1
|
Hu Q, Yang H, Li M, Zhu L, Lv M, Li F, Zhang Z, Ren G, Gong Q. Molecular mechanism underlying the di-uridylation activity of Arabidopsis TUTase URT1. Nucleic Acids Res 2022; 50:10614-10625. [PMID: 36177876 PMCID: PMC9561377 DOI: 10.1093/nar/gkac839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
In Arabidopsis, HESO1 and URT1 act cooperatively on unmethylated miRNA and mRNA uridylation to induce their degradation. Their collaboration significantly impacts RNA metabolism in plants. However, the molecular mechanism determining the functional difference and complementarity of these two enzymes remains unclear. We previously solved the three-dimensional structure of URT1 in the absence and presence of UTP. In this study, we further determined the structure of URT1 in complex with a 5′-AAAU-3′ RNA stretch that mimics the post-catalytic state of the mRNA poly(A) tail after the addition of the first uridine. Structural analysis and enzymatic assays revealed that L527 and Y592 endow URT1 with a preference to interact with purine over pyrimidine at the -1 RNA binding position, thus controlling the optimal number of uridine added to the 3′ extremity of poly(A) as two. In addition, we observed that a large-scale conformational rearrangement in URT1 occurs upon binding with RNA from an ‘open’ to a ‘closed’ state. Molecular dynamic simulation supports an open-closed conformational selection mechanism employed by URT1 to interact with RNA substrates and maintain distributive enzymatic activity. Based on the above results, a model regarding the catalytic cycle of URT1 is proposed to explain its di-uridylation activity.
Collapse
Affiliation(s)
- Qian Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Huiru Yang
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingwei Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Lingru Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Mengqi Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Fudong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingguo Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| |
Collapse
|
2
|
Malik D, Kobyłecki K, Krawczyk P, Poznański J, Jakielaszek A, Napiórkowska A, Dziembowski A, Tomecki R, Nowotny M. Structure and mechanism of CutA, RNA nucleotidyl transferase with an unusual preference for cytosine. Nucleic Acids Res 2020; 48:9387-9405. [PMID: 32785623 PMCID: PMC7498324 DOI: 10.1093/nar/gkaa647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Template-independent terminal ribonucleotide transferases (TENTs) catalyze the addition of nucleotide monophosphates to the 3′-end of RNA molecules regulating their fate. TENTs include poly(U) polymerases (PUPs) with a subgroup of 3′ CUCU-tagging enzymes, such as CutA in Aspergillus nidulans. CutA preferentially incorporates cytosines, processively polymerizes only adenosines and does not incorporate or extend guanosines. The basis of this peculiar specificity remains to be established. Here, we describe crystal structures of the catalytic core of CutA in complex with an incoming non-hydrolyzable CTP analog and an RNA with three adenosines, along with biochemical characterization of the enzyme. The binding of GTP or a primer with terminal guanosine is predicted to induce clashes between 2-NH2 of the guanine and protein, which would explain why CutA is unable to use these ligands as substrates. Processive adenosine polymerization likely results from the preferential binding of a primer ending with at least two adenosines. Intriguingly, we found that the affinities of CutA for the CTP and UTP are very similar and the structures did not reveal any apparent elements for specific NTP binding. Thus, the properties of CutA likely result from an interplay between several factors, which may include a conformational dynamic process of NTP recognition.
Collapse
Affiliation(s)
- Deepshikha Malik
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Kamil Kobyłecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Aleksandra Jakielaszek
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Agnieszka Napiórkowska
- Structural Biology Center, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Rafał Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| |
Collapse
|
3
|
Cheng L, Li F, Jiang Y, Yu H, Xie C, Shi Y, Gong Q. Structural insights into a unique preference for 3' terminal guanine of mirtron in Drosophila TUTase tailor. Nucleic Acids Res 2019; 47:495-508. [PMID: 30407553 PMCID: PMC6326804 DOI: 10.1093/nar/gky1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023] Open
Abstract
Terminal uridylyl transferase (TUTase) is one type of enzyme that modifies RNA molecules by facilitating the post-transcriptional addition of uridyl ribonucleotides to their 3' ends. Recent researches have reported that Drosophila TUTase, Tailor, exhibits an intrinsic preference for RNA substrates ending in 3'G, distinguishing it from any other known TUTases. Through this unique feature, Tailor plays a crucial role as the repressor in the biogenesis pathway of splicing-derived mirtron pre-miRNAs. Here we describe crystal structures of core catalytic domain of Tailor and its complexes with RNA stretches 5'-AGU-3' and 5'-AGUU-3'. We demonstrate that R327 and N347 are two key residues contributing cooperatively to Tailor's preference for 3'G, and R327 may play an extra role in facilitating the extension of polyuridylation chain. We also demonstrate that conformational stability of the exit of RNA-binding groove also contributes significantly to Tailor's activity. Overall, our work reveals useful insights to explain why Drosophila Tailor can preferentially select RNA substrates ending in 3'G and provides important values for further understanding the biological significances of biogenesis pathway of mirtron in flies.
