1
|
Li R, Wang Z, Liu C, Qiao W, Tan J. Effects of Chemokine Ligand 2 on Budding of Bovine Foamy Virus. Viruses 2023; 15:1867. [PMID: 37766274 PMCID: PMC10536199 DOI: 10.3390/v15091867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is essential for the budding of retroviruses such as human immunodeficiency virus (HIV) and bovine foamy virus (BFV), which rely on their late domain to recruit ESCRT complexes to facilitate budding. However, the impact of intracellular host proteins on BFV budding remains poorly understood. In this study, we aimed to investigate the impact of CCL2 on BFV budding and interactions with key host proteins. Our results indicate that CCL2 promotes BFV budding in an ALG-2-interacting protein X (Alix)-dependent manner by enhancing the interaction between Alix and BFV Gag (BGag). Notably, we found a link between Alix, BGag and CCL2, with Alix mediating the interaction between the latter two. Furthermore, we observed that natural host bovine CCL2 also has a facilitating role in the budding process of BFV, similar to human CCL2. Taken together, these results demonstrate that CCL2 promotes BFV budding by enhancing the Alix-BGag association.
Collapse
Affiliation(s)
| | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (R.L.); (Z.W.); (C.L.); (W.Q.)
| |
Collapse
|
2
|
Welker L, Paillart JC, Bernacchi S. Importance of Viral Late Domains in Budding and Release of Enveloped RNA Viruses. Viruses 2021; 13:1559. [PMID: 34452424 PMCID: PMC8402826 DOI: 10.3390/v13081559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023] Open
Abstract
Late assembly (L) domains are conserved sequences that are necessary for the late steps of viral replication, acting like cellular adaptors to engage the ESCRT membrane fission machinery that promote virion release. These short sequences, whose mutation or deletion produce the accumulation of immature virions at the plasma membrane, were firstly identified within retroviral Gag precursors, and in a further step, also in structural proteins of many other enveloped RNA viruses including arenaviruses, filoviruses, rhabdoviruses, reoviruses, and paramyxoviruses. Three classes of L domains have been identified thus far (PT/SAP, YPXnL/LXXLF, and PPxY), even if it has recently been suggested that other motifs could act as L domains. Here, we summarize the current state of knowledge of the different types of L domains and their cellular partners in the budding events of RNA viruses, with a particular focus on retroviruses.
Collapse
Affiliation(s)
| | | | - Serena Bernacchi
- Architecture et Réactivité de l’ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France; (L.W.); (J.-C.P.)
| |
Collapse
|
3
|
Abstract
As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a membrane protein (M) that mediates viral release from cellular membranes. However, the molecular mechanisms of SARS-CoV-2 virion release remain poorly understood. In the present study, we performed RNA interference (RNAi) screening and identified the E3 ligase RNF5, which mediates the ubiquitination of SARS-CoV-2 M at residue K15 to enhance the interaction of the viral envelope protein (E) with M, whereas the deubiquitinating enzyme POH1 negatively regulates this process. The M-E complex ensures the uniform size of viral particles for viral maturation and mediates virion release. Moreover, M traffics from the Golgi apparatus to autophagosomes and uses autophagosomes for virion release, and this process is dependent on RNF5-mediated ubiquitin modification and M-E interaction. These results demonstrate that ubiquitin modification of SARS-CoV-2 M stabilizes the M-E complex and uses autophagosomes for virion release. IMPORTANCE Enveloped virus particles are released from the membranes of host cells, and viral membrane proteins (M) are critical for this process. A better understanding of the molecular mechanisms of SARS-CoV-2 assembly and budding is critical for the development of antiviral therapies. Envelope protein (E) and M of SARS-CoV-2 form complexes to mediate viral assembly and budding. RNF5 was identified to play a role as the E3 ligase, and POH1 was demonstrated to function as the deubiquitinating enzyme of SARS-CoV-2 M. The two components collectively regulate the interaction of M with E to promote viral assembly and budding. Ubiquitinated M uses autophagosomes for viral release. Our findings provide insights into the mechanisms of SARS-CoV-2 assembly and budding, demonstrating the importance of ubiquitination modification and autophagy in viral replication.
Collapse
|
4
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
5
|
Abstract
Enveloped viruses exit producer cells and acquire their external lipid envelopes by budding through limiting cellular membranes. Most viruses encode multifunctional structural proteins that coordinate the processes of virion assembly, membrane envelopment, budding, and maturation. In many cases, the cellular ESCRT pathway is recruited to facilitate the membrane fission step of budding, but alternative strategies are also employed. Recently, many viruses previously considered to be non-enveloped have been shown to exit cells non-lytically within vesicles, adding further complexity to the intricacies of virus budding and egress.
Collapse
|
6
|
Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 39:3034-3060. [DOI: 10.1080/07391102.2020.1756409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raied A. Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Moscow Region, Russia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
The Late Domain of Prototype Foamy Virus Gag Facilitates Autophagic Clearance of Stress Granules by Promoting Amphisome Formation. J Virol 2020; 94:JVI.01719-19. [PMID: 31969431 DOI: 10.1128/jvi.01719-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/07/2020] [Indexed: 01/19/2023] Open
Abstract
Prototype foamy virus (PFV), a complex retrovirus belonging to Spumaretrovirinae, maintains lifelong latent infection. The maintenance of lifelong latent infection by viruses relies on the repression of the type I interferon (IFN) response. However, the mechanism involving PFV latency, especially regarding the suppression of the IFN response, is poorly understood. Our previous study showed that PFV promotes autophagic flux. However, the underlying mechanism and the role of PFV-induced autophagy in latent infection have not been clarified. Here, we report that the PFV viral structural protein Gag induced amphisome formation and triggered autophagic clearance of stress granules (SGs) to attenuate type I IFN production. Moreover, the late domain (L-domain) of Gag played a central role in Alix recruitment, which promoted endosomal sorting complex required for transport I (ESCRT-I) formation and amphisome accumulation by facilitating late endosome formation. Our data suggest that PFV Gag represses the host IFN response through autophagic clearance of SGs by activating the endosome-autophagy pathway. More importantly, we found a novel mechanism by which a retrovirus inhibits the SG response to repress the type I IFN response.IMPORTANCE Maintenance of lifelong latent infection for viruses relies on repression of the type I IFN response. Autophagy plays a double-edged sword in antiviral immunity. However, the role of autophagy in the regulation of the type I IFN response and the mechanism involving virus-promoted autophagy have not been fully elucidated. SGs are an immune complex associated with the antiviral immune response and are critical for type I IFN production. Autophagic clearance of SGs is one means of degradation of SGs and is associated with regulation of immunity, but the detailed mechanism remains unclear. In this article, we demonstrate that PFV Gag recruits ESCRT-I to facilitate amphisome formation. Our data also suggest that amphisome formation is a critical event for autophagic clearance of SGs and repression of the type I IFN response. More importantly, we found a novel mechanism by which a retrovirus inhibits the SG response to repress the type I IFN response.
