.1016/j.lfs.2014.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Abstract
Heart failure represents a major cause of morbidity and mortality in Western society. Cardiac myocyte loss due to apoptosis plays a significant role in the progression of heart failure. The extracellular matrix (ECM) maintains the structural integrity of the heart and allows the transmission of electrical and mechanical signals during cardiac contraction and relaxation. Matricellular proteins, a class of non-structural ECM proteins, play a significant role in ECM homeostasis and intracellular signaling via their interactions with cell surface receptors, structural proteins, and/or soluble extracellular factors such as growth factors and cytokines. Osteopontin (OPN), also called cytokine Eta-1, is a member of the matricellular protein family. The normal heart expresses low levels of OPN. However, OPN expression increases markedly under a variety of pathophysiological conditions of the heart. Many human and transgenic mouse studies provide evidence that increased OPN expression, specifically in myocytes, is associated with increased myocyte apoptosis and myocardial dysfunction. This review summarizes OPN expression in the heart, and its role in myocyte apoptosis and myocardial function.
Collapse
|
41
|
Cao G, Yang Q, Zhang S, Xu C, Roberts AI, Wang Y, Shi Y. Mesenchymal stem cells prevent restraint stress-induced lymphocyte depletion via interleukin-4. Brain Behav Immun 2014; 38:125-32. [PMID: 24480719 DOI: 10.1016/j.bbi.2014.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/16/2022] Open
Abstract
Chronic stress has dramatic impacts on the immune system and consequently contributes to the onset and progression of a variety of diseases, including cancer, immune disorders, and infections. Recent studies in animals and humans have demonstrated that mesenchymal stem cells (MSCs) significantly modulate the immune system. Here we show that administration of MSCs in vivo prevents lymphocyte depletion induced by physical restraint stress (12:12-h stress-rest, 2 repetitions) in mice. This effect was found to be exerted not through modulation of glucocorticoid levels in the circulation, but rather through direct effects on lymphocyte apoptosis. By testing various possible protective mechanisms, we found that IL-4 provides a strong anti-apoptosis signal to lymphocytes in the presence of dexamethasone. When neutralizing antibody against IL-4 was co-administered with MSCs to restraint-stressed mice, the protective effect of MSCs was diminished. Furthermore, in mice deficient in STAT6, a key molecule in IL-4 receptor-mediated signaling, MSCs had no effect on restraint stress-induced lymphocyte depletion. Additionally, MSCs administered to stressed mice promoted IL-4 production by splenocytes. This study reveals that MSCs can effectively prevent stress-induced lymphocyte apoptosis in an IL-4-dependent manner and provides novel information for the development of countermeasures against the deleterious effects of stress on the immune system.
Collapse
Affiliation(s)
- Gang Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - Qian Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - Siyu Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - Chunliang Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - Arthur I Roberts
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ 08901, United States
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China.
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ 08901, United States.
| |
Collapse
|
42
|
van den Brule S, Huaux F, Uwambayinema F, Ibouraadaten S, Yakoub Y, Palmai-Pallag M, Trottein F, Renauld JC, Lison D. Lung inflammation and thymic atrophy after bleomycin are controlled by the prostaglandin D2 receptor DP1. Am J Respir Cell Mol Biol 2014; 50:212-22. [PMID: 24003988 DOI: 10.1165/rcmb.2012-0520oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute lung injury (ALI) can be accompanied by secondary systemic manifestations. In a model of ALI induced by bleomycin (bleo), we examined the response of D prostanoid receptor 1 (DP1)-deficient mice (DP1(-/-)) to better understand these processes. DP1 deficiency aggravated the toxicity of bleo as indicated by enhanced body weight loss, mortality, and lung inflammation including bronchoalveolar permeability and neutrophilia. Thymic atrophy was also observed after bleo and was strongly exacerbated in DP1(-/-) mice. This resulted from the enhanced depletion of immature T lymphocytes in the thymus of DP1(-/-) mice, a phenomenon usually related to increased glucocorticoid release in blood. Serum corticosterone was more elevated in DP1(-/-) mice after bleo than in wild-type (wt) mice. Thymocytes of DP1(-/-) mice were not more sensitive to dexamethasone in vitro, and systemic delivery of dexamethasone or peritoneal inflammation after LPS induced a similar thymic atrophy in wt and DP1(-/-) mice, indicating that pulmonary DP1 was critical to the control of thymic atrophy after bleo. DP1(-/-) mice showed increased lung and/or blood mediators involved in neutrophil recruitment and/or glucocorticoid production/thymic atrophy (osteopontin, leukemia inhibitory factor, and keratinocyte-derived chemokine) after bleo. Finally, local pulmonary DP1 activation or inhibition in wt mice abrogated or amplified thymic atrophy after bleo, respectively. Altogether, our data reveal that ALI can perturb the systemic T-cell pool by inducing thymic atrophy and that both pathological processes are controlled by the pulmonary DP1 receptor. This new pathway represents a potential therapeutic target in ALI.
