1
|
Jordan MR, Oakley GG, Mayo LD, Balakrishnan L, Turchi JJ. The effect of replication protein A inhibition and post-translational modification on ATR kinase signaling. Sci Rep 2024; 14:19791. [PMID: 39187637 PMCID: PMC11347632 DOI: 10.1038/s41598-024-70589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair to ensure genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions (RPA-DBi) and RPA protein-protein interactions (RPA-PPIi); both activities are required for ATR activation. Here, we biochemically reconstitute the ATR kinase signaling pathway and demonstrate that RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of target proteins with selectivity advantages over active site ATR inhibitors. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation does not affect ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 64202, USA
| | - Greg G Oakley
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 64202, USA.
- NERx Biosciences Inc., Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Jordan MR, Oakley GG, Mayo LD, Balakrishnan L, Turchi JJ. The Effect of Replication Protein A Inhibition and Post-Translational Modification on ATR Kinase Signaling. RESEARCH SQUARE 2024:rs.3.rs-4570504. [PMID: 39108493 PMCID: PMC11302688 DOI: 10.21203/rs.3.rs-4570504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair towards ensuring genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions, termed RPA-DBi, and RPA protein-protein interactions, termed RPA-PPIi; both activities are required for ATR activation. Here, we employ a biochemically reconstituted ATR kinase signaling pathway and demonstrate that both RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of downstream target proteins. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation has no effect on ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway targeted cancer therapeutics.
Collapse
|
3
|
Alghoul E, Basbous J, Constantinou A. Compartmentalization of the DNA damage response: Mechanisms and functions. DNA Repair (Amst) 2023; 128:103524. [PMID: 37320957 DOI: 10.1016/j.dnarep.2023.103524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Cells have evolved an arsenal of molecular mechanisms to respond to continuous alterations in the primary structure of DNA. At the cellular level, DNA damage response proteins accumulate at sites of DNA damage and organize into nuclear foci. As recounted by Errol Friedberg, pioneering work on DNA repair in the 1930 s was stimulated by collaborations between physicists and geneticists. In recent years, the introduction of ideas from physics on self-organizing compartments has taken the field of cell biology by storm. Percolation and phase separation theories are increasingly used to model the self-assembly of compartments, called biomolecular condensates, that selectively concentrate molecules without a surrounding membrane. In this review, we discuss these concepts in the context of the DNA damage response. We discuss how studies of DNA repair foci as condensates can link molecular mechanisms with cell physiological functions, provide new insights into regulatory mechanisms, and open new perspectives for targeting DNA damage responses for therapeutic purposes.
Collapse
Affiliation(s)
- Emile Alghoul
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Lin Y, Li J, Zhao H, McMahon A, McGhee K, Yan S. APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response. eLife 2023; 12:e82324. [PMID: 37216274 PMCID: PMC10202453 DOI: 10.7554/elife.82324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Cells have evolved the DNA damage response (DDR) pathways in response to DNA replication stress or DNA damage. In the ATR-Chk1 DDR pathway, it has been proposed that ATR is recruited to RPA-coated single-stranded DNA (ssDNA) by direct ATRIP-RPA interaction. However, it remains elusive how ATRIP is recruited to ssDNA in an RPA-independent manner. Here, we provide evidence that APE1 directly associates ssDNA to recruit ATRIP onto ssDNA in an RPA-independent fashion. The N-terminal motif within APE1 is required and sufficient for the APE1-ATRIP interaction in vitro and the distinct APE1-ATRIP interaction is required for ATRIP recruitment to ssDNA and the ATR-Chk1 DDR pathway activation in Xenopus egg extracts. In addition, APE1 directly associates with RPA70 and RPA32 via two distinct motifs. Taken together, our evidence suggests that APE1 recruits ATRIP onto ssDNA in an RPA-dependent and -independent manner in the ATR DDR pathway.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at CharlotteCharlotteUnited States
| | - Jia Li
- Department of Biological Sciences, University of North Carolina at CharlotteCharlotteUnited States
| | - Haichao Zhao
- Department of Biological Sciences, University of North Carolina at CharlotteCharlotteUnited States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at CharlotteCharlotteUnited States
| | - Kelly McGhee
- Department of Biological Sciences, University of North Carolina at CharlotteCharlotteUnited States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at CharlotteCharlotteUnited States
- School of Data Science, University of North Carolina at CharlotteCharlotteUnited States
- Center for Biomedical Engineering and Science, University of North Carolina at CharlotteCharlotteUnited States
| |
Collapse
|
5
|
Ruis K, Huynh O, Montales K, Barr NA, Michael WM. Delineation of a minimal topoisomerase II binding protein 1 (TOPBP1) for regulated activation of ATR at DNA double-strand breaks. J Biol Chem 2022; 298:101992. [PMID: 35490781 PMCID: PMC9257406 DOI: 10.1016/j.jbc.2022.101992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Topoisomerase II Binding Protein 1 (TOPBP1) is an important activator of the DNA damage response kinase Ataxia Telangiectasia and Rad3-related (ATR), although the mechanism by which this activation occurs is not yet known. TOPBP1 contains nine copies of the BRCA1 C-terminal repeat (BRCT) motif, which allows protein–protein and protein–DNA interactions. TOPBP1 also contains an ATR activation domain (AAD), which physically interacts with ATR and its partner ATR-interacting protein (ATRIP) in a manner that stimulates ATR kinase activity. It is unclear which of TOPBP1’s nine BRCT domains participate in the reaction, as well as the individual roles played by these relevant BRCT domains. To address this knowledge gap, here, we delineated a minimal TOPBP1 that can activate ATR at DNA double-strand breaks in a regulated manner. We named this minimal TOPBP1 “Junior” and we show that Junior is composed of just three regions: BRCT0-2, the AAD, and BRCT7&8. We further defined the individual functions of these three regions by showing that BRCT0-2 is required for recruitment to DNA double-strand breaks and is dispensable thereafter, and that BRCT7&8 is dispensable for recruitment but essential to allow the AAD to multimerize and activate ATR. The delineation of TOPBP1 Junior creates a leaner, simplified, and better understood TOPBP1 and provides insight into the mechanism of ATR activation.