Collapse
Affiliation(s)
- Lin Cheng
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Hailong Yu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Changlin Xie
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China.,High Magnet Field Laboratory, Chinese Academy of Science, 50 Shushanhu Road, Hefei, Anhui 230031, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| |
Collapse
|
4
|
Kroupova A, Ivascu A, Reimão-Pinto MM, Ameres SL, Jinek M. Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor. Nucleic Acids Res 2019; 47:1030-1042. [PMID: 30462292 PMCID: PMC6344859 DOI: 10.1093/nar/gky1164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
Non-templated 3′-uridylation of RNAs has emerged as an important mechanism for regulating the processing, stability and biological function of eukaryotic transcripts. In Drosophila, oligouridine tailing by the terminal uridylyl transferase (TUTase) Tailor of numerous RNAs induces their degradation by the exonuclease Dis3L2, which serves functional roles in RNA surveillance and mirtron RNA biogenesis. Tailor preferentially uridylates RNAs terminating in guanosine or uridine nucleotides but the structural basis underpinning its RNA substrate selectivity is unknown. Here, we report crystal structures of Tailor bound to a donor substrate analog or mono- and oligouridylated RNA products. These structures reveal specific amino acid residues involved in donor and acceptor substrate recognition, and complementary biochemical assays confirm the critical role of an active site arginine in conferring selectivity toward 3′-guanosine terminated RNAs. Notably, conservation of these active site features suggests that other eukaryotic TUTases, including mammalian TUT4 and TUT7, might exhibit similar, hitherto unknown, substrate selectivity. Together, these studies provide critical insights into the specificity of 3′-uridylation in eukaryotic post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Anastasia Ivascu
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Madalena M Reimão-Pinto
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
5
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Faehnle CR, Walleshauser J, Joshua-Tor L. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis. Nat Struct Mol Biol 2017; 24:658-665. [PMID: 28671666 PMCID: PMC5542866 DOI: 10.1038/nsmb.3428] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022]
Abstract
The uridyl transferases TUT4 and TUT7 switch between two modes of activity that either promotes let-7 expression (monoU) or marks it for degradation (oligoU). Lin28 modulates the switch via recruitment of TUT4(7) to pre-let-7 in stem cells and human cancers. We found TUT4(7) utilize two multi-domain functional modules during the switch from mono- to oligoU. The catalytic module (CM) is essential for both activities, while the Lin28-interacting module (LIM) is indispensible for oligoU. The TUT7 CM structure trapped in the monoU state, revealed a duplex RNA binding pocket that orients group II pre-let-7 hairpins to position the 1-nt overhang favor monoU addition. Conversely, the switch to oligoU requires the ZK domain of Lin28 to drive the formation of a stable ternary complex between pre-let-7 and the inactive LIM. Finally, ZK2 of TUT4(7) aids oligoU addition by engaging the growing oligoU tail through uracil-specific interactions.
Collapse
Affiliation(s)
- Christopher R Faehnle
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jack Walleshauser
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
8
|
Aphasizhev R, Suematsu T, Zhang L, Aphasizheva I. Constructive edge of uridylation-induced RNA degradation. RNA Biol 2016; 13:1078-1083. [PMID: 27715485 PMCID: PMC5100348 DOI: 10.1080/15476286.2016.1229736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/06/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
RNA uridylation is a significant transcriptome-shaping factor in protists, fungi, metazoans, and plants. The 3' U-additions are catalyzed by terminal uridyltransferases (TUTases), a diverse group of enzymes that along with non-canonical poly(A) polymerases form a distinct group in the superfamily of DNA polymerase β-like nucleotidyl transferases. Within and across studied organisms and subcellular compartments, TUTases differ in nucleotide triphosphate selectivity, interacting partners, and RNA targets. A general premise linking RNA uridylation to 3'-5' degradation received support from several studies of small RNAs and mRNA turnover. However, recent work on kinetoplastid protists typified by Trypanosoma brucei provides evidence that RNA uridylation may play a more nuanced role in generating functional small RNAs. In this pathogen's mitochondrion, most mRNAs are internally edited by U-insertions and deletions, and subjected to 3' adenylation/uridylation; guide RNAs (gRNAs) required for editing are U-tailed. The prominent role of uridylation in mitochondrial RNA metabolism stimulated identification of the first TUTase, RNA editing TUTase 1 (RET1). Here we discuss functional studies of mitochondrial uridylation in trypanosomes that have revealed an unorthodox pathway of small RNA biogenesis. The current model accentuates physical coupling of RET1 and 3'-5' RNase II/RNB-type exonuclease DSS1 within a stable complex termed the mitochondrial 3' processome (MPsome). In the confines of this complex, RET1 initially uridylates a long precursor to activate its 3'-5' degradation by DSS1, and then uridylates trimmed guide RNA to disengage the processing complex from the mature molecule. We also discuss a potential role of antisense transcription in the MPsome pausing at a fixed distance from gRNA's 5' end. This step likely defines the mature 3' end by enabling kinetic competition between TUTase and exonuclease activities.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
10
|
Rajappa-Titu L, Suematsu T, Munoz-Tello P, Long M, Demir Ö, Cheng KJ, Stagno JR, Luecke H, Amaro RE, Aphasizheva I, Aphasizhev R, Thore S. RNA Editing TUTase 1: structural foundation of substrate recognition, complex interactions and drug targeting. Nucleic Acids Res 2016; 44:10862-10878. [PMID: 27744351 PMCID: PMC5159558 DOI: 10.1093/nar/gkw917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Terminal uridyltransferases (TUTases) execute 3′ RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei. In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3′ processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3′ processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.
Collapse
Affiliation(s)
- Lional Rajappa-Titu
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Takuma Suematsu
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Paola Munoz-Tello
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marius Long
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Özlem Demir
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin J Cheng
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason R Stagno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA .,Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland .,INSERM, U1212, ARNA Laboratory, Bordeaux 33000, France.,CNRS UMR5320, ARNA Laboratory, Bordeaux 33000, France.,University of Bordeaux, ARNA Laboratory, Bordeaux 33000, France
| |
Collapse
|
11
|
Wang J, Dong H, Chionh YH, McBee ME, Sirirungruang S, Cunningham RP, Shi PY, Dedon PC. The role of sequence context, nucleotide pool balance and stress in 2'-deoxynucleotide misincorporation in viral, bacterial and mammalian RNA. Nucleic Acids Res 2016; 44:8962-8975. [PMID: 27365049 PMCID: PMC5062971 DOI: 10.1093/nar/gkw572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/06/2016] [Indexed: 11/16/2022] Open
Abstract
The misincorporation of 2′-deoxyribonucleotides (dNs) into RNA has important implications for the function of non-coding RNAs, the translational fidelity of coding RNAs and the mutagenic evolution of viral RNA genomes. However, quantitative appreciation for the degree to which dN misincorporation occurs is limited by the lack of analytical tools. Here, we report a method to hydrolyze RNA to release 2′-deoxyribonucleotide-ribonucleotide pairs (dNrN) that are then quantified by chromatography-coupled mass spectrometry (LC-MS). Using this platform, we found misincorporated dNs occurring at 1 per 103 to 105 ribonucleotide (nt) in mRNA, rRNAs and tRNA in human cells, Escherichia coli, Saccharomyces cerevisiae and, most abundantly, in the RNA genome of dengue virus. The frequency of dNs varied widely among organisms and sequence contexts, and partly reflected the in vitro discrimination efficiencies of different RNA polymerases against 2′-deoxyribonucleoside 5′-triphosphates (dNTPs). Further, we demonstrate a strong link between dN frequencies in RNA and the balance of dNTPs and ribonucleoside 5′-triphosphates (rNTPs) in the cellular pool, with significant stress-induced variation of dN incorporation. Potential implications of dNs in RNA are discussed, including the possibilities of dN incorporation in RNA as a contributing factor in viral evolution and human disease, and as a host immune defense mechanism against viral infections.
