1
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
2
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I, Alonso MA. The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells 2021; 10:1065. [PMID: 33946345 PMCID: PMC8145151 DOI: 10.3390/cells10051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| |
Collapse
|
3
|
AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions. Cells 2020; 9:cells9102172. [PMID: 32993088 PMCID: PMC7599609 DOI: 10.3390/cells9102172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
, the molecular defects in the AVPR2 and AQP2 mutants, post-translational modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and degradation of AQP2.
Collapse
|
4
|
Fenton RA, Murali SK, Moeller HB. Advances in aquaporin-2 trafficking mechanisms and their implications for treatment of water balance disorders. Am J Physiol Cell Physiol 2020; 319:C1-C10. [PMID: 32432927 DOI: 10.1152/ajpcell.00150.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, conservation of body water is critical for survival and is dependent on the kidneys' ability to minimize water loss in the urine during periods of water deprivation. The collecting duct water channel aquaporin-2 (AQP2) plays an essential role in this homeostatic response by facilitating water reabsorption along osmotic gradients. The ability to increase the levels of AQP2 in the apical plasma membrane following an increase in plasma osmolality is a rate-limiting step in water reabsorption, a process that is tightly regulated by the antidiuretic hormone arginine vasopressin (AVP). In this review, the focus is on the role of the carboxyl-terminus of AQP2 as a key regulatory point for AQP2 trafficking. We provide an overview of AQP2 structure, disease-causing mutations in the AQP2 carboxyl-terminus, the role of posttranslational modifications such as phosphorylation and ubiquitylation in the tail domain, and their implications for balanced trafficking of AQP2. Finally, we discuss how various modifications of the AQP2 tail facilitate selective protein-protein interactions that modulate the AQP2 trafficking mechanism.
Collapse
Affiliation(s)
- Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Tuna KM, Liu BC, Yue Q, Ghazi ZM, Ma HP, Eaton DC, Alli AA. Mal protein stabilizes luminal membrane PLC-β3 and negatively regulates ENaC in mouse cortical collecting duct cells. Am J Physiol Renal Physiol 2019; 317:F986-F995. [PMID: 31364376 PMCID: PMC6843038 DOI: 10.1152/ajprenal.00446.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023] Open
Abstract
Abnormally high epithelial Na+ channel (ENaC) activity in the aldosterone-sensitive distal nephron and collecting duct leads to hypertension. Myelin and lymphocyte (Mal) is a lipid raft-associated protein that has been previously shown to regulate Na+-K-2Cl- cotransporter and aquaporin-2 in the kidney, but it is not known whether it regulates renal ENaC. ENaC activity is positively regulated by the anionic phospholipid phosphate phosphatidylinositol 4,5-bisphosphate (PIP2). Members of the myristoylated alanine-rich C-kinase substrate (MARCKS) family increase PIP2 concentrations at the plasma membrane, whereas hydrolysis of PIP2 by phospholipase C (PLC) reduces PIP2 abundance. Our hypothesis was that Mal protein negatively regulates renal ENaC activity by stabilizing PLC protein expression at the luminal plasma membrane. We investigated the association between Mal, MARCKS-like protein, and ENaC. We showed Mal colocalizes with PLC-β3 in lipid rafts and positively regulates its protein expression, thereby reducing PIP2 availability at the plasma membrane. Kidneys of 129Sv mice injected with MAL shRNA lentivirus resulted in increased ENaC open probability in split-open renal tubules. Overexpression of Mal protein in mouse cortical collecting duct (mpkCCD) cells resulted in an increase in PLC-β3 protein expression at the plasma membrane. siRNA-mediated knockdown of MAL in mpkCCD cells resulted in a decrease in PLC-β3 protein expression and an increase in PIP2 abundance. Moreover, kidneys from salt-loaded mice showed less Mal membrane protein expression compared with non-salt-loaded mice. Taken together, Mal protein may play an essential role in the negative feedback of ENaC gating in principal cells of the collecting duct.
Collapse
Affiliation(s)
- Kubra M Tuna
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Bing-Chen Liu
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Zinah M Ghazi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
6
|
Törnroth-Horsefield S. Phosphorylation of human AQP2 and its role in trafficking. VITAMINS AND HORMONES 2019; 112:95-117. [PMID: 32061351 DOI: 10.1016/bs.vh.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human Aquaporin 2 (AQP2) is a membrane-bound water channel found in the kidney collecting duct whose regulation by trafficking plays a key role in regulating urine volume. AQP2 trafficking is tightly controlled by the pituitary hormone arginine vasopressin (AVP), which stimulates translocation of AQP2 residing in storage vesicles to the apical membrane. The AVP-dependent translocation of AQP2 to and from the apical membrane is controlled by multiple phosphorylation sites in the AQP2 C-terminus, the phosphorylation of which alters its affinity to proteins within the cellular membrane protein trafficking machinery. The aim of this chapter is to provide a summary of what is currently known about AVP-mediated AQP2 trafficking, dissecting the roles of individual phosphorylation sites, kinases and phosphatases and interacting proteins. From this, the picture of an immensely complex process emerges, of which many structural and molecular details remains to be elucidated.
