1
|
Wang Z, Qiao D, Chen H, Zhang S, Zhang B, Zhang J, Hu X, Wang C, Cui H, Wang X, Li S. Effects of Fmr1 Gene Mutations on Sex Differences in Autism-Like Behavior and Dendritic Spine Development in Mice and Transcriptomic Studies. Neuroscience 2023; 534:16-28. [PMID: 37852411 DOI: 10.1016/j.neuroscience.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder contributing to autism spectrum disorder (ASD). Although significant sex differences are observed in FXS, few studies have focused on the phenotypic characteristics as well as the differences in brain pathological changes and gene expression in FXS by sex. Therefore, we analyzed sex differences in autism-like behavior and dendritic spine development in two-month-old male and female Fmr1 KO and C57 mice and evaluated the mechanisms at transcriptome level. Results suggest that Fmr1 KO mice display sex differences in autism-like behavior and dendritic spine density. Compared to females, male had more severe effects on anxiety, repetitive stereotype-like behaviors, and socializing, with higher dendritic spine density. Furthermore, two male-biased and five female-biased expressed genes were screened based on KEGG pathway enrichment and protein-protein interaction (PPI) analyses. In conclusion, our findings show mutations in the Fmr1 gene lead to aberrant expression of related genes and affect the sex-differentiated behavioral phenotypes of Fmr1 KO mice by affecting brain development and functional architecture, and suggest future studies should focus on including female subjects to comprehensively reflect the differentiation of FXS in both sexes and develop more precise and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Shihua Zhang
- Grade 2018, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Xia Wang
- Child Health (Psychological Behavior) Department, Children's Hospital of Hebei Province, Shijiazhuang, China.
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Souto-Maior C, Serrano Negron YL, Harbison ST. Nonlinear expression patterns and multiple shifts in gene network interactions underlie robust phenotypic change in Drosophila melanogaster selected for night sleep duration. PLoS Comput Biol 2023; 19:e1011389. [PMID: 37561813 PMCID: PMC10443883 DOI: 10.1371/journal.pcbi.1011389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
All but the simplest phenotypes are believed to result from interactions between two or more genes forming complex networks of gene regulation. Sleep is a complex trait known to depend on the system of feedback loops of the circadian clock, and on many other genes; however, the main components regulating the phenotype and how they interact remain an unsolved puzzle. Genomic and transcriptomic data may well provide part of the answer, but a full account requires a suitable quantitative framework. Here we conducted an artificial selection experiment for sleep duration with RNA-seq data acquired each generation. The phenotypic results are robust across replicates and previous experiments, and the transcription data provides a high-resolution, time-course data set for the evolution of sleep-related gene expression. In addition to a Hierarchical Generalized Linear Model analysis of differential expression that accounts for experimental replicates we develop a flexible Gaussian Process model that estimates interactions between genes. 145 gene pairs are found to have interactions that are different from controls. Our method appears to be not only more specific than standard correlation metrics but also more sensitive, finding correlations not significant by other methods. Statistical predictions were compared to experimental data from public databases on gene interactions. Mutations of candidate genes implicated by our results affected night sleep, and gene expression profiles largely met predicted gene-gene interactions.
Collapse
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Yazmin L. Serrano Negron
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Susan T. Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Kumar S, Tunc I, Tansey TR, Pirooznia M, Harbison ST. Identification of Genes Contributing to a Long Circadian Period in Drosophila Melanogaster. J Biol Rhythms 2020; 36:239-253. [PMID: 33274675 DOI: 10.1177/0748730420975946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endogenous circadian period of animals and humans is typically very close to 24 h. Individuals with much longer circadian periods have been observed, however, and in the case of humans, these deviations have health implications. Previously, we observed a line of Drosophila with a very long average period of 31.3 h for locomotor activity behavior. Preliminary mapping indicated that the long period did not map to known canonical clock genes but instead mapped to multiple chromosomes. Using RNA-Seq, we surveyed the whole transcriptome of fly heads from this line across time and compared it with a wild-type control. A three-way generalized linear model revealed that approximately two-thirds of the genes were expressed differentially among the two genotypes, while only one quarter of the genes varied across time. Using these results, we applied algorithms to search for genes that oscillated over 24 h, identifying genes not previously known to cycle. We identified 166 differentially expressed genes that overlapped with a previous Genome-wide Association Study (GWAS) of circadian behavior, strongly implicating them in the long-period phenotype. We tested mutations in 45 of these genes for their effect on the circadian period. Mutations in Alk, alph, CG10089, CG42540, CG6034, Kairos (CG6123), CG8768, klg, Lar, sick, and tinc had significant effects on the circadian period, with seven of these mutations increasing the circadian period of locomotor activity behavior. Genetic rescue of mutant Kairos restored the circadian period to wild-type levels, suggesting it has a critical role in determining period length in constant darkness.
Collapse
Affiliation(s)
- Shailesh Kumar
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Terry R Tansey
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Susan T Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Choquette NE, Ogut F, Wertin TM, Montes CM, Sorgini CA, Morse AM, Brown PJ, Leakey ADB, McIntyre LM, Ainsworth EA. Uncovering hidden genetic variation in photosynthesis of field-grown maize under ozone pollution. GLOBAL CHANGE BIOLOGY 2019; 25:4327-4338. [PMID: 31571358 PMCID: PMC6899704 DOI: 10.1111/gcb.14794] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Funda Ogut
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
- Present address:
Department of Forest EngineeringArtvin Coruh UniversityArtvinTurkey
| | - Timothy M. Wertin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Christopher M. Montes
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Crystal A. Sorgini
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Alison M. Morse
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Patrick J. Brown
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Andrew D. B. Leakey
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Lauren M. McIntyre
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- USDA ARS Global Change and Photosynthesis Research UnitUrbanaIllinois
| |
Collapse
|
5
|
Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 2018; 49:60-82. [PMID: 30341464 PMCID: PMC6326971 DOI: 10.1007/s10519-018-9932-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Circadian rhythms influence physiological processes from sleep–wake cycles to body temperature and are controlled by highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. We measured circadian period (Ʈ) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exceptionally long Ʈ. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Mutations/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic interactions influence high levels of variation in circadian phenotypes.
