1
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Yu X, Mousley CJ, Bankaitis VA, Iyer P. A budding yeast-centric view of oxysterol binding protein family function. Adv Biol Regul 2025; 95:101061. [PMID: 39613716 DOI: 10.1016/j.jbior.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The Trans Golgi Network (TGN)/endosomal system is a sorting center for cargo brought via the anterograde secretory pathway and the endocytic pathway that internalizes material from the plasma membrane. As many of the cargo that transit this central trafficking hub are components of key homeostatic signaling pathways, TGN/endosomes define a critical signaling hub for cellular growth control. A particularly interesting yet incompletely understood aspect of regulation of TGN/endosome function is control of this system by two families of lipid exchange/lipid transfer proteins. The phosphatidylinositol transfer proteins promote pro-trafficking phosphoinositide (i.e. phosphatidylinositol-4-phosphate) signaling pathways whereas proteins of the oxysterol binding protein family play reciprocal roles in antagonizing those arms of phosphoinositide signaling. The precise mechanisms for how these lipid binding proteins execute their functions remain to be resolved. Moreover, information regarding the coupling of individual members of the oxysterol binding protein family to specific biological activities is particularly sparse. Herein, we review what is being learned regarding functions of the oxysterol binding protein family in the yeast model system. Focus is primarily directed at a discussion of the Kes1/Osh4 protein for which the most information is available.
Collapse
Affiliation(s)
- Xiaohan Yu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Prasanna Iyer
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
4
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
5
|
Muramoto M, Mineoka N, Fukuda K, Kuriyama S, Masatani T, Fujita A. Coordinated regulation of phosphatidylinositol 4-phosphate and phosphatidylserine levels by Osh4p and Osh5p is an essential regulatory mechanism in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184308. [PMID: 38437942 DOI: 10.1016/j.bbamem.2024.184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that osh1-osh7∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in osh4∆ and osh5∆ mutants, whereas no significant changes were observed in other osh deletion mutants. Furthermore, we identified defects in autophagic processes in the osh4∆ and osh5∆ mutants, including rare autophagosome formation in the osh5∆ mutant and accumulation of autophagic bodies in the vacuole in the osh4∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.
Collapse
Affiliation(s)
- Moe Muramoto
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Nanaru Mineoka
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
6
|
Fuggetta N, Rigolli N, Magdeleine M, Hamaï A, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315493121. [PMID: 38408242 PMCID: PMC10927502 DOI: 10.1073/pnas.2315493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Oxysterol-binding protein-related proteins (ORPs) play key roles in the distribution of lipids in eukaryotic cells by exchanging sterol or phosphatidylserine for PI4P between the endoplasmic reticulum (ER) and other cell regions. However, it is unclear how their exchange capacity is coupled to PI4P metabolism. To address this question quantitatively, we analyze the activity of a representative ORP, Osh4p, in an ER/Golgi interface reconstituted with ER- and Golgi-mimetic membranes functionalized with PI4P phosphatase Sac1p and phosphatidylinositol (PI) 4-kinase, respectively. Using real-time assays, we demonstrate that upon adenosine triphosphate (ATP) addition, Osh4p creates a sterol gradient between these membranes, relying on the spatially distant synthesis and hydrolysis of PI4P, and quantify how much PI4P is needed for this process. Then, we develop a quantitatively accurate kinetic model, validated by our data, and extrapolate this to estimate to what extent PI4P metabolism can drive ORP-mediated sterol transfer in cells. Finally, we show that Sec14p can support PI4P metabolism and Osh4p activity by transferring PI between membranes. This study establishes that PI4P synthesis drives ORP-mediated lipid exchange and that ATP energy is needed to generate intermembrane lipid gradients. Furthermore, it defines to what extent ORPs can distribute lipids in the cell and reassesses the role of PI-transfer proteins in PI4P metabolism.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Nicola Rigolli
- Department of Physics, École Normale Supérieure (LPENS), Paris75005, France
| | - Maud Magdeleine
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Amazigh Hamaï
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa16145, Italy
| | - Guillaume Drin
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| |
Collapse
|
7
|
Deng Y, Zhu H, Wang Y, Dong Y, Du J, Yu Q, Li M. The Endoplasmic Reticulum-Plasma Membrane Tethering Protein Ice2 Controls Lipid Droplet Size via the Regulation of Phosphatidylcholine in Candida albicans. J Fungi (Basel) 2024; 10:87. [PMID: 38276033 PMCID: PMC10817647 DOI: 10.3390/jof10010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that play important roles in cellular lipid metabolism; they change their sizes and numbers in response to both intracellular and extracellular signals. Changes in LD size reflect lipid synthesis and degradation and affect many cellular activities, including energy supply and membrane synthesis. Here, we focused on the function of the endoplasmic reticulum-plasma membrane tethering protein Ice2 in LD dynamics in the fungal pathogen Candida albicans (C. albicans). Nile red staining and size quantification showed that the LD size increased in the ice2Δ/Δ mutant, indicating the critical role of Ice2 in the regulation of LD dynamics. A lipid content analysis further demonstrated that the mutant had lower phosphatidylcholine levels. As revealed with GFP labeling and fluorescence microscopy, the methyltransferase Cho2, which is involved in phosphatidylcholine synthesis, had poorer localization in the plasma membrane in the mutant than in the wild-type strain. Interestingly, the addition of the phosphatidylcholine precursor choline led to the recovery of normal-sized LDs in the mutant. These results indicated that Ice2 regulates LD size by controlling intracellular phosphatidylcholine levels and that endoplasmic reticulum-plasma membrane tethering proteins play a role in lipid metabolism regulation in C. albicans. This study provides significant findings for further investigation of the lipid metabolism in fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.D.); (H.Z.); (Y.W.); (Y.D.); (J.D.)