Collapse
|
7
|
Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting. Biochem Biophys Res Commun 2018; 495:157-162. [DOI: 10.1016/j.bbrc.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
|
8
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
9
|
Schulze Blasum B, Schröter R, Neugebauer U, Hofschröer V, Pavenstädt H, Ciarimboli G, Schlatter E, Edemir B. The kidney-specific expression of genes can be modulated by the extracellular osmolality. FASEB J 2016; 30:3588-3597. [PMID: 27464968 DOI: 10.1096/fj.201600319r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
With this study, we wanted to prove the hypothesis that the unique extracellular osmolality within the renal medulla modulates a specific gene expression pattern. The physiologic functions of the kidneys are mediated by the segment-specific expression of key proteins. So far, we have limited knowledge about the mechanisms that control this gene expression pattern. The hyperosmolality in the renal medullary interstitium is of major importance as a driving force for urine concentration. We made use of primarily cultured rat renal inner medullary collecting-duct cells and microarray analysis to identify genes affected by the environmental osmolality of the culture medium. We identified hundreds of genes that were either induced or repressed in expression by hyperosmolality in a time- and osmolality-dependent fashion. Further analysis demonstrated that many of them, physiologically, showed a kidney- and even collecting-duct-specific expression, including secreted proteins, kinases, and transcription factors. On the other hand, we identified factors, down-regulated in expression, that have a diuretic effect. In conclusion, the kidney is the only organ that has such a hyperosmotic environment, and study provides an excellent method for controlling tissue-specific gene expression.-Schulze Blasum, B., Schröter, R., Neugebauer, U., Hofschröer, V., Pavenstädt, H., Ciarimboli, G., Schlatter E., Edemir, B. The kidney-specific expression of genes can be modulated by the extracellular osmolality.
Collapse
Affiliation(s)
- Britta Schulze Blasum
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Rita Schröter
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Ute Neugebauer
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Verena Hofschröer
- Institute of Physiology II, University of Münster, Münster, Germany; and
| | - Hermann Pavenstädt
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Guiliano Ciarimboli
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Eberhard Schlatter
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - Bayram Edemir
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany; Faculty of Medicine, Department of Hematology and Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
10
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
11
|
X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci U S A 2014; 111:6305-10. [PMID: 24733887 DOI: 10.1073/pnas.1321406111] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Aquaporin-2 (AQP2) water channels in principal cells of the kidney collecting duct are essential for urine concentration. Due to application of modern technologies, progress in our understanding of AQP2 has accelerated in recent years. In this article, we highlight some of the new insights into AQP2 function that have developed recently, with particular focus on the cell biological aspects of AQP2 regulation. RECENT FINDINGS AQP2 is subjected to a number of regulated modifications, including phosphorylation and ubiquitination, which are important for AQP2 function, cellular localization and degradation. AQP2 is likely internalized via clathrin and non-clathrin-mediated endocytosis. Regulation of AQP2 endocytosis, in addition to exocytosis, is a vital mechanism in determining overall AQP2 membrane abundance. AQP2 is associated with regulated membrane microdomains. Studies using membrane cholesterol depleting reagents, for example statins, have supported the role of membrane rafts in regulation of AQP2 trafficking. Noncanonical roles for AQP2, for example in epithelial cell migration, are emerging. SUMMARY AQP2 function and thus urine concentration is dependent on a variety of cell signalling mechanisms, posttranslational modification and interplay between AQP2 and its lipid environment. This complexity of regulation allows fine-tuning of AQP2 function and thus body water homeostasis.
Collapse
|
13
|
Unraveling aquaporin interaction partners. Biochim Biophys Acta Gen Subj 2013; 1840:1614-23. [PMID: 24252279 DOI: 10.1016/j.bbagen.2013.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Insight into protein-protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed. SCOPE OF REVIEW We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5. MAJOR CONCLUSIONS The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level. GENERAL SIGNIFICANCE What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.
Collapse
|
14
|
Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders. Clin Exp Nephrol 2013; 18:558-70. [DOI: 10.1007/s10157-013-0878-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/24/2013] [Indexed: 12/11/2022]
|
15
|
Schröder HM, Hoffmann SC, Hecker M, Korff T, Ludwig T. The tetraspanin network modulates MT1-MMP cell surface trafficking. Int J Biochem Cell Biol 2013; 45:1133-44. [PMID: 23500527 DOI: 10.1016/j.biocel.2013.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
The membrane-type 1 matrix metalloproteinase (MT1-MMP) drives fundamental physiological and pathophysiological processes. Among other substrates, MT1-MMP cleaves components of the extracellular matrix and activates other matrix-cleaving proteases such as MMP-2. Trafficking is a highly effective means to modulate MT1-MMP cell surface expression, and hence regulate its function. Here, we describe the complex interaction of MT1-MMP with tetraspanins, their effects on MT1-MMP intracellular trafficking and proteolytic function. Tetraspanins are credited as membrane organizers that form a network within the membrane to regulate the trafficking of associated proteins. In short, we found MT1-MMP to interact with the tetraspanin-associated EWI-2 protein by a yeast two-hybrid screen. Immunoprecipitation analysis confirmed this interaction and further revealed that MT1-MMP also stably interacts with distinct tetraspanins (CD9, CD37, CD53, CD63, CD81, and CD82) and the tetraspanin-like MAL protein. By using different MT1-MMP truncation constructs and mutants, we observed that all tetraspanins and MAL associated with the hemopexin domain of MT1-MMP. Moreover, this interaction was independent of O-glycosylation of MT1-MMP and exclusively occurred in the endoplasmic reticulum. Here, the respective subcellular compartment was identified by fitting the MT1-MMP interaction pattern to a model for post-translational processing of MT1-MMP. In addition, tetraspanins differentially affected the cell surface localization of MT1-MMP, its capacity to activate pro-MMP-2, and the collagen invasion capacity. Interestingly, the degree of tetraspanin-MT1-MMP association did not correlate with its impact on MT1-MMP function. Tetraspanins thus distinctly affect MT1-MMP subcellular localization and function, and may constitute an effective mechanism to control MT1-MMP-dependent proteolysis at the cell surface.