Collapse
|
8
|
Han Z, Dash S, Sagum CA, Ruthel G, Jaladanki CK, Berry CT, Schwoerer MP, Harty NM, Freedman BD, Bedford MT, Fan H, Sidhu SS, Sudol M, Shtanko O, Harty RN. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathog 2020; 16:e1008231. [PMID: 31905227 PMCID: PMC6977764 DOI: 10.1371/journal.ppat.1008231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 11/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies. By screening an array of 115 mammalian WW-domains with the PPxY motif from MARV VP40 (mVP40), we identified YAP1 and TAZ, transcriptional effectors of the Hippo pathway, as mVP40 interactors, and demonstrated that ectopically expressed YAP1 or TAZ inhibited budding of mVP40 virus-like particles (VLPs) in a WW-domain/PPxY dependent manner. Angiomotin (Amot), a multi-PPxY containing regulator of YAP1 nuclear/cytoplasmic localization and function, rescued mVP40 VLP egress from either YAP1- or TAZ-mediated inhibition in a PPxY-dependent manner. Indeed, endogenous Amot expression was critical for egress of mVP40 VLPs and authentic MARV. In sum, we have revealed a link between the Hippo pathway and filovirus egress by identifying negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shantoshini Dash
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaitanya K. Jaladanki
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Corbett T. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael P. Schwoerer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nina M. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bruce D. Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Hao Fan
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marius Sudol
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Olena Shtanko
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness. J Virol 2019; 93:JVI.00077-19. [PMID: 30760577 DOI: 10.1128/jvi.00077-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 subtype C (HIV-1C) has a natural deletion of a YPxL motif in its Gag-p6 late domain. This domain mediates the binding of Gag to host cell protein ALIX and subsequently facilitates viral budding. In a subset of HIV-1C-infected individuals, the tetrapeptide insertion PYxE has been identified at the deleted YPxL motif site. Here, we report the consequences of PYxE insertion on the interaction with ALIX and the relevance regarding replication fitness and drug sensitivity. In our three HIV-1C cohorts, PYKE and PYQE were most prevalent among PYxE variants. Through in silico predictions and in vitro experiments, we showed that HIV-1C Gag has an increased binding to ALIX when the PYxE motif is present. To go more into the clinical relevance of the PYxE insertion, we obtained patient-derived gag-pol sequences from HIV-1CPYxEi viruses and inserted them in a reference HIV-1 sequence. Viral growth was increased, and the sensitivity to the protease inhibitor (PI) lopinavir (LPV) and nucleoside reverse transcriptase inhibitor tenofovir alafenamide (TAF) was decreased for some of the HIV-1C PYxE variants compared to that of wild-type variants. Our data suggest that PYxE insertion in Gag restores the ability of Gag to bind ALIX and correlates with enhanced viral fitness in the absence or presence of LPV and TAF. The high prevalence and increased replication fitness of the HIV-1C virus with PYxE insertion indicates the clinical importance of these viral variants.IMPORTANCE Genomic differences within HIV-1 subtypes is associated with various degrees of viral spread, disease progression, and clinical outcome. Viral budding is essential in the HIV-1 life cycle and mainly mediated through the interaction of Gag with host proteins. Two motifs within Gag-p6 mediate binding of host cell proteins and facilitate budding. HIV-1C has a natural deletion of one of these two motifs, resulting in an inability to bind to host cell protein ALIX. Previously, we have identified a tetrapeptide (PYxE) insertion at this deleted motif site in a subset of HIV-1C patients. Here, we report the incidence of PYxE insertions in three different HIV-1C cohorts, and the insertion restores the binding of Gag to ALIX. It also increases viral growth even in the presence of the antiretroviral drugs lopinavir and tenofovir alafenamide. Hence, PYxE insertion in HIV-1C might be biologically relevant for viruses and clinically significant among patients.
Collapse
|
10
|
Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. J Virol 2017; 91:JVI.00812-17. [PMID: 28768865 DOI: 10.1128/jvi.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress.IMPORTANCE Ebola virus (EBOV) is a high-priority, emerging human pathogen that can cause severe outbreaks of hemorrhagic fever with high mortality rates. As there are currently no approved vaccines or treatments for EBOV, a better understanding of the biology and functions of EBOV-host interactions that promote or inhibit viral budding is warranted. Here, we describe a physical and functional interaction between EBOV VP40 (eVP40) and WWP1, a host E3 ubiquitin ligase that ubiquitinates VP40 and regulates VLP egress. This viral PPXY-host WW domain-mediated interaction represents a potential new target for host-oriented inhibitors of EBOV egress.
Collapse
|
11
|
Setz C, Friedrich M, Rauch P, Fraedrich K, Matthaei A, Traxdorf M, Schubert U. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes. Viruses 2017; 9:v9080222. [PMID: 28805676 PMCID: PMC5580479 DOI: 10.3390/v9080222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Alina Matthaei
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
12
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
13
|
ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. J Virol 2016; 90:9163-71. [PMID: 27489272 DOI: 10.1128/jvi.01078-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Ebola virus (EBOV) and Marburg virus (MARV) belong to the Filoviridae family and can cause outbreaks of severe hemorrhagic fever, with high mortality rates in humans. The EBOV VP40 (eVP40) and MARV VP40 (mVP40) matrix proteins play a central role in virion assembly and egress, such that independent expression of VP40 leads to the production and egress of virus-like particles (VLPs) that accurately mimic the budding of infectious virus. Late (L) budding domains of eVP40 recruit host proteins (e.g., Tsg101, Nedd4, and Alix) that are important for efficient virus egress and spread. For example, the PPxY-type L domain of eVP40 and mVP40 recruits the host Nedd4 E3 ubiquitin ligase via its WW domains to facilitate budding. Here we sought to identify additional WW domain host interactors and demonstrate that the PPxY L domain motif of eVP40 interacts specifically with the WW domain of the host E3 ubiquitin ligase ITCH. ITCH, like Nedd4, is a member of the HECT class of E3 ubiquitin ligases, and the resultant physical and functional interaction with eVP40 facilitates VLP and virus budding. Identification of this novel eVP40 interactor highlights the functional interplay between cellular E3 ligases, ubiquitination, and regulation of VP40-mediated egress. IMPORTANCE The unprecedented magnitude and scope of the recent 2014-2015 EBOV outbreak in West Africa and its emergence here in the United States and other countries underscore the critical need for a better understanding of the biology and pathogenesis of this emerging pathogen. We have identified a novel and functional EBOV VP40 interactor, ITCH, that regulates VP40-mediated egress. This virus-host interaction may represent a new target for our previously identified small-molecule inhibitors of virus egress.
