1
|
Men Y, Hirayama S, Ao S, Sakurai Y, Shibata Y, Lo M, Sato Y, Murata S. ESCRT-I and PTPN23 mediate microautophagy of ubiquitylated tau aggregates. J Cell Biol 2025; 224:e202406120. [PMID: 40197510 PMCID: PMC11977513 DOI: 10.1083/jcb.202406120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/09/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Protein aggregates are degraded by both the autophagy-lysosomal and the ubiquitin-proteasome pathways. Macroautophagy and microautophagy, two forms of the autophagy-lysosomal pathway, are widely conserved across eukaryotes. While macroautophagy has been extensively studied in the context of degradation of protein aggregates, microautophagy remains less explored. Here, we identify the UBAP1-containing ESCRT-I complex and PTPN23 as new regulators for degradation of aggregated proteins through an unbiased genome-wide CRISPR knockout screen, using a cell line expressing tau repeat domain (tauRD) aggregates. ESCRT-I recognizes ubiquitylated tauRD via the UEV domain of TSG101. The accessory protein PTPN23, instead of ESCRT-II, bridges ESCRT-I and ESCRT-III to complete the endosomal microautophagy of ubiquitylated tauRD aggregates. Our results uncover the molecular mechanism underlying the degradation of tau aggregates by endosomal microautophagy.
Collapse
Affiliation(s)
- Yusen Men
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinpei Ao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakurai
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuri Shibata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Megan Lo
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sato
- Department of Chemistry and Biotechnology and Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Yeat NY, Liu LH, Chang YH, Lai CPK, Chen RH. Bro1 proteins determine tumor immune evasion and metastasis by controlling secretion or degradation of multivesicular bodies. Dev Cell 2025:S1534-5807(25)00155-8. [PMID: 40185104 DOI: 10.1016/j.devcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Exosomes play pleiotropic tumor-promoting functions and are secreted by fusion of multivesicular bodies (MVBs) with the plasma membrane. However, MVBs are also directed to lysosomes for degradation, and the mechanism controlling different fates of MVBs remains elusive. Here, we show that the pro-tumor protein WDR4 enhances exosome secretion from mouse and human cancer cells through degrading the endosomal sorting complex required for transport (ESCRT)-associated Bro1-family protein PTPN23. Mechanistically, PTPN23 and ALIX compete for binding to syntenin, thereby directing MVBs toward degradation and secretion, respectively. ALIX, but not PTPN23, recruits actin-capping proteins CAPZA1/CAPZB to prevent branched filamentous actin (F-actin) accumulation around MVBs, thus enabling MVBs trafficking to the cell periphery for secretion. Functionally, WDR4/ALIX-dependent exosomes load a set of pro-tumor proteins through LAMP2A, thereby potentiating metastasis and immune evasion in mice. Our study highlights a previously unappreciated coupling between the biogenesis mechanism and the fate decision of MVBs and its importance in determining exosomal cargos, which have a profound impact on tumor progression.
Collapse
Affiliation(s)
- Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Li-Heng Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Hsuan Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
He Y, Li W, Zhang M, Wang H, Lin P, Yu Y, Huang B, Hao M, He J, Kong W, Luo D, Xu T, Wang J, Huang Y, Zhao Q, Liu Y, Zhang J, Nian Y, Zhang L, Zhu B, Yin C. PTPN23-dependent activation of PI3KC2α is a therapeutic vulnerability of BRAF-mutant cancers. J Exp Med 2025; 222:e20241147. [PMID: 39841180 PMCID: PMC11753290 DOI: 10.1084/jem.20241147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells. Silencing PTPN23 selectively kills BRAF-mutant melanoma cells but not those with wild-type BRAF. Mechanistically, PTPN23, a catalytically inactive phosphatase, intriguingly induces WNK3-mediated phosphorylation of phosphoinositide 3-kinase class II alpha (PI3KC2α) at serine 329, enhancing its catalytic activity. This activation promotes production of PI(3,4)P2 and subsequent AKT2 activation at endosomes to support cell survival. Genetic or pharmacological targeting of the PTPN23-PI3KC2α-AKT2 signaling axis, alone or in combination with BRAF inhibitors, effectively inhibits the growth of BRAF-mutant melanoma and other cancers in vitro and in vivo. We also demonstrate that melanocyte-specific knockout of PTPN23 significantly inhibits BRAFV600E-driven melanomagenesis. Altogether, our findings demonstrate that targeting PTPN23/PI3KC2α offers a new and viable therapeutic strategy for BRAF-mutant cancers.
Collapse
Affiliation(s)
- Ying He
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei Li
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Meiling Zhang
- Medical Research Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
| | - Peilu Lin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Bin Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Meng Hao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianuo He
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- School of Artificial Intelligence, Nanjing University, Nanjing, China
| | - Weiyao Kong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Dan Luo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tengteng Xu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
| | - Jiaqi Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ying Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Qinwen Zhao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhang
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- School of Artificial Intelligence, Nanjing University, Nanjing, China
| | - Yong Nian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Bo Zhu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, China
| |
Collapse
|
4
|
Kobia FM, Castro E Almeida L, Paganoni AJ, Carminati F, Andronache A, Lavezzari F, Wade M, Vaccari T. Novel determinants of NOTCH1 trafficking and signaling in breast epithelial cells. Life Sci Alliance 2025; 8:e202403122. [PMID: 39663000 PMCID: PMC11633778 DOI: 10.26508/lsa.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
The evolutionarily conserved Notch signaling pathway controls cell-cell communication, enacting cell fate decisions during development and tissue homeostasis. Its dysregulation is associated with a wide range of diseases, including congenital disorders and cancers. Signaling outputs depend on maturation of Notch receptors and trafficking to the plasma membrane, endocytic uptake and sorting, lysosomal and proteasomal degradation, and ligand-dependent and independent proteolytic cleavages. We devised assays to follow quantitatively the trafficking and signaling of endogenous human NOTCH1 receptor in breast epithelial cells in culture. Based on such analyses, we executed a high-content screen of 2,749 human genes to identify new regulators of Notch that might be amenable to pharmacologic intervention. We uncovered 39 new NOTCH1 modulators for NOTCH1 trafficking and signaling. Among them, we find that PTPN23 and HCN2 act as positive NOTCH1 regulators by promoting endocytic trafficking and NOTCH1 maturation in the Golgi apparatus, respectively, whereas SGK3 serves as a negative regulator that can be modulated by pharmacologic inhibition. Our findings might be relevant in the search of new strategies to counteract pathologic Notch signaling.
Collapse
Affiliation(s)
- Francis M Kobia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Alyssa Jj Paganoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | | | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Wu D, Maus N, Jha A, Yang K, Wales-McGrath BD, Jewell S, Tangiyan A, Choi P, Gardner JR, Barash Y. Generative modeling for RNA splicing predictions and design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633986. [PMID: 39896553 PMCID: PMC11785043 DOI: 10.1101/2025.01.20.633986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alternative splicing (AS) of pre-mRNA plays a crucial role in tissue-specific gene regulation, with disease implications due to splicing defects. Predicting and manipulating AS can therefore uncover new regulatory mechanisms and aid in therapeutics design. We introduce TrASPr+BOS, a generative AI model with Bayesian Optimization for predicting and designing RNA for tissue-specific splicing outcomes. TrASPr is a multi-transformer model that can handle different types of AS events and generalize to unseen cellular conditions. It then serves as an oracle, generating labeled data to train a Bayesian Optimization for Splicing (BOS) algorithm to design RNA for condition-specific splicing outcomes. We show TrASPr+BOS outperforms existing methods, enhancing tissue-specific AUPRC by up to 2.4 fold and capturing tissue-specific regulatory elements. We validate hundreds of predicted novel tissue-specific splicing variations and confirm new regulatory elements using dCas13. We envision TrASPr+BOS as a light yet accurate method researchers can probe or adopt for specific tasks.