Collapse
Affiliation(s)
- Jin Wang
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Yok Hian Chionh
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602 Department of Microbiology & Immunology Programme, Center for Life Sciences, National University of Singapore, Singapore 117545
| | - Megan E McBee
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Sasilada Sirirungruang
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | - Richard P Cunningham
- Department of Biological Sciences, The University at Albany, Albany, NY 12222, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Phamarcology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter C Dedon
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602 Department of Biological Engineering & Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
12
|
Simpson L, Douglass SM, Lake JA, Pellegrini M, Li F. Comparison of the Mitochondrial Genomes and Steady State Transcriptomes of Two Strains of the Trypanosomatid Parasite, Leishmania tarentolae. PLoS Negl Trop Dis 2015. [PMID: 26204118 PMCID: PMC4512693 DOI: 10.1371/journal.pntd.0003841] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
U-insertion/deletion RNA editing is a post-transcriptional mitochondrial RNA modification phenomenon required for viability of trypanosomatid parasites. Small guide RNAs encoded mainly by the thousands of catenated minicircles contain the information for this editing. We analyzed by NGS technology the mitochondrial genomes and transcriptomes of two strains, the old lab UC strain and the recently isolated LEM125 strain. PacBio sequencing provided complete minicircle sequences which avoided the assembly problem of short reads caused by the conserved regions. Minicircles were identified by a characteristic size, the presence of three short conserved sequences, a region of inherently bent DNA and the presence of single gRNA genes at a fairly defined location. The LEM125 strain contained over 114 minicircles encoding different gRNAs and the UC strain only ~24 minicircles. Some LEM125 minicircles contained no identifiable gRNAs. Approximate copy numbers of the different minicircle classes in the network were determined by the number of PacBio CCS reads that assembled to each class. Mitochondrial RNA libraries from both strains were mapped against the minicircle and maxicircle sequences. Small RNA reads mapped to the putative gRNA genes but also to multiple regions outside the genes on both strands and large RNA reads mapped in many cases over almost the entire minicircle on both strands. These data suggest that minicircle transcription is complete and bidirectional, with 3’ processing yielding the mature gRNAs. Steady state RNAs in varying abundances are derived from all maxicircle genes, including portions of the repetitive divergent region. The relative extents of editing in both strains correlated with the presence of a cascade of cognate gRNAs. These data should provide the foundation for a deeper understanding of this dynamic genetic system as well as the evolutionary variation of editing in different strains. U-insertion/deletion RNA editing is a unique post-transcriptional mRNA modification process that occurs in trypanosomatid parasites and is required for viability. The participation of guide RNAs which are transcribed from the thousands of catenated minicircles in determining the precise sites and number of U’s inserted and deleted to create translatable mRNAs is novel and significant in terms of the recently realized importance of small RNAs in biology. This study contributes the necessary bioinformatics foundation for a deeper understanding of this important genetic system in molecular detail using a model trypanosomatid, Leishmania tarentolae. We used Next Generation Sequencing methods to determine the complete maxicircle and minicircle genomes and to map maxicircle pre-edited and edited transcripts and minicircle transcripts. The transcription of minicircle-encoded guide RNAs was confirmed and novel information about minicircle gene expression was obtained. The biological context involved a comparison of two strains of the parasites, one recently isolated and having an intact mitochondrial genetic system and the other an old lab strain that has developed a partially defective mitochondrial genome. The data are important for an understanding of the mitochondrial genomic complexity and expression of this dynamic genetic system.
Collapse
Affiliation(s)
- Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Stephen M. Douglass
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Lake
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Feng Li
- Dental Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Yates LA, Durrant BP, Fleurdépine S, Harlos K, Norbury CJ, Gilbert RJC. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity. Nucleic Acids Res 2015; 43:2968-79. [PMID: 25712096 PMCID: PMC4357723 DOI: 10.1093/nar/gkv122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3′ ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164–N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes—for example by the binding of protein co-factors—may allow them alternatively to add single or multiple uridyl residues to the 3′ termini of RNA molecules.