Collapse
|
14
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag. Viruses 2016; 8:117. [PMID: 27120610 PMCID: PMC4848609 DOI: 10.3390/v8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.
Collapse
|
16
|
Bao Q, Hipp M, Hugo A, Lei J, Liu Y, Kehl T, Hechler T, Löchelt M. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission. Viruses 2015; 7:5855-74. [PMID: 26569290 PMCID: PMC4664980 DOI: 10.3390/v7112907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell-cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105-106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT-BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies.
Collapse
Affiliation(s)
- Qiuying Bao
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Michaela Hipp
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Annette Hugo
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Janet Lei
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Yang Liu
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
- Department Viral Recombination, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Timo Kehl
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| | - Torsten Hechler
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
- Heidelberg Pharma GmbH, 68526 Ladenburg, Germany.
| | - Martin Löchelt
- Division of Molecuar Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 242, 69120, Germany.
| |
Collapse
|
17
|
The KT Jeang Retrovirology prize 2015: Paul Bieniasz. Retrovirology 2015; 12:84. [PMID: 26438335 PMCID: PMC4595249 DOI: 10.1186/s12977-015-0208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
|
18
|
Influence of cellular trafficking pathway on bluetongue virus infection in ovine cells. Viruses 2015; 7:2378-403. [PMID: 25984713 PMCID: PMC4452911 DOI: 10.3390/v7052378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/06/2015] [Indexed: 11/27/2022] Open
Abstract
Bluetongue virus (BTV), a non-enveloped arbovirus, causes hemorrhagic disease in ruminants. However, the influence of natural host cell proteins on BTV replication process is not defined. In addition to cell lysis, BTV also exits non-ovine cultured cells by non-lytic pathways mediated by nonstructural protein NS3 that interacts with virus capsid and cellular proteins belonging to calpactin and ESCRT family. The PPXY late domain motif known to recruit NEDD4 family of HECT ubiquitin E3 ligases is also highly conserved in NS3. In this study using a mixture of molecular, biochemical and microscopic techniques we have analyzed the importance of ovine cellular proteins and vesicles in BTV infection. Electron microscopic analysis of BTV infected ovine cells demonstrated close association of mature particles with intracellular vesicles. Inhibition of Multi Vesicular Body (MVB) resident lipid phosphatidylinositol-3-phosphate resulted in decreased total virus titre suggesting that the vesicles might be MVBs. Proteasome mediated inhibition of ubiquitin or modification of virus lacking the PPXY in NS3 reduced virus growth. Thus, our study demonstrated that cellular components comprising of MVB and exocytic pathways proteins are involved in BTV replication in ovine cells.
Collapse
|
19
|
Baig TT, Feng Y, Chelico L. Determinants of efficient degradation of APOBEC3 restriction factors by HIV-1 Vif. J Virol 2014; 88:14380-95. [PMID: 25275135 PMCID: PMC4249154 DOI: 10.1128/jvi.02484-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/29/2014] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The APOBEC3 deoxycytidine deaminases can restrict the replication of HIV-1 in cell culture to differing degrees. The effects of APOBEC3 enzymes are largely suppressed by HIV-1 Vif that interacts with host proteins to form a Cullin5-Ring E3 ubiquitin ligase that induces (48)K-linked polyubiquitination (poly-Ub) and proteasomal degradation of APOBEC3 enzymes. Vif variants have differing abilities to induce degradation of APOBEC3 enzymes and the underlying biochemical mechanisms for these differences is not fully understood. We hypothesized that by characterizing the interaction of multiple APOBEC3 enzymes and Vif variants we could identify common features that resulted in Vif-mediated degradation and further define the determinants required for efficient Vif-mediated degradation of APOBEC3 enzymes. We used Vifs from HIV-1 NL4-3 (IIIB) and HXB2 to characterize their induced degradation of and interaction with APOBEC3G, APOBEC3G D128K, APOBEC3H, and APOBEC3B in 293T cells. We quantified the APOBEC3G-Vif and APOBEC3H-Vif interaction strengths in vitro using rotational anisotropy. Our biochemical and cellular analyses of the interactions support a model in which the degradation efficiency of VifIIIB and VifHXB2 correlated with both the binding strength of the APOBEC3-Vif interaction and the APOBEC3-Vif interface, which differs for APOBEC3G and APOBEC3H. Notably, Vif bound to APOBEC3H and APOBEC3B in the natural absence of Vif-induced degradation and the interaction resulted in (63)K-linked poly-Ub of APOBEC3H and APOBEC3B, demonstrating additional functionality of the APOBEC3-Vif interaction apart from induction of proteasomal degradation. IMPORTANCE APOBEC3 enzymes can potently restrict the replication of HIV-1 in the absence of HIV-1 Vif. Vif suppresses APOBEC3 action by inducing their degradation through a direct interaction with APOBEC3 enzymes and other host proteins. Vif variants from different HIV-1 strains have different effects on APOBEC3 enzymes. We used differing Vif degradation capacities of two Vif variants and various APOBEC3 enzymes with differential sensitivities to Vif to delineate determinants of the APOBEC3-Vif interaction that are required for inducing efficient degradation. Using a combined biochemical and cellular approach we identified that the strength of the APOBEC3-Vif binding interaction and the APOBEC3-Vif interface are determinants for degradation efficiency. Our results highlight the importance of using Vif variants with different degradation potential when delineating mechanisms of Vif-induced APOBEC3 degradation and identify features important for consideration in the development of HIV-1 therapies that disrupt the APOBEC3-Vif interaction.