| |
Collapse
|
8
|
Fuggetta N, Rigolli N, Magdeleine M, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange process coupled to PI(4)P metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551917. [PMID: 37577629 PMCID: PMC10418177 DOI: 10.1101/2023.08.04.551917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lipid distribution in the eukaryotic cells depends on tight couplings between lipid transfer and lipid metabolism. Yet these couplings remain poorly described. Notably, it is unclear to what extent lipid exchangers of the OSBP-related proteins (ORPs) family, coupled to PI(4)P metabolism, contribute to the formation of sterol and phosphatidylserine gradient between the endoplasmic reticulum (ER) and other cell regions. To address this question, we have examined in vitro the activity of Osh4p, a representative ORP, between Golgi mimetic membranes in which PI(4)P is produced by a PI 4-kinase and ER mimetic membranes in which PI(4)P is hydrolyzed by the phosphatase Sac1p. Using quantitative, real-time assays, we demonstrate that Osh4p creates a sterol gradient between the two membranes by sterol/PI(4)P exchange as soon as a PI(4)P gradient is generated at this interface following ATP addition, and define how much PI(4)P must be synthesized for this process. Then, using a kinetic model supported by our in vitro data, we estimate to what extent PI(4)P metabolism can drive lipid transfer in cells. Finally, we show that Sec14p, by transferring phosphatidylinositol between membranes, can support the synthesis of PI(4)P and the creation of a sterol gradient by Osh4p. These results indicate to what extent ORPs, under the control of PI(4)P metabolism, can distribute lipids in the cell.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), 75005 Paris, France
| | - Maud Magdeleine
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Villa Cambiaso 1, 16145 Genoa, Italy
| | - Guillaume Drin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| |
Collapse
|
9
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Creating and sensing asymmetric lipid distributions throughout the cell. Emerg Top Life Sci 2022; 7:7-19. [PMID: 36373850 DOI: 10.1042/etls20220028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
A key feature of eukaryotic cells is the asymmetric distribution of lipids along their secretory pathway. Because of the biological significance of these asymmetries, it is crucial to define the mechanisms which create them. Extensive studies have led to the identification of lipid transfer proteins (LTPs) that work with lipid-synthesizing enzymes to carry lipids between two distinct membranes in a directional manner, and are thus able to create asymmetries in lipid distribution throughout the cell. These networks are often in contact sites where two organelle membranes are in close proximity for reasons we have only recently started to understand. A question is whether these networks transfer lipids en masse within the cells or adjust the lipid composition of organelle membranes. Finally, recent data have confirmed that some networks organized around LTPs do not generate lipid asymmetries between membranes but sense them and rectify the lipid content of the cell.
Collapse
|
11
|
Quon E, Nenadic A, Zaman MF, Johansen J, Beh CT. ER-PM membrane contact site regulation by yeast ORPs and membrane stress pathways. PLoS Genet 2022; 18:e1010106. [PMID: 35239652 PMCID: PMC8923467 DOI: 10.1371/journal.pgen.1010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In yeast, at least seven proteins (Ice2p, Ist2p, Scs2/22p, Tcb1-Tcb3p) affect cortical endoplasmic reticulum (ER) tethering and contact with the plasma membrane (PM). In Δ-super-tether (Δ-s-tether) cells that lack these tethers, cortical ER-PM association is all but gone. Yeast OSBP homologue (Osh) proteins are also implicated in membrane contact site (MCS) assembly, perhaps as subunits for multicomponent tethers, though their function at MCSs involves intermembrane lipid transfer. Paradoxically, when analyzed by fluorescence and electron microscopy, the elimination of the OSH gene family does not reduce cortical ER-PM association but dramatically increases it. In response to the inactivation of all Osh proteins, the yeast E-Syt (extended-synaptotagmin) homologue Tcb3p is post-transcriptionally upregulated thereby generating additional Tcb3p-dependent ER-PM MCSs for recruiting more cortical ER to the PM. Although the elimination of OSH genes and the deletion of ER-PM tether genes have divergent effects on cortical ER-PM association, both elicit the Environmental Stress Response (ESR). Through comparisons of transcriptomic profiles of cells lacking OSH genes or ER-PM tethers, changes in ESR expression are partially manifested through the induction of the HOG (high-osmolarity glycerol) PM stress pathway or the ER-specific UPR (unfolded protein response) pathway, respectively. Defects in either UPR or HOG pathways also increase ER-PM MCSs, and expression of extra “artificial ER-PM membrane staples” rescues growth of UPR mutants challenged with lethal ER stress. Transcriptome analysis of OSH and Δ-s-tether mutants also revealed dysregulation of inositol-dependent phospholipid gene expression, and the combined lethality of osh4Δ and Δ-s-tether mutations is suppressed by overexpression of the phosphatidic acid biosynthetic gene, DGK1. These findings establish that the Tcb3p tether is induced by ER and PM stresses and ER-PM MCSs augment responses to membrane stresses, which are integrated through the broader ESR pathway. Membrane contact sites (MCSs) between the two largest cellular membranes, the endoplasmic reticulum (ER) and the plasma membrane (PM), are regulatory interfaces for lipid synthesis and bidirectional transport. The yeast Osh protein family, which represents the seven