1
|
Fan T, Su Z, Wang X, Wei T, Zhao L, Liu S. TarP: A microRNA target gene prediction tool utilizing a polymorphic structured alignment approach. Int J Biol Macromol 2025; 314:144320. [PMID: 40383335 DOI: 10.1016/j.ijbiomac.2025.144320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
MicroRNAs (miRNAs) represent a vital class of small non-coding RNAs that play key regulatory roles in gene expression. Accurate identification of miRNA-mRNA interactions is essential for understanding their biological functions. However, current computational prediction tools suffer from several limitations, including species-specific biases, suboptimal accuracy, high false discovery rates, and incomplete target gene coverage. To address these challenges, we present TarP, a novel miRNA target prediction algorithm employing a Polymorphic structured alignment (PMS) approach. Our method mimics the natural binding process between miRNAs and their target mRNAs by integrating key biological interaction features. The algorithm utilizes five distinct nucleotide-binding motifs to perform a structured decomposition and alignment of potential mRNA targets. Predictions are then rigorously evaluated through a dual scoring system: a Structure (St) coefficient assessing binding conformation and an Energy (En) coefficient evaluating thermodynamic stability, ensuring high-confidence target selection. Using experimentally validated human miRNA-mRNA interaction datasets, we benchmarked TarP against four widely used prediction tools (miRanda, RNAhybrid, PITA, and TargetScan). Comparative analyses demonstrate that TarP achieves superior performance in both sensitivity and specificity, exhibiting enhanced accuracy in positive target identification and improved discrimination between true and false interactions. The TarP algorithm is freely available at: https://github.com/Whimonk/TarP.
Collapse
Affiliation(s)
- Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Zhuanzhuan Su
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Xin Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Mohammed A, Atkin SL, Brennan E. Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review. J Xenobiot 2025; 15:72. [PMID: 40407536 PMCID: PMC12101272 DOI: 10.3390/jox15030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
Phthalates, a group of synthetic non-persistent organic chemicals commonly used as solvents and plasticisers, have been associated with a range of detrimental health effects. These endocrine disrupting chemicals (ECDs) may exert their effects through epigenetic changes such as altered microRNA (miRNA) expression. miRNAs are short non-coding endogenous RNA transcripts that are preferentially expressed in various tissues and cell types and can circulate in body fluids, thereby regulating gene expression and acting as mediators for intercellular communication. As miRNAs mostly target protein-coding transcripts, they are involved in nearly all networks that regulate developmental and pathological processes. In this review, we provide an overview of human, in vivo and in vitro studies assessing altered miRNA expression due to phthalate exposure and their biological effects. Importantly, this study suggests that the mechanism of phthalate action may in part be mediated by epigenetic changes, affecting a large number of different proteins. This is indicative that alterations in miRNA expression induced by phthalate exposure are then implicated in a wide range of health conditions, including reproductive dysfunction, oncogenesis, metabolic disorders, and neurodevelopmental outcomes. Exposure to phthalates and their metabolites predominantly results in the upregulation of miRNAs. Dysregulation of miR-34a, miR-15b, miR-141, miR-184, miR-19a, miR-125, and miR-let-7 were observed across several studies. More research involving human participants combined with mechanistic studies integrating mRNA target analysis would be beneficial in understanding the downstream effects of phthalate exposure on gene expression and grasping the broader biological implications.
Collapse
Affiliation(s)
- Aamer Mohammed
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Stephen L. Atkin
- School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| |
Collapse
|
3
|
Gheitanchi F, Giambra IJ, Hecker AS, Strube C, König S, May K. Relationships between liver and rumen fluke infections, milk somatic cells and polymorphisms in the Toll-like receptor 5 gene and vitamin D metabolism-related genes in Holstein dairy cows. Vet Immunol Immunopathol 2025; 283:110911. [PMID: 40058098 DOI: 10.1016/j.vetimm.2025.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
This study investigated polymorphisms in the genes CYP3A4, CYP2R1, and TLR5, and their associations with liver fluke (Fasciola hepatica) and rumen fluke (Calicophoron / Paramphistomum spp.) infections as well as with milk somatic cell count (SCC) as an indicator for mastitis in Holstein Friesian dairy cows. DNA sequencing of the genes' exons, 5'-, 3'-untranslated regions (UTR), introns, and flanking regions of 24 cows revealed 442 variants (388 SNPs and 54 InDels) including 116 previously unknown variants. We detected three novel non-synonymous variants leading to the derived amino acid exchanges, i.e. CYP3A4 p.Gly197Ser, CYP3A4 p.Ile388Val, and CYP2R1 p.Val11Ala. The newly identified SNP 25:36589922 T > C (ss11846100002) is positioned in the splice site of CYP3A4, but showed no impact on the binding score of the splice enzymes. The CYP2R1 and TLR5 genes presented 11 SNPs in the 5'- and 3'-UTR, partly influencing transcription factor binding or microRNA target sites. Associations between polymorphisms and constructed haplotypes with infection traits were analysed via (generalized) linear mixed models including further potential confounders. In total, 109 variants in CYP3A4, 37 variants in CYP2R1, and 18 variants in TLR5 were significantly associated with F. hepatica and rumen fluke infections, and with SCC. The CYP2R1 and TLR5 variants were mostly linked to SCC, indicating the genes' roles in immune responses to bacterial infections. Haplotype analysis revealed significant associations between specific CYP3A4 haplotypes and F. hepatica worm count and faecal egg counts. This study revealed significant insights into gene polymorphisms related to vitamin D metabolism and immune response, which seem to play a role in helminth and udder infections.
Collapse
Affiliation(s)
- Fatemeh Gheitanchi
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany.
| | - Isabella Jasmin Giambra
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany
| | - Anna Sophie Hecker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen 35390, Germany; Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| |
Collapse
|
4
|
Qobadi-Nasr S, Pourgholami MH, Mowla SJ. The interaction between ΔNp63α and TAp63α, mediated by miR-205-5p, inhibits the migration of lung adenocarcinoma cells. Sci Rep 2025; 15:11501. [PMID: 40181048 PMCID: PMC11968970 DOI: 10.1038/s41598-025-95206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Lung cancer is a highly lethal disease worldwide, resulting from a combination of genetic, epigenetic, and environmental factors. The amplification of specific chromosomal regions is a hallmark of cancer progression; for instance, the 3q region of chromosome 3 is notably amplified in lung cancer, contributing to early tumor development. TP63, a member of the p53 family, is located in the 3q region. The presence of two distinct sets of TP63 isoforms (ΔNp63 and TAp63) complicates its functional role. Furthermore, miR-205-5p, a crucial player in cancer progression, has a predicted target site in the 5'-untranslated region (5'-UTR) of TAp63 transcripts. To investigate a potential correlation between miR-205-5p and the ΔNp63 and TAp63 isoforms, we conducted an in silico study followed by experimental validations on clinical tissue samples. We found a significant positive correlation between the expression of miR-205-5p and both isoforms of TP63 in lung adenocarcinoma (LUAD) datasets. The correlation between ΔNp63 and miR-205-5p was further confirmed in tissue samples from LUAD patients. Subsequently, we overexpressed ΔNp63α in lung adenocarcinoma cell lines and observed an upregulation of miR-205-5p, TAp63α, and DICER in the A549 cell line. Overexpression of ΔNp63α also inhibited the migration of A549 cells by reducing epithelial-mesenchymal transition (EMT) markers and increasing mesenchymal-epithelial transition (MET) markers. We conducted a luciferase assay to investigate the direct interaction between miR-205-5p and the 5'-UTR of TAp63 and observed a positive association. Overexpression of miR-205-5p in the A549 cell line led to the upregulation of TAp63α and DICER. Additionally, we found a reduction in migration following miR-205-5p transfection. Based on these results, it appears that there is a ΔNp63α/miR-205-5p/TAp63α/DICER axis involved in the regulation of migration in lung adenocarcinoma, which is cell-specific.