Collapse
Affiliation(s)
- Susan T Harbison
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Building 10, Room 7D13, 10 Center Drive, Bethesda, MD, 20892-1640, USA.
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Lenovia J McCoy
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kirklin R Smith
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| |
Collapse
|
6
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
The Y Chromosome Modulates Splicing and Sex-Biased Intron Retention Rates in Drosophila. Genetics 2017; 208:1057-1067. [PMID: 29263027 DOI: 10.1534/genetics.117.300637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
The Drosophila Y chromosome is a 40-Mb segment of mostly repetitive DNA; it harbors a handful of protein-coding genes and a disproportionate amount of satellite repeats, transposable elements, and multicopy DNA arrays. Intron retention (IR) is a type of alternative splicing (AS) event by which one or more introns remain within the mature transcript. IR recently emerged as a deliberate cellular mechanism to modulate gene expression levels and has been implicated in multiple biological processes. However, the extent of sex differences in IR and the contribution of the Y chromosome to the modulation of AS and IR rates has not been addressed. Here we showed pervasive IR in the fruit fly Drosophila melanogaster with thousands of novel IR events, hundreds of which displayed extensive sex bias. The data also revealed an unsuspected role for the Y chromosome in the modulation of AS and IR. The majority of sex-biased IR events introduced premature termination codons and the magnitude of sex bias was associated with gene expression differences between the sexes. Surprisingly, an extra Y chromosome in males (X^YY genotype) or the presence of a Y chromosome in females (X^XY genotype) significantly modulated IR and recapitulated natural differences in IR between the sexes. Our results highlight the significance of sex-biased IR in tuning sex differences and the role of the Y chromosome as a source of variable IR rates between the sexes. Modulation of splicing and IR rates across the genome represent new and unexpected outcomes of the Drosophila Y chromosome.
Collapse
|
8
|
Cox RM, Cox CL, McGlothlin JW, Card DC, Andrew AL, Castoe TA. Hormonally Mediated Increases in Sex-Biased Gene Expression Accompany the Breakdown of Between-Sex Genetic Correlations in a Sexually Dimorphic Lizard. Am Nat 2017; 189:315-332. [PMID: 28221827 DOI: 10.1086/690105] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolution of sexual dimorphism is predicted to occur through reductions in between-sex genetic correlations (rmf) for shared traits, but the physiological and genetic mechanisms that facilitate these reductions remain largely speculative. Here, we use a paternal half-sibling breeding design in captive brown anole lizards (Anolis sagrei) to show that the development of sexual size dimorphism is mirrored by the ontogenetic breakdown of rmf for body size and growth rate. Using transcriptome data from the liver (which integrates growth and metabolism), we show that sex-biased gene expression also increases dramatically between ontogenetic stages bracketing this breakdown of rmf. Ontogenetic increases in sex-biased expression are particularly evident for genes involved in growth, metabolism, and cell proliferation, suggesting that they contribute to both the development of sexual dimorphism and the breakdown of rmf. Mechanistically, we show that treatment of females with testosterone stimulates the expression of male-biased genes while inhibiting the expression of female-biased genes, thereby inducing male-like phenotypes at both organismal and transcriptomic levels. Collectively, our results suggest that sex-specific modifiers such as testosterone can orchestrate sex-biased gene expression to facilitate the phenotypic development of sexual dimorphism while simultaneously reducing genetic correlations that would otherwise constrain the independent evolution of the sexes.
Collapse
|
9
|
Microenvironmental Gene Expression Plasticity Among Individual Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:4197-4210. [PMID: 27770026 PMCID: PMC5144987 DOI: 10.1534/g3.116.035444] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differences in phenotype among genetically identical individuals exposed to the same environmental condition are often noted in genetic studies. Despite this commonplace observation, little is known about the causes of this variability, which has been termed microenvironmental plasticity. One possibility is that stochastic or technical sources of variance produce these differences. A second possibility is that this variation has a genetic component. We have explored gene expression robustness in the transcriptomes of 730 individual Drosophila melanogaster of 16 fixed genotypes, nine of which are infected with Wolbachia. Three replicates of flies were grown, controlling for food, day/night cycles, humidity, temperature, sex, mating status, social exposure, and circadian timing of RNA extraction. Despite the use of inbred genotypes, and carefully controlled experimental conditions, thousands of genes were differentially expressed, revealing a unique and dynamic transcriptional signature for each individual fly. We found that 23% of the transcriptome was differentially expressed among individuals, and that the variability in gene expression among individuals is influenced by genotype. This transcriptional variation originated from specific gene pathways, suggesting a plastic response to the microenvironment; but there was also evidence of gene expression differences due to stochastic fluctuations. These observations reveal previously unappreciated genetic sources of variability in gene expression among individuals, which has implications for complex trait genetics and precision medicine.
Collapse
|
10
|
Buffering of Genetic Regulatory Networks in Drosophila melanogaster. Genetics 2016; 203:1177-90. [PMID: 27194752 DOI: 10.1534/genetics.116.188797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023] Open
Abstract
Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study. A Bayesian model for AI, with an intersection test, controls type I error. There are ∼200 genes with AI exclusively in mated or virgin flies, indicating an environmental component of expression regulation. On average 34% of genes within a cross and 54% of all genes show evidence for genetic regulation of transcription. Nearly all differentially regulated genes are affected in cis, with an average of 63% of expression variation explained by the cis-effects. Trans-effects explain 8% of the variance in AI on average and the interaction between cis and trans explains an average of 11% of the total variance in AI. In both environments cis- and trans-effects are compensatory in their overall effect, with a negative association between cis- and trans-effects in 85% of the exons examined. We hypothesize that the gene expression level perturbed by cis-regulatory mutations is compensated through trans-regulatory mechanisms, e.g., trans and cis by trans-factors buffering cis-mutations. In addition, when AI is detected in both environments, cis-mated, cis-virgin, and trans-mated-trans-virgin estimates are highly concordant with 99% of all exons positively correlated with a median correlation of 0.83 for cis and 0.95 for trans We conclude that the gene regulatory networks (GRNs) are robust and that trans-buffering explains robustness.