Collapse
Affiliation(s)
- Luke A Yates
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Benjamin P Durrant
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sophie Fleurdépine
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chris J Norbury
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
14
|
Yoon JY, Lee SJ, Kim DJ, Lee BJ, Yang JK, Suh SW. Crystal structure of JHP933 fromHelicobacter pyloriJ99 shows two-domain architecture with a DUF1814 family nucleotidyltransferase domain and a helical bundle domain. Proteins 2014; 82:2275-81. [DOI: 10.1002/prot.24572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/21/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Ji Young Yoon
- Department of Chemistry; College of Natural Sciences, Seoul National University; Seoul 151-742 Republic of Korea
| | - Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences; College of Pharmacy, Seoul National University, Gwanak-gu; Seoul 151-742 Republic of Korea
| | - Do Jin Kim
- Department of Chemistry; College of Natural Sciences, Seoul National University; Seoul 151-742 Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences; College of Pharmacy, Seoul National University, Gwanak-gu; Seoul 151-742 Republic of Korea
| | - Jin Kuk Yang
- Department of Chemistry; College of Natural Sciences, Soongsil University; Seoul 156-743 Republic of Korea
| | - Se Won Suh
- Department of Chemistry; College of Natural Sciences, Seoul National University; Seoul 151-742 Republic of Korea
- Department of Biophysics and Chemical Biology; College of Natural Sciences, Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
15
|
Munoz-Tello P, Gabus C, Thore S. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure. Nucleic Acids Res 2013; 42:3372-80. [PMID: 24322298 PMCID: PMC3950679 DOI: 10.1093/nar/gkt1278] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the β-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Molecular Biology, University of Geneva, Geneva, 1211, Switzerland
| | | | | |
Collapse
|
16
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
17
|
Atayde VD, Shi H, Franklin JB, Carriero N, Notton T, Lye LF, Owens K, Beverley SM, Tschudi C, Ullu E. The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol Microbiol 2012; 87:580-93. [PMID: 23217017 DOI: 10.1111/mmi.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 12/01/2022]
Abstract
Among trypanosomatid protozoa the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser extent in Leishmania braziliensis. Although these two parasitic organisms belong to the same family, they are evolutionarily distantly related raising questions about the conservation of the RNAi pathway. Here we carried out an in-depth analysis of small interfering RNAs (siRNAs) associated with L. braziliensis Argonaute1 (LbrAGO1). In contrast to T. brucei, Leishmania siRNAs are sensitive to 3' end oxidation, indicating the absence of blocking groups, and the Leishmania genome does not code for a HEN1 RNA 2'-O-methyltransferase, which modifies small RNA 3' ends. Consistent with this observation, ~20% of siRNA 3' ends carry non-templated uridines. Thus siRNA biogenesis, and most likely their metabolism, is different in these organisms. Similarly to T. brucei, putative mobile elements and repeats constitute the major Leishmania siRNA-producing loci and AGO1 ablation leads to accumulation of long transcripts derived from putative mobile elements. However, contrary to T. brucei, no siRNAs were detected from other genomic regions with the potential to form double-stranded RNA, namely sites of convergent transcription and inverted repeats. Thus, our results indicate that organism-specific diversification has occurred in the RNAi pathway during evolution of the trypanosomatid lineage.
Collapse
Affiliation(s)
- Vanessa D Atayde
- Departments of Internal Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chang JH, Tong L. Mitochondrial poly(A) polymerase and polyadenylation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:992-7. [PMID: 22172994 PMCID: PMC3307840 DOI: 10.1016/j.bbagrm.2011.10.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023]
Abstract
Polyadenylation of mitochondrial RNAs in higher eukaryotic organisms have diverse effects on their function and metabolism. Polyadenylation completes the UAA stop codon of a majority of mitochondrial mRNAs in mammals, regulates the translation of the mRNAs, and has diverse effects on their stability. In contrast, polyadenylation of most mitochondrial mRNAs in plants leads to their degradation, consistent with the bacterial origin of this organelle. PAPD1 (mtPAP, TUTase1), a noncanonical poly(A) polymerase (ncPAP), is responsible for producing the poly(A) tails in mammalian mitochondria. The crystal structure of human PAPD1 was reported recently, offering molecular insights into its catalysis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jeong Ho Chang
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| |
Collapse
|
19
|
Lunde BM, Magler I, Meinhart A. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity. Nucleic Acids Res 2012; 40:9815-24. [PMID: 22885303 PMCID: PMC3479196 DOI: 10.1093/nar/gks740] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyuridylation is emerging as a ubiquitous post-translational modification with important roles in multiple aspects of RNA metabolism. These poly (U) tails are added by poly (U) polymerases with homology to poly (A) polymerases; nevertheless, the selection for UTP over ATP remains enigmatic. We report the structures of poly (U) polymerase Cid1 from Schizoscaccharomyces pombe alone and in complex with UTP, CTP, GTP and 3′-dATP. These structures reveal that each of the 4 nt can be accommodated at the active site; however, differences exist that suggest how the polymerase selects UTP over the other nucleotides. Furthermore, we find that Cid1 shares a number of common UTP recognition features with the kinetoplastid terminal uridyltransferases. Kinetic analysis of Cid1’s activity for its preferred substrates, UTP and ATP, reveal a clear preference for UTP over ATP. Ultimately, we show that a single histidine in the active site plays a pivotal role for poly (U) activity. Notably, this residue is typically replaced by an asparagine residue in Cid1-family poly (A) polymerases. By mutating this histidine to an asparagine residue in Cid1, we diminished Cid1’s activity for UTP addition and improved ATP incorporation, supporting that this residue is important for UTP selectivity.
Collapse
Affiliation(s)
- Bradley M Lunde
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
20
|
Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase. Nat Struct Mol Biol 2012; 19:782-787. [PMID: 22751018 DOI: 10.1038/nsmb.2329] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/18/2012] [Indexed: 02/02/2023]
Abstract
Cytoplasmic terminal uridylyl transferases comprise a conserved family of enzymes that negatively regulate the stability or biological activity of a variety of eukaryotic RNAs, including mRNAs and tumor-suppressor let-7 microRNAs. Here we describe crystal structures of the Schizosaccharomyces pombe cytoplasmic terminal uridylyl transferase Cid1 in two apo conformers and bound to UTP. We demonstrate that a single histidine residue, conserved in mammalian Cid1 orthologs, is responsible for discrimination between UTP and ATP. We also describe a new high-affinity RNA substrate-binding mechanism of Cid1, which is essential for enzymatic activity and is mediated by three basic patches across the surface of the enzyme. Overall, our structures provide a basis for understanding the activity of Cid1 and a mechanism of UTP selectivity conserved in its human orthologs, suggesting potential implications for anticancer drug design.