Collapse
Affiliation(s)
- H M Schröder
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Wu H, Chen L, Zhang X, Zhou Q, Li JM, Berger S, Borok Z, Zhou B, Xiao Z, Yin H, Liu M, Wang Y, Jin J, Blackburn MR, Xia Y, Zhang W. Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2. PLoS One 2013; 8:e53342. [PMID: 23326416 PMCID: PMC3542343 DOI: 10.1371/journal.pone.0053342] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1l(AC)) develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1l(AC) vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1l(AC) kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5' flanking region in Dot1l(AC) vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1l(AC) mice and in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lihe Chen
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Xi Zhang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-Mei Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stefan Berger
- German Cancer Research Center, Division Molecular Biology of the Cell I, Heidelberg, Germany
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Yin
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyao Liu
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Ying Wang
- Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Jianping Jin
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Michael R. Blackburn
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Yang Xia
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wenzheng Zhang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
17
|
Takiar V, Mistry K, Carmosino M, Schaeren-Wiemers N, Caplan MJ. VIP17/MAL expression modulates epithelial cyst formation and ciliogenesis. Am J Physiol Cell Physiol 2012; 303:C862-71. [PMID: 22895261 PMCID: PMC3469709 DOI: 10.1152/ajpcell.00338.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 08/13/2012] [Indexed: 11/22/2022]
Abstract
The polarized organization of epithelial cells is required for vectorial solute transport and may be altered in renal cystic diseases. Vesicle integral protein of 17 kDa (VIP17/MAL) is involved in apical vesicle transport. VIP17/MAL overexpression in vivo results in renal cystogenesis of unknown etiology. Renal cystogenesis can occur as a consequence of defects of the primary cilium. To explore the role of VIP17/MAL in renal cystogenesis and ciliogenesis, we examined the polarization and ciliary morphology of wild-type and VIP17/MAL overexpressing Madin-Darby canine kidney renal epithelial cells grown in two-dimensional (2D) and three-dimensional (3D) cyst culture. VIP17/MAL is apically localized when expressed in cells maintained in 2D and 3D culture. VIP17/MAL overexpressing cells produce more multilumen cysts compared with controls. While the distributions of basolateral markers are not affected, VIP17/MAL expression results in aberrant sorting of the apical marker gp135 to the primary cilium. VIP17/MAL overexpression is also associated with shortened or absent cilia. Immunofluorescence analysis performed on kidney sections from VIP17/MAL transgenic mice also demonstrates fewer and shortened cilia within dilated lumens (P < 0.01). These studies demonstrate that VIP17/MAL overexpression results in abnormal cilium and cyst development, in vitro and in vivo, suggesting that VIP17/MAL overexpressing mice may develop cysts secondary to a ciliary defect.
Collapse
Affiliation(s)
- Vinita Takiar
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | |
Collapse
|
18
|
Tamma G, Procino G, Svelto M, Valenti G. Cell culture models and animal models for studying the patho-physiological role of renal aquaporins. Cell Mol Life Sci 2012; 69:1931-46. [PMID: 22189994 PMCID: PMC11114724 DOI: 10.1007/s00018-011-0903-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/29/2011] [Indexed: 12/29/2022]
Abstract
Aquaporins (AQPs) are key players regulating urinary-concentrating ability. To date, eight aquaporins have been characterized and localized along the nephron, namely, AQP1 located in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2, AQP3 and AQP4 in collecting duct principal cells; AQP5 in intercalated cell type B; AQP6 in intercalated cells type A in the papilla; AQP7, AQP8 and AQP11 in the proximal tubule. AQP2, whose expression and cellular distribution is dependent on vasopressin stimulation, is involved in hereditary and acquired diseases affecting urine-concentrating mechanisms. Due to the lack of selective aquaporin inhibitors, the patho-physiological role of renal aquaporins has not yet been completely clarified, and despite extensive studies, several questions remain unanswered. Until the recent and large-scale development of genetic manipulation technology, which has led to the generation of transgenic mice models, our knowledge on renal aquaporin regulation was mainly based on in vitro studies with suitable renal cell models. Transgenic and knockout technology approaches are providing pivotal information on the role of aquaporins in health and disease. The main goal of this review is to update and summarize what we can learn from cell and animal models that will shed more light on our understanding of aquaporin-dependent renal water regulation.
Collapse
Affiliation(s)
- G Tamma
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Italy
| | | | | | | |
Collapse
|
19
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
20
|
Noda Y. [Aquaporin complex regulating urine concentration]. Nihon Yakurigaku Zasshi 2012; 139:66-9. [PMID: 22322930 DOI: 10.1254/fpj.139.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Carmosino M, Procino G, Svelto M. Na+-K+-2Cl- cotransporter type 2 trafficking and activity: the role of interacting proteins. Biol Cell 2012; 104:201-12. [PMID: 22211456 DOI: 10.1111/boc.201100049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
The central role of Na+-K+-2Cl- cotransporter type 2 (NKCC2) in vectorial transepithelial salt reabsorption in thick ascending limb cells from Henle's loop in the kidney is evidenced by the effects of loop diuretics, the pharmacological inhibitors of NKCC2, that are amongst the most powerful antihypertensive drugs available to date. Moreover, genetic mutations of the NKCC2 encoding gene resulting in impaired apical targeting and function of NKCC2 transporter give rise to a pathological phenotype known as type I Bartter syndrome, characterised by a severe volume depletion, hypokalaemia and metabolic alkalosis with high prenatal mortality. On the contrary, excessive NKCC2 activity has been linked with inherited hypertension in humans and in rodent models. Interestingly, in animal models of hypertension, NKCC2 upregulation is achieved by post-translational mechanisms underlining the need to analyse the molecular mechanisms involved in the regulation of NKCC2 trafficking and activity to gain insights in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
22
|
|
23
|
Zapater C, Chauvigné F, Norberg B, Finn RN, Cerdà J. Dual neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained and relaxed traits controlling channel function during meiosis resumption in teleosts. Mol Biol Evol 2011; 28:3151-69. [PMID: 21653921 DOI: 10.1093/molbev/msr146] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The preovulatory hydration of teleost oocytes is a unique process among vertebrates. The hydration mechanism is most pronounced in marine acanthomorph teleosts that spawn pelagic (floating) eggs; however, the molecular pathway for water influx remains poorly understood. Recently, we revealed that whole-genome duplication (WGD) resulted in teleosts harboring the largest repertoire of molecular water channels in the vertebrate lineage and that a duplicated aquaporin-1 paralog is implicated in the oocyte hydration process. However, the origin and function of the aquaporin-1 paralogs remain equivocal. By integrating the molecular phylogeny with synteny and structural analyses, we show here that the teleost aqp1aa and -1ab paralogs (previously annotated as aqp1a and -1b, respectively) arose by tandem duplication rather than WGD and that the Aqp1ab C-terminus is the most rapidly evolving subdomain within the vertebrate aquaporin superfamily. The functional role of Aqp1ab was investigated in Atlantic halibut, a marine acanthomorph teleost that spawns one of the largest pelagic eggs known. We demonstrate that Aqp1ab is required for full hydration of oocytes undergoing meiotic maturation. We further show that the rapid structural divergence of the C-terminal regulatory domain causes ex vivo loss of function of halibut Aqp1ab when expressed in amphibian oocytes but not in zebrafish or native oocytes. However, by using chimeric constructs of halibut Aqp1aa and -1ab and antisera specifically raised against the C-terminus of Aqp1ab, we found that this cytoplasmic domain regulates in vivo trafficking to the microvillar portion of the oocyte plasma membrane when intraoocytic osmotic pressure is at a maximum. Interestingly, by coinjecting polyA(+) mRNA from postvitellogenic halibut follicles, ex vivo intracellular trafficking of Aqp1ab is rescued in amphibian oocytes. These data reveal that the physiological role of Aqp1ab during meiosis resumption is conserved in teleosts, but the remarkable degeneracy of the cytoplasmic domain has resulted in alternative regulation of the trafficking mechanism.