Collapse
Affiliation(s)
- Di Wu
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
| | - Natalie Maus
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
| | - Anupama Jha
- Department of Genome Sciences, University of Washington
| | - Kevin Yang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | | | - San Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Anna Tangiyan
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia
| | - Peter Choi
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia
| | - Jacob R. Gardner
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
| | - Yoseph Barash
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
6
|
Song D, Cen Y, Qian Z, Wu XS, Rivera K, Wee TL, Demerdash OE, Chang K, Pappin D, Vakoc CR, Tonks NK. PTPN23-dependent ESCRT machinery functions as a cell death checkpoint. Nat Commun 2024; 15:10364. [PMID: 39609437 PMCID: PMC11604704 DOI: 10.1038/s41467-024-54749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF-α-induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Collapse
MESH Headings
- Humans
- Endosomal Sorting Complexes Required for Transport/metabolism
- Endosomal Sorting Complexes Required for Transport/genetics
- Endosomes/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Apoptosis
- NF-kappa B/metabolism
- Cell Death
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Toll-Like Receptors/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Signal Transduction
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- HEK293 Cells
- Receptors, Death Domain/metabolism
Collapse
Affiliation(s)
- Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Yuxin Cen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Osama E Demerdash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
7
|
Schultz DF, Davies BA, Payne JA, Martin CP, Minard AY, Childs BG, Zhang C, Jeganathan KB, Sturmlechner I, White TA, de Bruin A, Harkema L, Chen H, Davies MA, Jachim S, LeBrasseur NK, Piper RC, Li H, Baker DJ, van Deursen J, Billadeau DD, Katzmann DJ. Loss of HD-PTP function results in lipodystrophy, defective cellular signaling and altered lipid homeostasis. J Cell Sci 2024; 137:jcs262032. [PMID: 39155850 PMCID: PMC11449442 DOI: 10.1242/jcs.262032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, phosphoinositide 3-kinase (PI3K)/AKT and receptor tyrosine kinases (RTKs), such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. The ESCRT components Vps4 and Hrs have previously been implicated in cholesterol homeostasis; thus, these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.
Collapse
Affiliation(s)
- Destiny F Schultz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Immunology Graduate Program, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Johanna A Payne
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cole P Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Bennett G Childs
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Huiqin Chen
- Department of Biostatistics, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sarah Jachim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
8
|
Chen X, Li Y, Xu J, Cui Y, Wu Q, Yin H, Li Y, Gao C, Jiang L, Wang H, Wen Z, Yao Z, Wu Z. Styxl2 regulates de novo sarcomere assembly by binding to non-muscle myosin IIs and promoting their degradation. eLife 2024; 12:RP87434. [PMID: 38829202 PMCID: PMC11147509 DOI: 10.7554/elife.87434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles. To further reveal the functions of Styxl2 in adult muscles, we generated two inducible knockout mouse models: one with Styxl2 being deleted in mature myofibers to assess its role in sarcomere maintenance, and the other in adult muscle satellite cells (MuSCs) to assess its role in de novo sarcomere assembly. We find that Styxl2 is not required for sarcomere maintenance but functions in de novo sarcomere assembly during injury-induced muscle regeneration. Mechanistically, Styxl2 interacts with non-muscle myosin IIs, enhances their ubiquitination, and targets them for autophagy-dependent degradation. Without Styxl2, the degradation of non-muscle myosin IIs is delayed, which leads to defective sarcomere assembly and force generation. Thus, Styxl2 promotes de novo sarcomere assembly by interacting with non-muscle myosin IIs and facilitating their autophagic degradation.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Jin Xu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yong Cui
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Qian Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Haidi Yin
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Chuan Gao
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Liwen Jiang
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Zilong Wen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Zhongping Yao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| |
Collapse
|
9
|
Xu C, Zhang G, Wang X, Huang X, Zhang J, Han S, Wang J, Hall DD, Xu R, He F, Chang X, Wang F, Xie W, Wu Z, Song LS, Han P. Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly of Dystrophin-Glycoprotein Complex. Circulation 2024; 149:1375-1390. [PMID: 38214189 PMCID: PMC11039371 DOI: 10.1161/circulationaha.123.065767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear. METHODS Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis. RESULTS The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes. CONCLUSIONS Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.
Collapse
Affiliation(s)
- Chen Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Ge Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xinjian Wang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xiaozhi Huang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Jiayin Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Shuxian Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Jinxi Wang
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Duane D. Hall
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ruoqing Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xing Chang
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Xie
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Zhichao Wu
- Department of Thoracic surgery, People’s hospital of Xinjiang Uyghur autonomous Region, Urumqi, Xinjiang, 830000
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120
| | - Long-Sheng Song
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Peidong Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Singh S, Yeat NY, Wang YT, Lin SY, Kuo IY, Wu KP, Wang WJ, Wang WC, Su WC, Wang YC, Chen RH. PTPN23 ubiquitination by WDR4 suppresses EGFR and c-MET degradation to define a lung cancer therapeutic target. Cell Death Dis 2023; 14:671. [PMID: 37821451 PMCID: PMC10567730 DOI: 10.1038/s41419-023-06201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Shaifali Singh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Molecular & Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ya-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular & Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
11
|
Hur J, Kim YJ, Choi DA, Kang DW, Kim J, Yoo HS, Shahriyar SA, Mustajab T, Kim J, Han KR, Han Y, Lee S, Song D, Kwamboka MS, Kim DY, Chwae YJ. Role of Gasdermin E in the Biogenesis of Apoptotic Cell-Derived Exosomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1974-1989. [PMID: 37163338 DOI: 10.4049/jimmunol.2200342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
The gasdermins are a family of pore-forming proteins that has recently been suggested to play a central role in pyroptosis. In this study, we describe the novel roles of gasdermins in the biogenesis of apoptotic cell-derived exosomes. In apoptotic human HeLa and HEK293 cells, GSDMA, GSDMC, GSDMD, and GSDME increased the release of apoptotic exosomes. GSDMB and DFNB59, in contrast, negatively affected the release of apoptotic exosomes. GSDME at its full-length and cleaved forms was localized in the exosomes and exosomal membrane. Full-length and cleaved forms of GSDME are suggested to increase Ca2+ influx to the cytosol through endosomal pores and thus increase the biogenesis of apoptotic exosomes. In addition, the GSDME-mediated biogenesis of apoptotic exosomes depended on the ESCRT-III complex and endosomal recruitment of Ca2+-dependent proteins, that is, annexins A2 and A7, the PEF domain family proteins sorcin and grancalcin, and the Bro1 domain protein HD-PTP. Therefore, we propose that the biogenesis of apoptotic exosomes begins when gasdermin-mediated endosomal pores increase cytosolic Ca2+, continues through the recruitment of annexin-sorcin/grancalcin-HD-PTP, and is completed when the ESCRT-III complex synthesizes intraluminal vesicles in the multivesicular bodies of dying cells. Finally, we found that GSDME-bearing tumors released apoptotic exosomes to induce inflammatory responses in the in vivo mouse 4T1 orthotropic model of BALB/c breast cancer. The data indicate that the switch from apoptosis to pyroptosis could drive the transfer of mass signals to nearby or distant living cells and tissues by way of extracellular vesicles, and that gasdermins play critical roles in that process.
Collapse
Affiliation(s)
- Jaehark Hur
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Yeon Ji Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Da Ae Choi
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Dae Wook Kang
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Jaeyoung Kim
- Department of Medicine, Graduate School of Ajou University, Suwon, South Korea
- CK-Exogene Inc., Seoul, South Korea
| | - Hyo Soon Yoo
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Sk Abrar Shahriyar
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Tamanna Mustajab
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Junho Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Kyu Ri Han
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Yujin Han
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Sorim Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Dajung Song
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Moriasi Sheba Kwamboka
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Dong Young Kim
- Department of Medicine, Graduate School of Ajou University, Suwon, South Korea
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
| | - Yong-Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
12
|
Adisornkanj P, Chanprasit R, Eliason S, Fons JM, Intachai W, Tongsima S, Olsen B, Arold ST, Ngamphiw C, Amendt BA, Tucker AS, Kantaputra P. Genetic Variants in Protein Tyrosine Phosphatase Non-Receptor Type 23 Are Responsible for Mesiodens Formation. BIOLOGY 2023; 12:393. [PMID: 36979085 PMCID: PMC10045488 DOI: 10.3390/biology12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.