Collapse
|
21
|
Munoz-Tello P, Gabus C, Thore S. Functional implications from the Cid1 poly(U) polymerase crystal structure. Structure 2012; 20:977-86. [PMID: 22608966 DOI: 10.1016/j.str.2012.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/08/2023]
Abstract
In eukaryotes, mRNA degradation begins with poly(A) tail removal, followed by decapping, and the mRNA body is degraded by exonucleases. In recent years, the major influence of 3'-end uridylation as a regulatory step within several RNA degradation pathways has generated significant attention toward the responsible enzymes, which are called poly(U) polymerases (PUPs). We determined the atomic structure of the Cid1 protein, the founding member of the PUP family, in its UTP-bound form, allowing unambiguous positioning of the UTP molecule. Our data also suggest that the RNA substrate accommodation and product translocation by the Cid1 protein rely on local and global movements of the enzyme. Supplemented by point mutations, the atomic model is used to propose a catalytic cycle. Our study underlines the Cid1 RNA binding properties, a feature with critical implications for miRNAs, histone mRNAs, and, more generally, cellular RNA degradation.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | | | | |
Collapse
|
22
|
Demir Ö, Amaro RE. Elements of nucleotide specificity in the Trypanosoma brucei mitochondrial RNA editing enzyme RET2. J Chem Inf Model 2012; 52:1308-18. [PMID: 22512810 DOI: 10.1021/ci3001327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The causative agent of African sleeping sickness, Trypanosoma brucei , undergoes an unusual mitochondrial RNA editing process that is essential for its survival. RNA editing terminal uridylyl transferase 2 of T. brucei (TbRET2) is an indispensable component of the editosome machinery that performs this editing. TbRET2 is required to maintain the vitality of both the insect and bloodstream forms of the parasite, and with its high-resolution crystal structure, it poses as a promising pharmaceutical target. Neither the exclusive requirement of uridine 5'-triphosphate (UTP) for catalysis, nor the RNA primer preference of TbRET2 is well-understood. Using all-atom explicitly solvated molecular dynamics (MD) simulations, we investigated the effect of UTP binding on TbRET2 structure and dynamics, as well as the determinants governing TbRET2's exclusive UTP preference. Through our investigations of various nucleoside triphosphate substrates (NTPs), we show that UTP preorganizes the binding site through an extensive water-mediated H-bonding network, bringing Glu424 and Arg144 side chains to an optimum position for RNA primer binding. In contrast, cytosine 5'-triphosphate (CTP) and adenosine 5'-triphosphate (ATP) cannot achieve this preorganization and thus preclude productive RNA primer binding. Additionally, we have located ligand-binding "hot spots" of TbRET2 based on the MD conformational ensembles and computational fragment mapping. TbRET2 reveals different binding pockets in the apo and UTP-bound MD simulations, which could be targeted for inhibitor design.
Collapse
Affiliation(s)
- Özlem Demir
- Department of Chemistry and Biochemistry, University of California , San Diego, 3234 Urey Hall, 9500 Gilman Drive, MC-0340 La Jolla, California 92093-0332, USA
| | | |
Collapse
|
23
|
Aphasizhev R, Aphasizheva I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:669-85. [PMID: 21823228 PMCID: PMC3154072 DOI: 10.1002/wrna.82] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Models, Biological
- Models, Molecular
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing/genetics
- RNA Editing/physiology
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Trypanosoma/genetics
- Trypanosoma/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
24
|
Aphasizhev R, Aphasizheva I. Mitochondrial RNA processing in trypanosomes. Res Microbiol 2011; 162:655-63. [PMID: 21596134 PMCID: PMC3148333 DOI: 10.1016/j.resmic.2011.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
Abstract
The mitochondrial genome of trypanosomes is composed of ∼50 maxicircles and thousands of minicircles. Maxi-(∼25 kb) and mini-(∼1 kb)circles are catenated and packed into a dense structure called a kinetoplast. Both types of circular DNA are transcribed by a phage-like RNA polymerase: maxicircles yield multicistronic rRNA and mRNA precursors, while guide RNA (gRNA) precursors are produced from minicircles. To function in mitochondrial translation, pre-mRNAs must undergo a nucleolytic processing and 3' modifications, and often uridine insertion/deletion editing. gRNAs, which represent short (50-60 nt) RNAs directing editing reactions, are produced by 3' nucleolytic processing of a much longer precursor followed by 3' uridylation. Ribosomal RNAs are excised from precursors and their 3' ends are also trimmed and uridylated. All tRNAs are imported from the cytoplasm and some are further modified and edited in the mitochondrial matrix. Historically, the fascinating phenomenon of RNA editing has been extensively studied as an isolated pathway in which nuclear-encoded proteins mediate interactions of maxi- and minicircle transcripts to create open reading frames. However, recent studies unraveled a highly integrated network of mitochondrial genome expression including critical pre- and post-editing 3' mRNA processing, and gRNA and rRNA maturation steps. Here we focus on RNA 3' adenylation and uridylation as processes essential for biogenesis, stability and functioning of mitochondrial RNAs.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, B240 Medical Sciences I, Irvine, CA 92697, USA.
| | | |
Collapse
|
25
|
Bai Y, Srivastava SK, Chang JH, Manley JL, Tong L. Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Mol Cell 2011; 41:311-20. [PMID: 21292163 PMCID: PMC3057501 DOI: 10.1016/j.molcel.2011.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 10/04/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023]
Abstract
Poly(A) polymerases (PAPs) are found in most living organisms and have important roles in RNA function and metabolism. Here, we report the crystal structure of human PAPD1, a noncanonical PAP that can polyadenylate RNAs in the mitochondria (also known as mtPAP) and oligouridylate histone mRNAs (TUTase1). The overall structure of the palm and fingers domains is similar to that in the canonical PAPs. The active site is located at the interface between the two domains, with a large pocket that can accommodate the substrates. The structure reveals the presence of a previously unrecognized domain in the N-terminal region of PAPD1, with a backbone fold that is similar to that of RNP-type RNA binding domains. This domain (named the RL domain), together with a β-arm insertion in the palm domain, contributes to dimerization of PAPD1. Surprisingly, our mutagenesis and biochemical studies show that dimerization is required for the catalytic activity of PAPD1.