Collapse
Affiliation(s)
- Kenna Ruis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Oanh Huynh
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Katrina Montales
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - Nina A Barr
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089
| | - W Matthew Michael
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089.
| |
Collapse
|
6
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Akhtar S, Najafzadeh M, Isreb M, Newton L, Gopalan RC, Anderson D. Ex vivo/in vitro protective effect of myricetin bulk and nano-forms on PhIP-induced DNA damage in lymphocytes from healthy individuals and pre-cancerous MGUS patients. Arch Toxicol 2020; 94:2349-2357. [PMID: 32342131 PMCID: PMC7367907 DOI: 10.1007/s00204-020-02754-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) is a central dietary mutagen, produced when proteinaceous food is heated at very high temperatures potentially causing DNA strand breaks. This study investigates the protective potential of a well-researched flavonoid, myricetin in its bulk and nano-forms against oxidative stress induced ex vivo/in vitro by PhIP in lymphocytes from pre-cancerous monoclonal gammopathy of undetermined significance (MGUS) patients and those from healthy individuals. The results from the Comet assay revealed that in the presence of myricetin bulk (10 µM) and myricetin nano (20 µM), the DNA damage caused by a high dose of PhIP (100 µM) was significantly (P < 0.001) reduced in both groups. However, nano has shown better protection in lymphocytes from pre-cancerous patients. Consistent results were obtained from the micronucleus assay where micronuclei frequency in binucleated cells significantly decreased upon supplementing PhIP with myricetin bulk (P < 0.01) and myricetin nano (P < 0.001), compared to the PhIP treatment alone. To briefly determine the cellular pathways involved in the protective role of myricetin against PhIP, we studied gene expression of P53 and ATR kinase (ATM- and Rad3-related), using the real-time PCR technique.
Collapse
Affiliation(s)
- Shabana Akhtar
- School of Chemistry and Biosciences, University of Bradford, Richmond Building, Bradford, BD7 1DP, UK
| | - Mojgan Najafzadeh
- School of Chemistry and Biosciences, University of Bradford, Richmond Building, Bradford, BD7 1DP, UK
| | - Mohammad Isreb
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Lisa Newton
- Bradford Royal Infirmary (BRI), Bradford, UK
| | - Rajendran C Gopalan
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Diana Anderson
- School of Chemistry and Biosciences, University of Bradford, Richmond Building, Bradford, BD7 1DP, UK.
| |
Collapse
|
8
|
Bellani MA, Huang J, Paramasivam M, Pokharel D, Gichimu J, Zhang J, Seidman MM. Imaging cellular responses to antigen tagged DNA damage. DNA Repair (Amst) 2018; 71:183-189. [PMID: 30166246 PMCID: PMC6340790 DOI: 10.1016/j.dnarep.2018.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repair pathways of covalent DNA damage are understood in considerable detail due to decades of brilliant biochemical studies by many investigators. An important feature of these experiments is the defined adduct location on oligonucleotide or plasmid substrates that are incubated with purified proteins or cell free extracts. With some exceptions, this certainty is lost when the inquiry shifts to the response of living mammalian cells to the same adducts in genomic DNA. This reflects the limitation of assays, such as those based on immunofluorescence, that are widely used to follow responding proteins in cells exposed to a DNA reactive compound. The lack of effective reagents for adduct detection means that the proximity between responding proteins and an adduct must be assumed. Since these assumptions can be incorrect, models based on in vitro systems may fail to account for observations made in vivo. Here we discuss the use of a detection tag to address the problem of lesion location, as illustrated by our recent work on replication dependent and independent responses to interstrand crosslinks.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jing Huang
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| | - Manikandan Paramasivam
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Durga Pokharel
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Julia Gichimu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| |
Collapse
|
9
|
Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:438-460. [PMID: 29466611 PMCID: PMC6031472 DOI: 10.1002/em.22176] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 05/10/2023]
Abstract
The growing incidence of melanoma is a serious public health issue that merits a thorough understanding of potential causative risk factors, which includes exposure to ultraviolet radiation (UVR). Though UVR has been classified as a complete carcinogen and has long been recognized for its ability to damage genomic DNA through both direct and indirect means, the precise mechanisms by which the UVA and UVB components of UVR contribute to the pathogenesis of melanoma have not been clearly defined. In this review, we therefore highlight recent studies that have addressed roles for UVA radiation in the generation of DNA damage and in modulating the subsequent cellular responses to DNA damage in melanocytes, which are the cell type that gives rise to melanoma. Recent research suggests that UVA not only contributes to the direct formation of DNA lesions but also impairs the removal of UV photoproducts from genomic DNA through oxidation and damage to DNA repair proteins. Moreover, the melanocyte microenvironment within the epidermis of the skin is also expected to impact melanomagenesis, and we therefore discuss several paracrine signaling pathways that have been shown to impact the DNA damage response in UV-irradiated melanocytes. Lastly, we examine how alterations to the immune microenvironment by UVA-associated DNA damage responses may contribute to melanoma development. Thus, there appear to be multiple avenues by which UVA may elevate the risk of melanoma. Protective strategies against excess exposure to UVA wavelengths of light therefore have the potential to decrease the incidence of melanoma. Environ. Mol. Mutagen. 59:438-460, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aiman Q Khan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Dayton Veterans Affairs Medical Center, Dayton, Ohio
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
10
|
Jarvis IW, Enlo‐Scott Z, Nagy E, Mudway IS, Tetley TD, Arlt VM, Phillips DH, Gollapudi B. Genotoxicity of fine and coarse fraction ambient particulate matter in immortalised normal (TT1) and cancer-derived (A549) alveolar epithelial cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:290-301. [PMID: 29368350 PMCID: PMC5947684 DOI: 10.1002/em.22166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 05/04/2023]
Abstract
Human exposure to airborne particulate matter (PM) is associated with adverse cardiopulmonary health effects, including lung cancer. Ambient PM represents a heterogeneous mixture of chemical classes including transition metals, polycyclic aromatic hydrocarbons (PAHs) and their derivatives such as nitro-PAHs, many of which are classified as putative carcinogens. As the primary site of human exposure to PM is the lungs, we investigated the response of two alveolar epithelial cell lines, the tumour-derived A549 and newly described TT1 cells, to fine and coarse PM collected from background and roadside locations. We show that coarse PM elicits a genotoxic response in the TT1 cells, with the strongest signal associated with the background sample. This response could be recapitulated using the organic extract derived from this sample. No responses were observed in PM-challenged A549 cells. Fine PM failed to elicit a genotoxic response in either cell line despite the higher PAH concentrations within this fraction. Consistent with the lack of a simplistic association between PM PAH content and the observed genotoxic response, TT1 cells treated with benzo[a]pyrene (BaP) demonstrated no increase in the selected markers. In contrast, a pattern of response was observed in TT1 cells challenged with 3-nitrobenzanthrone (3-NBA) similar to that with coarse PM. Together, these data illustrated the suitability of the TT1 cell line for assessing PM-induced genotoxicity and challenge the contention that fine roadside PM poses the higher cancer risk. Furthermore, the response to 3-NBA and not BaP suggests a major contribution of nitro-PAHs to the overall toxicity of PM. Environ. Mol. Mutagen. 59:290-301, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Ian W.H. Jarvis