Collapse
Affiliation(s)
- Ploy Adisornkanj
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rajit Chanprasit
- Dental Department, Wiang Kaen Hospital, Wiang Kaen, Chiang Rai 57310, Thailand
| | - Steven Eliason
- Department of Anatomy and Cell Biology and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan M. Fons
- Centre for Craniofacial and Regenerative Biology, King’s College London, Floor 27 Guy’ Hospital, London Bridge, London SE1 9RT, UK
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA
| | - Stefan T. Arold
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Center for Structural Biology, National Institute of Health and Medical Research, National Centre for Scientific Research, University of Montpellier, 34090 Montpellier, France
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA 52242, USA
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Floor 27 Guy’ Hospital, London Bridge, London SE1 9RT, UK
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022; 79:497. [PMID: 36006469 PMCID: PMC11071818 DOI: 10.1007/s00018-022-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
Collapse
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Niko Hensel
- Ottawa Hospital Research Institute (OHRI), Ottawa, Canada
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
14
|
Shirasaki T, Feng H, Duyvesteyn HME, Fusco WG, McKnight KL, Xie L, Boyce M, Kumar S, Barouch-Bentov R, González-López O, McNamara R, Wang L, Hertel-Wulff A, Chen X, Einav S, Duncan JA, Kapustina M, Fry EE, Stuart DI, Lemon SM. Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX. PLoS Pathog 2022; 18:e1010543. [PMID: 35969644 PMCID: PMC9410543 DOI: 10.1371/journal.ppat.1010543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - William G. Fusco
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Boyce
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sathish Kumar
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Li Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adriana Hertel-Wulff
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan-Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joseph A. Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth E. Fry
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Tseng CC, Piper RC, Katzmann DJ. Bro1 family proteins harmonize cargo sorting with vesicle formation. Bioessays 2022; 44:e2100276. [PMID: 35770783 PMCID: PMC9575758 DOI: 10.1002/bies.202100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRTs) drive membrane remodeling in a variety of cellular processes that include the formation of endosomal intralumenal vesicles (ILVs) during multivesicular body (MVB) biogenesis. During MVB sorting, ESCRTs recognize ubiquitin (Ub) attached to membrane protein cargo and execute ILV formation by controlling the activities of ESCRT-III polymers regulated by the AAA-ATPase Vps4. Exactly how these events are coordinated to ensure proper cargo loading into ILVs remains unclear. Here we discuss recent work documenting the ability of Bro1, an ESCRT-associated Ub-binding protein, to coordinate ESCRT-III and Vps4-dependent ILV biogenesis with upstream events such as cargo recognition.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Shen Y, Eng JS, Fajardo F, Liang L, Li C, Collins P, Tedesco D, Nolan-Stevaux O. Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway. J Immunother Cancer 2022; 10:jitc-2021-004348. [PMID: 35296559 PMCID: PMC8928392 DOI: 10.1136/jitc-2021-004348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background Bispecific T-cell engager (BiTE) molecules induce redirected lysis of cancer cells by T cells and are an emerging modality for solid tumor immunotherapy. While signs of clinical activity have been demonstrated, efficacy of T-cell engagers (TCEs) in solid tumors settings, molecular determinants of response, and underlying mechanisms of resistance to BiTE therapy require more investigation. Methods To uncover cancer cell-intrinsic genetic modifiers of TCE-mediated cytotoxicity, we performed genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loss-of-function and CRISPRa (CRISPR activation) gain-of-function screens using TCEs against two distinct tumor-associated antigens (TAAs). By using in vitro T-cell cytotoxicity assays and in vivo efficacy studies, we validated the roles of two common pathways identified in our screen, T-cell costimulation pathway and apoptosis pathway, as key modifiers of BiTE activity. Results Our genetic screens uncovered TAAs-independent cancer cell-intrinsic genes with functions in autophagy, T-cell costimulation, the apoptosis pathway, chromatin remodeling, and cytokine signaling that altered responsiveness to BiTE-mediated killing. Notably, loss of CD58 (the ligand of the CD2 T-cell costimulatory receptor), a gene frequently altered in cancer, led to decreased TCE-mediated cytotoxicity, T-cell activation and antitumor efficacy in vitro and in vivo. Moreover, the effects of CD58 loss were synergistically compounded by concurrent loss of CD80/CD86 (ligands for the CD28 T-cell costimulatory receptor), whereas joint CD2 and CD28 costimulation additively enhanced TCE-mediated killing, indicating non-redundant costimulatory mechanisms between the two pathways. Additionally, loss of CFLAR (Caspase-8 and FADD Like Apoptosis Regulator), BCL2L1, and BID (BH3 Interacting Domain Death Agonist) induced profound changes in sensitivity to TCEs, indicating that key regulators of apoptosis, which are frequently altered in cancer, impact tumor responsiveness to BiTE therapy. Conclusions This study demonstrates that genetic alterations central to carcinogenesis and commonly detected in cancer samples lead to significant modulation of BiTE antitumor activity in vitro and in vivo, findings with relevance for a better understanding of patient responses to BiTE therapy and novel combinations that enhance TCE efficacy.
Collapse
Affiliation(s)
- Ye Shen
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Jason S Eng
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | | | - Lingming Liang
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Cong Li
- Oncology Research, Amgen Inc, South San Francisco, California, USA
| | - Patrick Collins
- Genome Analysis Unit, Amgen Inc, South San Francisco, California, USA
| | | | | |
Collapse
|
17
|
Kazan JM, Desrochers G, Martin CE, Jeong H, Kharitidi D, Apaja PM, Roldan A, St. Denis N, Gingras AC, Lukacs GL, Pause A. Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. iScience 2021; 24:103274. [PMID: 34761192 PMCID: PMC8567383 DOI: 10.1016/j.isci.2021.103274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
Collapse
Affiliation(s)
- Jalal M. Kazan
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Desrochers
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pirjo M. Apaja
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel Roldan
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nicole St. Denis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gergely L. Lukacs
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
18
|
Stoneham CA, Langer S, De Jesus PD, Wozniak JM, Lapek J, Deerinck T, Thor A, Pache L, Chanda SK, Gonzalez DJ, Ellisman M, Guatelli J. A combined EM and proteomic analysis places HIV-1 Vpu at the crossroads of retromer and ESCRT complexes: PTPN23 is a Vpu-cofactor. PLoS Pathog 2021; 17:e1009409. [PMID: 34843601 PMCID: PMC8659692 DOI: 10.1371/journal.ppat.1009409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/09/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu's itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 was supported by STAM and PTPN23 and to a much lesser extent by the retromer subunits Vps35 and SNX3. PTPN23 also supported the Vpu-directed decrease in CD4 at the cell surface. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.
Collapse
Affiliation(s)
- Charlotte A. Stoneham
- Department of Medicine, University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System, La Jolla, California, United States of America
| | - Simon Langer
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Paul D. De Jesus
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jacob M. Wozniak
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - John Lapek
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Thomas Deerinck
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - David J. Gonzalez
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - John Guatelli
- Department of Medicine, University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System, La Jolla, California, United States of America
| |
Collapse
|
19
|
Parkinson G, Roboti P, Zhang L, Taylor S, Woodman P. His domain protein tyrosine phosphatase and Rabaptin-5 couple endo-lysosomal sorting of EGFR with endosomal maturation. J Cell Sci 2021; 134:272512. [PMID: 34657963 PMCID: PMC8627557 DOI: 10.1242/jcs.259192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) collaborates with endosomal sorting complexes required for transport (ESCRTs) to sort endosomal cargo into intralumenal vesicles, forming the multivesicular body (MVB). Completion of MVB sorting is accompanied by maturation of the endosome into a late endosome, an event that requires inactivation of the early endosomal GTPase Rab5 (herein referring to generically to all isoforms). Here, we show that HD-PTP links ESCRT function with endosomal maturation. HD-PTP depletion prevents MVB sorting, while also blocking cargo from exiting Rab5-rich endosomes. HD-PTP-depleted cells contain hyperphosphorylated Rabaptin-5 (also known as RABEP1), a cofactor for the Rab5 guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1), although HD-PTP is unlikely to directly dephosphorylate Rabaptin-5. In addition, HD-PTP-depleted cells exhibit Rabaptin-5-dependent hyperactivation of Rab5. HD-PTP binds directly to Rabaptin-5, between its Rabex-5- and Rab5-binding domains. This binding reaction involves the ESCRT-0/ESCRT-III binding site in HD-PTP, which is competed for by an ESCRT-III peptide. Jointly, these findings indicate that HD-PTP may alternatively scaffold ESCRTs and modulate Rabex-5–Rabaptin-5 activity, thereby helping to coordinate the completion of MVB sorting with endosomal maturation. Summary: Sorting of endocytic cargo to the multivesicular body is accompanied by endosomal maturation. Here, we provide a potential mechanism by which these two processes are linked.