Collapse
Affiliation(s)
- Yun Bai
- Department of Biological Sciences Columbia University New York, NY10027, USA
| | | | - Jeong Ho Chang
- Department of Biological Sciences Columbia University New York, NY10027, USA
| | - James L. Manley
- Department of Biological Sciences Columbia University New York, NY10027, USA
| | - Liang Tong
- Department of Biological Sciences Columbia University New York, NY10027, USA
| |
Collapse
|
26
|
Ringpis GE, Stagno J, Aphasizhev R. Mechanism of U-insertion RNA editing in trypanosome mitochondria: characterization of RET2 functional domains by mutational analysis. J Mol Biol 2010; 399:696-706. [PMID: 20417643 PMCID: PMC2885561 DOI: 10.1016/j.jmb.2010.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 12/30/2022]
Abstract
3'-Terminal uridylyl transferases (TUTases) selectively bind uridine 5'-triphosphate (UTP) and catalyze the addition of uridine 5'-monophosphate to the 3'-hydroxyl of RNA substrates in a template-independent manner. RNA editing TUTase 1 and RNA editing TUTase 2 (RET2) play central roles in uridine insertion/deletion RNA editing, which is an essential part of mitochondrial RNA processing in trypanosomes. Although the conserved N-terminal (catalytic) domain and C-terminal (nucleotide base recognition) domain are readily distinguished in all known TUTases, nucleotide specificity, RNA substrate preference, processivity, quaternary structures, and auxiliary domains vary significantly among enzymes of divergent biological functions. RET2 acts as a subunit of the RNA editing core complex to carry out guide-RNA-dependent U-insertion into mitochondrial mRNA. By correlating mutational effects on RET2 activity as recombinant protein and as RNA editing core complex subunit with RNAi-based knock-in phenotypes, we have assessed the UTP and RNA binding sites in RET2. Here we demonstrate functional conservation of key UTP-binding and metal-ion-coordinating residues and identify amino acids involved in RNA substrate recognition. Invariant arginine residues 144 and 435 positioned in the vicinity of the UTP binding site are critical for RET2 activity on single-stranded and double-stranded RNAs, as well as function in vivo. Recognition of a double-stranded RNA, which resembles a guide RNA/mRNA duplex, is further facilitated by multipoint contacts across the RET2-specific middle domain.
Collapse
Affiliation(s)
- Gene-Errol Ringpis
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California, 92697, USA
| | | | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California, 92697, USA
| |
Collapse
|
27
|
Ringpis GE, Aphasizheva I, Wang X, Huang L, Lathrop RH, Hatfield GW, Aphasizhev R. Mechanism of U insertion RNA editing in trypanosome mitochondria: the bimodal TUTase activity of the core complex. J Mol Biol 2010; 399:680-95. [PMID: 20362585 PMCID: PMC2885523 DOI: 10.1016/j.jmb.2010.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 12/20/2022]
Abstract
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5' end of the mRNA 3' cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive +1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the +1 extended 5' cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.
Collapse
Affiliation(s)
- Gene-Errol Ringpis
- Department of Microbiology & Molecular Genetics, University of California Irvine, California, 92697, USA
| | - Inna Aphasizheva
- Department of Microbiology & Molecular Genetics, University of California Irvine, California, 92697, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California Irvine, California, 92697, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California Irvine, California, 92697, USA
| | - Richard H. Lathrop
- Department of Informatics and Computer Science, University of California Irvine, California, 92697, USA
- Institute for Genomics and Bioinformatics, University of California Irvine, California, 92697, USA
| | - G. Wesley Hatfield
- Institute for Genomics and Bioinformatics, University of California Irvine, California, 92697, USA
| | - Ruslan Aphasizhev
- Department of Microbiology & Molecular Genetics, University of California Irvine, California, 92697, USA
| |
Collapse
|
28
|
Stagno J, Aphasizheva I, Bruystens J, Luecke H, Aphasizhev R. Structure of the mitochondrial editosome-like complex associated TUTase 1 reveals divergent mechanisms of UTP selection and domain organization. J Mol Biol 2010; 399:464-75. [PMID: 20403364 PMCID: PMC2916031 DOI: 10.1016/j.jmb.2010.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/10/2010] [Accepted: 04/13/2010] [Indexed: 01/11/2023]
Abstract
RNA uridylylation reactions catalyzed by terminal uridylyl transferases (TUTases) play critical roles in the formation of the mitochondrial transcriptome in trypanosomes. Two mitochondrial RNA editing TUTases have been described: RNA editing TUTase 1 catalyzes guide RNA, ribosomal RNA, and mRNA 3'-uridylylation, and RNA editing TUTase 2 acts as a subunit of the RNA editing core complex (also referred to as the 20S editosome) to perform guided U-insertion mRNA editing. Although RNA editing TUTase 1 and RNA editing TUTase 2 carry out distinct functions and possess dissimilar enzymatic properties, their catalytic N-terminal domain and base recognition C-terminal domain display a high degree of similarity, while their middle domains are less conserved. MEAT1 (mitochondrial editosome-like complex associated TUTase 1), which interacts with an editosome-like assembly and is exclusively U-specific, nonetheless shows limited similarity with editing TUTases and lacks the middle domain. The crystal structures of apo MEAT1 and UTP-bound MEAT1 refined to 1.56 A and 1.95 A, respectively, reveal an unusual mechanism of UTP selection and domain organization previously unseen in TUTases. In addition to established invariant UTP-binding determinants, we have identified and verified critical contributions of MEAT1-specific residues using mutagenesis. Furthermore, MEAT1 possesses a novel bridging domain, which extends from the C-terminal domain and makes hydrophobic contacts with the N-terminal domain, thereby creating a cavity adjacent to the UTP-binding site. Unlike the minimal TUT4 TUTase, MEAT1 shows no appreciable conformational change upon UTP binding and apparently does not require RNA substrate to select a cognate nucleoside triphosphate. Because MEAT1 is essential for the viability of the bloodstream and insect forms of Trypanosoma brucei, the unique organization of its active site renders this protein an attractive target for trypanocide development.