- Department of Analytical, Environmental and Forensic Sciences, MRC‐PHE Centre for Environment and HealthKing's College LondonLondonUnited Kingdom
- NIHR HPRU in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health England in collaboration with Imperial College LondonLondonUnited Kingdom
| | - Zachary Enlo‐Scott
- Department of Analytical, Environmental and Forensic Sciences, MRC‐PHE Centre for Environment and HealthKing's College LondonLondonUnited Kingdom
| | - Eszter Nagy
- Department of Analytical, Environmental and Forensic Sciences, MRC‐PHE Centre for Environment and HealthKing's College LondonLondonUnited Kingdom
| | - Ian S. Mudway
- Department of Analytical, Environmental and Forensic Sciences, MRC‐PHE Centre for Environment and HealthKing's College LondonLondonUnited Kingdom
- NIHR HPRU in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health England in collaboration with Imperial College LondonLondonUnited Kingdom
| | - Teresa D. Tetley
- NIHR HPRU in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health England in collaboration with Imperial College LondonLondonUnited Kingdom
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC‐PHE Centre for Environment and HealthKing's College LondonLondonUnited Kingdom
- NIHR HPRU in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health England in collaboration with Imperial College LondonLondonUnited Kingdom
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC‐PHE Centre for Environment and HealthKing's College LondonLondonUnited Kingdom
- NIHR HPRU in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health England in collaboration with Imperial College LondonLondonUnited Kingdom
| | | |
Collapse
|
11
|
Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017; 30:1942-1955. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic landscape of cancer is one marred by instability, but the mechanisms that underlie these alterations are multifaceted and remain a topic of intense research. Cellular responses to DNA damage and/or replication stress can affect genome stability in tumors and influence the response of patients to therapy. In addition to direct repair, DNA damage tolerance (DDT) is an element of genomic maintenance programs that contributes to the etiology of several types of cancer. DDT mechanisms primarily act to resolve replication stress, and this can influence the effectiveness of genotoxic drugs. Translesion DNA synthesis (TLS) is an important component of DDT that facilitates direct bypass of DNA adducts and other barriers to replication. The central role of TLS in the bypass of drug-induced DNA lesions, the promotion of tumor heterogeneity, and the involvement of these enzymes in the maintenance of the cancer stem cell niche presents an opportunity to leverage inhibition of TLS as a way of improving existing therapies. In the review that follows, we summarize mechanisms of DDT, misregulation of TLS in cancer, and discuss the potential for targeting these pathways as a means of improving cancer therapies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
12
|
Kemp MG. DNA damage-induced ATM- and Rad-3-related (ATR) kinase activation in non-replicating cells is regulated by the XPB subunit of transcription factor IIH (TFIIH). J Biol Chem 2017; 292:12424-12435. [PMID: 28592488 DOI: 10.1074/jbc.m117.788406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Indexed: 11/06/2022] Open
Abstract
The role of the DNA damage response protein kinase ataxia telangiectasia-mutated (ATM)- and Rad-3-related (ATR) in the cellular response to DNA damage during the replicative phase of the cell cycle has been extensively studied. However, little is known about ATR kinase function in cells that are not actively replicating DNA and that constitute most cells in the human body. Using small-molecule inhibitors of ATR kinase and overexpression of a kinase-inactive form of the enzyme, I show here that ATR promotes cell death in non-replicating/non-cycling cultured human cells exposed to N-acetoxy-2-acetylaminofluorene (NA-AAF), which generates bulky DNA adducts that block RNA polymerase movement. Immunoblot analyses of soluble protein extracts revealed that ATR and other cellular proteins containing SQ motifs become rapidly and robustly phosphorylated in non-cycling cells exposed to NA-AAF in a manner largely dependent on ATR kinase activity but independent of the essential nucleotide excision repair factor XPA. Although the topoisomerase I inhibitor camptothecin also activated ATR in non-cycling cells, other transcription inhibitors that do not directly damage DNA failed to do so. Interestingly, genetic and pharmacological inhibition of the XPB subunit of transcription factor IIH prevented the accumulation of the single-stranded DNA binding protein replication protein A (RPA) on damaged chromatin and severely abrogated ATR signaling in response to NA-AAF and camptothecin. Together, these results reveal a previously unknown role for transcription factor IIH in ATR kinase activation in non-replicating, non-cycling cells.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435.
| |
Collapse
|
13
|
Lindsey-Boltz LA. Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint. Photochem Photobiol 2016; 93:238-244. [PMID: 27861980 DOI: 10.1111/php.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair and the ATR-mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair-checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair-checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF-ERCC1, XPG, TFIIH, RPA), the 5'-3' exonuclease EXO1, and the damage checkpoint proteins ATR-ATRIP and TopBP1. This coupled repair-checkpoint system was used to demonstrate that the ~30 nucleotide single-stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
14
|
Mimmler M, Peter S, Kraus A, Stroh S, Nikolova T, Seiwert N, Hasselwander S, Neitzel C, Haub J, Monien BH, Nicken P, Steinberg P, Shay JW, Kaina B, Fahrer J. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP. Nucleic Acids Res 2016; 44:10259-10276. [PMID: 27599846 PMCID: PMC5137439 DOI: 10.1093/nar/gkw791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 08/27/2016] [Indexed: 11/13/2022] Open
Abstract
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.
Collapse
Affiliation(s)
| | - Simon Peter
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Alexander Kraus
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Svenja Stroh
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Nina Seiwert
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | - Carina Neitzel
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jessica Haub
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Bernhard H Monien
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Petra Nicken
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
15
|
Kemp MG, Hu J. PostExcision Events in Human Nucleotide Excision Repair. Photochem Photobiol 2016; 93:178-191. [PMID: 27645806 DOI: 10.1111/php.12641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022]
Abstract
The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, including photoproducts induced by ultraviolet (UV) wavelengths of sunlight. A defining feature of nucleotide excision repair is its dual incision mechanism, in which two nucleolytic incision events on the damaged strand of DNA at sites bracketing the lesion generate a damage-containing DNA oligonucleotide and a single-stranded DNA gap approximately 30 nucleotides in length. Although the early events of nucleotide excision repair, which include lesion recognition and the dual incisions, have been explored in detail and are reasonably well understood, the fate of the single-stranded DNA gaps and excised oligonucleotide products of repair have not been as extensively examined. In this review, recent findings that address these less-explored aspects of nucleotide excision repair are discussed and support the concept that postincision gap and excised oligonucleotide processing are critical steps in the cellular response to DNA damage induced by UV light and other environmental carcinogens. Defects in these latter stages of repair lead to cell death and other DNA damage signaling responses and may therefore contribute to a number of human disease states associated with exposure to UV wavelengths of sunlight, including skin cancer, aging and autoimmunity.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
16
|
Kemp MG, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem 2016; 291:9330-42. [PMID: 26940878 DOI: 10.1074/jbc.m116.719740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 01/09/2023] Open
Abstract
ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens.