yeast oxysterol-binding protein related proteins (ORPs), is implicated in MCS regulation and lipid transfer between membranes. Ironically, we find that when all Osh proteins eliminated, ER-PM association is not reduced but significantly increases. We hypothesized this increase is due to compensatory increases in levels of tether proteins that physically link the ER and PM. In fact, in response to inactivating Osh protein expression, amounts of the tether protein Tcb3 increase and more ER-PM MCSs are produced. By testing the genomic transcriptional responses to the elimination of OSH and ER-PM tether genes, we find these mutants disrupt phospholipid regulation and they elicit the Environmental Stress Response (ESR) pathway, which integrates many different responses needed for recovery after cellular stress. OSH and ER-PM tether genes affect specific stress response pathways that impact the PM and ER, respectively. Combining OSH and tether mutations results in cell lethality, but these cells survive by increased expression of a key phospholipid biosynthetic gene. Based on these results, we propose that OSH and ER-PM tether genes affect phospholipid regulation and protect the PM and ER through membrane stress responses integrated through the ESR pathway.
Collapse
Affiliation(s)
- Evan Quon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohammad F. Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesper Johansen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher T. Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
- * E-mail:
| |
Collapse
|
12
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
13
|
Jamecna D, Antonny B. Intrinsically disordered protein regions at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159020. [PMID: 34352388 DOI: 10.1016/j.bbalip.2021.159020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.
Collapse
Affiliation(s)
- Denisa Jamecna
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France; Biochemistry Center (BZH), Heidelberg, Germany
| | - Bruno Antonny
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
14
|
Fratini M, Krishnamoorthy P, Stenzel I, Riechmann M, Matzner M, Bacia K, Heilmann M, Heilmann I. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. THE PLANT CELL 2021; 33:642-670. [PMID: 33955493 PMCID: PMC8136918 DOI: 10.1093/plcell/koaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.
Collapse
Affiliation(s)
- Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Irene Stenzel
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mara Riechmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Department of Biophysical Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
Zheng Koh DH, Saheki Y. Regulation of Plasma Membrane Sterol Homeostasis by Nonvesicular Lipid Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211042451. [PMID: 37366378 PMCID: PMC10259818 DOI: 10.1177/25152564211042451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Sterol contributes to the structural integrity of cellular membranes and plays an important role in the regulation of cell signaling in eukaryotes. It is either produced in the endoplasmic reticulum or taken up from the extracellular environment. In most eukaryotic cells, however, the majority of sterol is enriched in the plasma membrane. Thus, the transport of sterol between the plasma membrane and other organelles, including the endoplasmic reticulum, is crucial for maintaining sterol homeostasis. While vesicular transport that relies on membrane budding and fusion reactions plays an important role in bulk sterol transport, this mode of transport is slow and non-selective. Growing evidence suggests a critical role of nonvesicular transport mediated by evolutionarily conserved families of lipid transfer proteins in more rapid and selective delivery of sterol. Some lipid transfer proteins act primarily at the sites of contacts formed between the endoplasmic reticulum and other organelles or the plasma membrane without membrane fusion. In this review, we describe the similarities and differences of sterol biosynthesis and uptake in mammals and yeast and discuss the role of their lipid transfer proteins in maintaining plasma membrane sterol homeostasis.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Resource Development and
Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
16
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
17
|
Zaman MF, Nenadic A, Radojičić A, Rosado A, Beh CT. Sticking With It: ER-PM Membrane Contact Sites as a Coordinating Nexus for Regulating Lipids and Proteins at the Cell Cortex. Front Cell Dev Biol 2020; 8:675. [PMID: 32793605 PMCID: PMC7387695 DOI: 10.3389/fcell.2020.00675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Membrane contact sites between the cortical endoplasmic reticulum (ER) and the plasma membrane (PM) provide a direct conduit for small molecule transfer and signaling between the two largest membranes of the cell. Contact is established through ER integral membrane proteins that physically tether the two membranes together, though the general mechanism is remarkably non-specific given the diversity of different tethering proteins. Primary tethers including VAMP-associated proteins (VAPs), Anoctamin/TMEM16/Ist2p homologs, and extended synaptotagmins (E-Syts), are largely conserved in most eukaryotes and are both necessary and sufficient for establishing ER-PM association. In addition, other species-specific ER-PM tether proteins impart unique functional attributes to both membranes at the cell cortex. This review distils recent functional and structural findings about conserved and species-specific tethers that form ER-PM contact sites, with an emphasis on their roles in the coordinate regulation of lipid metabolism, cellular structure, and responses to membrane stress.