Collapse
Affiliation(s)
- Samaneh Qobadi-Nasr
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115- 111, Iran
| | | | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115- 111, Iran.
| |
Collapse
|
5
|
Rahman MS, Ghorai S, Panda K, Santiago MJ, Aggarwal S, Wang T, Rahman I, Chinnapaiyan S, Unwalla HJ. Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease. Noncoding RNA Res 2025; 11:22-37. [PMID: 39736851 PMCID: PMC11683234 DOI: 10.1016/j.ncrna.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 01/01/2025] Open
Abstract
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers. Notably, miR-145-5p plays a vital role in the pathophysiology underlying HIV and chronic obstructive pulmonary diseases associated with cigarette smoke. This miRNA is abundant in biofluids and shows potential as a biomarker for the diagnosis and prognosis of several infectious diseases, such as hepatitis B, tuberculosis, and influenza. Additionally, numerous studies have indicated that other non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate miR-145-5p. Given the significance of miR-145-5p, a comprehensive overview focusing on its roles in health and disease is essential. This review discusses the dual role of miR-145-5p as a protagonist and antagonist in important human diseases, with particular emphasis on disorders of the respiratory, digestive, nervous, reproductive, endocrine, and urinary systems.
Collapse
Affiliation(s)
- Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ting Wang
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
6
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Thakore P, Delany AM. miRNA-based regulation in growth plate cartilage: mechanisms, targets, and therapeutic potential. Front Endocrinol (Lausanne) 2025; 16:1530374. [PMID: 40225327 PMCID: PMC11985438 DOI: 10.3389/fendo.2025.1530374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of the skeleton. In the growth plate, these small non-coding RNAs modulate gene networks that drive key stages of chondrogenesis, including proliferation, differentiation, extracellular matrix synthesis and hypertrophy. These processes are orchestrated through the interaction of pivotal pathways including parathyroid hormone-related protein (PTHrP), Indian hedgehog (IHH), and bone morphogenetic protein (BMP) signaling. This review highlights the miRNA-mRNA target networks essential for chondrocyte differentiation. Many miRNAs are differentially expressed in resting, proliferating and hypertrophic cartilage zones. Moreover, differential enrichment of specific miRNAs in matrix vesicles is also observed, providing means for chondrocytes to influence the function and differentiation of their neighbors by via matrix vesicle protein and RNA cargo. Notably, miR-1 and miR-140 emerge as critical modulators of chondrocyte proliferation and hypertrophy by regulating multiple signaling pathways, many of them downstream from their mutual target Hdac4. Demonstration that a human gain-of-function mutation in miR-140 causes skeletal dysplasia underscores the clinical relevance of understanding miRNA-mediated regulation. Further, miRNAs such as miR-26b have emerged as markers for skeletal disorders such as idiopathic short stature, showcasing the translational relevance of miRNAs in skeletal health. This review also highlights some miRNA-based therapeutic strategies, including innovative delivery systems that could target chondrocytes via cartilage affinity peptides, and potential applications related to treatment of physeal bony bridge formation in growing children. By synthesizing current research, this review offers a nuanced understanding of miRNA functions in growth plate biology and their broader implications for skeletal health. It underscores the translational potential of miRNA-based therapies in addressing skeletal disorders and aims to inspire further investigations in this rapidly evolving field.
Collapse
|
9
|
Parrett BJ, Yamaoka S, Barry MA. Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites. Mol Ther Methods Clin Dev 2025; 33:101402. [PMID: 39867482 PMCID: PMC11758401 DOI: 10.1016/j.omtm.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression. We inserted one to five miR-122 binding sites into the 5' or 3' untranslated regions (UTRs) of luciferase mRNAs and tested them in LNPs in vitro and in vivo via systemic intravenous and local intramuscular injections in mice. Our results showed no significant differences in de-targeting efficacy between mRNAs harboring one or multiple miR-122 binding sites or between those with 5' or 3' UTR placements. To test the impact of miR-122 binding sites on antibody response to a mRNA vaccine, Ebola virus matrix protein VP40 mRNAs were modified with or without miR-122 binding sites and injected in mice intramuscularly. This work reinforces the utility of miR-122 binding sites while providing a comparison of these sites to aid the future development of LNP-mRNA therapies for non-hepatic tissues.
Collapse
Affiliation(s)
- Brian J. Parrett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55902, USA
| | - Satoko Yamaoka
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Michael A. Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
10
|
Li Y, Chen S, Rao H, Cui S, Chen G. MicroRNA Gets a Mighty Award. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414625. [PMID: 39836690 PMCID: PMC11831481 DOI: 10.1002/advs.202414625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Recent advancements in microRNAs (miRNAs) research have revealed their key roles in both normal physiological processes and pathological conditions, leading to potential applications in diagnostics and therapeutics. However, the path forward is fraught with several scientific and technical challenges. This review article briefly explores the milestones of the discovery, biogenesis, functions, and application for clinical diagnostic and therapeutic strategies of miRNAs. The potential challenges and future directions are also discussed to fully harness their capabilities.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Hai Rao
- Department of BiochemistryKey University Laboratory of Metabolism and Health of GuangdongSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Shengjin Cui
- Clinical LaboratoryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
11
|
Naveed M, Shen Z, Bao J. Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers. Cell Biosci 2025; 15:5. [PMID: 39825433 PMCID: PMC11740426 DOI: 10.1186/s13578-025-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations. However, the exact mechanisms through which these paternally supplied epigenetic carriers operate remain unclear and are under hot debate. This concise review presents the most extensive evidence to date on environmentally-responsive sperm-borne sncRNAs, encompassing brief summary of their origin, dynamics, compartmentalization, characteristics, as well as in-depth elaboration of their functional roles in epigenetic and transgenerational inheritance. Additionally, the review delves into the potential mechanisms by which sperm-delivered sncRNAs may acquire and transmit paternally acquired traits to offspring, modulating zygotic gene expression and influencing early embryonic development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Zhaokang Shen
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Jianqiang Bao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| |
Collapse
|
12
|
Yu Y, Fang J, Li Y, Wang X, Zhang J, Wang J, Sun B. The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention. Nutrients 2025; 17:197. [PMID: 39796631 PMCID: PMC11723014 DOI: 10.3390/nu17010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured. However, there is currently no effective treatment method for these diseases. Therefore, we need to strive for developing effective and reliable drugs or substances to treat and prevent fibrotic diseases. Lactoferrin (LF) is a multifunctional glycoprotein with many pathological and physiologically active effects, such as antioxidant, anti-inflammatory and antimicrobial effects, and it protects against pathological and physiological conditions in various disease models. This review summarizes the effects and underlying mechanisms of LF in preventing organ fibrosis. As a naturally active substance, LF can be used as a promising and effective drug for the prevention and remission of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jingjie Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.F.); (Y.L.); (X.W.); (B.S.)