Collapse
Affiliation(s)
- Cinta Zapater
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Moeller HB, Olesen ETB, Fenton RA. Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Renal Physiol 2011; 300:F1062-73. [DOI: 10.1152/ajprenal.00721.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cellular functions of many eukaryotic membrane proteins, including the vasopressin-regulated water channel aquaporin-2 (AQP2), are regulated by posttranslational modifications. In this article, we discuss the experimental discoveries that have advanced our understanding of how posttranslational modifications affect AQP2 function, especially as they relate to the role of AQP2 in the kidney. We review the most recent data demonstrating that glycosylation and, in particular, phosphorylation and ubiquitination are mechanisms that regulate AQP2 activity, subcellular sorting and distribution, degradation, and protein interactions. From a clinical perspective, posttranslational modification resulting in protein misrouting or degradation may explain certain forms of nephrogenic diabetes insipidus. In addition to providing major insight into the function and dynamics of renal AQP2 regulation, the analysis of AQP2 posttranslational modification may provide general clues as to the role of posttranslational modification for regulation of other membrane proteins.
Collapse
Affiliation(s)
- Hanne B. Moeller
- The Water and Salt Research Center, Department of Anatomy, Aarhus University, Aarhus, Denmark
| | - Emma T. B. Olesen
- The Water and Salt Research Center, Department of Anatomy, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- The Water and Salt Research Center, Department of Anatomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Antón OM, Andrés-Delgado L, Reglero-Real N, Batista A, Alonso MA. MAL protein controls protein sorting at the supramolecular activation cluster of human T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2011; 186:6345-56. [PMID: 21508261 DOI: 10.4049/jimmunol.1003771] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell membrane receptors and signaling molecules assemble at the immunological synapse (IS) in a supramolecular activation cluster (SMAC), organized into two differentiated subdomains: the central SMAC (cSMAC), with the TCR, Lck, and linker for activation of T cells (LAT), and the peripheral SMAC (pSMAC), with adhesion molecules. The mechanism of protein sorting to the SMAC subdomains is still unknown. MAL forms part of the machinery for protein targeting to the plasma membrane by specialized mechanisms involving condensed membranes or rafts. In this article, we report our investigation of the dynamics of MAL during the formation of the IS and its role in SMAC assembly in the Jurkat T cell line and human primary T cells. We observed that under normal conditions, a pool of MAL rapidly accumulates at the cSMAC, where it colocalized with condensed membranes, as visualized with the membrane fluorescent probe Laurdan. Mislocalization of MAL to the pSMAC greatly reduced membrane condensation at the cSMAC and redistributed machinery involved in docking microtubules or transport vesicles from the cSMAC to the pSMAC. As a consequence of these alterations, the raft-associated molecules Lck and LAT, but not the TCR, were missorted to the pSMAC. MAL, therefore, regulates membrane order and the distribution of microtubule and transport vesicle docking machinery at the IS and, by doing so, ensures correct protein sorting of Lck and LAT to the cSMAC.
Collapse
Affiliation(s)
- Olga M Antón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Nivillac NMI, Bacani J, Coe IR. The life cycle of human equilibrative nucleoside transporter 1: from ER export to degradation. Exp Cell Res 2011; 317:1567-79. [PMID: 21402067 DOI: 10.1016/j.yexcr.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/06/2011] [Accepted: 03/07/2011] [Indexed: 11/25/2022]
Abstract
Nucleoside transporters (NTs) play an essential role in the transport of nucleosides across cellular membranes. Equilibrative NTs (ENTs) allow facilitated diffusion of nucleosides and the prototypic ENT, hENT1, is primarily localized to the plasma membrane (PM). hENT1 is responsible for the uptake of nucleoside analog drugs used in treating viral infections and cancer, but despite its clinical importance, virtually nothing is known about the dynamics of the hENT1 life cycle including trafficking to the PM, endocytosis and degradation. Therefore, we followed the life cycle of tagged hENT1 (GFP- or FLAG-) transiently transfected into mammalian cells to gain insight into the sequence of events, timing and underlying mechanisms regulating the hENT1 life cycle. Protein translocation to the PM was examined using fixed and live cell confocal microscopy while endocytosis and degradation were analyzed by cell surface biotinylation and [(35)S] pulse chase analysis respectively. We determined that tagged hENT1 is trafficked to the PM in association with microtubules and incorporated in the plasma membrane where it subsequently undergoes clathrin-mediated endocytosis and recycling. Finally, internalized protein is degraded via the lysosomal pathway and observations suggest the complete life cycle of tagged hENT1 within these cells is approximately 14 hours.