Collapse
|
11
|
Collet JM, Blows MW, McGuigan K. Transcriptome-wide effects of sexual selection on the fate of new mutations. Evolution 2015; 69:2905-16. [DOI: 10.1111/evo.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Julie M. Collet
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Mark W. Blows
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| |
Collapse
|
12
|
Fear JM, Arbeitman MN, Salomon MP, Dalton JE, Tower J, Nuzhdin SV, McIntyre LM. The Wright stuff: reimagining path analysis reveals novel components of the sex determination hierarchy in Drosophila melanogaster. BMC SYSTEMS BIOLOGY 2015; 9:53. [PMID: 26335107 PMCID: PMC4558766 DOI: 10.1186/s12918-015-0200-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling approach, leveraging natural genetic variation from two studies on Drosophila female head tissues--DSPR collection (596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses between DGRP/Winters lines to a reference strain w1118)--to expand understanding of the sex hierarchy gene regulatory network (GRN). This approach is completely generalizable to any natural population, including humans. RESULTS We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru) to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2 and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism, via Insulin-like receptor. CONCLUSIONS The genes added in the CEGS population were enriched for genes with sex-biased splicing and components of the spliceosome. A common goal of molecular biologists is to expand understanding about regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.
Collapse
Affiliation(s)
- Justin M Fear
- Department of Molecular Genetics and Microbiology, University of Florida, CGRC Room 116, PO Box 100266, FL 32610-0266, Gainesville, FL, USA.
| | | | - Matthew P Salomon
- Molecular and Computational Biology, University of California, Los Angeles, CA, USA.
| | - Justin E Dalton
- Biomedical Science, Florida State University, Tallahassee, FL, USA.
| | - John Tower
- Molecular and Computational Biology, University of California, Los Angeles, CA, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of California, Los Angeles, CA, USA.
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, CGRC Room 116, PO Box 100266, FL 32610-0266, Gainesville, FL, USA.
| |
Collapse
|
13
|
Hodgins-Davis A, Rice DP, Townsend JP. Gene Expression Evolves under a House-of-Cards Model of Stabilizing Selection. Mol Biol Evol 2015; 32:2130-40. [PMID: 25901014 PMCID: PMC4592357 DOI: 10.1093/molbev/msv094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Divergence in gene regulation is hypothesized to underlie much of phenotypic evolution, but the role of natural selection in shaping the molecular phenotype of gene expression continues to be debated. To resolve the mode of gene expression, evolution requires accessible theoretical predictions for the effect of selection over long timescales. Evolutionary quantitative genetic models of phenotypic evolution can provide such predictions, yet those predictions depend on the underlying hypotheses about the distributions of mutational and selective effects that are notoriously difficult to disentangle. Here, we draw on diverse genomic data sets including expression profiles of natural genetic variation and mutation accumulation lines, empirical estimates of genomic mutation rates, and inferences of genetic architecture to differentiate contrasting hypotheses for the roles of stabilizing selection and mutation in shaping natural expression variation. Our analysis suggests that gene expression evolves in a domain of phenotype space well fit by the House-of-Cards (HC) model. Although the strength of selection inferred is sensitive to the number of loci controlling gene expression, the model is not. The consistency of these results across evolutionary time from budding yeast through fruit fly implies that this model is general and that mutational effects on gene expression are relatively large. Empirical estimates of the genetic architecture of gene expression traits imply that selection provides modest constraints on gene expression levels for most genes, but that the potential for regulatory evolution is high. Our prediction using data from laboratory environments should encourage the collection of additional data sets allowing for more nuanced parameterizations of HC models for gene expression.
Collapse
Affiliation(s)
- Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, Yale University Department of Biostatistics, School of Public Health, Yale University
| | - Daniel P Rice
- Department of Ecology and Evolutionary Biology, Yale University Department of Organismic and Evolutionary Biology, Harvard University
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University Department of Biostatistics, School of Public Health, Yale University Program in Computational Biology and Bioinformatics, Yale University
| |
Collapse
|
14
|
Stojković B, Đorđević M, Janković J, Savković U, Tucić N. Heterosis in age-specific selected populations of a seed beetle: sex differences in longevity and reproductive behavior. INSECT SCIENCE 2015; 22:295-309. [PMID: 24677595 DOI: 10.1111/1744-7917.12115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/01/2014] [Indexed: 06/03/2023]
Abstract
We tested mutation accumulation hypothesis for the evolution of senescence using short-lived and long-lived populations of the seed-feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early- and late-life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short-lived populations, where the force of natural selection is the strongest early in life, the late-life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late-life fitness is expected in offspring obtained in crosses among populations selected for early-life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short-lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short-lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long-lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long-lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long-lived populations.
Collapse
Affiliation(s)
- Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade; Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
15
|
Leder EH, McCairns RJS, Leinonen T, Cano JM, Viitaniemi HM, Nikinmaa M, Primmer CR, Merilä J. The evolution and adaptive potential of transcriptional variation in sticklebacks--signatures of selection and widespread heritability. Mol Biol Evol 2015; 32:674-89. [PMID: 25429004 PMCID: PMC4327155 DOI: 10.1093/molbev/msu328] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate, but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting. Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant "genetical genomics" approach to the study of expression variation. Such uncertainty represents a fundamental limitation to testing for adaptive evolution at the transcriptomic level. By studying the inheritance of expression levels in 10,495 genes (10,527 splice variants) in a threespine stickleback pedigree consisting of 563 individuals, half of which were subjected to a thermal treatment, we show that 74-98% of transcripts exhibit significant additive genetic variance. Dominance variance is also prevalent (41-99% of transcripts), and genetic sources of variation seem to play a more significant role in expression variance in the liver than a key environmental variable, temperature. Among-population comparisons suggest that the majority of differential expression in the liver is likely due to neutral divergence; however, we also show that signatures of directional selection may be more prevalent than those of stabilizing selection. This predominantly aligns with the neutral model of evolution for gene expression but also suggests that natural selection may still act on transcriptional variation in the wild. As genetic variation both within- and among-populations ultimately defines adaptive potential, these results indicate that broad adaptive potential may be found within the transcriptome.