Collapse
Affiliation(s)
- Michael G Kemp
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
17
|
Wanrooij PH, Tannous E, Kumar S, Navadgi-Patil VM, Burgers PM. Probing the Mec1ATR Checkpoint Activation Mechanism with Small Peptides. J Biol Chem 2015; 291:393-401. [PMID: 26499799 DOI: 10.1074/jbc.m115.687145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 01/16/2023] Open
Abstract
Yeast Mec1, the ortholog of human ATR, is the apical protein kinase that initiates the cell cycle checkpoint in response to DNA damage and replication stress. The basal activity of Mec1 kinase is activated by cell cycle phase-specific activators. Three distinct activators stimulate Mec1 kinase using an intrinsically disordered domain of the protein. These are the Ddc1 subunit of the 9-1-1 checkpoint clamp (ortholog of human and Schizosaccharomyces pombe Rad9), the replication initiator Dpb11 (ortholog of human TopBP1 and S. pombe Cut5), and the multifunctional nuclease/helicase Dna2. Here, we use small peptides to determine the requirements for Mec1 activation. For Ddc1, we identify two essential aromatic amino acids in a hydrophobic environment that when fused together are proficient activators. Using this increased insight, we have been able to identify homologous motifs in S. pombe Rad9 that can activate Mec1. Furthermore, we show that a 9-amino acid Dna2-based peptide is sufficient for Mec1 activation. Studies with mutant activators suggest that binding of an activator to Mec1 is a two-step process, the first step involving the obligatory binding of essential aromatic amino acids to Mec1, followed by an enhancement in binding energy through interactions with neighboring sequences.
Collapse
Affiliation(s)
- Paulina H Wanrooij
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden, and
| | - Elias Tannous
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sandeep Kumar
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Vasundhara M Navadgi-Patil
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter M Burgers
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
18
|
Lindsey-Boltz LA, Kemp MG, Capp C, Sancar A. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Cell Cycle 2015; 14:99-108. [PMID: 25602520 DOI: 10.4161/15384101.2014.967076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ATR-Chk1 signaling pathway mediates cellular responses to DNA damage and replication stress and is composed of a number of core factors that are conserved throughout eukaryotic organisms. However, humans and other higher eukaryotic species possess additional factors that are implicated in the regulation of this signaling network but that have not been extensively studied. Here we show that RHINO (for Rad9, Rad1, Hus1 interacting nuclear orphan) forms complexes with both the 9-1-1 checkpoint clamp and TopBP1 in human cells even in the absence of treatments with DNA damaging agents via direct interactions with the Rad9 and Rad1 subunits of the 9-1-1 checkpoint clamp and with the ATR kinase activator TopBP1. The interaction of RHINO with 9-1-1 was of sufficient affinity to allow for the purification of a stable heterotetrameric RHINO-Rad9-Hus1-Rad1 complex in vitro. In human cells, a portion of RHINO localizes to chromatin in the absence of DNA damage, and this association is enriched following UV irradiation. Furthermore, we find that the tethering of a Lac Repressor (LacR)-RHINO fusion protein to LacO repeats in chromatin of mammalian cells induces Chk1 phosphorylation in a Rad9- and Claspin-dependent manner. Lastly, the loss of RHINO partially abrogates ATR-Chk1 signaling following UV irradiation without impacting the interaction of the 9-1-1 clamp with TopBP1 or the loading of 9-1-1 onto chromatin. We conclude that RHINO is a bona fide regulator of ATR-Chk1 signaling in mammalian cells.
Collapse
Key Words
- 9-1-1, Rad9-Hus1-Rad1
- ATR, Ataxia telangiectasia-mutated and Rad3-related
- DNA damage checkpoint
- DNA damage response
- IP, immunoprecipitation
- RHINO, Rad9, Hus1, Rad1 interacting nuclear orphan
- RPA, Replication Protein A
- TopBP1, Topoisomerase binding protein 1
- UV, ultraviolet
- checkpoint clamp
- checkpoint kinase
- chromatin
- protein-protein interaction
- ssDNA, single-stranded DNA
- ultraviolet light
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- a From the Department of Biochemistry and Biophysics ; University of North Carolina School of Medicine ; Chapel Hill , NC USA
| | | | | | | |
Collapse
|
19
|
Takeishi Y, Iwaya-Omi R, Ohashi E, Tsurimoto T. Intramolecular Binding of the Rad9 C Terminus in the Checkpoint Clamp Rad9-Hus1-Rad1 Is Closely Linked with Its DNA Binding. J Biol Chem 2015; 290:19923-32. [PMID: 26088138 DOI: 10.1074/jbc.m115.669002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/20/2022] Open
Abstract
The human checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) is loaded onto chromatin by its loader complex, Rad17-RFC, following DNA damage. The 120-amino acid (aa) stretch of the Rad9 C terminus (C-tail) is unstructured and projects from the core ring structure (CRS). Recent studies showed that 9-1-1 and CRS bind DNA independently of Rad17-RFC. The DNA-binding affinity of mutant 9(ΔC)-1-1, which lacked the Rad9 C-tail, was much higher than that of wild-type 9-1-1, suggesting that 9-1-1 has intrinsic DNA binding activity that manifests in the absence of the C-tail. C-tail added in trans interacted with CRS and prevented it from binding to DNA. We narrowed down the amino acid sequence in the C-tail necessary for CRS binding to a 15-aa stretch harboring two conserved consecutive phenylalanine residues. We prepared 9-1-1 mutants containing the variant C-tail deficient for CRS binding, and we demonstrated that the mutant form restored DNA binding as efficiently as 9(ΔC)-1-1. Furthermore, we mapped the sequence necessary for TopBP1 binding within the same 15-aa stretch, demonstrating that TopBP1 and CRS share the same binding region in the C-tail. Indeed, we observed their competitive binding to the C-tail with purified proteins. The importance of interaction between 9-1-1 and TopBP1 for DNA damage signaling suggests that the competitive interactions of TopBP1 and CRS with the C-tail will be crucial for the activation mechanism.