Collapse
|
43
|
Gaignier F, Schenten V, De Carvalho Bittencourt M, Gauquelin-Koch G, Frippiat JP, Legrand-Frossi C. Three weeks of murine hindlimb unloading induces shifts from B to T and from th to tc splenic lymphocytes in absence of stress and differentially reduces cell-specific mitogenic responses. PLoS One 2014; 9:e92664. [PMID: 24664102 PMCID: PMC3963916 DOI: 10.1371/journal.pone.0092664] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 11/20/2022] Open
Abstract
Extended space missions are known to induce stress and immune dysregulation. Hindlimb unloading is a ground-based model used to reproduce most spaceflight conditions. The aim of this study was to better characterize the consequences of prolonged exposure to hindlimb unloading on murine splenic lymphocyte sub-populations. To ensure that the observed changes were not due to tail restraint but to the antiorthostatic position, three groups of mice were used: control (C), orthostatic restrained (R) and hindlimb unloaded (HU). After 21 days of exposure, no difference in serum corticosterone levels nor in thymus and spleen weights were observed between HU mice and their counterparts, revealing a low state of stress. Interestingly, flow cytometric analyses showed that B cells were drastically reduced in HU mouse spleens by 59% and, while the T cells number did not change, the Th/Tc ratio was decreased. Finally, the use of a fluorescent dye monitoring lymphoproliferation demonstrated that lymphocyte response to mitogen was reduced in Th and Tc populations and to a greater extent in B cells. Thus, we showed for the first time that, even if restraint has its own effects on the animals and their splenic lymphocytes, the prolonged antiorthostatic position leads, despite the absence of stress, to an inversion of the B/T ratio in the spleen. Furthermore, the lymphoproliferative response was impaired with a strong impact on B cells. Altogether, these results suggest that B cells are more affected by hindlimb unloading than T cells which may explain the high susceptibility to pathogens, such as gram-negative bacteria, described in animal models and astronauts.