Collapse
Affiliation(s)
- Tayyba T Baig
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
A leucine residue in the C terminus of human parainfluenza virus type 3 matrix protein is essential for efficient virus-like particle and virion release. J Virol 2014; 88:13173-88. [PMID: 25187547 DOI: 10.1128/jvi.01485-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells, and matrix (M) proteins are critical for this process. To identify the M protein important for this process, we have characterized the budding of the human parainfluenza virus type 3 (HPIV3) M protein. Our results showed that expression of the HPIV3 M protein alone is sufficient to initiate the release of virus-like particles (VLPs). Electron microscopy analysis confirmed that VLPs are morphologically similar to HPIV3 virions. We identified a leucine (L302) residue within the C terminus of the HPIV3 M protein that is critical for M protein-mediated VLP production by regulating the ubiquitination of the M protein. When L302 was mutated into A302, ubiquitination of M protein was defective, the release of VLPs was abolished, and the membrane binding and budding abilities of M protein were greatly weakened, but the ML302A mutant retained oligomerization activity and had a dominant negative effect on M protein-mediated VLP production. Furthermore, treatment with a proteasome inhibitor also inhibited M protein-mediated VLP production and viral budding. Finally, recombinant HPIV3 containing the M(L302A) mutant could not be rescued. These results suggest that L302 acts as a critical regulating signal for the ubiquitination of the HPIV3 M protein and virion release. IMPORTANCE Human parainfluenza virus type 3 (HPIV3) is an enveloped virus with a nonsegmented negative-strand RNA genome. It can cause severe respiratory tract diseases, such as bronchiolitis, pneumonia, and croup in infants and young children. However, no valid antiviral therapy or vaccine is currently available. Thus, further elucidation of its assembly and budding will be helpful in the development of novel therapeutic approaches. Here, we show that a leucine residue (L302) located at the C terminus of the HPIV3 M protein is essential for efficient production of virus-like particles (VLPs). Furthermore, we found L302 regulated M protein-mediated VLP production via regulation of M protein ubiquitination. Recombinant HPIV3 containing the M(L302A) mutant is growth defective. These findings provide new insight into the critical role of M protein-mediated VLP production and virion release of a residue that does not belong to L domain and may advance our understanding of HPIV3 viral assembly and budding.
Collapse
|
21
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|
22
|
Abstract
Enveloped viruses escape infected cells by budding through limiting membranes. In the decade since the discovery that HIV recruits cellular ESCRT (endosomal sorting complexes required for transport) machinery to facilitate viral budding, this pathway has emerged as the major escape route for enveloped viruses. In cells, the ESCRT pathway catalyzes analogous membrane fission events required for the abscission stage of cytokinesis and for a series of "reverse topology" vesiculation events. Studies of enveloped virus budding are therefore providing insights into the complex cellular mechanisms of cell division and membrane protein trafficking (and vice versa). Here, we review how viruses mimic cellular recruiting signals to usurp the ESCRT pathway, discuss mechanistic models for ESCRT pathway functions, and highlight important research frontiers.
Collapse
Affiliation(s)
- Jörg Votteler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | |
Collapse
|
23
|
Garcia ML, Reynolds TD, Mothes W, Robek MD. Functional characterization of the putative hepatitis B virus core protein late domain using retrovirus chimeras. PLoS One 2013; 8:e72845. [PMID: 24009707 PMCID: PMC3756966 DOI: 10.1371/journal.pone.0072845] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
The hepatitis B virus (HBV) Core protein encodes a late (L)-domain like motif (129PPAYRPPNAP138) that has been purported to serve as a docking site for recruitment of host factors such as Nedd4 that can mediate viral particle release from infected cells. However, mutation of this region of Core typically disrupts nucleocapsid formation in the cytoplasm, making it difficult to ascertain if the Core PPAY motif constitutes a functional L-domain that mediates HBV release in the context of replicating virus. Since many viral L-domains are functionally interchangeable between different virus families, and such swapping experiments have been used as a tool to identify other viral sequences with L-domain activity, we generated chimeric constructs between murine leukemia virus (MLV) Gag and HBV Core to determine if the potential HBV L-domain motif is sufficient to stimulate virus release. We found that the HBV Core PPAY motif, but not the PNAP motif, demonstrates L-domain activity in the context of MLV replication to direct virus release and infectious virion production. Additionally, we found that overexpression of the cellular Nedd4 or WWP1 ubiquitin ligases stimulates release of a partially defective PPAY domain mutant, providing further evidence supporting a role for the Nedd4 ubiquitin ligase in promoting HBV release. These studies lend further insight into the mechanisms used by HBV to mediate its release from infected cells.
Collapse
Affiliation(s)
- Mayra L. Garcia
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tracy D. Reynolds
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael D. Robek
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
24
|
Sette P, Nagashima K, Piper RC, Bouamr F. Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding. Retrovirology 2013; 10:79. [PMID: 23895345 PMCID: PMC3751857 DOI: 10.1186/1742-4690-10-79] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background HIV-1 relies on the host ESCRTs for release from cells. HIV-1 Gag engages ESCRTs by directly binding TSG101 or Alix. ESCRTs also sort ubiquitinated membrane proteins through endosomes to facilitate their lysosomal degradation. The ability of ESCRTs to recognize and process ubiquitinated proteins suggests that ESCRT-dependent viral release may also be controlled by ubiquitination. Although both Gag and ESCRTs undergo some level of ubiquitination, definitive demonstration that ubiquitin is required for viral release is lacking. Here we suppress ubiquitination at viral budding sites by fusing the catalytic domain of the Herpes Simplex UL36 deubiquitinating enzyme (DUb) onto TSG101, Alix, or Gag. Results Expressing DUb-TSG101 suppressed Alix-independent HIV-1 release and viral particles remained tethered to the cell surface. DUb-TSG101 had no effect on budding of MoMLV or EIAV, two retroviruses that rely on the ESCRT machinery for exit. Alix-dependent virus release such as EIAV’s, and HIV-1 lacking access to TSG101, was instead dramatically blocked by co-expressing DUb-Alix. Finally, Gag-DUb was unable to support virus release and dominantly interfered with release of wild type HIV-1. Fusion of UL36 did not effect interactions with Alix, TSG101, or Gag and all of the inhibitory effects of UL36 fusion were abolished when its catalytic activity was ablated. Accordingly, Alix, TSG101 and Gag fused to inactive UL36 functionally replaced their unfused counterparts. Interestingly, coexpression of the Nedd4-2s ubiquitin ligase suppressed the ability of DUb-TSG101 to inhibit HIV-1 release while also restoring detectable Gag ubiquitination at the membrane. Similarly, incorporation of Gag-Ub fusion proteins into virions lifted DUb-ESCRT inhibitory effect. In contrast, Nedd4-2s did not suppress the inhibition mediated by Gag-DUb despite restoring robust ubiquitination of TSG101/ESCRT-I at virus budding sites. Conclusions These studies demonstrate a necessary and natural role for ubiquitin in ESCRT-dependent viral release and indicate a critical role for ubiquitination of Gag rather than ubiquitination of ESCRTs themselves.