Collapse
Affiliation(s)
- Mohammad F Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ana Radojičić
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,The Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
18
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
19
|
Shin JJH, Liu P, Chan LJ, Ullah A, Pan J, Borchers CH, Burke JE, Stefan C, Smits GJ, Loewen CJR. pH Biosensing by PI4P Regulates Cargo Sorting at the TGN. Dev Cell 2020; 52:461-476.e4. [PMID: 31928972 DOI: 10.1016/j.devcel.2019.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Phosphoinositides, diacylglycerolpyrophosphate, ceramide-1-phosphate, and phosphatidic acid belong to a unique class of membrane signaling lipids that contain phosphomonoesters in their headgroups having pKa values in the physiological range. The phosphomonoester headgroup of phosphatidic acid enables this lipid to act as a pH biosensor as changes in its protonation state with intracellular pH regulate binding to effector proteins. Here, we demonstrate that binding of pleckstrin homology (PH) domains to phosphatidylinositol 4-phosphate (PI4P) in the yeast trans-Golgi network (TGN) is dependent on intracellular pH, indicating PI4P is a pH biosensor. pH biosensing by TGN PI4P in response to nutrient availability governs protein sorting at the TGN, likely by regulating sterol transfer to the TGN by Osh1, a member of the conserved oxysterol-binding protein (OSBP) family of lipid transfer proteins. Thus, pH biosensing by TGN PI4P allows for direct metabolic regulation of protein trafficking and cell growth.
Collapse
Affiliation(s)
- John J H Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Peter Liu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Leslie J Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Azmat Ullah
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| | - Jingxi Pan
- University of Victoria, Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada; Department of Biochemistry & Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Christoph H Borchers
- University of Victoria, Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada; Department of Biochemistry & Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry & Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Christopher Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
20
|
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic 2019; 21:200-219. [PMID: 31650663 DOI: 10.1111/tra.12709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nat Commun 2019; 10:3926. [PMID: 31477717 PMCID: PMC6718676 DOI: 10.1038/s41467-019-11780-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
A central assumption is that lipid transfer proteins (LTPs) bind transiently to organelle membranes to distribute lipids in the eukaryotic cell. Osh6p and Osh7p are yeast LTPs that transfer phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) via PS/phosphatidylinositol-4-phosphate (PI4P) exchange cycles. It is unknown how, at each cycle, they escape from the electrostatic attraction of the PM, highly anionic, to return to the ER. Using cellular and in vitro approaches, we show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket. Thus, Osh6p maintains its transport activity between ER- and PM-like membranes. Further investigations reveal that the lid governs the membrane docking and activity of Osh6p because it is anionic. Our study unveils how an LTP self-limits its residency time on membranes, via an electrostatic switching mechanism, to transfer lipids efficiently. Osh6p and Osh7p are yeast lipid transfer proteins (LTPs) that must transiently interact with membranes but how they escape from the electrostatic attraction of the plasma membrane is unclear. Here authors show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket.
Collapse
|
22
|
Panagabko C, Baptist M, Atkinson J. In vitro lipid transfer assays of phosphatidylinositol transfer proteins provide insight into the in vivo mechanism of ligand transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:619-630. [PMID: 30543784 DOI: 10.1016/j.bbamem.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022]
Abstract
Fluorescence resonance energy transfer (FRET) assays and membrane binding determinations were performed using three phosphatidylinositol transfer proteins, including the yeast Sec14 and two mammalian proteins PITPα and PITPβ. These proteins were able to specifically bind the fluorescent phosphatidylcholine analogue NBD-PC ((2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine)) and to transfer it to small unilamellar vesicles (SUVs). Rate constants for transfer to vesicles comprising 100% PC were slower for all proteins than when increasing percentages of phosphatidylinositol were incorporated into the same SUVs. The rates of ligand transfer by Sec14 were insensitive to the inclusion of equimolar amounts of another anionic phospholipid phosphatidylserine (PS), but the rates of ligand transfer by both mammalian PITPs were strikingly enhanced by the inclusion of phosphatidic acid (PA) in the receptor SUV. Binding of Sec14 to immobilized bilayers was substantial, while that of PITPα and PITPβ was 3-7 times weaker than Sec14 depending on phospholipid composition. When small proportions of the phosphoinositide PI(4)P were included in receptor SUVs (either with PI or not), Sec14 showed substantially increased rates of NBD-PC pick-up, whereas the PITPs were unaffected. The data are supportive of a role for PITPβ as functional PI transfer protein in vivo, but that Sec14 likely has a more elaborate function.