Collapse
Affiliation(s)
- Yukimasa Takeishi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Rie Iwaya-Omi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Eiji Ohashi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiki Tsurimoto
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
20
|
Broderick R, Nieminuszczy J, Blackford AN, Winczura A, Niedzwiedz W. TOPBP1 recruits TOP2A to ultra-fine anaphase bridges to aid in their resolution. Nat Commun 2015; 6:6572. [PMID: 25762097 PMCID: PMC4374157 DOI: 10.1038/ncomms7572] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
During mitosis, sister chromatids must be faithfully segregated to ensure that daughter cells receive one copy of each chromosome. However, following replication they often remain entangled. Topoisomerase IIα (TOP2A) has been proposed to resolve such entanglements, but the mechanisms governing TOP2A recruitment to these structures remain poorly understood. Here, we identify TOPBP1 as a novel interactor of TOP2A, and reveal that it is required for TOP2A recruitment to ultra-fine anaphase bridges (UFBs) in mitosis. The C-terminal region of TOPBP1 interacts with TOP2A, and TOPBP1 recruitment to UFBs requires its BRCT domain 5. Depletion of TOPBP1 leads to accumulation of UFBs, the majority of which arise from centromeric loci. Accordingly, expression of a TOPBP1 mutant that is defective in TOP2A binding phenocopies TOP2A depletion. These findings provide new mechanistic insights into how TOP2A promotes resolution of UFBs during mitosis, and highlights a pivotal role for TOPBP1 in this process.
Collapse
Affiliation(s)
- Ronan Broderick
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jadwiga Nieminuszczy
- 1] Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK [2] Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Andrew N Blackford
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alicja Winczura
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Wojciech Niedzwiedz
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
21
|
Ohashi E, Takeishi Y, Ueda S, Tsurimoto T. Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. DNA Repair (Amst) 2014; 21:1-11. [PMID: 25091155 DOI: 10.1016/j.dnarep.2014.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022]
Abstract
The checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9-1-1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9-1-1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Yukimasa Takeishi
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Satoshi Ueda
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
22
|
Bolderson E, Petermann E, Croft L, Suraweera A, Pandita RK, Pandita TK, Helleday T, Khanna KK, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks. Nucleic Acids Res 2014; 42:6326-36. [PMID: 24753408 PMCID: PMC4041449 DOI: 10.1093/nar/gku276] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Collapse
Affiliation(s)
- Emma Bolderson
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | - Eva Petermann
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laura Croft
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | - Amila Suraweera
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | - Raj K Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tej K Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Derek J Richard
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
23
|
Lindsey-Boltz LA, Kemp MG, Reardon JT, DeRocco V, Iyer RR, Modrich P, Sancar A. Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system. J Biol Chem 2014; 289:5074-82. [PMID: 24403078 DOI: 10.1074/jbc.m113.542787] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | | | | | | | | | | | | |
Collapse
|
24
|
Kelly R, Davey SK. Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit. PLoS One 2013; 8:e85859. [PMID: 24376897 PMCID: PMC3869942 DOI: 10.1371/journal.pone.0085859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 11/23/2022] Open
Abstract
Genomic integrity is preserved by checkpoints, which act to delay cell cycle progression in the presence of DNA damage or replication stress. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex is a PCNA-like clamp that is loaded onto DNA at structures resulting from damage and is important for initiating and maintaining the checkpoint response. Rad9 possesses a C-terminal tail that is phosphorylated constitutively and in response to cell cycle position and DNA damage. Previous studies have identified tousled-like kinase 1 (TLK1) as a kinase that may modify Rad9. Here we show that Rad9 is phosphorylated in a TLK-dependent manner in vitro and in vivo, and that T355 within the C-terminal tail is the primary targeted residue. Phosphorylation of Rad9 at T355 is quickly reduced upon exposure to ionizing radiation before returning to baseline later in the damage response. We also show that TLK1 and Rad9 interact constitutively, and that this interaction is enhanced in chromatin-bound Rad9 at later stages of the damage response. Furthermore, we demonstrate via siRNA-mediated depletion that TLK1 is required for progression through S-phase in normally cycling cells, and that cells lacking TLK1 display a prolonged G2/M arrest upon exposure to ionizing radiation, a phenotype that is mimicked by over-expression of a Rad9-T355A mutant. Given that TLK1 has previously been shown to be transiently inactivated upon phosphorylation by Chk1 in response to DNA damage, we propose that TLK1 and Chk1 act in concert to modulate the phosphorylation status of Rad9, which in turn serves to regulate the DNA damage response.
Collapse
Affiliation(s)
- Ryan Kelly
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott K. Davey
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Saha J, Wang M, Cucinotta FA. Investigation of switch from ATM to ATR signaling at the sites of DNA damage induced by low and high LET radiation. DNA Repair (Amst) 2013; 12:1143-51. [PMID: 24238855 DOI: 10.1016/j.dnarep.2013.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 01/11/2023]
Abstract
Upon induction of DNA damage by ionizing radiation (IR), members of the phosphatidylinositol 3-kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM), DNA-PKcs, and ATM- and Rad3-related (ATR) maintain genomic integrity by mounting DNA damage response (DDR). Recent reports suggest that activation of ATM and ATR are oppositely regulated by the length of single stranded overhangs generated during end processing by nucleases at the break sites. These stretches of single stranded overhangs hold the clue for the transition from ATM to ATR signaling at broken DNA ends. We investigated whether differential processing of breaks induced by low and high LET radiation augments the phenomenon of switching from ATM to ATR kinase and hence a concomitant NHEJ to HR transition at the sites of DNA damage. 82-6 human fibroblasts were irradiated with 1 or 2Gy of γ-rays and particle radiation of increasing LET in order to increase the complexity and variability of DNA double strand breaks (DSB) structures. The activation kinetics of ATM and ATR kinases along with their downstream substrates were determined utilizing Western blotting and immunofluorescence techniques. Our data provide evidence of a potential switch from ATM to ATR kinase signaling in cells treated with γ-rays at approximately 2h post irradiation, with induction and completion of resection denoted by Rad51 foci resolution kinetics and observed with a significant decline of phosphorylated ATR kinase 8h after IR. On the other hand, irradiation with high LET 600MeV/u (56)Fe (180keV/μm) and 170MeV/u (28)Si (99keV/μm) particles show a similar Rad51 foci decay kinetics, however, exhibiting prolonged resection, evident by the persistent phosphorylated ATM and ATR kinase until 24h post irradiation. This residual effect, however, was significantly reduced for 250MeV/u (16)O particles of moderate LET (25keV/μm) and absent for γ-rays. Hence, our results support the hypothesis that the transition from ATM to ATR signaling at DNA break sites is extended for longer periods of time, indicated by sustained resection due to the complex type of damage induced, a hallmark of high LET radiation, which may contribute to its increased biological effectiveness.
Collapse
Affiliation(s)
- Janapriya Saha
- Division of Space Life Sciences, Universities Space Research Association, 3600 Bay Area Blvd., Houston, TX 77058, USA
| | | | | |
Collapse
|
26
|
Ozkan-Dagliyan I, Chiou YY, Ye R, Hassan BH, Ozturk N, Sancar A. Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J Biol Chem 2013; 288:23244-51. [PMID: 23833191 DOI: 10.1074/jbc.m113.493361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.