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.F.); (Y.L.); (X.W.); (B.S.)
| | | |
Collapse
|
13
|
Zheng X, Tang X, Wu Y, Zheng X, Zhou J, Han Q, Tang Y, Fu X, Deng J, Wang Y, Wang D, Zhang S, Zhang T, Qi Y, Zhang Y. An efficient CRISPR-Cas12a-mediated MicroRNA knockout strategy in plants. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:128-140. [PMID: 39401095 DOI: 10.1111/pbi.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024]
Abstract
In recent years, the CRISPR-Cas9 nuclease has been used to knock out MicroRNA (miRNA) genes in plants, greatly promoting the study of miRNA function. However, due to its propensity for generating small insertions and deletions, Cas9 is not well-suited for achieving a complete knockout of miRNA genes. By contrast, CRISPR-Cas12a nuclease generates larger deletions, which could significantly disrupt the secondary structure of pre-miRNA and prevent the production of mature miRNAs. Through the case study of OsMIR390 in rice, we confirmed that Cas12a is a more efficient tool than Cas9 in generating knockout mutants of a miRNA gene. To further demonstrate CRISPR-Cas12a-mediated knockout of miRNA genes in rice, we targeted nine OsMIRNA genes that have different spaciotemporal expression and have not been previously investigated via genetic knockout approaches. With CRISPR-Cas12a, up to 100% genome editing efficiency was observed at these miRNA loci. The resulting larger deletions suggest Cas12a robustly generated null alleles of miRNA genes. Transcriptome profiling of the miRNA mutants, as well as phenotypic analysis of the rice grains revealed the function of these miRNAs in controlling gene expression and regulating grain quality and seed development. This study established CRISPR-Cas12a as an efficient tool for genetic knockout of miRNA genes in plants.
Collapse
Affiliation(s)
- Xuelian Zheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Tang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yalan Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinxuan Fu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiao Deng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yibo Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Danning Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuting Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Yong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
15
|
Strayer EC, Krishna S, Lee H, Vejnar C, Neuenkirchen N, Gupta A, Beaudoin JD, Giraldez AJ. NaP-TRAP reveals the regulatory grammar in 5'UTR-mediated translation regulation during zebrafish development. Nat Commun 2024; 15:10898. [PMID: 39738051 PMCID: PMC11685710 DOI: 10.1038/s41467-024-55274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP). NaP-TRAP measures translation in a frame-specific manner through the immunocapture of epitope tagged nascent peptides of reporter mRNAs. We benchmark NaP-TRAP to polysome profiling and use it to quantify Kozak strength and the regulatory landscapes of 5' UTRs in the developing zebrafish embryo and in human cells. Through this approach we identified general and developmentally dynamic cis-regulatory elements, as well as potential trans-acting proteins. We find that U-rich motifs are general enhancers, and upstream ORFs and GC-rich motifs are global repressors of translation. We also observe a translational switch during the maternal-to-zygotic transition, where C-rich motifs shift from repressors to prominent activators of translation. Conversely, we show that microRNA sites in the 5' UTR repress translation following the zygotic expression of miR-430. Together these results demonstrate that NaP-TRAP is a versatile, accessible, and powerful method to decode the regulatory functions of UTRs across different systems.
Collapse
Affiliation(s)
- Ethan C Strayer
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Srikar Krishna
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Haejeong Lee
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Charles Vejnar
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Amit Gupta
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
| | - Jean-Denis Beaudoin
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
- Yale Stem Cell Center, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
| |
Collapse
|
16
|
D’Amico G, Carista A, Manna OM, Paladino L, Picone D, Sarullo S, Sausa M, Cappello F, Vitale AM, Caruso Bavisotto C. Brain-Periphery Axes: The Potential Role of Extracellular Vesicles-Delivered miRNAs. BIOLOGY 2024; 13:1056. [PMID: 39765723 PMCID: PMC11673379 DOI: 10.3390/biology13121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Bidirectional communication between the central nervous system (CNS) and peripheral organs and tissue has been widely documented in physiological and pathological conditions. This communication relies on the bilateral transmission of signaling molecules and substances that circulate throughout the body and reach their target site(s) via the blood and other biological fluids (e.g., the cerebrospinal fluid, the lymph). One of the mechanisms by which these molecular messengers are exchanged is through the secretion of extracellular vesicles (EVs). EVs are known to mediate cell-to-cell communication by delivering biological molecules, including nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), enabling direct communication between the periphery and the brain. In particular, the delivery of microRNAs (miRNAs) can modulate the expression profiles of recipient cells, thereby influencing their functions. This review synthesizes current findings about the brain-periphery cross-talk mediated by EVs-delivered miRNAs. Although this mechanism has been definitively shown in a few cases, much evidence indirectly indicates that it could mediate brain-peripherical organs/tissue communication, especially in pathological conditions. Therefore, understanding this process could provide valuable insights for the treatment and management of neurological and systemic diseases.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Silvia Sarullo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Martina Sausa
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy;
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| |
Collapse
|
17
|
Farooqi AA, Shepetov AM, Rakhmetova V, Ruslan Z, Almabayeva A, Saussakova S, Baigonova K, Baimaganbetova K, Sundetgali K, Kapanova G. Interplay between JAK/STAT pathway and non-coding RNAs in different cancers. Noncoding RNA Res 2024; 9:1009-1022. [PMID: 39022684 PMCID: PMC11254501 DOI: 10.1016/j.ncrna.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
Progress in the identification of core multi-protein modules within JAK/STAT pathway has enabled researchers to develop a better understanding of the linchpin role of deregulated signaling cascade in carcinogenesis and metastasis. More excitingly, complex interplay between JAK/STAT pathway and non-coding RNAs has been shown to reprogramme the outcome of signaling cascade and modulate immunological responses within tumor microenvironment. Wealth of information has comprehensively illustrated that most of this complexity regulates the re-shaping of the immunological responses. Increasingly sophisticated mechanistic insights have illuminated fundamental role of STAT-signaling in polarization of macrophages to M2 phenotype that promotes disease aggressiveness. Overall, JAK/STAT signaling drives different stages of cancer ranging from cancer metastasis to the reshaping of the tumor microenvironment. JAK/STAT signaling has also been found to play role in the regulation of infiltration and activity of natural killer cells and CD4/CD8 cells by PD-L1/PD-1 signaling. In this review, we have attempted to set spotlight on regulation of JAK/STAT pathway by microRNAs, long non-coding RNAs and circular RNAs in primary tumors and metastasizing tumors. Therefore, existing knowledge gaps need to be addressed to propel this fledgling field of research to the forefront and bring lncRNAs and circRNAs to the frontline of clinical practice. Leveraging the growing momentum will enable interdisciplinary researchers to gain transition from segmented view to a fairly detailed conceptual continuum.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty, 050000, Kazakhstan