Collapse
Affiliation(s)
- Gabrielle Parkinson
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Peristera Roboti
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Ling Zhang
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Sandra Taylor
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Schmitt M, Sinnberg T, Bratl K, Zittlau K, Garbe C, Macek B, Nalpas NC. Proteogenomics Reveals Perturbed Signaling Networks in Malignant Melanoma Cells Resistant to BRAF Inhibition. Mol Cell Proteomics 2021; 20:100163. [PMID: 34673281 PMCID: PMC8603206 DOI: 10.1016/j.mcpro.2021.100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Analysis of nucleotide variants is a cornerstone of cancer medicine. Although only 2% of the genomic sequence is protein coding, mutations occurring in these regions have the potential to influence protein structure or modification status and may have severe impact on disease aetiology. Proteogenomics enables the analysis of sample-specific nonsynonymous nucleotide variants with regard to their effect at the proteome and phosphoproteome levels. Here, we developed a proof-of-concept proteogenomics workflow and applied it to the malignant melanoma cell line A375. Initially, we studied the resistance to serine/threonine-protein kinase B-raf (BRAF) inhibitor (BRAFi) vemurafenib in A375 cells. This allowed identification of several oncogenic nonsynonymous nucleotide variants, including a gain-of-function variant on aurora kinase A (AURKA) at F31I. We also detected significant changes in abundance among (phospho)proteins, which led to reactivation of the MAPK signaling pathway in BRAFi-resistant A375 cells. Upon reconstruction of the multiomic integrated signaling networks, we predicted drug therapies with the potential to disrupt BRAFi resistance mechanism in A375 cells. Notably, we showed that AURKA inhibition is effective and specific against BRAFi-resistant A375 cells. Subsequently, we investigated amino acid variants that interfere with protein posttranslational modification (PTM) status and potentially influence A375 cell signaling irrespective of BRAFi resistance. Mass spectrometry (MS) measurements confirmed variant-driven PTM changes in 12 proteins. Among them was the runt-related transcription factor 1 (RUNX1) displaying a variant on a known phosphorylation site S(Ph)276L. We confirmed the loss of phosphorylation site by MS and demonstrated the impact of this variant on RUNX1 interactome.
Collapse
Affiliation(s)
- Marisa Schmitt
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - Katrin Bratl
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Katharina Zittlau
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Claus Garbe
- Division of Dermatooncology, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany.
| | - Nicolas C Nalpas
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
21
|
Pashkova N, Yu L, Schnicker NJ, Tseng CC, Gakhar L, Katzmann DJ, Piper RC. Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase. Mol Biol Cell 2021; 32:ar42. [PMID: 34586919 PMCID: PMC8694081 DOI: 10.1091/mbc.e21-04-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The family of Bro1 proteins coordinates the activity of the Endosomal Sorting Complexes Required for Transport (ESCRTs) to mediate a number of membrane remodeling events. These events culminate in membrane scission catalyzed by ESCRT-III, whose polymerization and disassembly is controlled by the AAA-ATPase, Vps4. Bro1-family members Alix and HD-PTP as well as yeast Bro1 have central “V” domains that noncovalently bind Ub and connect ubiquitinated proteins to ESCRT-driven functions such as the incorporation of ubiquitinated membrane proteins into intralumenal vesicles of multivesicular bodies. Recently, it was discovered that the V domain of yeast Bro1 binds the MIT domain of Vps4 to stimulate its ATPase activity. Here we determine the structural basis for how the V domain of human HD-PTP binds ubiquitin. The HD-PTP V domain also binds the MIT domain of Vps4, and ubiquitin binding to the HD-PTP V domain enhances its ability to stimulate Vps4 ATPase activity. Additionally, we found that V domains of both HD-PTP and Bro1 bind CHMP5 and Vps60, respectively, providing another potential molecular mechanism to alter Vps4 activity. These data support a model whereby contacts between ubiquitin, ESCRT-III, and Vps4 by V domains of the Bro1 family may coordinate late events in ESCRT-driven membrane remodeling events.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Liping Yu
- NMR facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242.,Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | | | - Chun-Che Tseng
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905.,Protein Crystallography Facility, University of Iowa, Iowa City, IA, 52242
| | - Lokesh Gakhar
- Protein Crystallography Facility, University of Iowa, Iowa City, IA, 52242
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
22
|
Bian X, Cheng G, Sun X, Liu H, Zhang X, Han Y, Li B, Li N. Two novel truncating variants in UBAP1 are responsible for hereditary spastic paraplegia. PLoS One 2021; 16:e0253871. [PMID: 34191852 PMCID: PMC8244911 DOI: 10.1371/journal.pone.0253871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of rare neurodegenerative disorders. HSPs are complex disorders and are clinically and genetically heterogeneous. To date, more than 80 genes or genetic loci have been reported to be responsible for HSPs in a Mendelian-dependent manner. Most recently, ubiquitin-associated protein 1 (UBAP1) has been recognized to be involved in HSP. Here, we identified novel protein truncating variants in two families with pure form of HSP. A novel deletion (c.468_469delTG) in the UBAP1 gene was found in the first family, whereas a nonsense variant (c.512T>G) was ascertained in the second family. The variants were confirmed in all patients but were not detected in unaffected family members. The mutations resulted in truncated proteins of UBAP1. The variants did not result in different subcellular localizations in neuro-2a cells. However, each of the two variants impaired neurite outgrowth. Taken together, our findings expand the pathogenic spectrum of UBAP1 variants in HSP.
Collapse
Affiliation(s)
- Xinchao Bian
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Guangying Cheng
- Department of Gynecology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xinbo Sun
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Hongkun Liu
- Department of Integrated Traditional Chinese and Western Medicine Orthopedics, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xiangmao Zhang
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Yu Han
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Bo Li
- Department of Integrated Traditional Chinese and Western Medicine Orthopedics, Zibo Central Hospital, Shandong University, Zibo, China
| | - Ning Li
- Department of Integrated Traditional Chinese and Western Medicine Orthopedics, Zibo Central Hospital, Shandong University, Zibo, China
- * E-mail:
| |
Collapse
|
23
|
Heaven G, Hollas MA, Tabernero L, Fielding AJ. Spin Labeling of Surface Cysteines Using a Bromoacrylaldehyde Spin Label. APPLIED MAGNETIC RESONANCE 2021; 52:959-970. [PMID: 34776648 PMCID: PMC8550513 DOI: 10.1007/s00723-021-01350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Structural investigations of proteins and their biological complexes are now frequently complemented by distance constraints between spin labeled cysteines generated using double electron-electron resonance (DEER) spectroscopy, via site directed spin labeling (SDSL). Methanethiosulfonate spin label (MTSSL), has become ubiquitous in the SDSL of proteins, however, has limitations owing to its high number of rotamers, and reducibility. In this article we introduce the use of bromoacrylaldehyde spin label (BASL) as a cysteine spin label, demonstrating an advantage over MTSSL due to its increased selectivity for surface cysteines, eliminating the need to 'knock out' superfluous cysteine residues. Applied to the multidomain protein, His domain protein tyrosine phosphatase (HD-PTP), we show that BASL can be easily added in excess with selective labeling, whereas MTSSL causes protein precipitation. Furthermore, using DEER, we were able to measure a single cysteine pair distance in a three cysteine domain within HD-PTP. The label has a further advantage of comprising a sulfide in a three-bond tether, making it a candidate for protein binding and in-cell studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00723-021-01350-1.