Collapse
Affiliation(s)
- Irem Ozkan-Dagliyan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
27
|
Hassan BH, Lindsey-Boltz LA, Kemp MG, Sancar A. Direct role for the replication protein treslin (Ticrr) in the ATR kinase-mediated checkpoint response. J Biol Chem 2013; 288:18903-10. [PMID: 23696651 DOI: 10.1074/jbc.m113.475517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TopBP1 (topoisomerase IIβ-binding protein 1) is a dual replication/checkpoint protein. Treslin/Ticrr, an essential replication protein, was discovered as a binding partner for TopBP1 and also in a genetic screen for checkpoint regulators in zebrafish. Treslin is phosphorylated by CDK2/cyclin E in a cell cycle-dependent manner, and its phosphorylation state dictates its interaction with TopBP1. The role of Treslin in the initiation of DNA replication has been partially elucidated; however, its role in the checkpoint response remained elusive. In this study, we show that Treslin stimulates ATR phosphorylation of Chk1 both in vitro and in vivo in a TopBP1-dependent manner. Moreover, we show that the phosphorylation state of Treslin at Ser-1000 is important for its checkpoint activity. Overall, our results indicate that, like TopBP1, Treslin is a dual replication/checkpoint protein that directly participates in ATR-mediated checkpoint signaling.
Collapse
Affiliation(s)
- Bachar H Hassan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
28
|
González Besteiro MA, Ulm R. ATR and MKP1 play distinct roles in response to UV-B stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:1034-1043. [PMID: 23237049 DOI: 10.1111/tpj.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) stress activates MAP kinases (MAPKs) MPK3 and MPK6 in Arabidopsis. MAPK activity must be tightly controlled in order to ensure an appropriate cellular outcome. MAPK phosphatases (MKPs) effectively control MAPKs by dephosphorylation of phosphothreonine and phosphotyrosine in their activation loops. Arabidopsis MKP1 is an important regulator of MPK3 and MPK6, and mkp1 knockout mutants are hypersensitive to UV-B stress, which is associated with reduced inactivation of MPK3 and MPK6. Here, we demonstrate that MPK3 and MPK6 are hyperactivated in response to UV-B in plants that are deficient in photorepair, suggesting that UV-damaged DNA is a trigger of MAPK signaling. This is not due to a block in replication, as, in contrast to atr, the mkp1 mutant is not hypersensitive to the replication-inhibiting drug hydroxyurea, hydroxyurea does not activate MPK3 and MPK6, and atr is not impaired in MPK3 and MPK6 activation in response to UV-B. We further show that mkp1 leaves and roots are UV-B hypersensitive, whereas atr is mainly affected at the root level. Tolerance to UV-B stress has been previously associated with stem cell removal and CYCB1;1 accumulation. Although UV-B-induced stem cell death and CYCB1;1 expression are not altered in mkp1 roots, CYCB1;1 expression is reduced in mkp1 leaves. We conclude that the MKP1 and ATR pathways operate in parallel, with primary roles for ATR in roots and MKP1 in leaves.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211, Geneva 4, Switzerland
| | | |
Collapse
|
29
|
Kumar S, Burgers PM. Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes Dev 2013; 27:313-21. [PMID: 23355394 DOI: 10.1101/gad.204750.112] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initiation of the DNA replication checkpoint in yeast is mainly mediated by Mec1 protein kinase, the ortholog of human ATR, while its homolog Tel1, the ortholog of human ATM, has a minor replication checkpoint function. Checkpoint initiation requires stimulation of Mec1 kinase activity by specific activators. Saccharomyces cerevisiae Dna2, a nuclease-helicase that is essential for Okazaki fragment maturation, is employed specifically during S phase to stimulate Mec1 kinase and initiate the replication checkpoint. Mutations (W128A and Y130A) in the unstructured N terminus of Dna2 abrogate its checkpoint function in vitro and in vivo. Dna2 shows partial redundancy for the replication checkpoint with checkpoint initiators 9-1-1 (S. cerevisiae Ddc1-Mec3-Rad17 and human Rad9-Rad1-Hus1) and Dpb11, the ortholog of human TopBP1. A triple mutant that eliminates the checkpoint functions of all three initiators abrogates the Mec1-dependent checkpoint.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
30
|
Jarvis IWH, Bergvall C, Bottai M, Westerholm R, Stenius U, Dreij K. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter. Toxicol Appl Pharmacol 2012; 266:408-18. [PMID: 23220466 DOI: 10.1016/j.taap.2012.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 01/12/2023]
Abstract
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs.
Collapse
Affiliation(s)
- Ian W H Jarvis
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Lindsey-Boltz LA, Reardon JT, Wold MS, Sancar A. In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling. J Biol Chem 2012; 287:36123-31. [PMID: 22948311 DOI: 10.1074/jbc.m112.407825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
32
|
Noguchi C, Rapp JB, Skorobogatko YV, Bailey LD, Noguchi E. Swi1 associates with chromatin through the DDT domain and recruits Swi3 to preserve genomic integrity. PLoS One 2012; 7:e43988. [PMID: 22952839 PMCID: PMC3431386 DOI: 10.1371/journal.pone.0043988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Swi1 and Swi3 form the replication fork protection complex and play critical roles in proper activation of the replication checkpoint and stabilization of replication forks in the fission yeast Schizosaccharomyces pombe. However, the mechanisms by which the Swi1-Swi3 complex regulates these processes are not well understood. Here, we report functional analyses of the Swi1-Swi3 complex in fission yeast. Swi1 possesses the DDT domain, a putative DNA binding domain found in a variety of chromatin remodeling factors. Consistently, the DDT domain-containing region of Swi1 interacts with DNA in vitro, and mutations in the DDT domain eliminate the association of Swi1 with chromatin in S. pombe cells. DDT domain mutations also render cells highly sensitive to S-phase stressing agents and induce strong accumulation of Rad22-DNA repair foci, indicating that the DDT domain is involved in the activity of the Swi1-Swi3 complex. Interestingly, DDT domain mutations also abolish Swi1's ability to interact with Swi3 in cells. Furthermore, we show that Swi1 is required for efficient chromatin association of Swi3 and that the Swi1 C-terminal domain directly interacts with Swi3. These results indicate that Swi1 associates with chromatin through its DDT domain and recruits Swi3 to function together as the replication fork protection complex.