| | | | - Zharilkassimov Ruslan
- Department of Surgical Diseases with a Course of Cardio-thoracic Surgery and Maxillofacial Surgery, NJSC “Astana Medical University”, Astana, Kazakhstan
| | - Aigul Almabayeva
- Department of Human Anatomy, NJSC “Astana Medical University”, Astana City, Kazakhstan
| | - Saniya Saussakova
- Department of Public Health and Management, NJSC “Astana Medical University”, Astana, Kazakhstan
| | | | | | | | - Gulnara Kapanova
- Al-Farabi Kazakh National University, Kazakhstan
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty, 050040, Kazakhstan
| |
Collapse
|
18
|
Elazab IM, El-Feky OA, Khedr EG, El-Ashmawy NE. Prostate cancer and the cell cycle: Focusing on the role of microRNAs. Gene 2024; 928:148785. [PMID: 39053658 DOI: 10.1016/j.gene.2024.148785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Prostate cancer is the most frequent solid tumor in terms of incidence and ranks second only to lung cancer in terms of cancer mortality among men. It has a considerably high mortality rate; around 375,000 deaths occurred worldwide in 2020. In 2024, the American Cancer Society estimated that the number of new prostate cancer cases will be around 299,010 cases, and the estimated deaths will be around 32,250 deaths only in the USA. Cell cycle dysregulation is inevitable in cancer etiology and is targeted by various therapies in cancer treatment. MicroRNAs (miRNAs) are small, endogenous, non-coding regulatory molecules involved in both normal and abnormal cellular events. One of the cellular processes regulated by miRNAs is the cell cycle. Although there are some exceptions, tumor suppressor miRNAs could potentially arrest the cell cycle by downregulating several molecular machineries involved in catalyzing the cell cycle progression. In contrast, oncogenic miRNAs (oncomirs) help the cell cycle to progress by targeting various regulatory proteins such as retinoblastoma (Rb) or cell cycle inhibitors such as p21 or p27, and hence may contribute to prostate cancer progression; however, this is not always the case. In this review, we emphasize how a dysregulated miRNA expression profile is linked to an abnormal cell cycle progression in prostate cancer, which subsequently paves the way to a new therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Ibrahim M Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, BUE, Cairo, 11837, Egypt.
| |
Collapse
|
19
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
20
|
Yuan F, Hu Y, Lei Y, Jin L. Recent progress in microRNA research for prostate cancer. Discov Oncol 2024; 15:480. [PMID: 39331237 PMCID: PMC11436510 DOI: 10.1007/s12672-024-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
In recent years, prostate cancer (PCa) has seen an increasing prevalence, particularly among middle-aged and older men, positioning it as a significant health concern. Current PCa screening predominantly utilizes prostate-specific antigen (PSA) testing, digital rectal examination (DRE), and the Gleason scoring system. However, these diagnostic methods can sometimes be imprecise. Research has identified that specific microRNAs (miRNAs) exhibit altered expression levels in PCa patients, suggesting their potential as biomarkers for both diagnosis and prognosis. Furthermore, advancements in integrating miRNAs with traditional Chinese medicine (TCM) have shown promising results in PCa treatment, potentially serving as micro-markers for TCM syndrome differentiation and treatment effectiveness. Recent developments in anti-cancer therapies that target miRNAs have also been implemented in clinical settings, laying the groundwork for personalized and precise treatment strategies for PCa. This review aims to summarize the expression patterns of miRNAs in PCa patients and explore their roles in the diagnosis, treatment, and prognosis of the disease.
Collapse
Affiliation(s)
- Fan Yuan
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China
| | - Yue Hu
- Health Management (Physical Examination) Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China
| | - Yanmei Lei
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Lingna Jin
- Health Management (Physical Examination) Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Kathuria-Prakash N, Dave P, Garcia L, Brown P, Drakaki A. MicroRNAs in Genitourinary Malignancies: An Exciting Frontier of Cancer Diagnostics and Therapeutics. Int J Mol Sci 2024; 25:9499. [PMID: 39273446 PMCID: PMC11394927 DOI: 10.3390/ijms25179499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Genitourinary (GU) malignancies, including prostate, urothelial, kidney, testicular, penile, and adrenocortical cancers, comprise a significant burden of cancers worldwide. While many practice-changing advances have been made in the management of GU malignancies in the last decade, there is still significant room for improvement. MicroRNAs (miRNAs) are noncoding RNAs that regulate post-transcription gene expression and which have been implicated in multiple mechanisms of carcinogenesis. Therefore, they have the potential to revolutionize personalized cancer therapy, with several ongoing preclinical and clinical studies underway to investigate their efficacy. In this review, we describe the current landscape of miRNAs as diagnostics, therapeutics, and biomarkers of response for GU malignancies, reflecting a novel frontier in cancer treatment.
Collapse
Affiliation(s)
- Nikhita Kathuria-Prakash
- Division of Hematology/Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Pranali Dave
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Lizette Garcia
- Division of Hospice and Palliative Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Paige Brown
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Alexandra Drakaki
- Division of Hematology/Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Yun M, Kim B. Effects of Scutellaria baicalensis Extract-Induced Exosomes on the Periodontal Stem Cells and Immune Cells under Fine Dust. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1396. [PMID: 39269058 PMCID: PMC11397387 DOI: 10.3390/nano14171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In adverse environments, fine dust is linked to a variety of health disorders, including cancers, cardiovascular, neurological, renal, reproductive, motor, systemic, and respiratory diseases. Although PM10 is associated with oral inflammation and cancer, there is limited research on biomaterials that prevent damage caused by fine dust. In this study, we evaluated the effects of biomaterials using microRNA profiling, flow cytometry, conventional PCR, immunocytochemistry, Alizarin O staining, and ELISA. Compared to SBE (Scutellaria baicalensis extract), the preventive effectiveness of SBEIEs (SBE-induced exosomes) against fine dust was approximately two times higher. Furthermore, SBEIEs promoted cellular differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts, periodontal ligament cells (PDLCs), and pulp progenitor cells (PPCs), enhancing immune modulation for oral health against fine dust. In terms of immune modulation, SBEIEs activated the secretion of cytokines such as IL-10, LL-37, and TGF-β in T cells, B cells, and macrophages, while attenuating the secretion of MCP-1 in macrophages. MicroRNA profiling revealed that significantly modulated miRNAs in SBEIEs influenced four biochemical categories: apoptosis, cellular differentiation, immune activation, and anti-inflammation. These findings suggest that SBEIEs are an optimal biomaterial for developing oral health care products. Additionally, this study proposes functional microRNA candidates for the development of pharmaceutical liposomes.