Collapse
Affiliation(s)
- Graham Heaven
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
| | - Michael A. Hollas
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PL UK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF UK
| |
Collapse
|
24
|
Khalaf-Nazzal R, Fasham J, Ubeyratna N, Evans DJ, Leslie JS, Warner TT, Al-Hijawi F, Alshaer S, Baker W, Turnpenny PD, Baple EL, Crosby AH. Final Exon Frameshift Biallelic PTPN23 Variants Are Associated with Microcephalic Complex Hereditary Spastic Paraplegia. Brain Sci 2021; 11:614. [PMID: 34064836 PMCID: PMC8151426 DOI: 10.3390/brainsci11050614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are a large clinically heterogeneous group of genetic disorders classified as 'pure' when the cardinal feature of progressive lower limb spasticity and weakness occurs in isolation and 'complex' when associated with other clinical signs. Here, we identify a homozygous frameshift alteration occurring in the last coding exon of the protein tyrosine phosphatase type 23 (PTPN23) gene in an extended Palestinian family associated with autosomal recessive complex HSP. PTPN23 encodes a catalytically inert non-receptor protein tyrosine phosphatase that has been proposed to interact with the endosomal sorting complex required for transport (ESCRT) complex, involved in the sorting of ubiquitinated cargos for fusion with lysosomes. In view of our data, we reviewed previously published candidate pathogenic PTPN23 variants to clarify clinical outcomes associated with pathogenic gene variants. This determined that a number of previously proposed candidate PTPN23 alterations are likely benign and revealed that pathogenic biallelic PTPN23 alterations cause a varied clinical spectrum comprising of complex HSP associated with microcephaly, which may occur without intellectual impairment or involve more severe neurological disease. Together, these findings highlight the importance of the inclusion of the PTPN23 gene on HSP gene testing panels globally.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine
| | - James Fasham
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; (J.F.); (N.U.); (J.S.L.); (P.D.T.)
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter EX1 2ED, UK
| | - Nishanka Ubeyratna
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; (J.F.); (N.U.); (J.S.L.); (P.D.T.)
| | - David J. Evans
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Joseph S. Leslie
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; (J.F.); (N.U.); (J.S.L.); (P.D.T.)
| | - Thomas T. Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK;
| | - Fida’ Al-Hijawi
- Paediatrics’ Community Outpatient Clinics, Palestinian Ministry of Health, Jenin P200, Palestine;
| | - Shurouq Alshaer
- Faculty of Graduate Studies, Arab American University, Ramallah P622, Palestine;
| | - Wisam Baker
- Paediatrics Department, Dr. Khalil Suleiman Government Hospital, Jenin P200, Palestine;
| | - Peter D. Turnpenny
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; (J.F.); (N.U.); (J.S.L.); (P.D.T.)
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter EX1 2ED, UK
| | - Emma L. Baple
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; (J.F.); (N.U.); (J.S.L.); (P.D.T.)
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter EX1 2ED, UK
| | - Andrew H. Crosby
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; (J.F.); (N.U.); (J.S.L.); (P.D.T.)
| |
Collapse
|
25
|
Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 2021; 21:76-93. [PMID: 31854087 PMCID: PMC7004041 DOI: 10.1111/tra.12715] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.
Collapse
Affiliation(s)
- Jean Gruenberg
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Budding of a Retrovirus: Some Assemblies Required. Viruses 2020; 12:v12101188. [PMID: 33092109 PMCID: PMC7589157 DOI: 10.3390/v12101188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important steps in any viral lifecycle is the production of progeny virions. For retroviruses as well as other viruses, this step is a highly organized process that occurs with exquisite spatial and temporal specificity on the cellular plasma membrane. To facilitate this process, retroviruses encode short peptide motifs, or L domains, that hijack host factors to ensure completion of this critical step. One such cellular machinery targeted by viruses is known as the Endosomal Sorting Complex Required for Transport (ESCRTs). Typically responsible for vesicular trafficking within the cell, ESCRTs are co-opted by the retroviral Gag polyprotein to assist in viral particle assembly and release of infectious virions. This review in the Viruses Special Issue “The 11th International Retroviral Nucleocapsid and Assembly Symposium”, details recent findings that shed light on the molecular details of how ESCRTs and the ESCRT adaptor protein ALIX, facilitate retroviral dissemination at sites of viral assembly.
Collapse
|
27
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
28
|
Flower TG, Takahashi Y, Hudait A, Rose K, Tjahjono N, Pak AJ, Yokom AL, Liang X, Wang HG, Bouamr F, Voth GA, Hurley JH. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat Struct Mol Biol 2020; 27:570-580. [PMID: 32424346 PMCID: PMC7339825 DOI: 10.1038/s41594-020-0426-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, MVB biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101–VPS28–VPS37B–MVB12A was determined, revealing an ESCRT-I helical assembly with a 12 molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse grained simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding, and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor, but has an essential scaffolding and mechanical role in its own right. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Thomas G Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Arpa Hudait
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kevin Rose
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Tjahjono
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Pak
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xinwen Liang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
29
|
Budzinska MI, Villarroel-Campos D, Golding M, Weston A, Collinson L, Snijders AP, Schiavo G. PTPN23 binds the dynein adaptor BICD1 and is required for endocytic sorting of neurotrophin receptors. J Cell Sci 2020; 133:jcs242412. [PMID: 32079660 PMCID: PMC7132798 DOI: 10.1242/jcs.242412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF)-activated TrkB (also known as NTRK2) and p75NTR (also known as NGFR) in motor neurons. Here, using a proteomics approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1-knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors.
Collapse
Affiliation(s)
- Marta I Budzinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Matthew Golding
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anne Weston
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Lucy Collinson
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platforms, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London WC1N 3BG, UK
| |
Collapse
|
30
|
Autosomal dominant hereditary spastic paraplegia caused by mutation of UBAP1. Neurogenetics 2020; 21:169-177. [PMID: 32222895 DOI: 10.1007/s10048-020-00608-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegias (HSP) are a group of rare neurodegenerative diseases characterized by progressive spastic paraparesis. UBAP1 was recently found to induce a rare type of HSP (SPG80). We identified a family with eight inherited spastic paraplegic patients carrying a novel heterozygous mutation c.279delG (p.S94Vfs*9) of UBAP1. We demonstrated a lack of functional UBAP1 in these patients, resulting in the neurological disorder caused by interceptions of the ESCRT pathway. Extending from the older onset-age identified from this family, we found that comparing with the European and other populations, Asian patients displayed less proportion of severe patients and an older average age at onset. The origins of SPG80 patients associated with both their onset age and their disease severity, while the age at onset was not correlated with the disease severity.
Collapse
|
31
|
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol 2020; 219:e201904113. [PMID: 32049272 PMCID: PMC7054990 DOI: 10.1083/jcb.201904113] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The intraluminal vesicles (ILVs) of endosomes mediate the delivery of activated signaling receptors and other proteins to lysosomes for degradation, but they also modulate intercellular communication when secreted as exosomes. The formation of ILVs requires four complexes, ESCRT-0, -I, -II, and -III, with ESCRT-0, -I, and -II presumably involved in cargo sorting and ESCRT-III in membrane deformation and fission. Here, we report that an active form of the ESCRT-associated protein ALIX efficiently recruits ESCRT-III proteins to endosomes. This recruitment occurs independently of other ESCRTs but requires lysobisphosphatidic acid (LBPA) in vivo, and can be reconstituted on supported bilayers in vitro. Our data indicate that this ALIX- and ESCRT-III-dependent pathway promotes the sorting and delivery of tetraspanins to exosomes. We conclude that ALIX provides an additional pathway of ILV formation, secondary to the canonical pathway, and that this pathway controls the targeting of exosomal proteins.