Collapse
Affiliation(s)
- Candace Panagabko
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada
| | - Matilda Baptist
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada
| | - Jeffrey Atkinson
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada.
| |
Collapse
|
23
|
Antonny B, Bigay J, Mesmin B. The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Annu Rev Biochem 2018; 87:809-837. [PMID: 29596003 DOI: 10.1146/annurev-biochem-061516-044924] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| |
Collapse
|
24
|
Tian S, Ohta A, Horiuchi H, Fukuda R. Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast. J Biol Chem 2018; 293:5636-5648. [PMID: 29487131 DOI: 10.1074/jbc.ra117.000596] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Sterols are present in eukaryotic membranes and significantly affect membrane fluidity, permeability, and microdomain formation. They are synthesized in the endoplasmic reticulum (ER) and transported to other organelles and the plasma membrane. Sterols play important roles in the biogenesis and maintenance of mitochondrial membranes. However, the mechanisms underlying ER-to-mitochondrion sterol transport remain to be identified. Here, using purified yeast membrane fractions enriched in ER and mitochondria, we show that the oxysterol-binding protein homologs encoded by the OSH genes in the yeast Saccharomyces cerevisiae mediate sterol transport from the ER to mitochondria. Combined depletion of all seven Osh proteins impaired sterol transport from the ER to mitochondria in vitro; however, sterol transport was recovered at different levels upon adding one of the Osh proteins. Of note, the sterol content in the mitochondrial fraction was significantly decreased in vivo after Osh4 inactivation in a genetic background in which all the other OSH genes were deleted. We also found that Osh5-Osh7 bind cholesterol in vitro We propose a model in which Osh proteins share a common function to transport sterols between membranes, with varying contributions by these proteins, depending on the target membranes. In summary, we have developed an in vitro system to examine intracellular sterol transport and provide evidence for involvement of Osh proteins in sterol transport from the ER to mitochondria in yeast.
Collapse
Affiliation(s)
- Siqi Tian
- From the Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan and
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- From the Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan and
| | - Ryouichi Fukuda
- From the Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan and
| |
Collapse
|
25
|
Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chem Biol 2018; 25:279-290.e7. [PMID: 29307839 DOI: 10.1016/j.chembiol.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022]
Abstract
Invasive fungal infections are accompanied by high mortality rates that range up to 90%. At present, only three different compound classes are available for use in the clinic, and these often suffer from low bioavailability, toxicity, and drug resistance. These issues emphasize an urgent need for novel antifungal agents. Herein, we report the identification of chemically versatile benzamide and picolinamide scaffolds with antifungal properties. Chemogenomic profiling and biochemical assays with purified protein identified Sec14p, the major phosphatidylinositol/phosphatidylcholine transfer protein in Saccharomyces cerevisiae, as the sole essential target for these compounds. A functional variomics screen identified resistance-conferring residues that localized to the lipid-binding pocket of Sec14p. Determination of the X-ray co-crystal structure of a Sec14p-compound complex confirmed binding in this cavity and rationalized both the resistance-conferring residues and the observed structure-activity relationships. Taken together, these findings open new avenues for rational compound optimization and development of novel antifungal agents.
Collapse
|
26
|
McMaster CR. From yeast to humans - roles of the Kennedy pathway for phosphatidylcholine synthesis. FEBS Lett 2017; 592:1256-1272. [PMID: 29178478 DOI: 10.1002/1873-3468.12919] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
The major phospholipid present in most eukaryotic membranes is phosphatidylcholine (PC), comprising ~ 50% of phospholipid content. PC metabolic pathways are highly conserved from yeast to humans. The main pathway for the synthesis of PC is the Kennedy (CDP-choline) pathway. In this pathway, choline is converted to phosphocholine by choline kinase, phosphocholine is metabolized to CDP-choline by the rate-determining enzyme for this pathway, CTP:phosphocholine cytidylyltransferase, and cholinephosphotransferase condenses CDP-choline with diacylglycerol to produce PC. This Review discusses how PC synthesis via the Kennedy pathway is regulated, its role in cellular and biological processes, as well as diseases known to be associated with defects in PC synthesis. Finally, we present the first model for the making of a membrane via PC synthesis.
Collapse
|
27
|
Encinar Del Dedo J, Idrissi FZ, Fernandez-Golbano IM, Garcia P, Rebollo E, Krzyzanowski MK, Grötsch H, Geli MI. ORP-Mediated ER Contact with Endocytic Sites Facilitates Actin Polymerization. Dev Cell 2017; 43:588-602.e6. [PMID: 29173820 DOI: 10.1016/j.devcel.2017.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/11/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022]
Abstract
Oxysterol binding protein-related proteins (ORPs) are conserved lipid binding polypeptides, enriched at ER contacts sites. ORPs promote non-vesicular lipid transport and work as lipid sensors in the context of many cellular tasks, but the determinants of their distinct localization and function are not understood. Here, we demonstrate that the yeast endocytic invaginations associate with the ER and that this association specifically requires the ORPs Osh2 and Osh3, which bridge the endocytic myosin-I Myo5 to the ER integral-membrane VAMP-associated protein (VAP) Scs2. Disruption of the ER contact with endocytic sites using ORP, VAP, myosin-I, or reticulon mutants delays and weakens actin polymerization and interferes with vesicle scission. Finally, we provide evidence suggesting that ORP-dependent sterol transfer facilitates actin polymerization at endocytic sites.