Collapse
Affiliation(s)
- Paola Sette
- Viral Budding Unit, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
25
|
van Knippenberg I, Fragkoudis R, Elliott RM. The transient nature of Bunyamwera orthobunyavirus NSs protein expression: effects of increased stability of NSs protein on virus replication. PLoS One 2013; 8:e64137. [PMID: 23667701 PMCID: PMC3648540 DOI: 10.1371/journal.pone.0064137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The NSs proteins of bunyaviruses are the viral interferon antagonists, counteracting the host's antiviral response to infection. During high-multiplicity infection of cultured mammalian cells with Bunyamwera orthobunyavirus (BUNV), NSs is rapidly degraded after reaching peak levels of expression at 12hpi. Through the use of inhibitors this was shown to be the result of proteasomal degradation. A recombinant virus (rBUN4KR), in which all four lysine residues in NSs were replaced by arginine residues, expresses an NSs protein (NSs4KR) that is resistant to degradation, confirming that degradation is lysine-dependent. However, despite repeated attempts, no direct ubiquitylation of NSs in infected cells could be demonstrated. This suggests that degradation of NSs, although lysine-dependent, may be achieved through an indirect mechanism. Infection of cultured mammalian cells or mice indicated no disadvantage for the virus in having a non-degradable NSs protein: in fact rBUN4KR had a slight growth advantage over wtBUNV in interferon-competent cells, presumably due to the increased and prolonged presence of NSs. In cultured mosquito cells there was no difference in growth between wild-type BUNV and rBUN4KR, but surprisingly NSs4KR was not stabilised compared to the wild-type NSs protein.
Collapse
Affiliation(s)
- Ingeborg van Knippenberg
- Biomedical Sciences Research Centre, University of St. Andrews, St. Andrews, Fife, Scotland, United Kingdom
| | - Rennos Fragkoudis
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Richard M. Elliott
- Biomedical Sciences Research Centre, University of St. Andrews, St. Andrews, Fife, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Hütter S, Zurnic I, Lindemann D. Foamy virus budding and release. Viruses 2013; 5:1075-98. [PMID: 23575110 PMCID: PMC3705266 DOI: 10.3390/v5041075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022] Open
Abstract
Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems.
Collapse
Affiliation(s)
- Sylvia Hütter
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Irena Zurnic
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-351458-6210; Fax: +49-351-458-6310
| |
Collapse
|
27
|
The foamy virus Gag proteins: what makes them different? Viruses 2013; 5:1023-41. [PMID: 23531622 PMCID: PMC3705263 DOI: 10.3390/v5041023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Gag proteins play an important role in many stages of the retroviral replication cycle. They orchestrate viral assembly, interact with numerous host cell proteins, engage in regulation of viral gene expression, and provide the main driving force for virus intracellular trafficking and budding. Foamy Viruses (FV), also known as spumaviruses, display a number of unique features among retroviruses. Many of these features can be attributed to their Gag proteins. FV Gag proteins lack characteristic orthoretroviral domains like membrane-binding domains (M domains), the major homology region (MHR), and the hallmark Cys-His motifs. In contrast, they contain several distinct domains such as the essential Gag-Env interaction domain and the glycine and arginine rich boxes (GR boxes). Furthermore, FV Gag only undergoes limited maturation and follows an unusual pathway for nuclear translocation. This review summarizes the known FV Gag domains and motifs and their functions. In particular, it provides an overview of the unique structural and functional properties that distinguish FV Gag proteins from orthoretroviral Gag proteins.
Collapse
|
28
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
29
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
30
|
Swiersy A, Wiek C, Zentgraf H, Lindemann D. Characterization and manipulation of foamy virus membrane interactions. Cell Microbiol 2012; 15:227-36. [PMID: 23051660 DOI: 10.1111/cmi.12042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 01/19/2023]
Abstract
Foamy viruses (FVs), a unique type of retroviruses, are characterized by several unusual features in their replication strategy. FVs, common to all non-human primates and several other species, display an extremely broad tropism in vitro. Basically, all mammalian cells and species examined, but also cells of amphibian or bird origin, are permissive to FV glycoprotein (Env)-mediated capsid release into the cytoplasm. The nature of the broadly expressed, and potentially evolutionary conserved, FV entry receptor molecule(s) is poorly characterized. Although recent data indicate that proteoglycans serve as an important factor for FV Env-mediated target cell attachment, additional uncharacterized molecules appear to be essential for the pH-dependent fusion of viral and cellular lipid membranes after endocytic uptake of virions. Furthermore, FVs show a very special assembly strategy. Unlike other retroviruses, the FV capsid precursor protein (Gag) undergoes only very limited proteolytic processing during assembly. This results in an immature morphology of capsids found in released FV virions. In addition, the FV Gag protein appears to lack a functional membrane-targeting signal. As a consequence, FVs utilize a specific interaction between capsid and cognate viral glycoprotein for initiation of thebudding process. Genetic fusion of heterologous targeting domains for plasma but not endosomal membranes to FV Gag enables glycoprotein-independent particle egress. However, this is at the expense of normal capsid morphogenesis and infectivity. The low-level Gag precursor processing and the requirement for a reversible, artificial Gag membrane association for effective pseudotyping of FV capsids by heterologous glycoproteins strongly suggest that FVs require a transient interaction of capsids with cellular membranes for viral replication. Under natural condition, this appears to be achieved by the lack of a membrane-targeting function of the FV Gag protein and the accomplishment of capsid membrane attachment through an unusual specific interaction with the cognate glycoprotein.
Collapse
Affiliation(s)
- Anka Swiersy
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
31
|
Ho YP, Schnabel V, Swiersy A, Stirnnagel K, Lindemann D. A small-molecule-controlled system for efficient pseudotyping of prototype foamy virus vectors. Mol Ther 2012; 20:1167-76. [PMID: 22472951 DOI: 10.1038/mt.2012.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Foamy virus (FV) vector systems have recently demonstrated their power as efficient gene transfer tools for different target tissues. Unfortunately, FVs cannot be naturally pseudotyped by heterologous viral glycoproteins due to an unusual particle morphogenesis involving a FV Env-dependent particle release process. Therefore, current FV vector systems are constrained to the broad host cell range provided by the cognate viral glycoprotein. We evaluated different approaches for pseudotyping of FV vectors, in which the specific FV Gag-Env interaction, essential for particle egress, is substituted by a small-molecule controlled heterodimerization (HD) system. In one system developed, one HD-domain (HDD) is fused to a membrane-targeting domain (MTD), such as the human immunodeficiency virus (HIV) Gag matrix (MA) subunit, with a second fused to the FV capsid protein. Coexpression of both components with different heterologous viral glycoproteins allowed an efficient, dimerizer-dependent pseudotyping of FV capsids. With this system FV vesicular stomatitis virus glycoprotein (VSV-G) pseudotype titers greater than 1 × 10(6) IU/ml were obtained, at levels comparable to authentic FV vector particles. As a proof-of-principle we demonstrate that Pac2 cells, naturally resistant to FV vectors, become permissive to FV VSV-G pseudotypes. Similar to other retroviral vectors, this FV pseudotyping system now enables adaptation of cell-specific targeting approaches for FVs.