Collapse
|
32
|
The ESCRT-II Subunit EAP20/VPS25 and the Bro1 Domain Proteins HD-PTP and BROX Are Individually Dispensable for Herpes Simplex Virus 1 Replication. J Virol 2020; 94:JVI.01641-19. [PMID: 31748394 DOI: 10.1128/jvi.01641-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Capsid envelopment during assembly of the neurotropic herpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) in the infected cell cytoplasm is thought to involve the late-acting cellular ESCRT (endosomal sorting complex required for transport) components ESCRT-III and VPS4 (vacuolar protein sorting 4). However, HSV-1, unlike members of many other families of enveloped viruses, does not appear to require the ESCRT-I subunit TSG101 or the Bro1 domain-containing protein ALIX (Alg-2-interacting protein X) to recruit and activate ESCRT-III. Alternative cellular factors that are known to be capable of regulating ESCRT-III function include the ESCRT-II complex and other members of the Bro1 family. We therefore used small interfering RNA (siRNA) to knock down the essential ESCRT-II subunit EAP20/VPS25 (ELL-associated protein 20/vacuolar protein sorting 25) and the Bro1 proteins HD-PTP (His domain-containing protein tyrosine phosphatase) and BROX (Bro1 domain and CAAX motif containing). We demonstrated reductions in levels of the targeted proteins by Western blotting and used quantitative microscopic assays to confirm loss of ESCRT-II and HD-PTP function. We found that in single-step replication experiments, the final yields of HSV-1 were unchanged following loss of EAP20, HD-PTP, or BROX.IMPORTANCE HSV-1 is a pathogen of the human nervous system that uses its own virus-encoded proteins and the normal cellular ESCRT machinery to drive the construction of its envelope. How HSV-1 structural proteins interact with ESCRT components and which subsets of cellular ESCRT proteins are utilized by the virus remain largely unknown. Here, we demonstrate that an essential component of the ESCRT-II complex and two ESCRT-associated Bro1 proteins are dispensable for HSV-1 replication.
Collapse
|
33
|
Verghese S, Moberg K. Roles of Membrane and Vesicular Traffic in Regulation of the Hippo Pathway. Front Cell Dev Biol 2020; 7:384. [PMID: 32010696 PMCID: PMC6971369 DOI: 10.3389/fcell.2019.00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is a well conserved signaling cascade that modulates cell proliferation and survival in response to external cues such as cell:cell contact, injury, and nutritional status. Models of the Hippo pathway have evolved from a series of genetic interactions defined in the fruit fly Drosophila melanogaster into a complex series of biochemical mechanisms in which transmembrane and cytoskeletal proteins modulate cytoplasmic phosphatase and kinase activities that converge on the serine/threonine kinase Warts (Wts) to regulate nuclear entry of the co-activator protein Yorkie (Yki; vertebrate Yap1). This pathway is well conserved in human cells and broadly implicated in cancer. Progress in understanding biochemical events within the Hippo pathway highlights a need for improved understanding of the cell biological contexts in which these molecular interactions occur. A significant body of data linking Hippo signaling to membranes and proteins involved in intracellular membrane trafficking raise the possibility that some molecular regulatory events occur on the cytoplasmic face of vesicles. In Drosophila, a Yki-vesicle link was solidified by discoveries that cytoplasmic Yki concentrates at late-endosomes and physically interacts with two endosomal adaptor proteins, Myopic (Mop) and Leash. These two proteins are required for Yki to transit the endolysosomal pathway and be turned over in lysosomes. Molecules involved in recruiting and tethering Yki along this endosomal route are not defined but are predicted to play key roles in regulating Yki levels and thus Hippo-responsiveness of cells. As Wts is recruited to the apical membrane by upstream Hippo components, endosomal internalization could also affect complexes involved in Yki phosphorylation events that alter nucleocytoplasmic shuttling. Recent work has revealed an unexpected, non-transcriptional role of membrane-associated Yki in triggering actinomyosin contractility via the myosin-regulatory light chain Spaghetti squash (Sqh). How Yki interacts with the membrane and controls Sqh is unclear, but this mechanism represents a novel regulatory mechanism based on induced localization of Yki to a specific membrane compartment. These and other data will be discussed as we review data linking Yki to membrane and vesicular traffic in development and homeostasis and speculate on missing elements of these membrane-linked Yki regulatory mechanisms.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ken Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
34
|
Teng F, Fussenegger M. Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2003505. [PMID: 33437589 PMCID: PMC7788585 DOI: 10.1002/advs.202003505] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Indexed: 05/14/2023]
Abstract
Extracellular vesicles (EVs) are biocompatible, nano-sized secreted vesicles containing many types of biomolecules, including proteins, RNAs, DNAs, lipids, and metabolites. Their low immunogenicity and ability to functionally modify recipient cells by transferring diverse bioactive constituents make them an excellent candidate for a next-generation drug delivery system. Here, the recent advances in EV biology and emerging strategies of EV bioengineering are summarized, and the prospects for clinical translation of bioengineered EVs and the challenges to be overcome are discussed.
Collapse
Affiliation(s)
- Fei Teng
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26BaselCH‐4058Switzerland
| |
Collapse
|
35
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
36
|
Phenotype and mutation expansion of the PTPN23 associated disorder characterized by neurodevelopmental delay and structural brain abnormalities. Eur J Hum Genet 2019; 28:76-87. [PMID: 31395947 PMCID: PMC6906308 DOI: 10.1038/s41431-019-0487-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
PTPN23 is a His-domain protein-tyrosine phosphatase implicated in ciliogenesis, the endosomal sorting complex required for transport (ESCRT) pathway, and RNA splicing. Until recently, no defined human phenotype had been associated with alterations in this gene. We identified and report a cohort of seven patients with either homozygous or compound heterozygous rare deleterious variants in PTPN23. Combined with four patients previously reported, a total of 11 patients with this disorder have now been identified. We expand the phenotypic and variation spectrum associated with defects in this gene. Patients have strong phenotypic overlap, suggesting a defined autosomal recessive syndrome caused by reduced function of PTPN23. Shared characteristics of affected individuals include developmental delay, brain abnormalities (mainly ventriculomegaly and/or brain atrophy), intellectual disability, spasticity, language disorder, microcephaly, optic atrophy, and seizures. We observe a broad range of variants across patients that are likely strongly reducing the expression or disrupting the function of the protein. However, we do not observe any patients with an allele combination predicted to result in complete loss of function of PTPN23, as this is likely incompatible with life, consistent with reported embryonic lethality in the mouse. None of the observed or reported variants are recurrent, although some have been identified in homozygosis in patients from consanguineous populations. This study expands the phenotypic and molecular spectrum of PTPN23 associated disease and identifies major shared features among patients affected with this disorder, while providing additional support to the important role of PTPN23 in human nervous and visual system development and function.