Collapse
Affiliation(s)
- Erica H Leder
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - R J Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tuomas Leinonen
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - José M Cano
- Research Unit of Biodiversity (UO-CSIC-PA), University of Oviedo, Mieres, Spain
| | - Heidi M Viitaniemi
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Mikko Nikinmaa
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Craig R Primmer
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Dean R, Mank JE. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol 2015; 27:1443-53. [PMID: 25105198 DOI: 10.1111/jeb.12345] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to initial sex determination, genes on the sex chromosomes are theorized to play a particularly important role in phenotypic differences between males and females. Sex chromosomes in many species display molecular signatures consistent with these theoretical predictions, particularly through sex-specific gene expression. However, the phenotypic implications of this molecular signature are unresolved, and the role of the sex chromosomes in quantitative genetic studies of phenotypic sex differences is largely equivocal. In this article, we examine molecular and phenotypic data in the light of theoretical predictions about masculinization and feminization of the sex chromosomes. Additionally, we discuss the role of genetic and regulatory complexities in the genome–phenotype relationship, and ultimately how these affect the overall role of the sex chromosomes in sex differences.
Collapse
|
17
|
Graze RM, McIntyre LM, Morse AM, Boyd BM, Nuzhdin SV, Wayne ML. What the X has to do with it: differences in regulatory variability between the sexes in Drosophila simulans. Genome Biol Evol 2015; 6:818-29. [PMID: 24696400 PMCID: PMC4007535 DOI: 10.1093/gbe/evu060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanistic basis of regulatory variation and the prevailing evolutionary forces shaping that variation are known to differ between sexes and between chromosomes. Regulatory variation of gene expression can be due to functional changes within a gene itself (cis) or in other genes elsewhere in the genome (trans). The evolutionary properties of cis mutations are expected to differ from mutations affecting gene expression in trans. We analyze allele-specific expression across a set of X substitution lines in intact adult Drosophila simulans to evaluate whether regulatory variation differs for cis and trans, for males and females, and for X-linked and autosomal genes. Regulatory variation is common (56% of genes), and patterns of variation within D. simulans are consistent with previous observations in Drosophila that there is more cis than trans variation within species (47% vs. 25%, respectively). The relationship between sex-bias and sex-limited variation is remarkably consistent across sexes. However, there are differences between cis and trans effects: cis variants show evidence of purifying selection in the sex toward which expression is biased, while trans variants do not. For female-biased genes, the X is depleted for trans variation in a manner consistent with a female-dominated selection regime on the X. Surprisingly, there is no evidence for depletion of trans variation for male-biased genes on X. This is evidence for regulatory feminization of the X, trans-acting factors controlling male-biased genes are more likely to be found on the autosomes than those controlling female-biased genes.
Collapse
Affiliation(s)
- Rita M. Graze
- Department of Molecular Genetics and Microbiology, University of Florida
- Department of Biological Sciences, Auburn University
- *Corresponding author: E-mail:
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida
- Department of Statistics, University of Florida
| | - Alison M. Morse
- Department of Molecular Genetics and Microbiology, University of Florida
| | - Bret M. Boyd
- Florida Museum of Natural History, University of Florida
| | - Sergey V. Nuzhdin
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California
| | | |
Collapse
|
18
|
Ingleby FC, Flis I, Morrow EH. Sex-biased gene expression and sexual conflict throughout development. Cold Spring Harb Perspect Biol 2014; 7:a017632. [PMID: 25376837 DOI: 10.1101/cshperspect.a017632] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex-biased gene expression is likely to account for most sexually dimorphic traits because males and females share much of their genome. When fitness optima differ between sexes for a shared trait, sexual dimorphism can allow each sex to express their optimum trait phenotype, and in this way, the evolution of sex-biased gene expression is one mechanism that could help to resolve intralocus sexual conflict. Genome-wide patterns of sex-biased gene expression have been identified in a number of studies, which we review here. However, very little is known about how sex-biased gene expression relates to sex-specific fitness and about how sex-biased gene expression and conflict vary throughout development or across different genotypes, populations, and environments. We discuss the importance of these neglected areas of research and use data from a small-scale experiment on sex-specific expression of genes throughout development to highlight potentially interesting avenues for future research.
Collapse
Affiliation(s)
- Fiona C Ingleby
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| | - Ilona Flis
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| | - Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
19
|
Wyman MJ, Rowe L. Male Bias in Distributions of Additive Genetic, Residual, and Phenotypic Variances of Shared Traits. Am Nat 2014; 184:326-37. [DOI: 10.1086/677310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Perry JC, Harrison PW, Mank JE. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol Biol Evol 2014; 31:1206-19. [PMID: 24526011 PMCID: PMC3995337 DOI: 10.1093/molbev/msu072] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sexually dimorphic phenotypes are thought to largely result from sex differences in gene expression, and genes with sex-biased expression have been well characterized in adults of many species. Although most sexual dimorphisms manifest in adults, many result from sex-specific developmental trajectories, implying that juveniles may exhibit significant levels of sex-biased expression. However, it is unclear how much sex-biased expression occurs before reproductive maturity and whether preadult sex-biased genes should exhibit the same evolutionary dynamics observed for adult sex-biased genes. In order to understand the continuity, or lack thereof, and evolutionary dynamics of sex-biased expression throughout the life cycle, we examined sex-biased genes in pre-gonad tissue of two preadult stages and compared them with the adult gonad of Drosophila melanogaster. We found that the majority of the genome is sex-biased at some point in the life cycle, with some genes exhibiting conserved sex-biased expression and others displaying stage-specific sex bias. Our results also reveal a far more complex pattern of evolution for sex-biased genes throughout development. The most rapid evolutionary divergence occurred in genes expressed only in larvae within each sex, compared with continuously expressed genes. In females—but not males—this pattern appeared to be due to relaxed purifying selection in larva-limited genes. Furthermore, genes that retained male bias throughout life evolved more rapidly than stage-specific male-biased genes, due to stronger purifying selection in stage-specific genes. However, female-biased genes that were specific to larvae evolved most rapidly, a pattern that could not be definitively attributed to differences in adaptive evolution or purifying selection, suggesting that pleiotropic constraints on protein-coding sequences can arise when genes are broadly expressed across developmental stages. These results indicate that the signature of sex-specific selection can be detected well before reproductive maturity and is strongest during development.