Collapse
Affiliation(s)
- Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jordan B. Rapp
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yuliya V. Skorobogatko
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lauren D. Bailey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Niziolek-Kierecka M, Dreij K, Lundstedt S, Stenius U. γH2AX, pChk1, and Wip1 as Potential Markers of Persistent DNA Damage Derived from Dibenzo[a,l]pyrene and PAH-Containing Extracts from Contaminated Soils. Chem Res Toxicol 2012; 25:862-72. [DOI: 10.1021/tx200436n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
34
|
Dudkin VY, Rickert K, Kreatsoulas C, Wang C, Arrington KL, Fraley ME, Hartman GD, Yan Y, Ikuta M, Stirdivant SM, Drakas RA, Walsh ES, Hamilton K, Buser CA, Lobell RB, Sepp-Lorenzino L. Pyridyl aminothiazoles as potent inhibitors of Chk1 with slow dissociation rates. Bioorg Med Chem Lett 2012; 22:2609-12. [PMID: 22374217 DOI: 10.1016/j.bmcl.2012.01.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/25/2022]
Abstract
Pyridyl aminothiazoles comprise a novel class of ATP-competitive Chk1 inhibitors with excellent inhibitory potential. Modification of the core with ethylenediamine amides provides compounds with low picomolar potency and very high residence times. Investigation of binding parameters of such compounds using X-ray crystallography and molecular dynamics simulations revealed multiple hydrogen bonds to the enzyme backbone as well as stabilization of the conserved water molecules network in the hydrophobic binding region.
Collapse
Affiliation(s)
- Vadim Y Dudkin
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yilmaz S, Sancar A, Kemp MG. Multiple ATR-Chk1 pathway proteins preferentially associate with checkpoint-inducing DNA substrates. PLoS One 2011; 6:e22986. [PMID: 21829571 PMCID: PMC3146532 DOI: 10.1371/journal.pone.0022986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/08/2011] [Indexed: 12/02/2022] Open
Abstract
The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses.
Collapse
Affiliation(s)
- Seçil Yilmaz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Michael G. Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Mec1 [ATR (ataxia telangiectasia mutated- and Rad3-related) in humans] is the principle kinase responsible for checkpoint activation in response to replication stress and DNA damage in Saccharomyces cerevisiae. The heterotrimeric checkpoint clamp, 9-1-1 (checkpoint clamp of Rad9, Rad1 and Hus1 in humans and Ddc1, Rad17 and Mec3 in S. cerevisiae; Ddc1-Mec3-Rad17) and the DNA replication initiation factor Dpb11 (human TopBP1) are the two known activators of Mec1. The 9-1-1 clamp functions in checkpoint activation in G1- and G2-phase, but its employment differs between these two phases of the cell cycle. The Ddc1 (human Rad9) subunit of the clamp directly activates Mec1 in G1-phase, an activity identified only in S. cerevisiae so far. However, in G2-phase, the 9-1-1 clamp activates the checkpoint by two mechanisms. One mechanism includes direct activation of Mec1 by the unstructured C-terminal tail of Ddc1. The second mech-anism involves the recruitment of Dpb11 by the phosphorylated C-terminal tail of Ddc1. The latter mechanism is highly conserved and also functions in response to replication stress in higher eukaryotes. In S. cerevisiae, however, both the 9-1-1 clamp and the Dpb11 are partially redundant for checkpoint activation in response to replication stress, suggesting the existence of additional activators of Mec1.
Collapse
|
37
|
Lindsey-Boltz LA, Sancar A. Tethering DNA damage checkpoint mediator proteins topoisomerase IIbeta-binding protein 1 (TopBP1) and Claspin to DNA activates ataxia-telangiectasia mutated and RAD3-related (ATR) phosphorylation of checkpoint kinase 1 (Chk1). J Biol Chem 2011; 286:19229-36. [PMID: 21502314 PMCID: PMC3103301 DOI: 10.1074/jbc.m111.237958] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/14/2011] [Indexed: 01/04/2023] Open
Abstract
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.
Collapse
Affiliation(s)
- Laura A. Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
38
|
Kemp MG, Lindsey-Boltz LA, Sancar A. The DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) Are stimulated by bulky adduct-containing DNA. J Biol Chem 2011; 286:19237-46. [PMID: 21487018 PMCID: PMC3103302 DOI: 10.1074/jbc.m111.235036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/02/2011] [Indexed: 11/06/2022] Open
Abstract
A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.
Collapse
Affiliation(s)
- Michael G. Kemp
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Laura A. Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
39
|
Lin Y, Wilson JH. Transcription-induced DNA toxicity at trinucleotide repeats: double bubble is trouble. Cell Cycle 2011; 10:611-8. [PMID: 21293182 DOI: 10.4161/cc.10.4.14729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trinucleotide repeats (TNR) are a blessing and a curse. In coding regions, where they are enriched, short repeats offer the potential for continuous, rapid length variation with linked incremental changes in the activity of the encoded protein, a valuable source of variation for evolution. But at the upper end of these benign and beneficial lengths, trinucleotide repeats become very unstable, with a dangerous bias toward continual expansion, which can lead to neurological diseases in humans. The mechanisms of expansion are varied and the links to disease are complex. Where they have been delineated, however, they have often revealed unexpected, fundamental aspects of the underlying cell biology. Nowhere is this more apparent than in recent studies, which indicate that expanded CAG repeats can form toxic sites in the genome, which can, upon interaction with normal components of DNA metabolism, trigger cell death. Here we discuss the phenomenon of TNR-induced DNA toxicity, with special emphasis on the role of transcription. Transcription-induced DNA toxicity may have profound biological consequences, with particular relevance to repeat-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX USA.
| | | |
Collapse
|
40
|
Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LHF. UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 2011; 124:435-46. [PMID: 21224401 DOI: 10.1242/jcs.075325] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition of cell cycle progression upon release from G0 phase. In the absence of repair, UV-induced checkpoint activation coincides with the formation of single-strand DNA breaks by the action of the endonuclease Ape1. Although temporally distinct, activation of checkpoint proteins in NER-proficient and NER-deficient cells depends on a common pathway involving the ATR kinase. These data reveal that damage signaling in non-dividing cells proceeds via NER-dependent and NER-independent processing of UV photolesions through generation of DNA strand breaks, ultimately preventing the transition from G1 to S phase.
Collapse
Affiliation(s)
- Mischa G Vrouwe
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cell cycle checkpoints operating through a network of multiple signaling pathways provide a key mechanism for self-defense of cells against DNA damage caused by various endogenous or environmental stresses. In cancer treatment, checkpoints are activated in response to diverse DNA-damaging agents and radiation, thus representing a critical barrier limiting therapeutic efficacy. To date, despite efforts to target other components of checkpoint signaling pathways (e.g., ATM, Chk2, Wee1), checkpoint kinase 1 (Chk1) remains the most important target for cancer treatment because of its functional association with essentially all cell cycle checkpoints. The primary goal in the development of therapeutic agents targeting cell cycle checkpoints continues to be improving the anti-cancer activity of chemo- and radiotherapy by abrogating checkpoints necessary for DNA repair, thereby killing cancer cells through engagement of the apoptotic machinery.