Collapse
|
37
|
Zeng X, Carlin CR. Adenovirus early region 3 RIDα protein limits NFκB signaling through stress-activated EGF receptors. PLoS Pathog 2019; 15:e1008017. [PMID: 31425554 PMCID: PMC6715251 DOI: 10.1371/journal.ppat.1008017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/29/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
The host limits adenovirus infections by mobilizing immune systems directed against infected cells that also represent major barriers to clinical use of adenoviral vectors. Adenovirus early transcription units encode a number of products capable of thwarting antiviral immune responses by co-opting host cell pathways. Although the EGF receptor (EGFR) was a known target for the early region 3 (E3) RIDα protein encoded by nonpathogenic group C adenoviruses, the functional role of this host-pathogen interaction was unknown. Here we report that incoming viral particles triggered a robust, stress-induced pathway of EGFR trafficking and signaling prior to viral gene expression in epithelial target cells. EGFRs activated by stress of adenoviral infection regulated signaling by the NFκB family of transcription factors, which is known to have a critical role in the host innate immune response to infectious adenoviruses and adenovirus vectors. We found that the NFκB p65 subunit was phosphorylated at Thr254, shown previously by other investigators to be associated with enhanced nuclear stability and gene transcription, by a mechanism that was attributable to ligand-independent EGFR tyrosine kinase activity. Our results indicated that the adenoviral RIDα protein terminated this pathway by co-opting the host adaptor protein Alix required for sorting stress-exposed EGFRs in multivesicular endosomes, and promoting endosome-lysosome fusion independent of the small GTPase Rab7, in infected cells. Furthermore RIDα expression was sufficient to down-regulate the same EGFR/NFκB signaling axis in a previously characterized stress-activated EGFR trafficking pathway induced by treatment with the pro-inflammatory cytokine TNF-α. We also found that cell stress activated additional EGFR signaling cascades through the Gab1 adaptor protein that may have unappreciated roles in the adenoviral life cycle. Similar to other E3 proteins, RIDα is not conserved in adenovirus serotypes associated with potentially severe disease, suggesting stress-activated EGFR signaling may contribute to adenovirus virulence.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, United States of America
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
38
|
Jariwala N, Mendoza RG, Garcia D, Lai Z, Subler MA, Windle JJ, Mukhopadhyay ND, Fisher PB, Chen Y, Sarkar D. Posttranscriptional Inhibition of Protein Tyrosine Phosphatase Nonreceptor Type 23 by Staphylococcal Nuclease and Tudor Domain Containing 1: Implications for Hepatocellular Carcinoma. Hepatol Commun 2019; 3:1258-1270. [PMID: 31497746 PMCID: PMC6719750 DOI: 10.1002/hep4.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/12/2023] Open
Abstract
Oncoprotein staphylococcal nuclease and tudor domain containing 1 (SND1) regulates gene expression at a posttranscriptional level in multiple cancers, including hepatocellular carcinoma (HCC). Staphylococcal nuclease (SN) domains of SND1 function as a ribonuclease (RNase), and the tudor domain facilitates protein–oligonucleotide interaction. In the present study, we aimed to identify RNA interactome of SND1 to obtain enhanced insights into gene regulation by SND1. RNA interactome was identified by immunoprecipitation (IP) of RNA using anti‐SND1 antibody from human HCC cells followed by RNA immunoprecipitation sequencing (RIP‐Seq). Among RNA species that showed more than 10‐fold enrichment over the control, we focused on the tumor suppressor protein tyrosine phosphatase nonreceptor type 23 (PTPN23) because its regulation by SND1 and its role in HCC are not known. PTPN23 levels were down‐regulated in human HCC cells versus normal hepatocytes and in human HCC tissues versus normal adjacent liver, as revealed by immunohistochemistry. In human HCC cells, knocking down SND1 increased and overexpression of SND1 decreased PTPN23 protein. RNA binding and degradation assays revealed that SND1 binds to and degrades the 3′‐untranslated region (UTR) of PTPN23 messenger RNA (mRNA). Tetracycline‐inducible PTPN23 overexpression in human HCC cells resulted in significant inhibition in proliferation, migration, and invasion and in vivo tumorigenesis. PTPN23 induction caused inhibition in activation of tyrosine‐protein kinase Met (c‐Met), epidermal growth factor receptor (EGFR), Src, and focal adhesion kinase (FAK), suggesting that, as a putative phosphatase, PTPN23 inhibits activation of these oncogenic kinases. Conclusion: PTPN23 is a novel target of SND1, and our findings identify PTPN23 as a unique tumor suppressor for HCC. PTPN23 might function as a homeostatic regulator of multiple kinases, restraining their activation.
Collapse
Affiliation(s)
- Nidhi Jariwala
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute University of Texas Health Science Center San Antonio San Antonio TX
| | - Zhao Lai
- Greehey Children's Cancer Research Institute University of Texas Health Science Center San Antonio San Antonio TX
| | - Mark A Subler
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA
| | - Jolene J Windle
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA.,Massey Cancer Center Virginia Commonwealth University Richmond VA
| | | | - Paul B Fisher
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA.,Massey Cancer Center Virginia Commonwealth University Richmond VA.,Virginia Commonwealth University Institute of Molecular Medicine Virginia Commonwealth University Richmond VA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute University of Texas Health Science Center San Antonio San Antonio TX.,Department of Epidemiology and Biostatistics University of Texas Health Science Center San Antonio San Antonio TX
| | - Devanand Sarkar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA.,Massey Cancer Center Virginia Commonwealth University Richmond VA.,Virginia Commonwealth University Institute of Molecular Medicine Virginia Commonwealth University Richmond VA
| |
Collapse
|
39
|
Abstract
The Herpesviridae are structurally complex DNA viruses whose capsids undergo primary envelopment at the inner nuclear membrane and secondary envelopment at organelles in the cytoplasm. In both locations, there is evidence that envelope formation and scission involve the participation of multiple viral proteins and also the cellular ESCRT apparatus. It nevertheless appears that the best-understood viral strategies for ESCRT recruitment, those adopted by the retroviruses and many other families of enveloped RNA viruses, are not utilized by the Herpesviridae, at least during envelopment in the cytoplasm. Thus, although a large number of herpesvirus proteins have been assigned roles in envelopment, there is a dearth of candidates for the acquisition of the ESCRT complex and the control of envelope scission. This review summarizes our current understanding of ESCRT association by enveloped viruses, examines what is known of herpesvirus ESCRT utilization in the nucleus and cytoplasm, and identifies candidate cellular and viral proteins that could link enveloping herpesviruses to cellular ESCRT components.
Collapse
|
40
|
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS. Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 2019; 10:953. [PMID: 30814516 PMCID: PMC6393521 DOI: 10.1038/s41467-019-08520-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis. Ciliogenesis is a complex process requiring hundreds of molecules, although few secreted proteins have been implicated. Here, the authors show that the secreted metalloproteases ADAMTS9 and ADAMTS20 intracellularly regulate ciliogenesis from unique periciliary vesicles with proteolytic activity.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Caroline M Kraft
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Anna O'Donnell
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Rushabh Patel
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, South Korea
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.,Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 E 25th St, Kansas City, MO, 64108, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Suneel S Apte
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
41
|
Desrochers G, Kazan JM, Pause A. Structure and functions of His domain protein tyrosine phosphatase in receptor trafficking and cancer. Biochem Cell Biol 2019; 97:68-72. [DOI: 10.1139/bcb-2017-0322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting, and trafficking of activated receptors, therefore, play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking and sustained signaling and promote tumor formation or progression. In this review, we analyze the modular domain organization of the alternative ESCRT protein HD-PTP and its role in receptor trafficking and tumorigenesis.
Collapse
Affiliation(s)
- Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Jalal M. Kazan
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
42
|
Dissecting the role of His domain protein tyrosine phosphatase/PTPN23 and ESCRTs in sorting activated epidermal growth factor receptor to the multivesicular body. Biochem Soc Trans 2018; 46:1037-1046. [PMID: 30190330 PMCID: PMC6195633 DOI: 10.1042/bst20170443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Sorting of activated epidermal growth factor receptor (EGFR) into intraluminal vesicles (ILVs) within the multivesicular body (MVB) is an essential step during the down-regulation of the receptor. The machinery that drives EGFR sorting attaches to the cytoplasmic face of the endosome and generates vesicles that bud into the endosome lumen, but somehow escapes encapsulation itself. This machinery is termed the ESCRT (endosomal sorting complexes required for transport) pathway, a series of multi-protein complexes and accessory factors first identified in yeast. Here, we review the yeast ESCRT pathway and describe the corresponding components in mammalian cells that sort EGFR. One of these is His domain protein tyrosine phosphatase (HD-PTP/PTPN23), and we review the interactions involving HD-PTP and ESCRTs. Finally, we describe a working model for how this ESCRT pathway might overcome the intrinsic topographical problem of EGFR sorting to the MVB lumen.