Collapse
Affiliation(s)
- Jason Stagno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697, USA
| | - Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Jessica Bruystens
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
- Department of Information and Computer Sciences, University of California, Irvine, CA 92697, USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697, USA
| | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Romain F, Barbosa I, Gouge J, Rougeon F, Delarue M. Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Nucleic Acids Res 2009; 37:4642-56. [PMID: 19502493 PMCID: PMC2724280 DOI: 10.1093/nar/gkp460] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/15/2009] [Accepted: 05/15/2009] [Indexed: 12/31/2022] Open
Abstract
Terminal deoxynucleotidyltransferase (Tdt) and DNA polymerase mu (pol mu) are two eukaryotic highly similar proteins involved in DNA processing and repair. Despite their high sequence identity, they differ widely in their activity: pol mu has a templated polymerase activity, whereas Tdt has a non-templated one. Loop1, first described when the Tdt structure was solved, has been invoked as the major structural determinant of this difference. Here we describe attempts to transform Tdt into pol mu with the minimal number of mutations in and around Loop1. First we describe the effect of mutations on six different positions chosen to destabilize Tdt Loop1 structure, either by alanine substitution or by deletion; they result at most in a reduction of Tdt activity, but adding Co(++) restores most of this Tdt activity. However, a deletion of the entire Loop1 as in pol lambda does confer a limited template-dependent polymerase behavior to Tdt while a chimera bearing an extended pol mu Loop1 reproduces pol mu behavior. Finally, 16 additional substitutions are reported, targeted at the two so-called 'sequence determinant' regions located just after Loop1 or underneath. Among them, the single-point mutant F401A displays a sequence-specific replicative polymerase phenotype that is stable upon Co(++) addition. These results are discussed in light of the available crystal structures.
Collapse
Affiliation(s)
- Félix Romain
- Unité de Dynamique Structurale des Macromolécules and URA 2581 du C.N.R.S., Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Isabelle Barbosa
- Unité de Dynamique Structurale des Macromolécules and URA 2581 du C.N.R.S., Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules and URA 2581 du C.N.R.S., Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - François Rougeon
- Unité de Dynamique Structurale des Macromolécules and URA 2581 du C.N.R.S., Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules and URA 2581 du C.N.R.S., Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
30
|
Aphasizheva I, Ringpis GE, Weng J, Gershon PD, Lathrop RH, Aphasizhev R. Novel TUTase associates with an editosome-like complex in mitochondria of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2009; 15:1322-1337. [PMID: 19465686 PMCID: PMC2704088 DOI: 10.1261/rna.1538809] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Expression of mitochondrial genomes in Kinetoplastida protists requires massive uracil insertion/deletion mRNA editing. The cascade of editing reactions is accomplished by a multiprotein complex, the 20S editosome, and is directed by trans-acting guide RNAs. Two distinct RNA terminal uridylyl transferases (TUTases), RNA Editing TUTase 1 (RET1) and RNA Editing TUTase 2 (RET2), catalyze 3' uridylylation of guide RNAs and U-insertions into the mRNAs, respectively. RET1 is also involved in mitochondrial mRNA turnover and participates in numerous heterogeneous complexes; RET2 is an integral part of the 20S editosome, in which it forms a U-insertion subcomplex with zinc finger protein MP81 and RNA editing ligase REL2. Here we report the identification of a third mitochondrial TUTase from Trypanosoma brucei. The mitochondrial editosome-like complex associated TUTase (MEAT1) interacts with a 20S editosome-like particle, effectively substituting the U-insertion subcomplex. MEAT1 and RET2 are mutually exclusive in their respective complexes, which otherwise share several components. Similarly to RET2, MEAT1 is exclusively U-specific in vitro and is active on gapped double-stranded RNA resembling editing substrates. However, MEAT1 does not require a 5' phosphate group on the 3' mRNA cleavage fragment produced by editing endonucleases. The functional RNAi complementation experiments showed that MEAT1 is essential for viability of bloodstream and insect parasite forms. The growth inhibition phenotype in the latter can be rescued by coexpressing an RNAi-resistant gene with double-stranded RNA targeting the endogenous transcript. However, preliminary RNA analysis revealed no gross effects on RNA editing in MEAT1-depleted cells and indicated its possible role in regulating the mitochondrial RNA stability.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
31
|
Etheridge RD, Clemens DM, Gershon PD, Aphasizhev R. Identification and characterization of nuclear non-canonical poly(A) polymerases from Trypanosoma brucei. Mol Biochem Parasitol 2009; 164:66-73. [PMID: 19070634 PMCID: PMC2852512 DOI: 10.1016/j.molbiopara.2008.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/23/2008] [Accepted: 11/11/2008] [Indexed: 01/19/2023]
Abstract
Regulation of nuclear genome expression in Trypanosoma brucei is critical for this protozoan parasite's successful transition between its vertebrate and invertebrate host environments. The canonical eukaryotic circuits such as modulation of transcription initiation, mRNA splicing and polyadenylation appear to be nearly non-existent in T. brucei suggesting that the transcriptome is primarily defined by mRNA turnover. Our previous work has highlighted sequence similarities between terminal RNA uridylyl transferases (TUTases) and non-canonical poly(A) polymerases, which are widely implicated in regulating nuclear, cytoplasmic and organellar RNA decay throughout the eukaryotic lineage. Here, we have continued characterization of TUTase-like proteins in T. brucei and identified two nuclear non-canonical poly(A) polymerases (ncPAPs). The 82kDa TbncPAP1 is essential for viability of procyclic and bloodstream forms of T. brucei. Similar to Trf4/5 proteins from budding yeast, TbncPAP1 requires protein cofactor(s) to exert poly(A) polymerase activity in vitro. The recombinant 54kDa TbncPAP2 showed a PAP activity as an individual polypeptide. Proteomic analysis of the TbncPAP1 interactions demonstrated its association with Mtr4 RNA helicase and several RNA binding proteins, including a potential ortholog of Air1p/2p proteins, which indicates the presence of a stable TRAMP-like complex in trypanosomes. Our findings suggest that TbncPAP1 may be a "quality control" nuclear PAP involved in targeting aberrant or anti-sense transcripts for degradation by the 3'-exosome. Such mechanisms are likely to play a major role in alleviating promiscuity of the transcriptional machinery.