Collapse
|
27
|
Edemir B, Pavenstädt H, Schlatter E, Weide T. Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflugers Arch 2011; 461:607-21. [PMID: 21327781 DOI: 10.1007/s00424-011-0928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
The kidneys participate in whole-body homeostasis, regulating acid-base balance, electrolyte concentrations, extracellular fluid volume, and regulation of blood pressure. Many of the kidney's functions are accomplished by relatively simple mechanisms of filtration, reabsorption, and secretion, which take place in the nephron. The kidneys generate 140-180 l of primary urine per day, while reabsorbing a large percentage, allowing for only the excretion of approximately 2 l of urine. Within the nephron, the majority of the filtered water and solutes are reabsorbed. This is mainly facilitated by specialized transporters and channels which are localized at different segments of the nephron and asymmetrically localized within the polarized epithelial cells. The asymmetric localization of these transporters and channels is essential for the physiological tasks of the renal tissues. One family of these proteins are the water-permeable aquaporins which are selectively expressed in cells along the nephron and localized at different compartments. Here, we discuss potential molecular links between mechanisms involved in the establishment of cell polarity and the members of the aquaporin family. In the first part of this review, we will focus on aspects of apical cell polarity. In the second part, we will review the motifs identified so far that are involved in aquaporin sorting and point out potential molecular links.
Collapse
Affiliation(s)
- Bayram Edemir
- Medizinische Klinik und Poliklinik D, Experimentelle und Molekulare Nephrologie, Universität Münster, Germany.
| | | | | | | |
Collapse
|
28
|
Goebel M, Stengel A, Lambrecht NWG, Sachs G. Selective gene expression by rat gastric corpus epithelium. Physiol Genomics 2010; 43:237-54. [PMID: 21177383 DOI: 10.1152/physiolgenomics.00193.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract is divided into several segments that have distinct functional properties, largely absorptive. The gastric corpus is the only segment thought of as largely secretory. Microarray hybridization of the gastric corpus mucosal epithelial cells was used to compare gene expression with other segments of the columnar GI tract followed by statistical data subtraction to identify genes selectively expressed by the rat gastric corpus mucosa. This provides a means of identifying less obvious specific functions of the corpus in addition to its secretion-related genes. For example, important properties found by this GI tract comparative transcriptome reflect the energy demand of acid secretion, a role in lipid metabolism, the large variety of resident neuroendocrine cells, responses to damaging agents and transcription factors defining differentiation of its epithelium. In terms of overlap of gastric corpus genes with the rest of the GI tract, the distal small bowel appears to express many of the gastric corpus genes in contrast to proximal small and large bowel. This differential map of gene expression by the gastric corpus epithelium will allow a more detailed description of major properties of the gastric corpus and may lead to the discovery of gastric corpus cell differentiation genes and those mis-regulated in gastric carcinomas.
Collapse
Affiliation(s)
- M Goebel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
29
|
Carmosino M, Rizzo F, Procino G, Basco D, Valenti G, Forbush B, Schaeren-Wiemers N, Caplan MJ, Svelto M. MAL/VIP17, a new player in the regulation of NKCC2 in the kidney. Mol Biol Cell 2010; 21:3985-97. [PMID: 20861303 PMCID: PMC2982131 DOI: 10.1091/mbc.e10-05-0456] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The renal-specific Na+-K+-2Cl- cotransporter (NKCC2) is the major salt transport pathway of the apical membrane of the mammalian thick ascending limb of Henle's loop. Here, we analyze the role of the tetraspan protein myelin and lymphocytes-associated protein (MAL)/VIP17 in the regulation of NKCC2. We demonstrated that 1) NKCC2 and MAL/VIP17 colocalize and coimmunoprecipitate in Lilly Laboratories cell porcine kidney cells (LLC-PK1) as well as in rat kidney medullae, 2) a 150-amino acid stretch of NKCC2 C-terminal tail is involved in the interaction with MAL/VIP17, 3) MAL/VIP17 increases the cell surface retention of NKCC2 by attenuating its internalization, and 4) this coincides with an increase in cotransporter phosphorylation. Interestingly, overexpression of MAL/VIP17 in the kidney of transgenic mice results in cysts formation in distal nephron structures consistent with the hypothesis that MAL/VIP17 plays an important role in apical sorting or in maintaining the stability of the apical membrane. The NKCC2 expressed in these mice was highly glycosylated and phosphorylated, suggesting that MAL/VIP17 also is involved in the stabilization of NKCC2 at the apical membrane in vivo. Thus, the involvement of MAL/VIP17 in the activation and surface expression of NKCC2 could play an important role in the regulated absorption of Na+ and Cl- in the kidney.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A 2009; 107:424-9. [PMID: 19966308 DOI: 10.1073/pnas.0910683107] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The water channel aquaporin-2 (AQP2) is essential for urine concentration. Vasopressin regulates phosphorylation of AQP2 at four conserved serine residues at the COOH-terminal tail (S256, S261, S264, and S269). We used numerous stably transfected Madin-Darby canine kidney cell models, replacing serine residues with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated AQP2, to address whether phosphorylation is involved in regulation of (i) apical plasma membrane abundance of AQP2, (ii) internalization of AQP2, (iii) AQP2 protein-protein interactions, and (iv) degradation of AQP2. Under control conditions, S256D- and 269D-AQP2 mutants had significantly greater apical plasma membrane abundance compared to wild type (WT)-AQP2. Activation of adenylate cyclase significantly increased the apical plasma membrane abundance of all S-A or S-D AQP2 mutants with the exception of 256D-AQP2, although 256A-, 261A-, and 269A-AQP2 mutants increased to a lesser extent than WT-AQP2. Biotin internalization assays and confocal microscopy demonstrated that the internalization of 256D- and 269D-AQP2 from the plasma membrane was slower than WT-AQP2. The slower internalization corresponded with reduced interaction of S256D- and 269D-AQP2 with several proteins involved in endocytosis, including Hsp70, Hsc70, dynamin, and clathrin heavy chain. The mutants with the slowest rate of internalization, 256D- and 269D-AQP2, had a greater protein half-life (t(1/2) = 5.1 h and t(1/2) = 4.4 h, respectively) compared to WT-AQP2 (t(1/2) = 2.9 h). Our results suggest that vasopressin-mediated membrane accumulation of AQP2 can be controlled via regulated exocytosis and endocytosis in a process that is dependent on COOH terminal phosphorylation and subsequent protein-protein interactions.