Collapse
Affiliation(s)
- Yu-Ping Ho
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
32
|
Demirov D, Gabriel G, Schneider C, Hohenberg H, Ludwig S. Interaction of influenza A virus matrix protein with RACK1 is required for virus release. Cell Microbiol 2012; 14:774-89. [PMID: 22289149 DOI: 10.1111/j.1462-5822.2012.01759.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanism of budding of influenza A virus revealed important deviation from the consensus mechanism of budding of retroviruses and of a growing number of negative-strand RNA viruses. This study is focused on the role of the influenza A virus matrix protein M1 in virus release. We found that a mutation of the proline residue at position 16 of the matrix protein induces inhibition of virus detachment from cells. Depletion of the M1-binding protein RACK1 also impairs virus release and RACK1 binding requires the proline residue at position 16 of M1. The impaired M1-RACK1 interaction does not affect the plasma membrane binding of M1; in contrast, RACK1 is recruited to detergent-resistant membranes in a M1-proline-16-dependent manner. The proline-16 mutation in M1 and depletion of RACK1 impairs the pinching-off of the budding virus particles. These findings reveal the active role of the viral matrix protein in the release of influenza A virus particles that involves a cross-talk with a RACK1-mediated pathway.
Collapse
Affiliation(s)
- Dimiter Demirov
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
33
|
Abstract
Ubiquitin is important for the budding of many retroviruses and other enveloped viruses, but the precise role of ubiquitin in virus budding remains unclear. Here, we characterized the ubiquitination of the matrix (M) protein of a paramyxovirus, parainfluenza virus 5 (PIV5). The PIV5 M protein (but not the PIV5 nucleocapsid protein) was found to be targeted for monoubiquitination in transfected mammalian cells. Major sites of ubiquitin attachment identified by mass spectrometry analysis were lysine residues at amino acid positions 79/80, 130, and 247. The cumulative mutation of lysine residues 79, 80, and 130 to arginines led to an altered pattern of M protein ubiquitination and impaired viruslike particle (VLP) production. However, the cumulative mutation of lysine residues 79, 80, 130, and 247 to arginines restored M protein ubiquitination and VLP production, suggesting that ubiquitin is attached to alternative sites on the M protein when the primary ones have been removed. Additional lysine residues were targeted for mutagenesis based on the UbiPred algorithm. An M protein with seven lysine residues changed to arginines exhibited altered ubiquitination and poor VLP production. A recombinant virus encoding an M protein with seven lysines mutated was generated, and this virus exhibited a 6-fold-reduced maximum titer, with the defect being attributed mainly to the budding of noninfectious particles. The recombinant virus was assembly deficient, as judged by the redistribution of viral M and hemagglutinin-neuraminidase proteins in infected cells. Similar assembly defects were observed for the wild-type (wt) virus after treatment with a proteasome inhibitor. Collectively, these findings suggest that the monoubiquitination of the PIV5 M protein is important for proper virus assembly and for the budding of infectious particles.
Collapse
|
34
|
N-terminally myristoylated feline foamy virus Gag allows Env-independent budding of sub-viral particles. Viruses 2011; 3:2223-37. [PMID: 22163342 PMCID: PMC3230849 DOI: 10.3390/v3112223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 01/09/2023] Open
Abstract
Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation.
Collapse
|
35
|
Weiss ER, Göttlinger H. The role of cellular factors in promoting HIV budding. J Mol Biol 2011; 410:525-33. [PMID: 21762798 DOI: 10.1016/j.jmb.2011.04.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) becomes enveloped while budding through the plasma membrane, and the release of nascent virions requires a membrane fission event that separates the viral envelope from the cell surface. To facilitate this crucial step in its life cycle, HIV-1 exploits a complex cellular membrane remodeling and fission machinery known as the endosomal sorting complex required for transport (ESCRT) pathway. HIV-1 Gag directly interacts with early-acting components of this pathway, which ultimately triggers the assembly of the ESCRT-III membrane fission complex at viral budding sites. Surprisingly, HIV-1 requires only a subset of ESCRT-III components, indicating that the membrane fission reaction that occurs during HIV-1 budding differs in crucial aspects from topologically related cellular abscission events.
Collapse
Affiliation(s)
- Eric R Weiss
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
36
|
Gustin JK, Moses AV, Früh K, Douglas JL. Viral takeover of the host ubiquitin system. Front Microbiol 2011; 2:161. [PMID: 21847386 PMCID: PMC3147166 DOI: 10.3389/fmicb.2011.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 01/29/2023] Open
Abstract
Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University Beaverton, OR, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a mediator of viral budding from the cell surface. Hints that both ESCRTs and Ub work together in the processes such as cytokinesis, transcription and autophagy are beginning to emerge. Here, we explore the relationship between ESCRTs and Ub in MVB sorting and viral budding.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
38
|
Dorjbal B, Derse D, Lloyd P, Soheilian F, Nagashima K, Heidecker G. The role of ITCH protein in human T-cell leukemia virus type 1 release. J Biol Chem 2011; 286:31092-104. [PMID: 21724848 DOI: 10.1074/jbc.m111.259945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has two late domain (LD) motifs, PPPY and PTAP, which are important for viral budding. Mutations in the PPPY motif are more deleterious for viral release than changes in the PTAP motif. Several reports have shown that the interaction of PPPY with the WW domains of a Nedd4 (neuronal precursor cell-expressed developmentally down-regulated-4) family ubiquitin ligase (UL) is a critical event in virus release. We tested nine members of the Nedd4 family ULs and found that ITCH is the main contributor to HTLV-1 budding. ITCH overexpression strongly inhibited release and infectivity of wild-type (wt) HTLV-1, but rescued the release of infectious virions with certain mutations in the PPPY motif. Electron microscopy showed either fewer or misshapen virus particles when wt HTLV-1 was produced in the presence of overexpressed ITCH, whereas mutants with changes in the PPPY motif yielded normal looking particles at wt level. The other ULs had significantly weaker or no effects on HTLV-1 release and infectivity except for SMURF-1, which caused enhanced release of wt and all PPPY(-) mutant particles. These particles were poorly infectious and showed abnormal morphology by electron microscopy. Budding and infectivity defects due to overexpression of ITCH and SMURF-1 were correlated with higher than normal ubiquitination of Gag. Only silencing of ITCH, but not of WWP1, WWP2, and Nedd4, resulted in a reduction of HTLV-1 budding from 293T cells. The binding efficiencies between the HTLV-1 LD and WW domains of different ULs as measured by mammalian two-hybrid interaction did not correlate with the strength of their effect on HTLV-1 budding.