Collapse
|
21
|
Genome-wide gene expression effects of sex chromosome imprinting in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:1-10. [PMID: 24318925 PMCID: PMC3887524 DOI: 10.1534/g3.113.008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment.
Collapse
|
22
|
Mullon C, Reuter M, Lehmann L. The evolution and consequences of sex-specific reproductive variance. Genetics 2014; 196:235-52. [PMID: 24172130 PMCID: PMC3872188 DOI: 10.1534/genetics.113.156067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
Collapse
Affiliation(s)
- Charles Mullon
- Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Morrow EH, Connallon T. Implications of sex-specific selection for the genetic basis of disease. Evol Appl 2013; 6:1208-17. [PMID: 24478802 PMCID: PMC3901550 DOI: 10.1111/eva.12097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023] Open
Abstract
Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.
Collapse
Affiliation(s)
- Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of SussexBrighton, UK
| | - Tim Connallon
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
24
|
Powell JE, Henders AK, McRae AF, Kim J, Hemani G, Martin NG, Dermitzakis ET, Gibson G, Montgomery GW, Visscher PM. Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data. PLoS Genet 2013; 9:e1003502. [PMID: 23696747 PMCID: PMC3656157 DOI: 10.1371/journal.pgen.1003502] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/22/2013] [Indexed: 01/13/2023] Open
Abstract
There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.
Collapse
Affiliation(s)
- Joseph E Powell
- University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Innocenti P, Chenoweth SF. Interspecific divergence of transcription networks along lines of genetic variance in Drosophila: dimensionality, evolvability, and constraint. Mol Biol Evol 2013; 30:1358-67. [PMID: 23519314 DOI: 10.1093/molbev/mst047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Change in gene expression is a major facilitator of phenotypic evolution. Understanding the evolutionary potential of gene expression requires taking into account complex systems of regulatory networks, the structure of which could potentially bias evolutionary trajectories. We analyzed the evolutionary potential and divergence of multigene expression in three well-characterized signaling pathways in Drosophila, the mitogen-activated protein kinase (MapK), the Toll, and the insulin receptor/Foxo (InR/Foxo or InR/TOR) pathways in a multivariate quantitative genetic framework. Gene expression data from a natural population of D. melanogaster were used to estimate the genetic variance-covariance matrices (G) for each network. Although most genes within each pathway exhibited significant genetic variance, the number of independent dimensions of multivariate genetic variance was fewer than the number of genes analyzed. However, for expression, the reduction in dimensionality was not as large as seen for other trait types such as morphology. We then tested whether gene expression divergence between D. melanogaster and an additional six species of the Drosophila genus was biased along the major axes of standing variation observed in D. melanogaster. In many cases, divergence was restricted to directions of phenotypic space harboring above average levels of genetic variance in D. melanogaster, indicating that genetic covariances between genes within pathways have biased interspecific divergence. We tested whether co-expression of genes in both sexes has also biased the pattern of divergence. Including cross-sex genetic covariances increased the degree to which divergence was biased along major axes of genetic variance, suggesting that the co-expression of genes in males and females can generate further constraints on divergence across the Drosophila phylogeny. In contrast to patterns seen for morphological traits in vertebrates, transcriptional constraints do not appear to break down as divergence time between species increases, instead they persist over tens of millions of years of divergence.
Collapse
Affiliation(s)
- Paolo Innocenti
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
26
|
Genetic variation in the Yolk protein expression network of Drosophila melanogaster: sex-biased negative correlations with longevity. Heredity (Edinb) 2012; 109:226-34. [PMID: 22760232 DOI: 10.1038/hdy.2012.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
One of the persistent problems in biology is understanding how genetic variation contributes to phenotypic variation. Associations at many levels have been reported, and yet causal inference has remained elusive. We propose to rely on the knowledge of causal relationships established by molecular biology approaches. The existing molecular knowledge forms a firm backbone upon which hypotheses connecting genetic variation, transcriptional variation and phenotypic variation can be built. The sex determination pathway is a well-established molecular network, with the Yolk protein 1-3 (Yp) genes as the most downstream target. Our analyses reveal that genetic variation in expression for genes known to be upstream in the pathway explains variation in downstream targets. Relationships differ between the two sexes, and each Yp has a distinct transcriptional pattern. Yp expression is significantly negatively correlated with longevity, an important life history trait, for both males and females.
Collapse
|
27
|
Gene-expression changes caused by inbreeding protect against inbreeding depression in Drosophila. Genetics 2012; 192:161-72. [PMID: 22714404 DOI: 10.1534/genetics.112.142687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a transcriptomic analysis aimed at investigating whether the changes in gene expression that occur under inbreeding generally reduce or enhance inbreeding depression. Discerning between these two alternatives can be addressed only when both changes in expression due to inbreeding and to inbreeding depression are estimated simultaneously. We used Affymetrix 2.0 arrays to study the changes in gene expression associated with both inbreeding and inbreeding depression for fitness in four sets of inbred sublines of Drosophila melanogaster. We found that for most genes showing changes in expression associated with inbreeding, the least depressed sublines were those showing the largest departures in expression from that of the outbred control. This suggests a pattern consistent with a protective role of expression changes against inbreeding effects, and would reveal a new dimension of the transcriptomics of inbreeding. The variation in depression observed could then be due not only to the genetic damages primarily originating that depression, but also possibly to differences in the ability to carry out the appropriate adjustments in gene expression to cope with the inbreeding. We also found that these expression changes with a putative protective role against inbreeding effects show a clear specificity on RNA synthesis and splicing and energy derivation functions.