Collapse
Affiliation(s)
- Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong-si 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
23
|
Li X, Mills WT, Jin DS, Meffert MK. Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing. CELL REPORTS METHODS 2024; 4:100836. [PMID: 39127045 PMCID: PMC11384083 DOI: 10.1016/j.crmeth.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Small noncoding RNAs (sncRNAs) regulate biological processes by impacting post-transcriptional gene expression through repressing the translation and levels of targeted transcripts. Despite the clear biological importance of sncRNAs, approaches to unambiguously define genome-wide sncRNA:target RNA interactions remain challenging and not widely adopted. We present CIMERA-seq, a robust strategy incorporating covalent ligation of sncRNAs to their target RNAs within the RNA-induced silencing complex (RISC) and direct detection of in vivo interactions by sequencing of the resulting chimeric RNAs. Modifications are incorporated to increase the capacity for processing low-abundance samples and permit cell-type-selective profiling of sncRNA:target RNA interactions, as demonstrated in mouse brain cortex. CIMERA-seq represents a cohesive and optimized method for unambiguously characterizing the in vivo network of sncRNA:target RNA interactions in numerous biological contexts and even subcellular fractions. Genome-wide and cell-type-selective CIMERA-seq enhances researchers' ability to study gene regulation by sncRNAs in diverse model systems and tissue types.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel S Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Turgambayeva A, Duisekova S, Tashenova G, Tulebayeva A, Kapanova G, Akhenbekova A, Farooqi AA. Role of TRP channels in carcinogenesis and metastasis: Pathophysiology and regulation by non-coding RNAs. Noncoding RNA Res 2024; 9:359-366. [PMID: 38511066 PMCID: PMC10950581 DOI: 10.1016/j.ncrna.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024] Open
Abstract
In 2021, David Julius and Ardem Patapoutian received Nobel Prize in Physiology or Medicine for their ground-breaking discoveries in the functional characterization of receptors for temperature and touch. Transient receptor potential (TRP) channels have captivated tremendous appreciation as promising drug targets over the past few years because of central involvement in different cancers. Based on the insights gleaned from decades of high-quality research, basic and clinical scientists have unveiled how Transient receptor potential channels regulated cancer onset and progression. Pioneering studies have sparked renewed interest and researchers have started to scratch the surface of mechanistic role of these channels in wide variety of cancers. In this review we have attempted to provide a summary of most recent updates and advancements made in the biology of these channels in context of cancers. We have partitioned this review into different subsections on the basis of emerging evidence about characteristically distinct role of TRPV (TRPV1, TRPV5), TRPM (TRPM3, TRPM7) and TRPC in cancers. Regulation of TRP channels by non-coding RNAs is also a very exciting area of research which will be helpful in developing a sharper understanding of the multi-step aspects of cancers.
Collapse
Affiliation(s)
- Assiya Turgambayeva
- Department Public Health and Management, NJSC, Astana Medical University, Astana, Kazakhstan
| | - Samal Duisekova
- Department Public Health and Management, NJSC, Astana Medical University, Astana, Kazakhstan
| | - Gulnara Tashenova
- Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Aigul Tulebayeva
- Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Gulnara Kapanova
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Aida Akhenbekova
- Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | | |
Collapse
|
25
|
Lin X, Qureshi MZ, Tahir F, Yilmaz S, Romero MA, Attar R, Farooqi AA. Role of melatonin in carcinogenesis and metastasis: From mechanistic insights to intermeshed networks of noncoding RNAs. Cell Biochem Funct 2024; 42:e3995. [PMID: 38751103 DOI: 10.1002/cbf.3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 05/26/2024]
Abstract
In recent years, seminal studies have been devoted to unraveling the puzzling mysteries associated with the cancer preventive/inhibitory role of melatonin. Our current knowledge of the translational mechanisms and the detailed structural insights have highlighted the characteristically exclusive role of melatonin in the inhibition of carcinogenesis and metastatic dissemination. This mini-review outlines recent discoveries related to mechanistic role of melatonin in prevention of carcinogenesis and metastasis. Moreover, another exciting facet of this mini-review is related to phenomenal breakthroughs linked with regulation of noncoding RNAs by melatonin in wide variety of cancers.
Collapse
Affiliation(s)
- Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Muhammad Zahid Qureshi
- Department of Environment and Natural Resources, College of Agriculture and Food, Qassim University, Buraidah, Saudi Arabia
| | - Fatima Tahir
- Rashid Latif Medical University, Lahore, Pakistan
| | - Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Mirna Azalea Romero
- Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Acapulco, Guerrero, México
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey
| | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
26
|
Huang C, Aghaei-Zarch SM. From molecular pathogenesis to therapy: Unraveling non-coding RNAs/DNMT3A axis in human cancers. Biochem Pharmacol 2024; 222:116107. [PMID: 38438051 DOI: 10.1016/j.bcp.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.
Collapse
Affiliation(s)
- Chunjie Huang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Hart M, Kern F, Fecher-Trost C, Krammes L, Aparicio E, Engel A, Hirsch P, Wagner V, Keller V, Schmartz GP, Rheinheimer S, Diener C, Fischer U, Mayer J, Meyer MR, Flockerzi V, Keller A, Meese E. Experimental capture of miRNA targetomes: disease-specific 3'UTR library-based miRNA targetomics for Parkinson's disease. Exp Mol Med 2024; 56:935-945. [PMID: 38556547 PMCID: PMC11059366 DOI: 10.1038/s12276-024-01202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on individual targets, and the sheer number of estimated miRNA-target gene interactions (MTIs), which is around 44,571,700. Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by analyzing 410 predicted target genes, both of which were previously associated with Parkinson's disease (PD). After performing 13,536 transfections, we validated 442 of the 705 putative MTIs (62,7%) through dual luciferase reporter assays. These analyses increased the number of validated MTIs by at least 2.1-fold for miR-133b and by a maximum of 24.3-fold for miR-873-5p. Our study contributes to the experimental capture of miRNA targetomes by addressing i) the ratio of experimentally verified MTIs to predicted MTIs, ii) the sizes of disease-related miRNA targetomes, and iii) the density of MTI networks. A web service to support the analyses on the MTI level is available online ( https://ccb-web.cs.uni-saarland.de/utr-seremato ), and all the data have been added to the miRATBase database ( https://ccb-web.cs.uni-saarland.de/miratbase ).