Collapse
Affiliation(s)
- Yun Dai
- Hematology/Oncology, Virginia Commonwealth University, 23298, Richmond, VA, USA.
| | | |
Collapse
|
42
|
ATRIP from TopBP1 to ATR--in vitro activation of a DNA damage checkpoint. Proc Natl Acad Sci U S A 2010; 107:13561-2. [PMID: 20660767 DOI: 10.1073/pnas.1008909107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Masai H, Tanaka T, Kohda D. Stalled replication forks: Making ends meet for recognition and stabilization. Bioessays 2010; 32:687-97. [DOI: 10.1002/bies.200900196] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proc Natl Acad Sci U S A 2010; 107:13660-5. [PMID: 20616048 DOI: 10.1073/pnas.1007856107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.
Collapse
|
45
|
Interference of Chkl/2 by RNA Regulates G2/M Arrest and Expressions of Cell Cycle Related Proteins Induced by Diallyl Disulfide*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Kemp MG, Akan Z, Yilmaz S, Grillo M, Smith-Roe SL, Kang TH, Cordeiro-Stone M, Kaufmann WK, Abraham RT, Sancar A, Unsal-Kaçmaz K. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J Biol Chem 2010; 285:16562-71. [PMID: 20233725 DOI: 10.1074/jbc.m110.110304] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Navadgi-Patil VM, Burgers PM. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol Cell 2010; 36:743-53. [PMID: 20005839 DOI: 10.1016/j.molcel.2009.10.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/11/2009] [Accepted: 09/23/2009] [Indexed: 12/26/2022]
Abstract
DNA damage checkpoint pathways operate to prevent cell-cycle progression in response to DNA damage and replication stress. In S. cerevisiae, Mec1-Ddc2 (human ATR-ATRIP) is the principal checkpoint protein kinase. Biochemical studies have identified two factors, the 9-1-1 checkpoint clamp and the Dpb11/TopBP1 replication protein, as potential activators of Mec1/ATR. Here, we show that G1 phase checkpoint activation of Mec1 is achieved by the Ddc1 subunit of 9-1-1, while Dpb11 is dispensable. However, in G2, 9-1-1 activates Mec1 by two distinct mechanisms. One mechanism involves direct activation of Mec1 by Ddc1, while the second proceeds by Dpb11 recruitment mediated through Ddc1 T602 phosphorylation. Two aromatic residues, W352 and W544, localized to two widely separated, conserved motifs of Ddc1, are essential for Mec1 activation in vitro and checkpoint function in G1. Remarkably, small peptides that fuse the two tryptophan-containing motifs together are proficient in activating Mec1.
Collapse
Affiliation(s)
- Vasundhara M Navadgi-Patil
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
48
|
Abstract
The DNA damage response (DDR) represents a complex network of multiple signaling pathways involving cell cycle checkpoints, DNA repair, transcriptional programs, and apoptosis, through which cells maintain genomic integrity following various endogenous (metabolic) or environmental stresses. In cancer treatment, the DDR occurs in response to various genotoxic insults by diverse cytotoxic agents and radiation, representing an important mechanism limiting chemotherapeutic and radiotherapeutic efficacy. This has prompted the development of agents targeting DDR signaling pathways, particularly checkpoint kinase 1 (Chk1), which contributes to all currently defined cell cycle checkpoints, including G1/S, intra-S-phase, G2/M, and the mitotic spindle checkpoint. Although numerous agents have been developed with the primary goal of enhancing the activity of DNA-damaging agents or radiation, the therapeutic outcome of this strategy remains to be determined. Recently, new insights into DDR signaling pathways support the notion that Chk1 represents a core component central to the entire DDR, including direct involvement in DNA repair and apoptotic events in addition to checkpoint regulation. Together, these new insights into the role of Chk1 in the DDR machinery could provide an opportunity for novel approaches to the development of Chk1 inhibitor strategies.
Collapse
Affiliation(s)
- Yun Dai
- Departments of Medicine, Virginia Commonwealth University/Massey Cancer Center, and the Virginia Institute for Molecular Medicine, Richmond, VA 23298
| | - Steven Grant
- Departments of Medicine, Virginia Commonwealth University/Massey Cancer Center, and the Virginia Institute for Molecular Medicine, Richmond, VA 23298
| |
Collapse
|
49
|
Abstract
Human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and its orthologues in other organisms are proteins consisting of multiple BRCT modules that have acquired several functions during evolution. These proteins execute their tasks by interacting with a great variety of proteins involved in nuclear processes. TopBP1 is an essential protein that has numerous roles in the maintenance of the genomic integrity. In particular, it is required for the activation of ATM and Rad3-related (ATR), a vital regulator of DNA replication and replication stress response. The orthologues from yeast to human are involved in DNA replication and DNA damage response, while only proteins from higher eukaryotes are also involved in complex regulation of transcription, which is related to cell proliferation, damage response and apoptosis. We review here the recent progress in research aimed at elucidating the multiple cellular functions of TopBP1, focusing on metazoan systems.
Collapse
|
50
|
Liu Y, Fang Y, Shao H, Lindsey-Boltz L, Sancar A, Modrich P. Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. J Biol Chem 2009; 285:5974-82. [PMID: 20029092 PMCID: PMC2820822 DOI: 10.1074/jbc.m109.076109] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
At clinically relevant doses, chemotherapeutic SN1 DNA methylating agents induce an ATR-mediated checkpoint response in human cells that is dependent on functional MutSα and MutLα. Deficiency of either mismatch repair activity renders cells highly resistant to this class of drug, but the mechanisms linking mismatch repair to checkpoint activation have remained elusive. In this study we have systematically examined the interactions of human MutSα and MutLα with proteins of the ATR-Chk1 pathway using both nuclear extracts and purified proteins. Using nuclear co-immunoprecipitation, we have detected interaction of MutSα with ATR, TopBP1, Claspin, and Chk1 and interaction of MutLα with TopBP1 and Claspin. We were unable to detect interaction of MutSα or MutLα with Rad17, Rad9, or replication protein A in the extract system. Use of purified proteins confirmed direct interaction of MutSα with ATR, TopBP1, and Chk1 and of MutLα with TopBP1. MutSα-Claspin and MutLα-Claspin interactions were not demonstrable with purified proteins, suggesting that extract interactions are indirect or depend on post-translational modification. Use of a modified chromatin immunoprecipitation assay showed that proliferating cell nuclear antigen, ATR, TopBP1, and Chk1 are recruited to chromatin in a MutLα- and MutSα-dependent fashion after N-methyl-N′-nitro-N-nitrosoguanidine treatment. However, chromatin enrichment of replication protein A, Claspin, Rad17-RFC, and Rad9-Rad1-Hus1 was not detected in these experiments. Although our failure to observe enrichment of the latter activities could be due to sensitivity limitations, these observations may indicate a novel mechanism for ATR activation.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|