Collapse
Affiliation(s)
- Javier Encinar Del Dedo
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Fatima-Zahra Idrissi
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | - Patricia Garcia
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Marek K Krzyzanowski
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Helga Grötsch
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Maria Isabel Geli
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain.
| |
Collapse
|
28
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
29
|
Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J 2017; 36:3156-3174. [PMID: 28978670 DOI: 10.15252/embj.201796687] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 11/09/2022] Open
Abstract
The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol-binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi network (TGN). Using the inhibitor OSW-1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells. Blocking OSBP causes accumulation of sterols at ER/lipid droplets at the expense of TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP consumes about half of the total cellular pool of PI4P, a consumption that depends on the amount of cholesterol to be transported. Inhibiting the spatially restricted PI4-kinase PI4KIIIβ triggers large periodic traveling waves of PI4P across the TGN These waves are cadenced by long-range PI4P production by PI4KIIα and PI4P consumption by OSBP Collectively, these data indicate a massive spatiotemporal coupling between cholesterol transport and PI4P turnover via OSBP and PI4-kinases to control the lipid composition of subcellular membranes.
Collapse
Affiliation(s)
- Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Joëlle Bigay
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Joël Polidori
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Denisa Jamecna
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
30
|
NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:1799-1809. [PMID: 28455416 PMCID: PMC5473759 DOI: 10.1534/g3.117.041053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae, multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the inositol-3-phosphate synthase gene, INO1, which leads to excessive accumulation of inositol, a key metabolite used for phospholipid biosynthesis. Additionally, NuA4 mutants also display negative genetic interactions with sec14-1ts, a mutant of a lipid-binding gene responsible for phospholipid remodeling of the Golgi. Here, using a combination of genetics and transcriptional profiling, we explore the connections between NuA4, inositol, and Sec14. Surprisingly, we found that NuA4 mutants did not suppress but rather exacerbated the growth defects of sec14-1ts under inositol-depleted conditions. Transcriptome studies reveal that while loss of the NuA4 subunit EAF1 in sec14-1ts does derepress INO1 expression, it does not derepress all inositol/choline-responsive phospholipid genes, suggesting that the impact of Eaf1 on phospholipid homeostasis extends beyond inositol biosynthesis. In fact, we find that NuA4 mutants have impaired lipid droplet levels and through genetic and chemical approaches, we determine that the genetic interaction between sec14-1ts and NuA4 mutants potentially reflects a role for NuA4 in fatty acid biosynthesis. Altogether, our work identifies a new role for NuA4 in phospholipid homeostasis.
Collapse
|
31
|
Dodgson SE, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance. Genes Dev 2016; 30:2259-2271. [PMID: 27807036 PMCID: PMC5110993 DOI: 10.1101/gad.287474.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
Abstract
In this study, Dodgson et al. used a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast and identified the deubiquitinase Ubp3 as a key regulator of aneuploid cell homeostasis. They found that Ubp3 is a guardian of aneuploid cell fitness conserved across species. Aneuploidy—or an unbalanced karyotype in which whole chromosomes are gained or lost—causes reduced fitness at both the cellular and organismal levels but is also a hallmark of human cancers. Aneuploidy causes a variety of cellular stresses, including genomic instability, proteotoxic and oxidative stresses, and impaired protein trafficking. The deubiquitinase Ubp3, which was identified by a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast, is a key regulator of aneuploid cell homeostasis. We show that deletion of UBP3 exacerbates both karyotype-specific phenotypes and global stresses of aneuploid cells, including oxidative and proteotoxic stress. Indeed, Ubp3 is essential for proper proteasome function in euploid cells, and deletion of this deubiquitinase leads to further proteasome-mediated proteotoxicity in aneuploid yeast. Notably, the importance of UBP3 in aneuploid cells is conserved. Depletion of the human homolog of UBP3, USP10, is detrimental to the fitness of human cells upon chromosome missegregation, and this fitness defect is accompanied by autophagy inhibition. We thus used a genome-wide screen in yeast to identify a guardian of aneuploid cell fitness conserved across species. We propose that interfering with Ubp3/USP10 function could be a productive avenue in the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Stacie E Dodgson
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Stefano Santaguida
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Sharon Kim
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jason Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
32
|
Running up that hill: How to create cellular lipid gradients by lipid counter-flows. Biochimie 2016; 130:115-121. [DOI: 10.1016/j.biochi.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022]
|
33
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
34
|
Tong J, Manik MK, Yang H, Im YJ. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:928-939. [DOI: 10.1016/j.bbalip.2016.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
35
|
The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis. Molecules 2016; 21:molecules21060770. [PMID: 27322238 PMCID: PMC6272974 DOI: 10.3390/molecules21060770] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Thymol is a natural plant-derived compound that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism for thymol against phytopathogens remains unclear. In this study, we identified the antifungal action of thymol against Fusarium graminearum, an economically important phytopathogen showing severe resistance to traditional chemical fungicides. The sensitivity of thymol on different F. graminearum isolates was screened. The hyphal growth, as well as conidial production and germination, were quantified under thymol treatment. Histochemical, microscopic, and biochemical approaches were applied to investigate thymol-induced cell membrane damage. The average EC50 value of thymol for 59 F. graminearum isolates was 26.3 μg·mL−1. Thymol strongly inhibited conidial production and hyphal growth. Thymol-induced cell membrane damage was indicated by propidium iodide (PI) staining, morphological observation, relative conductivity, and glycerol measurement. Thymol induced a significant increase in malondialdehyde (MDA) concentration and a remarkable decrease in ergosterol content. Taken together, thymol showed potential antifungal activity against F. graminearum due to the cell membrane damage originating from lipid peroxidation and the disturbance of ergosterol biosynthesis. These results not only shed new light on the antifungal mechanism of thymol, but also imply a promising alternative for the control of Fusarium head blight (FHB) disease caused by F. graminearum.