Collapse
Affiliation(s)
- Ronald D. Etheridge
- Department of Microbiology and Molecular Genetics, School of Medicine, B240 Medical Sciences I, University of California, Irvine, CA 92697, USA
| | - Daniel M. Clemens
- Department of Microbiology and Molecular Genetics, School of Medicine, B240 Medical Sciences I, University of California, Irvine, CA 92697, USA
| | - Paul D. Gershon
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, B240 Medical Sciences I, University of California, Irvine, CA 92697, USA
| |
Collapse
|
32
|
3' adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J 2008; 27:1596-608. [PMID: 18464794 DOI: 10.1038/emboj.2008.87] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 04/02/2008] [Indexed: 11/08/2022] Open
Abstract
Expression of the mitochondrial genome in protozoan parasite Trypanosoma brucei is controlled post-transcriptionally and requires extensive U-insertion/deletion mRNA editing. In mitochondrial extracts, 3' adenylation reportedly influences degradation kinetics of synthetic edited and pre-edited mRNAs. We have identified and characterized a mitochondrial poly(A) polymerase, termed KPAP1, and determined major polypeptides in the polyadenylation complex. Inhibition of KPAP1 expression abrogates short and long A-tails typically found in mitochondrial mRNAs, and decreases the abundance of never-edited and edited transcripts. Pre-edited mRNAs are not destabilized by the lack of 3' adenylation, whereas short A-tails are required and sufficient to maintain the steady-state levels of partially edited, fully edited, and never-edited mRNAs. The editing directed by a single guide RNA is sufficient to impose a requirement for the short A-tail in edited molecules. Upon completion of the editing process, the short A-tails are extended as (A/U) heteropolymers into structures previously thought to be long poly(A) tails. These data provide the first direct evidence of functional interactions between 3' processing and editing of mitochondrial mRNAs in trypanosomes.
Collapse
|
33
|
Aphasizhev R, Aphasizheva I. Terminal RNA uridylyltransferases of trypanosomes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:270-80. [PMID: 18191648 PMCID: PMC2364610 DOI: 10.1016/j.bbagrm.2007.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 12/14/2022]
Abstract
Terminal RNA uridylyltransferases (TUTases) are functionally and structurally diverse nucleotidyl transferases that catalyze template-independent 3' uridylylation of RNAs. Within the DNA polymerase beta-type superfamily, TUTases are closely related to non-canonical poly(A) polymerases. Studies of U-insertion/deletion RNA editing in mitochondria of trypanosomatids identified the first TUTase proteins and their cellular functions: post-transcriptional uridylylation of guide RNAs by RNA editing TUTase 1 (RET1) and U-insertion mRNA editing by RNA editing TUTase 2 (RET2). The editing TUTases possess conserved catalytic and nucleotide base recognition domains, yet differ in quaternary structure, substrate specificity and processivity. The cytosolic TUTases TUT3 and TUT4 have also been identified in trypanosomes but their biological roles remain to be established. Structural analyses have revealed a mechanism of cognate nucleoside triphosphate selection by TUTases, which includes protein-UTP contacts as well as contribution of the RNA substrate. This review focuses on biological functions and structures of trypanosomal TUTases.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA.
| | | |
Collapse
|
34
|
Martin G, Doublié S, Keller W. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:206-16. [PMID: 18177750 PMCID: PMC2676681 DOI: 10.1016/j.bbagrm.2007.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/23/2007] [Accepted: 12/06/2007] [Indexed: 01/28/2023]
Abstract
Poly(A) polymerases were identified almost 50 years ago as enzymes that add multiple AMP residues to the 3' ends of primer RNAs without use of a template from ATP as cosubstrate and with release of pyrophosphate. Based on sequence homology of a signature motif in the catalytic domain, poly(A) polymerases were later found to belong to a superfamily of nucleotidyl transferases acting on a very diverse array of substrates. Enzymes belonging to the superfamily can add from single nucleotides of AMP, CMP or UMP to RNA, antibiotics and proteins but also homopolymers of many hundred residues to the 3' ends of RNA molecules. The recently reported structures of several nucleotidyl transferases facilitate the study of the catalytic mechanisms of these very diverse enzymes. Numerous structures of CCA-adding enzymes have now revealed all steps in the formation of a CCA tail at the 3' end of tRNAs. In addition, structures of poly(A) polymerases and uridylyl transferases are now available as binary and ternary complexes with incoming nucleotide and RNA primer. Some of these proteins undergo significant conformational changes after substrate binding. This is proposed to be an indication for an induced fit mechanism that drives substrate selection and leads to catalysis. Insights from recent structures of ternary complexes indicate an important role for the primer molecule in selecting the incoming nucleotide.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Given Building E314-A, Burlington, VT 05405 USA
| | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
35
|
Guschina E, Benecke BJ. Specific and non-specific mammalian RNA terminal uridylyl transferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:281-5. [PMID: 18067875 DOI: 10.1016/j.bbagrm.2007.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
Abstract
Uridylylation of various types of RNA molecules is a wide-spread phenomenon in molecular biology and is catalyzed by enzymes mediating the transfer of UMP residues to the 3'-ends of preexisting RNA. In most cases, however, the biological significance of these modifications remains elusive. As an exception, the RNA terminal uridylyl transferases (TUTases) of the mRNA editing complex within mitochondria of Trypanosomatidae have been characterized in great detail. Current knowledge on those editing enzymes has been summarized recently by R. Aphasizhev [Cell. Mol. Life Sci. 62 (2005) 2194-203] and, therefore, will not be included here. Rather, this review will focus on cellular non-editing TUTases, characterized by distinct modes of catalytic activity and substrate specificity. Putative biological functions of this rapidly growing number of RNA modifying enzymes are discussed.
Collapse
Affiliation(s)
- Elena Guschina
- Department of Biochemistry NC6, Ruhr-University, Bochum, Germany
| | | |
Collapse
|