Collapse
Affiliation(s)
- Martin Hart
- Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Lena Krammes
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Ernesto Aparicio
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Viktoria Wagner
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Verena Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department for Internal Medicine II, Saarland University Hospital, 66421, Homburg, Germany
| | | | | | - Caroline Diener
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Ulrike Fischer
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Jens Mayer
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Eckart Meese
- Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
28
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Choi JY, Seok HJ, Lee DH, Lee E, Kim TJ, Bae S, Shin I, Bae IH. Tumor-derived miR-6794-5p enhances cancer growth by promoting M2 macrophage polarization. Cell Commun Signal 2024; 22:190. [PMID: 38521953 PMCID: PMC10960442 DOI: 10.1186/s12964-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Solid tumors promote tumor malignancy through interaction with the tumor microenvironment, resulting in difficulties in tumor treatment. Therefore, it is necessary to understand the communication between cells in the tumor and the surrounding microenvironment. Our previous study revealed the cancer malignancy mechanism of Bcl-w overexpressed in solid tumors, but no study was conducted on its relationship with immune cells in the tumor microenvironment. In this study, we sought to discover key factors in exosomes secreted from tumors overexpressing Bcl-w and analyze the interaction with the surrounding tumor microenvironment to identify the causes of tumor malignancy. METHODS To analyze factors affecting the tumor microenvironment, a miRNA array was performed using exosomes derived from cancer cells overexpressing Bcl-w. The discovered miRNA, miR-6794-5p, was overexpressed and the tumorigenicity mechanism was confirmed using qRT-PCR, Western blot, invasion, wound healing, and sphere formation ability analysis. In addition, luciferase activity and Ago2-RNA immunoprecipitation assays were used to study the mechanism between miR-6794-5p and its target gene SOCS1. To confirm the interaction between macrophages and tumor-derived miR-6794-5p, co-culture was performed using conditioned media. Additionally, immunohistochemical (IHC) staining and flow cytometry were performed to analyze macrophages in the tumor tissues of experimental animals. RESULTS MiR-6794-5p, which is highly expressed in exosomes secreted from Bcl-w-overexpressing cells, was selected, and it was shown that the overexpression of miR-6794-5p increased migratory ability, invasiveness, and stemness maintenance by suppressing the expression of the tumor suppressor SOCS1. Additionally, tumor-derived miR-6794-5p was delivered to THP-1-derived macrophages and induced M2 polarization by activating the JAK1/STAT3 pathway. Moreover, IL-10 secreted from M2 macrophages increased tumorigenicity by creating an immunosuppressive environment. The in vitro results were reconfirmed by confirming an increase in M2 macrophages and a decrease in M1 macrophages and CD8+ T cells when overexpressing miR-6794-5p in an animal model. CONCLUSIONS In this study, we identified changes in the tumor microenvironment caused by miR-6794-5p. Our study indicates that tumor-derived miR-6794-5p promotes tumor aggressiveness by inducing an immunosuppressive environment through interaction with macrophage.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Eunju Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Tae-Jin Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sangwoo Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
30
|
Sun L, Li F, Bai S, Bi C. CircRNA HLCS regulates lens epithelial cell apoptosis via miR-338-3p/BPNT1 axis. Int Ophthalmol 2024; 44:142. [PMID: 38493427 DOI: 10.1007/s10792-024-03082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The purpose of this study was to investigate the effect of circ_HLCS on age-related cataract (ARC). METHODS Circ_HLCS, microRNA (miR)-338-3p, and bisphosphate 3'-nucleotidase 1 (BPNT1) were quantified by quantitative real-time polymerase chain reaction or western blot. Cell proliferation and cell viability were assessed by the 5-Ethynyl-2'-deoxyuridinr and cell counting kit-8 assays. Cell apoptosis was detected by flow cytometry. Targeted correlations among circ_HLCS, miR-338-3p, and BPNT1 were verified by the dual-luciferase reporter and RNA pull-down assays. RESULTS circ_HLCS was diminished in ARC tissues and UV-treated SRA01/04 cells. Elevated content of circ_HLCS undermined UV-induced cell proliferation inhibition and apoptosis. Mechanistically, circ_HLCS directly targeted miR-338-3p, and circ_HLCS regulated BPNT1 expression through miR-338-3p. Furthermore, reduction of miR-338-3p ameliorated UV-induced SRA01/04 cell damage by increasing BPNT1 expression. CONCLUSION Taken together, these data suggested that circ_HLCS inhibited apoptosis of UV-treated SRA01/04 cells by miR-338-3p/BPNT1 axis. Therefore, circ_HLCS might be a potential therapeutic target for ARC.
Collapse
Affiliation(s)
- Lianyi Sun
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China
| | - Fengzhi Li
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China
| | - Shuwei Bai
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China.
| | - Chunchao Bi
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China
| |
Collapse
|
31
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
32
|
Chen Z, Zhang J, Pan Y, Hao Z, Li S. Extracellular vesicles as carriers for noncoding RNA-based regulation of macrophage/microglia polarization: an emerging candidate regulator for lung and traumatic brain injuries. Front Immunol 2024; 15:1343364. [PMID: 38558799 PMCID: PMC10978530 DOI: 10.3389/fimmu.2024.1343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Jingang Zhang
- Department of Orthopedic, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongnan Hao
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Shuang Li
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
33
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
34
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
35
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
36
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
37
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
38
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
39
|
Cao Y, Wen H, Leng C, Feng S. MiR-29a mediates the apoptotic effects of TNF-α on endothelial cells through inhibiting PI3K/AKT/BCL-2 axis. J Biochem Mol Toxicol 2024; 38:e23598. [PMID: 38047396 DOI: 10.1002/jbt.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Endothelial cell apoptosis driven by inflammation (TNF-α) plays a critical role in the pathogenesis of atherosclerosis, but the exact molecular mechanisms are not clearly elucidated. MicroRNA (miR)-29 families (a/b/c) take important roles in pathophysiological processes of atherosclerosis, also the underlying mechanisms have not been fully clarified. The aims are to explore whether or not miR-29 families mediate the apoptotic effects of TNF-α on endothelial cells and uncover the underlying molecular mechanisms. In this study, MTT assay and flow cytometer analysis were employed respectively to determine the proliferation and apoptosis of human umbilical vascular endothelial cells (HUVECs) under TNF-α exposure. Real-time quantitative PCR and western blot were performed to detect the levels of target RNAs and proteins/their phosphorylation in HUVECs. TNF-α could inhibit HUVEC proliferation and induce HUVEC apoptosis in a positive dose- and time-dependent manner, with a similar way of miR-29a upregulation, but no effects on miR-29b/c. Upregulation of miR-29a with its mimics enhanced the apoptotic effect of TNF-α on HUVECs, but downregulation of miR-29a using anti-miR-29a blocked up its apoptotic effect. MiR-29a inhibited the expression of PI3Kp85α and Bcl-2 and blocked up the signal transduction of PI3K/AKT/Bcl-2 axis to mediate the apoptotic effect of TNF-α on HUVECs. Mediating the inflammation-driven endothelial cell apoptosis is an important biology mechanism by which miR-29a promotes atherosclerosis and its complications. MiR-29a will be a potential diagnostic and therapeutic target for atherosclerotic cardiovascular diseases; it is worthwhile to further study.