Collapse
|
36
|
New molecular mechanisms of inter-organelle lipid transport. Biochem Soc Trans 2016; 44:486-92. [DOI: 10.1042/bst20150265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated.
Collapse
|
37
|
The counterflow transport of sterols and PI4P. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:940-951. [PMID: 26928592 DOI: 10.1016/j.bbalip.2016.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/03/2023]
Abstract
Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
38
|
Venditti R, Masone MC, Wilson C, De Matteis MA. PI(4)P homeostasis: Who controls the controllers? Adv Biol Regul 2016; 60:105-114. [PMID: 26542744 DOI: 10.1016/j.jbior.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
During recent decades, PI(4)P (phosphoinositol-4-phosphate) has been described as a key regulator of a wide range of cellular functions such as organelle biogenesis, lipid metabolism and distribution, membrane trafficking, ion channels, pumps, and transporter activities. In this review we will focus on the multiple mechanisms that regulate PI(4)P homeostasis ranging from those responsible for the spatial distribution of the PI4 kinases and PI(4)P phosphatase to those controlling their enzymatic activity or the delivery/presentation of the substrate, i.e. PI or PI(4)P, to the PI4Ks or PI(4)P phosphatase, respectively. We will also highlight the open questions in the field mainly dealing with the existence and mode of action of PI(4)P sensors that monitor its amount and can act as a rheostat tuning PI(4)P levels in different compartments and adapting them to the different needs of the cell.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Maria Chiara Masone
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | |
Collapse
|
39
|
Goto A, Charman M, Ridgway ND. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools. J Biol Chem 2015; 291:1336-47. [PMID: 26601944 DOI: 10.1074/jbc.m115.682997] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT.
Collapse
Affiliation(s)
- Asako Goto
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Charman
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Neale D Ridgway
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
40
|
Gaspard GJ, McMaster CR. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem Phys Lipids 2015; 193:1-10. [PMID: 26415690 DOI: 10.1016/j.chemphyslip.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
Cardiolipin (CL) is a phospholipid with many unique characteristics. CL is synthesized in the mitochondria and resides almost exclusively within the mitochondrial inner membrane. Unlike most phospholipids that have two fatty acyl chains, CL possesses four fatty acyl chains resulting in unique biophysical characteristics that impact several biological processes including membrane fission and fusion. In addition, several proteins directly bind CL including proteins within the electron transport chain, the ADP/ATP carrier, and proteins that mediate mitophagy. Tafazzin is an enzyme that remodels saturated fatty acyl chains within CL to unsaturated fatty acyl chains, loss of function mutations in the TAZ gene encoding tafazzin are causal for the inherited cardiomyopathy Barth syndrome. Cells from Barth syndrome patients as well as several models of Barth have reduced mitochondrial functions including impaired electron transport chain function and increased reactive oxygen species (ROS) production. Mitochondria in cells from Barth syndrome patients, as well as several model organism mimics of Barth syndrome, are large and lack cristae consistent with the recently described role of CL participating in the generation of mitochondrial membrane contact sites. Cells with an inactive TAZ gene have also been shown to have a decreased capacity to undergo mitophagy when faced with stresses such as increased ROS or decreased mitochondrial quality control. This review describes CL metabolism and how defects in CL metabolism cause Barth syndrome, the etiology of Barth syndrome, and known modifiers of Barth syndrome phenotypes some of which could be explored for their amelioration of Barth syndrome in higher organisms.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R McMaster
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
41
|
Du X, Brown AJ, Yang H. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites. Curr Opin Cell Biol 2015; 35:37-42. [DOI: 10.1016/j.ceb.2015.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 01/08/2023]
|
42
|
Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans. EUKARYOTIC CELL 2015; 14:908-21. [PMID: 26116213 DOI: 10.1128/ec.00027-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth.
Collapse
|
43
|
Abstract
In eukaryotic cells, a sterol gradient exists between the early and late regions of the secretory pathway. This gradient seems to rely on non-vesicular transport mechanisms mediated by specialized carriers. The oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) family has been assumed initially to exclusively include proteins acting as sterol sensors/transporters and many efforts have been made to determine their mode of action. Our recent studies have demonstrated that some ORP/Osh proteins are not mere sterol transporters, but sterol/phosphatidylinositol 4-phosphate [PI(4)P] exchangers. They exploit the PI(4)P gradient at the endoplasmic reticulum (ER)/Golgi interface, or at membrane-contact sites between these compartments, to actively create a sterol gradient. Other recent reports have suggested that all ORP/Osh proteins bind PI(4)P and recognize a second lipid that is not necessary sterol. We have thus proposed that ORP/Osh proteins use PI(4)P gradients between organelles to convey various lipid species.