Collapse
|
32
|
Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell 2009; 21:219-31. [PMID: 19923323 PMCID: PMC2808235 DOI: 10.1091/mbc.e09-03-0193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the role of galectin-3 on polarization of epithelial renal cells, using three-dimensional cultures of MDCK cells and also galectin-3 null mutant mouse kidneys. Collectively, data show that the absence of galectin-3 influences the stabilization of centrosomes and primary cilia, with effects on epithelial cell organization. Galectin-3 is a β-galactoside–binding protein widely expressed in all epithelia where it is involved in tissue homeostasis and cancer progression. We recently reported unique abnormalities in the identity of membrane domains in galectin-3 null mutant mice, suggesting that galectin-3 may participate in epithelial polarity program. We investigated the potential role of galectin-3 on early events in polarization of epithelial renal cells, using three-dimensional cultures of MDCK cells and also galectin-3 null mutant mouse kidneys. We show that depletion in galectin-3 systematically leads to severe perturbations of microtubular network associated with defects in membrane compartimentation, both in vitro and in vivo. Moreover, the absence of galectin-3 impinges on the morphology of the primary cilium, which is three times longer and unusually shaped. By immunological and biochemical approaches, we could demonstrate that endogenous galectin-3 is normally associated with basal bodies and centrosomes, where it closely interacts with core proteins, such as centrin-2. However, this association transiently occurs during the process of epithelial polarization. Interestingly, galectin-3–depleted cells contain numerous centrosome-like structures, demonstrating an unexpected function of this protein in the formation and/or stability of the centrosomes. Collectively, these data establish galectin-3 as a key determinant in epithelial morphogenesis via its effect on centrosome biology.
Collapse
Affiliation(s)
- Annett Koch
- Department of Cell Biology and Cell Pathology, Philipps University, D-35033 Marburg, Germany
| | | | | | | |
Collapse
|
33
|
Zwang NA, Hoffert JD, Pisitkun T, Moeller HB, Fenton RA, Knepper MA. Identification of phosphorylation-dependent binding partners of aquaporin-2 using protein mass spectrometry. J Proteome Res 2009; 8:1540-54. [PMID: 19209902 DOI: 10.1021/pr800894p] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vasopressin-mediated control of water permeability in the renal collecting duct occurs in part through regulation of the distribution of aquaporin-2 (AQP2) between the apical plasma membrane and intracellular membrane compartments. Phosphorylation of Ser-256 at AQP2's cytoplasmic COOH-terminus is well-accepted as a critical step for translocation. The aim of this study was to identify binding partners to phosphorylated versus nonphosphorylated forms of the AQP2 COOH-terminus via a targeted comparative proteomic approach. Cytosol from inner medullary collecting ducts isolated from rat kidneys was incubated with "bait" peptides, representing the COOH-terminal AQP2 tail in its nonphosphorylated and phosphorylated forms, to capture differentially bound proteins prior to LC-MS/MS analysis. Mass spectrometric results were confirmed by immunoblotting. Immunoprecipitation was performed using an AQP2 COOH-terminal antibody combined with immunblotting against the proposed binding partners to demonstrate interactions with native AQP2. Our studies confirmed previously identified interactions between AQP2 and hsc70, hsp70-1 and -2, as well as annexin II. These proteins were found to bind less to the Ser-256-phosphorylated AQP2 than to the nonphosphorylated form. In contrast, another heat shock protein, hsp70-5 (BiP/grp78), bound to phosphorylated AQP2 more avidly than to nonphosphorylated AQP2. Immunogold EM studies demonstrated that BiP is present not only in the ER but also in the cytoplasm and apical plasma membrane of rat collecting duct cells. Furthermore, confocal immunofluorescence studies showed partial colocalization of BiP with AQP2 in non-ER compartments. These results suggest that phosphorylation of AQP2 at Ser-256 may regulate AQP2 trafficking in part by mediating differential binding of hsp70 family proteins to the COOH-terminal tail.