Collapse
|
43
|
Smigiel R, Landsberg G, Schilling M, Rydzanicz M, Pollak A, Walczak A, Stodolak A, Stawinski P, Mierzewska H, Sasiadek MM, Gruss OJ, Ploski R. Developmental epileptic encephalopathy with hypomyelination and brain atrophy associated with PTPN23 variants affecting the assembly of UsnRNPs. Eur J Hum Genet 2018; 26:1502-1511. [PMID: 29899372 DOI: 10.1038/s41431-018-0179-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
PTPN23 encodes a ubiquitously expressed non-receptor type, catalytically inactive protein-tyrosine phosphatase found in all cells including neurons. Recently, we have identified PTPN23 in a cellular screen for the systematic identification of novel regulators of survival motor neuron (SMN) function in the assembly of splicing factors (Uridine-rich small nuclear ribonucleoproteins, UsnRNPs). Based on three families, recessive PTPN23 variants have been associated with human disease tentatively, without functional studies. Here, we describe a pediatric proband with severe developmental delay, epilepsy, cortical blindness, hypomyelination and brain atrophy on MRI. Whole exome sequencing and family study showed two novel PTPN23 variants, c.1902C>G (p.(Asn634Lys)) and c.2974delC (p.(Leu992Tyrfs*168)), in compound heterozygous state, which are predicted in silico to be damaging. When studying patient's fibroblasts we found similar expression of SMN but a dramatic reduction of cells displaying SMN accumulation in Cajal bodies (CB). SMN strongly accumulated in CB in more than 50% of unrelated control cell fibroblasts as well as in fibroblasts from the parent carrying only the c.2974delC (p.(Leu992Tyrfs*168)) variant (predicted to cause loss-of-function). In contrast, only 22% of cells showed respective SMN accumulations in patient fibroblasts (p = 1.9-2.5 × 10-7) while showing a higher level of nucleoplasmic SMN. Furthermore, the remaining accumulations in patient cells displayed weaker SMN signals than control or heterozygous wt/c.2974delC (p.(Leu992Tyrfs*168)) fibroblasts. Our report provides the first description of the clinical phenotype of recessive PTPN23 variants with pathogenicity substantiated by a functional study.
Collapse
Affiliation(s)
- Robert Smigiel
- Department of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Gerd Landsberg
- Institute of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Maximilian Schilling
- Institute of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Anna Stodolak
- Department of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Stawinski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.,Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Hanna Mierzewska
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Maria M Sasiadek
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Oliver J Gruss
- Institute of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Rafal Ploski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
44
|
Gosney JA, Wilkey DW, Merchant ML, Ceresa BP. Proteomics reveals novel protein associations with early endosomes in an epidermal growth factor-dependent manner. J Biol Chem 2018. [PMID: 29523688 DOI: 10.1074/jbc.ra117.000632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. EGFRs on the cell surface become activated upon EGF binding and have an increased rate of endocytosis. Once in the cytoplasm, the EGF·EGFR complex is trafficked to the lysosome for degradation, and signaling is terminated. During trafficking, the EGFR kinase domain remains active, and the internalized EGFR can continue signaling to downstream effectors. Although effector activity varies based on the EGFR's endocytic location, it is not clear how this occurs. In an effort to identify proteins that uniquely associate with the internalized, liganded EGFR in the early endosome, we developed an early endosome isolation strategy to analyze their protein composition. Post-nuclear supernatant from HeLa cells stimulated with and without EGF were separated on an isotonic 17% Percoll gradient. The gradient was fractionated, and early endosomal fractions were pooled and immunoisolated with an EEA1 mAb. The isolated endosomes were validated by immunoblot using antibodies against organelle-specific marker proteins and transmission EM. These early endosomes were also subjected to LC-MS/MS for proteomic analysis. Five proteins were detected in endosomes in a ligand-dependent manner: EGFR, RUFY1, STOML2, PTPN23, and CCDC51. Knockdown of RUFY1 or PTPN23 by RNAi indicated that both proteins play a role in EGFR trafficking. These experiments indicate that endocytic trafficking of activated EGFR changes the protein composition, membrane trafficking, and signaling potential of the early endosome.
Collapse
Affiliation(s)
| | - Daniel W Wilkey
- Medicine, University of Louisville, Louisville, Kentucky 40202
| | | | | |
Collapse
|
45
|
Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release. Proc Natl Acad Sci U S A 2018; 115:1617-1622. [PMID: 29378961 DOI: 10.1073/pnas.1716801115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca2+-dependent neuropeptide release. cAMP-evoked Ca2+-independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.
Collapse
|
46
|
Moore R, Pujol MG, Zhu Z, Smythe E. Interplay of Endocytosis and Growth Factor Receptor Signalling. ENDOCYTOSIS AND SIGNALING 2018; 57:181-202. [DOI: 10.1007/978-3-319-96704-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
|
48
|
Sowada N, Hashem MO, Yilmaz R, Hamad M, Kakar N, Thiele H, Arold ST, Bode H, Alkuraya FS, Borck G. Mutations of PTPN23 in developmental and epileptic encephalopathy. Hum Genet 2017; 136:1455-1461. [PMID: 29090338 DOI: 10.1007/s00439-017-1850-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of neurodevelopmental disorders with poor prognosis. Recent discoveries have greatly expanded the repertoire of genes that are mutated in epileptic encephalopathies and DEE, often in a de novo fashion, but in many patients, the disease remains molecularly uncharacterized. Here, we describe a new form of DEE in patients with likely deleterious biallelic variants in PTPN23. The phenotype is characterized by early onset drug-resistant epilepsy, severe and global developmental delay, microcephaly, and sometimes premature death. PTPN23 encodes a tyrosine phosphatase with strong brain expression, and its knockout in mouse is embryonically lethal. Structural modeling supports a deleterious effect of the identified alleles. Our data suggest that PTPN23 mutations cause a rare severe form of autosomal-recessive DEE in humans, a finding that requires confirmation.
Collapse
Affiliation(s)
- Nadine Sowada
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Mais Omar Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rüstem Yilmaz
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Muddathir Hamad
- Department of Pediatrics, King Khalid University Hospital, Riyadh, Saudi Arabia
| | - Naseebullah Kakar
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Harald Bode
- Division of Pediatric Neurology, Children's Hospital, University of Ulm, Ulm, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
49
|
Stoten CL, Carlton JG. ESCRT-dependent control of membrane remodelling during cell division. Semin Cell Dev Biol 2017; 74:50-65. [PMID: 28843980 PMCID: PMC6015221 DOI: 10.1016/j.semcdb.2017.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) proteins form an evolutionarily conserved membrane remodelling machinery. Identified originally for their role in cargo sorting and remodelling of endosomal membranes during yeast vacuolar sorting, an extensive body of work now implicates a sub-complex of this machinery (ESCRT-III), as a transplantable membrane fission machinery that is dispatched to various cellular locations to achieve a topologically unique membrane separation. Surprisingly, several ESCRT-III-regulated processes occur during cell division, when cells undergo a dramatic and co-ordinated remodelling of their membranes to allow the physical processes of division to occur. The ESCRT machinery functions in regeneration of the nuclear envelope during open mitosis and in the abscission phase of cytokinesis, where daughter cells are separated from each other in the last act of division. Roles for the ESCRT machinery in cell division are conserved as far back as Archaea, suggesting that the ancestral role of these proteins was as a membrane remodelling machinery that facilitated division and that was co-opted throughout evolution to perform a variety of other cell biological functions. Here, we will explore the function and regulation of the ESCRT machinery in cell division.
Collapse
|
50
|
Gahloth D, Heaven G, Jowitt TA, Mould AP, Bella J, Baldock C, Woodman P, Tabernero L. The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Sci Rep 2017; 7:9151. [PMID: 28831121 PMCID: PMC5567221 DOI: 10.1038/s41598-017-09467-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022] Open
Abstract
HD-PTP is a tumour suppressor phosphatase that controls endocytosis, down-regulation of mitogenic receptors and cell migration. Central to its role is the specific recruitment of critical endosomal sorting complexes required for transport (ESCRTs). However, the molecular mechanisms that enable HD-PTP to regulate ESCRT function are unknown. We have characterised the molecular architecture of the entire ESCRT binding region of HD-PTP using small angle X-ray scattering and hydrodynamic analyses. We show that HD-PTP adopts an open and extended conformation, optimal for concomitant interactions with multiple ESCRTs, which contrasts with the compact conformation of the related ESCRT regulator Alix. We demonstrate that the HD-PTP open conformation is functionally competent for binding cellular protein partners. Our analyses rationalise the functional cooperation of HD-PTP with ESCRT-0, ESCRT-I and ESCRT-III and support a model for regulation of ESCRT function by displacement of ESCRT subunits, which is crucial in determining the fate of ubiquitinated cargo.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Thomas A Jowitt
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - A Paul Mould
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clair Baldock
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|