Collapse
|
28
|
Yang Y, Graze RM, Walts BM, Lopez CM, Baker HV, Wayne ML, Nuzhdin SV, McIntyre LM. Partitioning transcript variation in Drosophila: abundance, isoforms, and alleles. G3 (BETHESDA, MD.) 2011; 1:427-36. [PMID: 22384353 PMCID: PMC3276160 DOI: 10.1534/g3.111.000596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/11/2011] [Indexed: 12/25/2022]
Abstract
Multilevel analysis of transcription is facilitated by a new array design that includes modules for assessment of differential expression, isoform usage, and allelic imbalance in Drosophila. The ∼2.5 million feature chip incorporates a large number of controls, and it contains 18,769 3' expression probe sets and 61,919 exon probe sets with probe sequences from Drosophila melanogaster and 60,118 SNP probe sets focused on Drosophila simulans. An experiment in D. simulans identified genes differentially expressed between males and females (34% in the 3' expression module; 32% in the exon module). These proportions are consistent with previous reports, and there was good agreement (κ = 0.63) between the modules. Alternative isoform usage between the sexes was identified for 164 genes. The SNP module was verified with resequencing data. Concordance between resequencing and the chip design was greater than 99%. The design also proved apt in separating alleles based upon hybridization intensity. Concordance between the highest hybridization signals and the expected alleles in the genotype was greater than 96%. Intriguingly, allelic imbalance was detected for 37% of 6579 probe sets examined that contained heterozygous SNP loci. The large number of probes and multiple probe sets per gene in the 3' expression and exon modules allows the array to be used in D. melanogaster and in closely related species. The SNP module can be used for allele specific expression and genotyping of D. simulans.
Collapse
Affiliation(s)
- Yajie Yang
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Rita M. Graze
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Brandon M. Walts
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
| | - Cecilia M. Lopez
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Henry V. Baker
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Marta L. Wayne
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Zoology, University of Florida, Gainesville, FL, 32611-8525
| | - Sergey V. Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| | - Lauren M. McIntyre
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
- Department of Statistics, University of Florida, Gainesville, FL 32611-8545
| |
Collapse
|
29
|
Wayne ML, Pienaar J, Telonis-Scott M, Sylvestre LS, Nuzhdin SV, McIntyre LM. Expression of defense genes in Drosophila evolves under a different selective regime from expression of other genes. Evolution 2011; 65:1068-78. [PMID: 21108635 PMCID: PMC3061977 DOI: 10.1111/j.1558-5646.2010.01197.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genes involved in host-pathogen interactions are expected to be evolving under complex coevolutionary dynamics, including positive directional and/or frequency-dependent selection. Empirical work has largely focused on the evolution of immune genes at the level of the protein sequence. We examine components of genetic variance for transcript abundance of defense genes in Drosophila melanogaster and D. simulans using a diallel and a round robin breeding design, respectively, and infer modes of evolution from patterns of segregating genetic variation. Defense genes in D. melanogaster are overrepresented relative to nondefense genes among genes with evidence of significant additive variance for expression. Directional selection is expected to deplete additive genetic variance, whereas frequency-dependent selection is expected to maintain additive variance. However, relaxed selection (reduced or no purifying selection) is an alternative interpretation of significant additive variation. Of the three classes of defense genes, the recognition and effector classes show an excess of genes with significant additive variance; whereas signaling genes, in contrast, are overrepresented for dominance variance. Analysis of protein-coding sequences revealed no evidence for an association between additive or dominance variation in expression and directional selection. Both balancing selection driven by host-pathogen coevolution and relaxed selection for expression of uninduced defense genes are viable interpretations of these data.
Collapse
Affiliation(s)
- Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Müller L, Hutter S, Stamboliyska R, Saminadin-Peter SS, Stephan W, Parsch J. Population transcriptomics of Drosophila melanogaster females. BMC Genomics 2011; 12:81. [PMID: 21276238 PMCID: PMC3040150 DOI: 10.1186/1471-2164-12-81] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation at the level of gene expression is abundant in natural populations and is thought to contribute to the adaptive divergence of populations and species. Gene expression also differs considerably between males and females. Here we report a microarray analysis of gene expression variation among females of 16 Drosophila melanogaster strains derived from natural populations, including eight strains from the putative ancestral range in sub-Saharan Africa and eight strains from Europe. Gene expression variation among males of the same strains was reported previously. RESULTS We detected relatively low levels of expression polymorphism within populations, but much higher expression divergence between populations. A total of 569 genes showed a significant expression difference between the African and European populations at a false discovery rate of 5%. Genes with significant over-expression in Europe included the insecticide resistance gene Cyp6g1, as well as genes involved in proteolysis and olfaction. Genes with functions in carbohydrate metabolism and vision were significantly over-expressed in the African population. There was little overlap between genes expressed differently between populations in females and males. CONCLUSIONS Our results suggest that adaptive changes in gene expression have accompanied the out-of-Africa migration of D. melanogaster. Comparison of female and male expression data indicates that the vast majority of genes differing in expression between populations do so in only one sex and suggests that most regulatory adaptation has been sex-specific.
Collapse
Affiliation(s)
- Lena Müller
- Department of Biology II, University of Munich (LMU), 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Wayne ML, Blohm GM, Brooks ME, Regan KL, Brown BY, Barfield M, Holt RD, Bolker BM. The prevalence and persistence of sigma virus, a biparentally transmitted parasite of Drosophila melanogaster. EVOLUTIONARY ECOLOGY RESEARCH 2011; 13:323-345. [PMID: 28217032 PMCID: PMC5313041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
QUESTION How do vertically transmitted parasites persist? ORGANISMS Drosophila melanogaster (host) and sigma virus (parasite). FIELD SITE Peach stands in northern Georgia, USA, on a transect between Macon and Athens. EMPIRICAL METHODS We estimated prevalence in the field. We also estimated male and female transmission in the laboratory, using field-collected animals as parents. We further quantified patrilineal (father to son) transmission in the laboratory, and estimated cost of infection (virulence) by quantifying decreased egg production of infected flies. MATHEMATICAL METHODS Discrete-time, deterministic models for prevalence; analysis of stability of disease-free and endemic equilibria; numerical computation of equilibria based on empirical estimates. KEY ASSUMPTIONS Random mating, discrete generations, cost of infection to females only. PREDICTIONS AND CONCLUSIONS The model allows persistence under parameter estimates obtained for this population. Uncertainty in parameters leads to wide confidence intervals on the predicted prevalence, which may be systematically underestimated due to Jensen's inequality. Male transmission is required for persistence, and multiple generations of strictly patrilineal transmission are possible in the laboratory, albeit with decreasing transmission efficiency.