Collapse
Affiliation(s)
- Yunchang Cao
- Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Hongbo Wen
- Department of Biochemistry and Molecular Biology, Hengyang Medicine School, University of South China, Hengyang, China
| | - Chaoqun Leng
- Department of Biochemistry and Molecular Biology, Hengyang Medicine School, University of South China, Hengyang, China
| | - Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
40
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
41
|
Zhou L, Ding X, Wang Z, Zhou S, Qin S, Sun X, Wang X, Li M. BmRRS1 Protein Inhibits the Proliferation of Baculovirus Autographa californica Nucleopolyhedrovirus in Silkworm, Bombyx mori. Int J Mol Sci 2023; 25:306. [PMID: 38203476 PMCID: PMC10779178 DOI: 10.3390/ijms25010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The study of functional genes involved in baculovirus infection is vital for its wide application in pest biocontrol. This study utilized the Autographa californica nucleopolyhedrovirus (AcMNPV) and silkworm as models to elucidate the role of BmRRS1, which has been found to exhibit notable differential expression between resistant and susceptible silkworm strains. The results showed that it was evolutionarily conserved in selected species. Among different tissues, it was expressed at the highest level in the gonads, followed by the hemolymph and silk glands; among the different developmental stages, it was the highest in the second instar, followed by the pupae and adults. Moreover, its vital role in suppressing AcMNPV infection was verified by the decreased expression of lef3 and vp39 protein after overexpression of BmRRS1 as well as by the increased expression of the viral gene lef3 and the viral protein vp39 after siRNA treatment against BmRRS1 expression in BmN cells. Additionally, the direct interaction between BmRRS1 and AcMNPV was detected by the GST pull-down assay. Finally, the homologue of BmRRS1 in Spodoptera frugiperda was found to be involved in larval resistance to AcMNPV. In a word, BmRRS1 plays a vital role in AcMNPV resistance in silkworms, and this might be related to the direct interaction with AcMNPV. The results of this study provide a potential target for protecting silkworm larvae from virus infection and controlling agricultural and forestry pests.
Collapse
Affiliation(s)
- Liqin Zhou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
| | - Xinyi Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
| | - Zhisheng Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
| | - Si Zhou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xueyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (L.Z.); (X.D.); (Z.W.); (S.Z.); (S.Q.); (X.S.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
42
|
Letelier P, Saldías R, Loren P, Riquelme I, Guzmán N. MicroRNAs as Potential Biomarkers of Environmental Exposure to Polycyclic Aromatic Hydrocarbons and Their Link with Inflammation and Lung Cancer. Int J Mol Sci 2023; 24:16984. [PMID: 38069307 PMCID: PMC10707120 DOI: 10.3390/ijms242316984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to atmospheric air pollution containing volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) has been shown to be a risk factor in the induction of lung inflammation and the initiation and progression of lung cancer. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules of ~20-22 nucleotides that regulate different physiological processes, and their altered expression is implicated in various pathophysiological conditions. Recent studies have shown that the regulation of gene expression of miRNAs can be affected in diseases associated with outdoor air pollution, meaning they could also be useful as biomarkers of exposure to environmental pollution. In this article, we review the published evidence on miRNAs in relation to exposure to PAH pollution and discuss the possible mechanisms that may link these compounds with the expression of miRNAs.
Collapse
Affiliation(s)
- Pablo Letelier
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Rolando Saldías
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Neftalí Guzmán
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| |
Collapse
|
43
|
Munroe JA, Doe CQ. Imp is expressed in INPs and newborn neurons where it regulates neuropil targeting in the central complex. Neural Dev 2023; 18:9. [PMID: 38031099 PMCID: PMC10685609 DOI: 10.1186/s13064-023-00177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of neuronal diversity remains incompletely understood. In Drosophila, the central brain is populated by neural stem cells derived from progenitors called neuroblasts (NBs). There are two types of NBs, type 1 and 2. T1NBs have a relatively simple lineage, whereas T2NBs expand and diversify the neural population with the generation of intermediate neural progenitors (INPs), contributing many neurons to the adult central complex, a brain region essential for navigation. However, it is not fully understood how neural diversity is created in T2NB and INP lineages. Imp, an RNA-binding protein, is expressed in T2NBs in a high-to-low temporal gradient, while the RNA-binding protein Syncrip forms an opposing gradient. It remains unknown if Imp expression is carried into INPs; whether it forms a gradient similar to NBs; and whether INP expression of Imp is required for generating neuronal identity or morphology. Here, we show that Imp/Syp are both present in INPs, but not always in opposing gradients. We find that newborn INPs adopt their Imp/Syp levels from their parental T2NBs; that Imp and Syp are expressed in stage-specific high-to-low gradients in INPs. In addition, there is a late INP pulse of Imp. We find that neurons born from old INPs (E-PG and PF-R neurons) have altered morphology following both Imp knock-down and Imp overexpression. We conclude that Imp functions in INPs and newborn neurons to determine proper neuronal morphology and central complex neuropil organization.