Collapse
Affiliation(s)
- Nicholas A Zwang
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
34
|
Fatemi SH, Folsom TD, Reutiman TJ, Abu-Odeh D, Mori S, Huang H, Oishi K. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res 2009; 112:46-53. [PMID: 19487109 PMCID: PMC2735410 DOI: 10.1016/j.schres.2009.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 01/26/2023]
Abstract
Prenatal viral infection has been associated with the development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and late second trimester (E18) administration of influenza virus. We hypothesized that middle second trimester infection (E16) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6 mice were infected on E16 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offspring of the infected mice were collected at P0, P14, P35, and P56, their brains removed and cerebella dissected and flash frozen. Microarray, DTI and MRI scanning, as well as qRT-PCR and SDS-PAGE and western blotting analyses were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with myelination, including Mbp, Mag, and Plp1 were found to be altered, as were protein levels of Mbp, Mag, and DM20. Brain imaging revealed significant atrophy in cerebellum at P14, reduced fractional anisotropy in white matter of the right internal capsule at P0, and increased fractional anisotropy in white matter in corpus callosum at P14 and right middle cerebellar peduncle at P56. We propose that maternal infection in mouse impacts myelination genes.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455, Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Teri J. Reutiman
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Desiree Abu-Odeh
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Susumu Mori
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Hao Huang
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Kenichi Oishi
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| |
Collapse
|
35
|
A surface transporter family conveys the trypanosome differentiation signal. Nature 2009; 459:213-7. [PMID: 19444208 PMCID: PMC2685892 DOI: 10.1038/nature07997] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 12/02/2022]
Abstract
Microbial pathogens use environmental cues to trigger the developmental events needed to infect mammalian hosts or transmit to disease-vectors. The parasites causing African sleeping sickness respond to citrate/cis aconitate (CCA) to initiate life-cycle development when transmitted to their tsetse-fly vector. This requires hypersensitization of the parasites to CCA by exposure to low temperature, conditions encountered after tsetse feeding at dusk or dawn. Here we identify a carboxylate-transporter family, PAD (Proteins Associated with Differentiation) required for perception of this differentiation signal. Consistent with predictions for the response of trypanosomes to CCA, PAD proteins are expressed on the surface of the transmission-competent ‘stumpy-form’ parasites in the bloodstream and at least one member is thermoregulated, showing elevated expression and surface-access at low-temperature. Moreover, RNAi-mediated ablation of PAD expression diminishes CCA-induced differentiation and eliminates CCA-hypersensitivity under cold-shock conditions. As well as being molecular transducers of the differentiation signal in these parasites, PAD proteins provide the first surface-marker able to discriminate the transmission-stage of trypanosomes in their mammalian host.
Collapse
|
36
|
Abstract
Vasopressin controls renal water excretion largely through actions to regulate the water channel aquaporin-2 in collecting duct principal cells. Our knowledge of the mechanisms involved has increased markedly in recent years with the advent of methods for large-scale systems-level profiling such as protein mass spectrometry, yeast two-hybrid analysis, and oligonucleotide microarrays. Here we review this progress.
Collapse
Affiliation(s)
- Jason D Hoffert
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | |
Collapse
|
37
|
van Balkom BWM, Boone M, Hendriks G, Kamsteeg EJ, Robben JH, Stronks HC, van der Voorde A, van Herp F, van der Sluijs P, Deen PMT. LIP5 interacts with aquaporin 2 and facilitates its lysosomal degradation. J Am Soc Nephrol 2009; 20:990-1001. [PMID: 19357255 DOI: 10.1681/asn.2008060648] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vasopressin binding to the V2 receptor in renal principal cells leads to activation of protein kinase A, phosphorylation of aquaporin 2 (AQP2) at Ser256, and the translocation of AQP2 to the apical membrane, resulting in concentration of the urine. In contrast, phorbol ester-induced activation of protein kinase C pathway leads to ubiquitination of AQP2 at Lys270 and its internalization to multivesicular bodies, where it is targeted for lysosomal degradation or stored for recycling. Because little is known about the regulation of AQP2 trafficking, we used the carboxy-terminal tail of constitutively nonphosphorylated AQP2 (S256A) as a bait for interacting proteins in a yeast two-hybrid assay. We isolated lysosomal trafficking regulator-interacting protein 5 (LIP5) and found that LIP5 interacted with the proximal carboxy-terminal tail (L230-D243) of AQP2 in vitro but not with AQP3 or AQP4, which are also expressed in principal cells. Immunohistochemistry revealed that LIP5 co-localized with AQP2 in principal cells. LIP5 binding occurred independent of the state of Ser256 phosphorylation or Lys270 ubiquitination. LIP5 has been shown to facilitate degradation of the EGF receptor; here, LIP5 seemed to bind this receptor. Knockdown of LIP5 in mouse renal cells (mpkCCD) reduced the phorbol ester-induced degradation of AQP2 approximately two-fold. In summary, LIP5 binds cargo proteins and, considering the role of LIP5 in protein sorting to multivesicular bodies, plays a role in the degradation of AQP2, possibly by reducing the formation of late endosomes.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Physiology, Nijmegen Center of Molecular Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 2009; 10:275-84. [PMID: 19170982 PMCID: PMC2896909 DOI: 10.1111/j.1600-0854.2008.00867.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
39
|
Hasler U. Controlled aquaporin-2 expression in the hypertonic environment. Am J Physiol Cell Physiol 2009; 296:C641-53. [PMID: 19211910 DOI: 10.1152/ajpcell.00655.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The corticomedullary osmolality gradient is the driving force for water reabsorption occurring in the kidney. In the collecting duct, this gradient allows luminal water to move across aquaporin (AQP) water channels, thereby increasing urine concentration. However, this same gradient exposes renal cells to great osmotic challenges. These cells must constantly adapt to fluctuations of environmental osmolality that challenge cell volume and incite functional change. This implies profound alterations of cell phenotype regarding water permeability. AQP2 is an essential component of the urine concentration mechanism whose controlled expression dictates apical water permeability of collecting duct principal cells. This review focuses on changes of AQP2 abundance and trafficking in hypertonicity-challenged cells. Intracellular mechanisms governing these events are discussed and the biological relevance of altered AQP2 expression by hypertonicity is outlined.
Collapse
Affiliation(s)
- Udo Hasler
- Service de Néphrologie, Fondation pour Recherches Médicales, 64 Ave. de la Roseraie, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
40
|
Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr Opin Nephrol Hypertens 2009; 17:491-8. [PMID: 18695390 DOI: 10.1097/mnh.0b013e3283094eb1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights the role of phosphorylation in the trafficking and targeting of aquaporin 2. Current knowledge will be put into the context of modulating the cell surface expression of aquaporin 2 by vasopressin in renal epithelial cells, which is critical for regulation of urinary concentration and control of fluid and electrolyte homeostasis. RECENT FINDINGS In addition to previously identified phosphorylation sites on aquaporin 2, new data have revealed three other serine residues in the C-terminus whose phosphorylation is altered by vasopressin. Several steps in aquaporin 2 recycling, including exocytosis and endocytosis, are coordinated by phosphorylation and dephosphorylation to regulate cell surface accumulation. Aquaporin 2 phosphorylation on serine 256 regulates aquaporin 2 association with proteins that are involved in trafficking, including hsc/hsp70 and myelin and lymphocyte-associated protein. SUMMARY Aquaporin 2 trafficking is regulated by phosphorylation of serine 256 and other amino acid residues in its cytoplasmic domain. These events increase or decrease interaction of aquaporin 2 with key regulatory proteins to determine the cellular distribution and fate of aquaporin 2, both after vasopressin addition and under baseline conditions. Better understanding of these mechanisms may provide new therapeutic avenues for patients with X-linked nephrogenic diabetes insipidus, as well as providing basic cell biological information relevant to membrane trafficking processes in general.