Collapse
Affiliation(s)
- Batsukh Dorjbal
- HIV-Drug Resistance Program, NCI Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The plasma membrane is the final barrier that enveloped viruses must cross during their egress from the infected cell. Here, we review recent insights into the cell biology of retroviral assembly and release; these insights have driven a new understanding of the host proteins, such as the ESCRT machinery, that are used by retroviruses to promote their final separation from the host cell. We also review antiviral host factors such as tetherin, which can directly inhibit the release of retroviral particles. These studies have illuminated the role of the lipid bilayer as the unexpected target for virus restriction by the innate immune response.
Collapse
|
40
|
Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses 2011; 3:561-85. [PMID: 21994746 PMCID: PMC3185757 DOI: 10.3390/v3050561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 01/12/2023] Open
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.
Collapse
Affiliation(s)
- Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany; E-Mail:
| |
Collapse
|
41
|
Abstract
Foamy virus (FV) capsid proteins have few lysines. Basic residues are almost exclusively represented by arginines indicating positive selective pressure. To analyze the possible functions of this peculiarity, we mutated an infectious molecular clone of the prototypic FV (PFV) to harbor lysines in the Gag protein at arginine-specifying positions and analyzed various aspects of the FV replication cycle. The majority of mutants replicated equally as well in permanent cell cultures as the original wild-type (wt) virus and were genetically stable in gag upon 10 cell-free passages. With respect to the features of late reverse transcription, nucleic acid content, and infectiousness of the virion DNA genome, the majority of mutants behaved like the wt. Several mutants of PFV were ubiquitinated in Gag but unable to generate virus-like particles (VLPs) or to undergo pseudotyping by a heterologous envelope. Using primary cells, however, a replicative disadvantage of the majority of mutants was disclosed. This disadvantage was enhanced upon interferon (IFN) treatment. We found no evidence that the lysine-bearing gag mutants showed more restriction than the wt virus by tetherin (CD317) or Trim5α. A single lysine in PFV Gag was found to be nonessential for transient replication in permanent cell culture if replaced by an arginine residue. Upon replication in primary cells, even without IFN treatment, this mutant was severely impaired, indicating the importance of specifying at least this lysine residue in PFV Gag. The paucity of lysines in FV Gag proteins may be a consequence of preventing proteasomal Gag degradation.
Collapse
|
42
|
Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J Virol 2010; 85:3546-56. [PMID: 21191027 DOI: 10.1128/jvi.02045-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Late domains are short peptide sequences encoded by enveloped viruses to promote the final separation of the nascent virus from the infected cell. These amino acid motifs facilitate viral egress by interacting with components of the ESCRT (endosomal sorting complex required for transport) machinery, ultimately leading to membrane scission by recruiting ESCRT-III to the site of viral budding. PPXY late (L) domains present in viruses such as murine leukemia virus (MLV) or human T-cell leukemia virus type 1 (HTLV-1) access the ESCRT pathway via interaction with HECT ubiquitin ligases (WWP1, WWP2, and Itch). However, the mechanism of ESCRT-III recruitment in this context remains elusive. In this study, we tested the arrestin-related trafficking (ART) proteins, namely, ARRDC1 (arrestin domain-containing protein 1) to ARRDC4 and TXNIP (thioredoxin-interacting protein), for their ability to function as adaptors between HECT ubiquitin ligases and the core ESCRT machinery in PPXY-dependent budding. We present several lines of evidence in support of such a role: ARTs interact with HECT ubiquitin ligases, and they also exhibit multiple interactions with components of the ESCRT pathway, namely, ALIX and Tsg101, and perhaps with an as yet unidentified factor. Additionally, the ARTs can be recruited to the site of viral budding, and their overexpression results in a PPXY-specific inhibition of MLV budding. Lastly, we show that WWP1 changes the ubiquitination status of ARRDC1, suggesting that the ARTs may provide a platform for ubiquitination in PPXY-dependent budding. Taken together, our results support a model whereby ARTs are involved in PPXY-mediated budding by interacting with HECT ubiquitin ligases and providing several alternative routes for ESCRT-III recruitment.
Collapse
|
43
|
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is a group of multisubunit protein complexes conserved across phyla that are involved in a range of diverse cellular processes. ESCRT proteins regulate the biogenesis of MVBs (multivesicular bodies) and the sorting of ubiquitinated cargos on to ILVs (intraluminal vesicles) within these MVBs. These proteins are also recruited to sites of retroviral particle assembly, where they provide an activity that allows release of these retroviruses. More recently, these proteins have been shown to be recruited to the intracellular bridge linking daughter cells at the end of mitosis, where they act to ensure the separation of these cells through the process of cytokinesis. Although these cellular processes are diverse, they share a requirement for a topologically unique membrane-fission step for their completion. Current models suggest that the ESCRT machinery catalyses this membrane fission.
Collapse
|
44
|
Zhadina M, Bieniasz PD. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog 2010; 6:e1001153. [PMID: 20975941 PMCID: PMC2958808 DOI: 10.1371/journal.ppat.1001153] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/17/2010] [Indexed: 12/17/2022] Open
Abstract
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed. The release of an enveloped virus particle from an infected cell requires the separation of the viral and cell membranes. Many enveloped viruses accomplish this by parasitizing a set of cellular proteins, termed the ESCRT pathway, that normally separates cellular membranes from each other. In some cases, viral structural proteins encode peptides motifs that bind directly to, and thereby recruit, the ESCRT machinery. Alternatively, viruses can recruit enzymes, termed ubiquitin ligases, that bind to other proteins, and catalyze the addition of ubiquitin to them. It has, heretofore, been somewhat unclear precisely how the recruitment of ubiquitin ligases leads to the engagement of the ESCRT machinery. We show that the simple recruitment of a fragment of a ubiquitin ligase that is responsible for the addition of ubiquitin to other proteins is sufficient to drive virus particle release, even when it is not possible to attach ubiquitin to viral proteins. Paradoxically, we also found that simple attachment of ubiquitin to the same viral protein can also drive particle release. These results show that there is flexibility in the ways in which the ESCRT machinery can be recruited and how ubiquitin can be co-opted to enable this.