Collapse
|
44
|
A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat Commun 2015; 6:6671. [PMID: 25849868 DOI: 10.1038/ncomms7671] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/18/2015] [Indexed: 01/15/2023] Open
Abstract
Lipids are unevenly distributed within eukaryotic cells, thus defining organelle identity. How non-vesicular transport mechanisms generate these lipid gradients between membranes remains a central question. Here using quantitative, real-time lipid transport assays, we demonstrate that Osh4p, a sterol/phosphatidylinositol-4-phosphate (PI(4)P) exchanger of the ORP/Osh family, transports sterol against its gradient between two membranes by dissipating the energy of a PI(4)P gradient. Sterol transport is sustained through the maintenance of this PI(4)P gradient by the PI(4)P-phosphatase Sac1p. Differences in lipid packing between membranes can stabilize sterol gradients generated by Osh4p and modulate its lipid exchange capacity. The ability of Osh4p to recognize sterol and PI(4)P via distinct modalities and the dynamics of its N-terminal lid govern its activity. We thus demonstrate that an intracellular lipid transfer protein actively functions to create a lipid gradient between membranes.
Collapse
|
45
|
Johansen J, Ramanathan V, Beh CT. Vesicle trafficking from a lipid perspective: Lipid regulation of exocytosis in Saccharomyces cerevisiae. CELLULAR LOGISTICS 2014. [PMID: 23181198 PMCID: PMC3498074 DOI: 10.4161/cl.20490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The protein cargo transported by specific types of vesicles largely defines the different secretory trafficking pathways operating within cells. However, mole per mole the most abundant cargo contained within transport vesicles is not protein, but lipid. Taking a "lipid-centric" point-of-view, we examine the importance of lipid signaling, membrane lipid organization and lipid metabolism for vesicle transport during exocytosis in budding yeast. In fact, the essential requirement for some exocytosis regulatory proteins can be bypassed by making simple manipulations of the lipids involved. During polarized exocytosis the sequential steps required to generate post-Golgi vesicles and target them to the plasma membrane (PM) involves the interplay of several types of lipids that are coordinately linked through PI4P metabolism and signaling. In turn, PI4P levels are regulated by PI4P kinases, the Sac1p PI4P phosphatase and the yeast Osh proteins, which are homologs of mammalian oxysterol-binding protein (OSBP). Together these regulators integrate the transitional steps required for vesicle maturation directly through changes in lipid composition and organization.
Collapse
Affiliation(s)
- Jesper Johansen
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby, BC Canada
| | | | | |
Collapse
|
46
|
Abstract
Lipids are unevenly distributed within and between cell membranes, thus defining organelle identity. Such distribution relies on local metabolic branches and mechanisms that move lipids. These processes are regulated by feedback mechanisms that decipher topographical information in organelle membranes and then regulate lipid levels or flows. In the endoplasmic reticulum, the major lipid source, transcriptional regulators and enzymes sense changes in membrane features to modulate lipid production. At the Golgi apparatus, lipid-synthesizing, lipid-flippase, and lipid-transport proteins (LTPs) collaborate to control lipid balance and distribution within the membrane to guarantee remodeling processes crucial for vesicular trafficking. Open questions exist regarding LTPs, which are thought to be lipid sensors that regulate lipid synthesis or carriers that transfer lipids between organelles across long distances or in contact sites. A novel model is that LTPs, by exchanging two different lipids, exploit one lipid gradient between two distinct membranes to build a second lipid gradient.
Collapse
Affiliation(s)
- Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 06560 Valbonne, France;
| |
Collapse
|
47
|
Maekawa M, Fairn GD. Molecular probes to visualize the location, organization and dynamics of lipids. J Cell Sci 2014; 127:4801-12. [DOI: 10.1242/jcs.150524] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular lipids play crucial roles in the cell, including in energy storage, the formation of cellular membranes, and in signaling and vesicular trafficking. To understand the functions and characteristics of lipids within cells, various methods to image lipids have been established. In this Commentary, we discuss the four main types of molecular probes that have significantly contributed to our understanding of the cell biology of lipids. In particular, genetically encoded biosensors and antibodies will be discussed, and how they have been used extensively with traditional light and electron microscopy to determine the subcellular localization of lipids and their spatial and temporal regulation. We highlight some of the recent studies that have investigated the distribution of lipids and their ability to cluster using super-resolution and electron microscopy. We also examine methods for analyzing the movement and dynamics of lipids, including single-particle tracking (SPT), fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). Although the combination of these lipid probes and the various microscopic techniques is very powerful, we also point out several potential caveats and limitations. Finally, we discuss the need for new probes for a variety of phospholipids and cholesterol.
Collapse
|
48
|
Tan J, Brill JA. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 2013; 49:33-58. [PMID: 24219382 DOI: 10.3109/10409238.2013.853024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.
Collapse
Affiliation(s)
- Julie Tan
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario , Canada and
| | | |
Collapse
|
49
|
Olkkonen VM, Li S. Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res 2013; 52:529-38. [DOI: 10.1016/j.plipres.2013.06.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 01/27/2023]
|
50
|
Mesmin B, Antonny B, Drin G. Insights into the mechanisms of sterol transport between organelles. Cell Mol Life Sci 2013; 70:3405-21. [PMID: 23283302 PMCID: PMC11113184 DOI: 10.1007/s00018-012-1247-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions.
Collapse
Affiliation(s)
- Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 660 Route des lucioles, 06560 Valbonne, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 660 Route des lucioles, 06560 Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 660 Route des lucioles, 06560 Valbonne, France
| |
Collapse
|