Collapse
Affiliation(s)
- Fanny Gaignier
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
| | - Véronique Schenten
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
| | | | | | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
| | - Christine Legrand-Frossi
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
44
|
Dalal S, Zha Q, Daniels CR, Steagall RJ, Joyner WL, Gadeau AP, Singh M, Singh K. Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors, mitochondrial death pathway, and endoplasmic reticulum stress. Am J Physiol Heart Circ Physiol 2014; 306:H1182-91. [PMID: 24531809 DOI: 10.1152/ajpheart.00954.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increased osteopontin (OPN) expression associates with increased myocyte apoptosis and myocardial dysfunction. The objective of this study was to identify the receptor for OPN and get insight into the mechanism by which OPN induces cardiac myocyte apoptosis. Adult rat ventricular myocytes (ARVMs) and transgenic mice expressing OPN in a myocyte-specific manner were used for in vitro and in vivo studies. Treatment with purified OPN (20 nM) protein or adenoviral-mediated OPN expression induced apoptosis in ARVMs. OPN co-immunoprecipitated with CD44 receptors, not with β1 or β3 integrins. Proximity ligation assay confirmed interaction of OPN with CD44 receptors. Neutralizing anti-CD44 antibodies inhibited OPN-stimulated apoptosis. OPN activated JNKs and increased expression of Bax and levels of cytosolic cytochrome c, suggesting involvement of mitochondrial death pathway. OPN increased endoplasmic reticulum (ER) stress, as evidenced by increased expression of Gadd153 and activation of caspase-12. Inhibition of JNKs using SP600125 or ER stress using salubrinal or caspase-12 inhibitor significantly reduced OPN-stimulated apoptosis. Expression of OPN in adult mouse heart in myocyte-specific manner associated with decreased left ventricular function and increased myocyte apoptosis. In the heart, OPN expression increased JNKs and caspase-12 activities, and expression of Bax and Gadd153. Thus, OPN, acting via CD44 receptors, induces apoptosis in myocytes via the involvement of mitochondrial death pathway and ER stress.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen Q, Shou P, Zhang L, Xu C, Zheng C, Han Y, Li W, Huang Y, Zhang X, Shao C, Roberts AI, Rabson AB, Ren G, Zhang Y, Wang Y, Denhardt DT, Shi Y. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 2014; 32:327-37. [PMID: 24123709 PMCID: PMC3961005 DOI: 10.1002/stem.1567] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/05/2013] [Indexed: 12/12/2022]
Abstract
An imbalance between normal adipogenesis and osteogenesis by mesenchymal stem cells (MSCs) has been shown to be related to various human metabolic diseases, such as obesity and osteoporosis; however, the underlying mechanisms remain elusive. We found that the interaction between osteopontin (OPN), an arginine-glycine-aspartate-containing glycoprotein, and integrin αv/β1 plays a critical role in the lineage determination of MSCs. Although OPN is a well-established marker during osteogenesis, its role in MSC differentiation is still unknown. Our study reveals that blockade of OPN function promoted robust adipogenic differentiation, while inhibiting osteogenic differentiation. Re-expression of OPN restored a normal balance between adipogenesis and osteogenesis in OPN(-/-) MSCs. Retarded bone formation by OPN(-/-) MSCs was also verified by in vivo implantation with hydroxyapatite-tricalcium phosphate, a bone-forming matrix. The role of extracellular OPN in MSC differentiation was further demonstrated by supplementation and neutralization of OPN. Blocking well-known OPN receptors integrin αv/β1 but not CD44 also affected MSC differentiation. Further studies revealed that OPN inhibits the C/EBPs signaling pathway through integrin αv/β1. Consistent with these in vitro results, OPN(-/-) mice had a higher fat to total body weight ratio than did wild-type mice. Therefore, our study demonstrates a novel role for OPN-integrin αv/β1 in regulating MSC differentiation.
Collapse
Affiliation(s)
- Qing Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peishun Shou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liying Zhang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Chunliang Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunxing Zheng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanyan Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenzhao Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yin Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoren Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Changshun Shao
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Arthur I. Roberts
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Guangwen Ren
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - David T. Denhardt
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
46
|
Li M, Holmes V, Zhou Y, Ni H, Sanzari JK, Kennedy AR, Weissman D. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections. PLoS One 2014; 9:e85665. [PMID: 24454913 PMCID: PMC3893249 DOI: 10.1371/journal.pone.0085665] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/01/2013] [Indexed: 12/22/2022] Open
Abstract
A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE)-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.