Collapse
Affiliation(s)
- Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA ; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA ; UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Gabriela M Blohm
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Mollie E Brooks
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Kerry L Regan
- Department of Biology, University of Florida, Gainesville, Florida, USA ; Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - Brennin Y Brown
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida, USA ; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Benjamin M Bolker
- Department of Biology, University of Florida, Gainesville, Florida, USA ; Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Abstract
Several sexual selection models predict that females will obtain indirect genetic benefits by preferentially mating with males that transmit high-quality genes to their offspring. However, despite widespread observations of additive population genetic variation for fitness as well as for male sexually selected traits, estimated fitness associations between fathers and offspring are often weak. Perhaps more puzzling, the strength of these associations differs drastically between species, leading many researchers to question the relevance of genetic benefits for processes of sexual selection. Here, I show that a species' sex chromosome system can strongly influence the genetic architecture of male and female fitness variation and, consequently, the heritability of fitness between fathers and their offspring. Indirect genetic benefits are reduced, and sexually antagonistic costs are pronounced, in species with X chromosomes relative to species with homomorphic sex chromosomes, environmental sex determination, or Z chromosomes. Data from the sexual selection literature are consistent with predictions of the models, though additional studies will be required to circumvent phylogenetic nonindependence between sex determination systems. This study strongly suggests that inferences about genetic benefits of female choice must be considered within a species-specific genomic context, and it has several implications for the evolution of female preferences as well as the genomic consequences of sex and sexual selection.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
33
|
Foley BR, Genissel A, Kristy HL, Nuzhdin SV. Does segregating variation in sexual or microhabitat preferences lead to non-random mating within a population of Drosophila melanogaster? Biol Lett 2010; 6:102-5. [PMID: 19692395 DOI: 10.1098/rsbl.2009.0608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in female choice for mates has implications for the maintenance of genetic variation and the evolution of male traits. Yet, estimates of population-level variation in male mating success owing to female genotype are rare. Here, we used a panel of recombinant inbred lines to estimate the strength of selection at many genetic loci in a single generation and attempt to assess differences between females with respect to the males they mated with. We performed selection assays in a complex environment to allow differences in habitat or social group preference to be expressed. We detected directional selection at loci across the genome, but are unable to provide support for differential male success because of variation in female genotype.
Collapse
Affiliation(s)
- Brad R Foley
- Department of Molecular and Computational Biology, University of Southern California, , CA 90089, USA.
| | | | | | | |
Collapse
|
34
|
Regulatory divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific expression. Genetics 2009; 183:547-61, 1SI-21SI. [PMID: 19667135 DOI: 10.1534/genetics.109.105957] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species-specific regulation of gene expression contributes to the development and maintenance of reproductive isolation and to species differences in ecologically important traits. A better understanding of the evolutionary forces that shape regulatory variation and divergence can be developed by comparing expression differences among species and interspecific hybrids. Once expression differences are identified, the underlying genetics of regulatory variation or divergence can be explored. With the goal of associating cis and/or trans components of regulatory divergence with differences in gene expression, overall and allele-specific expression levels were assayed genomewide in female adult heads of Drosophila melanogaster, D. simulans, and their F1 hybrids. A greater proportion of cis differences than trans differences were identified for genes expressed in heads and, in accordance with previous studies, cis differences also explained a larger number of species differences in overall expression level. Regulatory divergence was found to be prevalent among genes associated with defense, olfaction, and among genes downstream of the Drosophila sex determination hierarchy. In addition, two genes, with critical roles in sex determination and micro RNA processing, Sxl and loqs, were identified as misexpressed in hybrid female heads, potentially contributing to hybrid incompatibility.
Collapse
|
35
|
Abstract
Several possible and potentially overlapping genetic mechanisms have been suggested to explain differences in life span between males and females. Two recent papers in BMC Evolutionary Biology on the effects of inbreeding provide additional insight into the genetic architecture underlying life span differences between genders in two different insects.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | | |
Collapse
|
36
|
DOWLING DK, MAKLAKOV AA, FRIBERG U, HAILER F. Applying the genetic theories of ageing to the cytoplasm: cytoplasmic genetic covariation for fitness and lifespan. J Evol Biol 2009; 22:818-27. [DOI: 10.1111/j.1420-9101.2009.01692.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Nuzhdin SV, Brisson JA, Pickering A, Wayne ML, Harshman LG, McIntyre LM. Natural genetic variation in transcriptome reflects network structure inferred with major effect mutations: insulin/TOR and associated phenotypes in Drosophila melanogaster. BMC Genomics 2009; 10:124. [PMID: 19317915 PMCID: PMC2674066 DOI: 10.1186/1471-2164-10-124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/24/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A molecular process based genotype-to-phenotype map will ultimately enable us to predict how genetic variation among individuals results in phenotypic alterations. Building such a map is, however, far from straightforward. It requires understanding how molecular variation re-shapes developmental and metabolic networks, and how the functional state of these networks modifies phenotypes in genotype specific way. We focus on the latter problem by describing genetic variation in transcript levels of genes in the InR/TOR pathway among 72 Drosophila melanogaster genotypes. RESULTS We observe tight co-variance in transcript levels of genes not known to influence each other through direct transcriptional control. We summarize transcriptome variation with factor analyses, and observe strong co-variance of gene expression within the dFOXO-branch and within the TOR-branch of the pathway. Finally, we investigate whether major axes of transcriptome variation shape phenotypes expected to be influenced through the InR/TOR pathway. We find limited evidence that transcript levels of individual upstream genes in the InR/TOR pathway predict fly phenotypes in expected ways. However, there is no evidence that these effects are mediated through the major axes of downstream transcriptome variation. CONCLUSION In summary, our results question the assertion of the 'sparse' nature of genetic networks, while validating and extending candidate gene approaches in the analyses of complex traits.