Collapse
Affiliation(s)
- Jordan A Munroe
- Institute of Neuroscience, Howard Hughes Medical Institute, Univ. of Oregon, Eugene, OR, 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, Univ. of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
44
|
Saadh MJ, Rashed AB, Jamal A, Castillo-Acobo RY, Kamal MA, Cotrina-Aliaga JC, Gonzáles JLA, Alothaim AS, Alhoqail WA, Ahmad F, Lakshmaiya N, Amin AH, Younus DG, Rojas GGR, Bahrami A, Akhavan-Sigari R. miR-199a-3p suppresses neuroinflammation by directly targeting MyD88 in a mouse model of bone cancer pain. Life Sci 2023; 333:122139. [PMID: 37783266 DOI: 10.1016/j.lfs.2023.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
AIMS Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Amera Bekhatroh Rashed
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Azfar Jamal
- Health and Basic Science Research Centre, Majmaah University, Majmaah 11952, Saudi Arabia; Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | | | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - José Luis Arias Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, BC, Canada
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Germany.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
45
|
Kaeffer B. Human Breast Milk miRNAs: Their Diversity and Potential for Preventive Strategies in Nutritional Therapy. Int J Mol Sci 2023; 24:16106. [PMID: 38003296 PMCID: PMC10671413 DOI: 10.3390/ijms242216106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The endogenous miRNAs of breast milk are the products of more than 1000 nonprotein-coding genes, giving rise to mature small regulatory molecules of 19-25 nucleotides. They are incorporated in macromolecular complexes, loaded on Argonaute proteins, sequestrated in exosomes and lipid complexes, or present in exfoliated cells of epithelial, endothelial, or immune origins. Their expression is dependent on the stage of lactation; however, their detection depends on progress in RNA sequencing and the reappraisal of the definition of small RNAs. Some miRNAs from plants are detected in breast milk, opening the possibility of the stimulation of immune cells from the allergy repertoire. Each miRNA harbors a seeding sequence, which targets mRNAs, gene promoters, or long noncoding RNAs. Their activities depend on their bioavailability. Efficient doses of miRNAs are estimated to be roughly 100 molecules in the cytoplasm of target cells from in vitro and in vivo experiments. Each miRNA is included in networks of stimulation/inhibition/sequestration, driving the expression of cellular phenotypes. Three types of stress applied during lactation to manipulate miRNA supply were explored using rodent offspring: a foster mother, a cafeteria diet, and early weaning. This review presents the main mature miRNAs described from current mothers' cohorts and their bioavailability in experimental models as well as studies assessing the potential of miR-26 or miR-320 miRNA families to alter offspring phenotypes.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
| |
Collapse
|
46
|
Raza SHA, Khan R, Pant SD, Shah MA, Quan G, Feng L, Cheng G, Gui LS, Zan L. Genetic variation in the OPN gene affects milk composition in Chinese Holstein cows. Anim Biotechnol 2023; 34:893-899. [PMID: 34779705 DOI: 10.1080/10495398.2021.2001343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the association between genotypes and haplotypes of OPN, and milk composition in dairy cows. A total of 317 Chinese Holstein cows were genotyped via DNA sequencing in this study. Three single nucleotide polymorphisms (SNPs), g.2916G > A, g.58675C > T and g.58899C > A, and eight haplotypes were identified. Of the eight possible haplotypes, four haplotypes i.e., Hap2 (ACC; 55.30%), Hap6 (GCC, 15.6%), Hap1 (ACA, 13.6%) and Hap4 (ATC, 5.70%), were considered to be major with a cumulative estimated frequency of >90%. Single markers (g.2916G > A and g.58899C > A) and Haplotype Hap6/4 were found to be associated with an increase in butter-fat percentage (p < 0.05). Taken together, our results provided evidence that polymorphisms in OPN are associated with milk composition, and could potentially be used for marker-assisted selection in Chinese Holstein cows.
Collapse
Affiliation(s)
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Pakistan
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Australia
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Water, University of South Bohemia in Ceske Budejovice, Czech Republic
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Long Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lin-Sheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| |
Collapse
|
47
|
Hackl LM, Fenn A, Louadi Z, Baumbach J, Kacprowski T, List M, Tsoy O. Alternative splicing impacts microRNA regulation within coding regions. NAR Genom Bioinform 2023; 5:lqad081. [PMID: 37705830 PMCID: PMC10495541 DOI: 10.1093/nargab/lqad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation. To check this hypothesis, we studied the role of miRNA target sites in both coding and non-coding regions using six cancer data sets from The Cancer Genome Atlas (TCGA) and Parkinson's disease data from PPMI. First, we predicted miRNA target sites on mRNAs from their sequence using TarPmiR. To check whether alternative splicing interferes with this regulation, we trained linear regression models to predict miRNA expression from transcript expression. Using nested models, we compared the predictive power of transcripts with miRNA target sites in the coding regions to that of transcripts without target sites. Models containing transcripts with target sites perform significantly better. We conclude that alternative splicing does interfere with miRNA regulation by skipping exons with miRNA target sites within the coding region.
Collapse
Affiliation(s)
- Lena Maria Hackl
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| | - Amit Fenn
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Zakaria Louadi
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Campusvej 50, 5230 Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| |
Collapse
|
48
|
Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells 2023; 12:2145. [PMID: 37681877 PMCID: PMC10486980 DOI: 10.3390/cells12172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Jessica N. Ziegler
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
49
|
Datkhayev UM, Rakhmetova V, Shepetov AM, Kodasbayev A, Datkayeva GM, Pazilov SB, Farooqi AA. Unraveling the Complex Web of Mechanistic Regulation of Versatile NEDD4 Family by Non-Coding RNAs in Carcinogenesis and Metastasis: From Cell Culture Studies to Animal Models. Cancers (Basel) 2023; 15:3971. [PMID: 37568787 PMCID: PMC10417118 DOI: 10.3390/cancers15153971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023] Open
Abstract
Discoveries related to an intriguing feature of ubiquitination have prompted a detailed analysis of the ubiquitination patterns in malignant cells. How the "ubiquitinome" is reshaped during multistage carcinogenesis has garnered significant attention. Seminal studies related to the structural and functional characterization of NEDD4 (Neuronal precursor cell-expressed developmentally downregulated-4) have consolidated our understanding at a new level of maturity. Additionally, regulatory roles of non-coding RNAs have further complicated the complex interplay between non-coding RNAs and the members of NEDD4 family. These mechanisms range from the miRNA-mediated targeting of NEDD4 family members to the regulation of transcriptional factors for a broader range of non-coding RNAs. Additionally, the NEDD4-mediated degradation of different proteins is modulated by lncRNAs and circRNAs. The miRNA-mediated targeting of NEDD4 family members is also regulated by circRNAs. Tremendous advancements have been made in the identification of different substrates of NEDD4 family and in the comprehensive analysis of the molecular mechanisms by which various members of NEDD4 family catalyze the ubiquitination of substrates. In this review, we have attempted to summarize the multifunctional roles of the NEDD4 family in cancer biology, and how different non-coding RNAs modulate these NEDD4 family members in the regulation of cancer. Future molecular studies should focus on the investigation of a broader drug design space and expand the scope of accessible targets for the inhibition/prevention of metastasis.
Collapse
Affiliation(s)
- Ubaidilla M. Datkhayev
- Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan;
| | - Almat Kodasbayev
- Department of Cardiovascular Surgery, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Sabit B. Pazilov
- Department of Healthcare of Kyzylorda Region, Kyzylorda, Abay Avenue, 27, Kyzylorda 120008, Kazakhstan;
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|
50
|
Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev 2023; 199:114961. [PMID: 37321375 PMCID: PMC10264168 DOI: 10.1016/j.addr.2023.114961] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The accelerated progress and approval of two mRNA-based vaccines to address the SARS-CoV-2 virus were unprecedented. This record-setting feat was made possible through the solid foundation of research on in vitro transcribed mRNA (IVT mRNA) which could be utilized as a therapeutic modality. Through decades of thorough research to overcome barriers to implementation, mRNA-based vaccines or therapeutics offer many advantages to rapidly address a broad range of applications including infectious diseases, cancers, and gene editing. Here, we describe the advances that have supported the adoption of IVT mRNA in the clinics, including optimization of the IVT mRNA structural components, synthesis, and lastly concluding with different classes of IVT RNA. Continuing interest in driving IVT mRNA technology will enable a safer and more efficacious therapeutic modality to address emerging and existing diseases.
Collapse
Affiliation(s)
- Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Haoyuan Li
- Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|