Collapse
Affiliation(s)
- Minghong Li
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Veronica Holmes
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yu Zhou
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Houping Ni
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Li H, Zhao J, Chen M, Tan Y, Yang X, Caudle Y, Yin D. Toll-like receptor 9 is required for chronic stress-induced immune suppression. Neuroimmunomodulation 2014; 21:1-7. [PMID: 24080854 PMCID: PMC3896995 DOI: 10.1159/000354610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/16/2013] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Mental and physical stress can suppress the immune system in both humans and animals. The mechanism by which stress affects immune responses, however, remains poorly defined. Toll-like receptors (TLRs) play a key role in modulating immune responses and cell survival. The mechanisms by which TLRs modulate chronic stress are largely unexplored. METHODS Six- to 8-week-old male mice were subjected to chronic 12-hour daily physical restraint stress. Apoptotic cells were determined by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay. We examined cytokine levels by enzyme-linked immunosorbent Assay (ELISA). The expression of CYP11A1 was determined by quantitative real-time RT-PCR. RESULTS TLR9-deficient mice were resistant to chronic stress-induced lymphocyte apoptosis. In addition, in TLR9 knockout (KO) mice, chronic stress-induced upregulation of corticosterone levels was significantly decreased. Notably, lymphocytes from both TLR9 KO and wild-type mice were similarly sensitive to corticosteroid-induced cell apoptosis. Moreover, TLR9 deficiency blocked the chronic stress-induced imbalance in T helper (Th) 1 and Th2 cytokine levels. CONCLUSION Taken together, our findings reveal that TLR9 plays an essential role in chronic stress-induced immune suppression.
Collapse
Affiliation(s)
- Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jing Zhao
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Michael Chen
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Yang Tan
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Xiaohua Yang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Corresponding author: Deling Yin, Ph.D., Associate Professor, Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America, Phone: 423 439 8826 (o),
| |
Collapse
|
48
|
Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013; 8:e75097. [PMID: 24069384 PMCID: PMC3777930 DOI: 10.1371/journal.pone.0075097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue.
Collapse
Affiliation(s)
- Daila S. Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Louis S. Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Virginia L. Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - Ted A. Bateman
- Department of Bioengineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria Moldovan
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Christopher E. Cunningham
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Tamako A. Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Jerry M. Slater
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
49
|
Zhou Y, Ni H, Li M, Sanzari JK, Diffenderfer ES, Lin L, Kennedy AR, Weissman D. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS One 2012; 7:e44329. [PMID: 23028522 PMCID: PMC3446907 DOI: 10.1371/journal.pone.0044329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/01/2012] [Indexed: 01/26/2023] Open
Abstract
The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth's magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Houping Ni
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Minghong Li
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liyong Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ni H, Balint K, Zhou Y, Gridley DS, Maks C, Kennedy AR, Weissman D. Effect of solar particle event radiation on gastrointestinal tract bacterial translocation and immune activation. Radiat Res 2011; 175:485-92. [PMID: 21294608 PMCID: PMC3572900 DOI: 10.1667/rr2373.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Space flight conditions within the protection of Earth's gravitational field have been shown to alter immune responses, which could lead to potentially detrimental pathology. An additional risk of extended space travel outside the Earth's gravitational field is the effect of solar particle event (SPE) radiation exposure on the immune system. Organisms that could lead to infection include endogenous, latent viruses, colonizing pathogenics, and commensals, as well as exogenous microbes present in the spacecraft or other astronauts. In this report, the effect of SPE-like radiation on containment of commensal bacteria and the innate immune response induced by its breakdown was investigated at the radiation energies, doses and dose rates expected during an extravehicular excursion outside the Earth's gravitational field. A transient increase in serum lipopolysaccharide was observed 1 day after irradiation and was accompanied by an increase in acute-phase reactants and circulating proinflammatory cytokines, indicating immune activation. Baseline levels were reestablished by 5 days postirradiation. These findings suggest that astronauts exposed to SPE radiation could have impaired containment of colonizing bacteria and associated immune activation.
Collapse
Affiliation(s)
- Houping Ni
- Division of Infectious Diseases, Department of Medicine
| | - Klara Balint
- Division of Infectious Diseases, Department of Medicine
| | - Yu Zhou
- Division of Infectious Diseases, Department of Medicine
| | - Daila S. Gridley
- Department of Radiation Medicine, Loma Linda University & Medical Center, Loma Linda, California 92354
| | - Casey Maks
- Department of Radiation Oncology, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine
| |
Collapse
|