Collapse
Affiliation(s)
- Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Brisson
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Pickering
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Marta L Wayne
- University of Florida Genetics Institute, University of Florida, Gainesville FL 32610-36103, USA
| | - Lawrence G Harshman
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, NE 68588, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville FL 32610-36103, USA
| |
Collapse
|
38
|
Sex-specific splicing in Drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Genetics 2008; 181:421-34. [PMID: 19015538 DOI: 10.1534/genetics.108.096743] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many genes in eukaryotic genomes produce multiple transcripts through a variety of molecular mechanisms including alternative splicing. Alternatively spliced transcripts often encode functionally distinct proteins, indicating that gene regulation at this level makes an important contribution to organismal complexity. The multilevel splicing cascade that regulates sex determination and sex-specific development in Drosophila is a classical example of the role of alternative splicing in cell differentiation. Recent evidence suggests that a large proportion of genes in the Drosophila genome may be spliced in a sex-biased fashion, raising the possibility that alternative splicing may play a more general role in sexually dimorphic development and physiology. However, the prevalence of sex-specific splicing and the extent to which it is shared among genotypes are not fully understood. Genetic variation in the splicing of key components of the sex determination pathway is known to influence the expression of downstream target genes, suggesting that alternative splicing at other loci may also vary in functionally important ways. In this study, we used exon-specific microarrays to examine 417 multitranscript genes for evidence of sex-specific and genotype-specific splicing in 80 different genotypes of Drosophila melanogaster. Most of these loci showed sex-biased splicing, whereas genotype-specific splicing was rare. One hundred thirty-five genes showed different alternative transcript use in males vs. females. Real-time PCR analysis of 6 genes chosen to represent a broad range of biological functions showed that most sex-biased splicing occurs in the gonads. However, somatic tissues, particularly adult heads, also show evidence of sex-specific splicing. Comparison of splicing patterns at orthologous loci in seven Drosophila species shows that sexual biases in alternative exon representation are highly conserved, indicating that sex-specific splicing is an ancient feature of Drosophila biology. To investigate potential mechanisms of sex-biased splicing, we used real-time PCR to examine the expression of six known regulators of alternative splicing in males vs. females. We found that all six loci are themselves spliced sex specifically in gonads and heads, suggesting that regulatory hierarchies based on alternative splicing may be an important feature of sexual differentiation.
Collapse
|
39
|
Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc Natl Acad Sci U S A 2008; 105:14471-6. [PMID: 18791071 DOI: 10.1073/pnas.0805160105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene expression levels appear to be under pervasive stabilizing selection. Yet the genetic architecture underlying abundant gene expression diversity within and between populations remains elusive. Here, we investigated the role of dominance in the segregation of cis- and trans-regulation within and between populations. We used chromosome substitution lines of Drosophila melanogaster to show that (i) >70% of the genes that are differentially expressed between two homozygous lines are masked in the heterozygous, suggesting that one of the substituted chromosomes contains a recessive allele; (ii) such large masking is already obtained with heterozygous chromosomes originating from the same population, with the time of divergence between chromosomes in heterozygous lines making only a small but significant contribution to the masking of variation observed in homozygous lines; (iii) variation in gene expression due to trans-regulation is biased toward greater deviations from additivity because of recessive and dominant alleles, whereas variation due to cis-regulation shows higher additivity; and (iv) genetic divergence between second chromosomes is associated with increased cis-regulation, whereas the level of trans-regulation shows little increase over the time scale studied. Our results indicate that cis-acting alleles may be preferentially fixed by positive natural selection because of their higher additivity, and that the disruption of gene expression by recessive variation with pervasive trans-effects may be important for understanding gene expression variation within populations. We suggest that widespread regulatory effects of recessive low-frequency homozygous variation may provide a general mechanism mediating disease phenotypes and the genetic load of natural populations.
Collapse
|
40
|
Pervasive sex-linked effects on transcription regulation as revealed by expression quantitative trait loci mapping in lake whitefish species pairs (Coregonus sp., Salmonidae). Genetics 2008; 179:1903-17. [PMID: 18660540 DOI: 10.1534/genetics.107.086306] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mapping of expression quantitative trait loci (eQTL) is a powerful means for elucidating the genetic architecture of gene regulation. Yet, eQTL mapping has not been applied toward investigating the regulation architecture of genes involved in the process of population divergence, ultimately leading to speciation events. Here, we conducted an eQTL mapping experiment to compare the genetic architecture of transcript regulation in adaptive traits, differentiating the recently evolved limnetic (dwarf) and benthic (normal) species pairs of lake whitefish. The eQTL were mapped in three data sets derived from an F(1) hybrid-dwarf backcrossed family: the entire set of 66 genotyped individuals and the two sexes treated separately. We identified strikingly more eQTL in the female data set (174), compared to both male (54) and combined (33) data sets. The majority of these genes were not differentially expressed between male and female progeny of the backcross family, thus providing evidence for a strong pleiotropic sex-linked effect in transcriptomic regulation. The subtelomeric region of a linkage group segregating in females encompassed >50% of all eQTL, which exhibited the most pronounced additive effects. We also conducted a direct comparison of transcriptomic profiles between pure dwarf and normal progeny reared in controlled conditions. We detected 34 differentially expressed transcripts associated with eQTL segregating only in sex-specific data sets and mostly belonging to functional groups that differentiate dwarf and normal whitefish in natural populations. Therefore, these eQTL are not related to interindividual variation, but instead to the adaptive and historical genetic divergence between dwarf and normal whitefish. This study exemplifies how the integration of genetic and transcriptomic data offers a strong means for dissecting the functional genomic response to selection by separating mapping family-specific effects from genetic factors under selection, potentially involved in the phenotypic divergence of natural populations.
Collapse
|
41
|
Rivera G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integr Comp Biol 2008; 48:769-87. [DOI: 10.1093/icb/icn088] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Lemos B. Gene expression: an X chromosome look beyond additive and nonadditive effects. Heredity (Edinb) 2008; 100:543-4. [PMID: 18349878 DOI: 10.1038/hdy.2008.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|