Collapse
Affiliation(s)
- Maria Zhadina
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, the Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, the Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Weiss ER, Popova E, Yamanaka H, Kim HC, Huibregtse JM, Göttlinger H. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS Pathog 2010; 6:e1001107. [PMID: 20862313 PMCID: PMC2940739 DOI: 10.1371/journal.ppat.1001107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/16/2010] [Indexed: 11/24/2022] Open
Abstract
Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release. To promote its escape from cells, HIV-1 hijacks cellular budding machinery through so-called L domains in its structural Gag protein. However, HIV-1 lacks a type of L domain that recruits NEDD4 ubiquitin ligases, a family of cellular enzymes that attach one or more copies of a small protein called ubiquitin to other proteins. Surprisingly, one NEDD4 family member, which is known as NEDD4-2s and stands out because its membrane-binding domain is uniquely truncated, can nevertheless potently stimulate HIV-1 release. Our study reveals that NEDD4-2s can do this because its altered membrane-binding domain allows it to associate with HIV-1 Gag. Remarkably, when tagged with the altered membrane-binding domain of NEDD4-2s, even a distantly related yeast protein becomes capable of stimulating the release of HIV-1. We also show that only the portion of NEDD4-2s that acts as an enzyme is required when targeted to HIV-1 Gag in an alternative manner. Taken together, our findings indicate that it is not simply the ability to attach ubiquitin to Gag, but rather the ability to form a particular type of ubiquitin chain in the immediate vicinity of Gag, that is critical to stimulate virus release.
Collapse
Affiliation(s)
- Eric R. Weiss
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Elena Popova
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hikaru Yamanaka
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hyung Cheol Kim
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jon M. Huibregtse
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Heinrich Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
The host innate immune response, including the production of type-I IFN, represents the primary line of defense against invading viral pathogens. Of the hundreds of IFN-stimulated genes (ISGs) discovered to date, ISG15 was one of the first identified and shown to encode a ubiquitin-like protein that functions, in part, as a modifier of protein function. Evidence implicating ISG15 as an innate immune protein with broad-spectrum antiviral activity continues to accumulate rapidly. This review will summarize recent findings on the innate antiviral activity of ISG15, with a focus on the interplay between ubiquitination and ISGylation pathways resulting in modulation of RNA virus assembly/budding. Indeed, ubiquitination is known to be proviral for some RNA viruses, whereas the parallel ISGylation pathway is known to be antiviral. A better understanding of the antiviral activities of ISG15 will enhance our fundamental knowledge of host innate responses to viral pathogens and may provide insight useful for the development of novel therapeutic approaches designed to enhance the immune response against such pathogens.
Collapse
Affiliation(s)
- Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
47
|
Abstract
The ESCRT machinery consists of the peripheral membrane protein complexes ESCRT-0, -I, -II, -III, and Vps4-Vta1, and the ALIX homodimer. The ESCRT system is required for degradation of unneeded or dangerous plasma membrane proteins; biogenesis of the lysosome and the yeast vacuole; the budding of most membrane enveloped viruses; the membrane abscission step in cytokinesis; macroautophagy; and several other processes. From their initial discovery in 2001-2002, the literature on ESCRTs has grown exponentially. This review will describe the structure and function of the six complexes noted above and summarize current knowledge of their mechanistic roles in cellular pathways and in disease.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. J Virol 2010; 84:8181-92. [PMID: 20519395 DOI: 10.1128/jvi.00634-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPX(n)L, that bind Tsg101 and Alix, respectively. Interactions with these two cellular proteins recruit members of the host's fission machinery (ESCRT) to facilitate HIV-1 release. Other retroviruses gain access to the host ESCRT components by utilizing a PPXY-type L domain that interacts with cellular Nedd4-like ubiquitin ligases. Despite the absence of a PPXY motif in HIV-1 Gag, interaction with the ubiquitin ligase Nedd4-2 was recently shown to stimulate HIV-1 release. We show here that another Nedd4-like ubiquitin ligase, Nedd4-1, corrected release defects resulting from the disruption of PTAP (PTAP(-)), suggesting that HIV-1 Gag also recruits Nedd4-1 to facilitate virus release. Notably, Nedd4-1 remediation of HIV-1 PTAP(-) budding defects is independent of cellular Tsg101, implying that Nedd4-1's function in HIV-1 release does not involve ESCRT-I components and is therefore distinct from that of Nedd4-2. Consistent with this finding, deletion of the p6 region decreased Nedd4-1-Gag interaction, and disruption of the LYPX(n)L motif eliminated Nedd4-1-mediated restoration of HIV-1 PTAP(-). This result indicated that both Nedd4-1 interaction with Gag and function in virus release occur through the Alix-binding LYPX(n)L motif. Mutations of basic residues located in the NC domain of Gag that are critical for Alix's facilitation of HIV-1 release, also disrupted release mediated by Nedd4-1, further confirming a Nedd4-1-Alix functional interdependence. In fact we found that Nedd4-1 binds Alix in both immunoprecipitation and yeast-two-hybrid assays. In addition, Nedd4-1 requires its catalytic activity to promote virus release. Remarkably, RNAi knockdown of cellular Nedd4-1 eliminated Alix ubiquitination in the cell and impeded its ability to function in HIV-1 release. Together our data support a model in which Alix recruits Nedd4-1 to facilitate HIV-1 release mediated through the LYPX(n)L/Alix budding pathway via a mechanism that involves Alix ubiquitination.
Collapse
|
49
|
Stirnnagel K, Lüftenegger D, Stange A, Swiersy A, Müllers E, Reh J, Stanke N, Grosse A, Chiantia S, Keller H, Schwille P, Hanenberg H, Zentgraf H, Lindemann D. Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology 2010; 7:45. [PMID: 20478027 PMCID: PMC2887381 DOI: 10.1186/1742-4690-7-45] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022] Open
Abstract
Background The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. Results In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. Conclusions We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
One of the most fascinating areas in retrovirology is the study of foamy viruses (FVs), because these viruses appear to do everything that is common to all other retroviruses differently. FVs have found a completely new way to propagate their genome. And they do this extremely successfully because most of wild non-human primates, felines, bovines, equines, and small ruminants are likely to be non-pathogenically infected. The success of FVs can also be viewed from a different angle, since they replicate very conservatively and do not need to shape their genotypic and phenotypic makeup every now and then. The elucidation of the underlying basic mechanisms of the FV replication strategy is the topic of this review.
Collapse
|