Collapse
|
41
|
Bouley R, Hasler U, Lu HAJ, Nunes P, Brown D. Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol 2008; 28:266-78. [PMID: 18519087 DOI: 10.1016/j.semnephrol.2008.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water reabsorption in the kidney represents a critical physiological event in the maintenance of body water homeostasis. This highly regulated process relies largely on vasopressin (VP) action and on the VP-sensitive water channel (AQP2) that is expressed in principal cells of the kidney collecting duct. Defects in the VP signaling pathway and/or in AQP2 cell surface expression can lead to an inappropriate reduction in renal water reabsorption and the development of nephrogenic diabetes insipidus, a disease characterized by polyuria and polydipsia. This review focuses on the major regulatory steps that are involved in AQP2 trafficking and function. Specifically, we begin with a discussion on VP-receptor-independent mechanisms of AQP2 trafficking, with special emphasis on the nitric oxide-cyclic guanosine monophosphate signaling pathway, followed by a review of the mechanisms that govern AQP2 endocytosis and exocytosis. We then discuss emerging data illustrating roles played by the actin cytoskeleton on AQP2 trafficking, and lastly we consider elements that affect AQP2 protein expression in cells. Recent advances in each topic are summarized and are presented in the context of their potential to serve as a basis for the development of novel therapies that may ultimately improve life quality of nephrogenic diabetes insipidus patients.
Collapse
Affiliation(s)
- Richard Bouley
- Massachusetts General Hospital-Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
42
|
Nunes P, Hasler U, McKee M, Lu HAJ, Bouley R, Brown D. A fluorimetry-based ssYFP secretion assay to monitor vasopressin-induced exocytosis in LLC-PK1 cells expressing aquaporin-2. Am J Physiol Cell Physiol 2008; 295:C1476-87. [PMID: 18799651 DOI: 10.1152/ajpcell.00344.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasopressin (VP)-induced exocytosis was dissected in native and aquaporin-2 (AQP2)-expressing renal LLC-PK(1) cells by a fluorimetric exocytosis assay based on soluble secreted yellow fluorescent protein (ssYFP). YFP was targeted to the secretory pathway by addition of an 18-amino acid signal peptide from hen egg white lysozyme. Immunofluorescence labeling, together with analysis of Alexa 555-dextran internalization, revealed that ssYFP is exclusively located in the secretory pathway. Immunofluorescence and immunogold electron microscopy showed significant colocalization of ssYFP and AQP2. Fluorimetry and Western blot analysis demonstrated similar constitutive ssYFP secretion in native LLC-PK(1) and AQP2-expressing cells. In AQP2-expressing cells, a twofold increase in ssYFP secretion was observed within 15 min of VP stimulation. This transient burst of ssYFP secretion was abolished by the PKA inhibitor H-89 and was not observed in native cells. The endocytotic inhibitor methyl-beta-cyclodextrin, which also promotes membrane accumulation of AQP2, had no effect on ssYFP secretion. Although cells expressing phosphorylation-deficient AQP2-S256A showed significantly lower baseline levels of constitutive secretion, VP induced a significant increase in exocytosis. Our data indicate that 1) this assay can monitor exocytosis in cultured epithelial cells, 2) VP has an acute stimulatory effect on ssYFP secretion in AQP2-expressing, but not native, cells, and 3) phosphorylation of AQP2 at S256 may be involved in the regulation of constitutive AQP2 exocytosis and play only a minor role in the VP-induced burst. These results support the idea that, in addition to its role in reducing AQP2 endocytosis, VP increases AQP2 exocytosis.
Collapse
Affiliation(s)
- Paula Nunes
- Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Yu MJ, Pisitkun T, Wang G, Aranda JF, Gonzales PA, Tchapyjnikov D, Shen RF, Alonso MA, Knepper MA. Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct. Am J Physiol Cell Physiol 2008; 295:C661-78. [PMID: 18596208 PMCID: PMC2544440 DOI: 10.1152/ajpcell.90650.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/02/2008] [Indexed: 11/22/2022]
Abstract
In the renal collecting duct, vasopressin controls transport of water and solutes via regulation of membrane transporters such as aquaporin-2 (AQP2) and the epithelial urea transporter UT-A. To discover proteins potentially involved in vasopressin action in rat kidney collecting ducts, we enriched membrane "raft" proteins by harvesting detergent-resistant membranes (DRMs) of the inner medullary collecting duct (IMCD) cells. Proteins were identified and quantified with LC-MS/MS. A total of 814 proteins were identified in the DRM fractions. Of these, 186, including several characteristic raft proteins, were enriched in the DRMs. Immunoblotting confirmed DRM enrichment of representative proteins. Immunofluorescence confocal microscopy of rat IMCDs with antibodies to DRM proteins demonstrated heterogeneity of raft subdomains: MAL2 (apical region), RalA (predominant basolateral labeling), caveolin-2 (punctate labeling distributed throughout the cells), and flotillin-1 (discrete labeling of large intracellular structures). The DRM proteome included GPI-anchored, doubly acylated, singly acylated, cholesterol-binding, and integral membrane proteins (IMPs). The IMPs were, on average, much smaller and more hydrophobic than IMPs identified in non-DRM-enriched IMCD. The content of serine 256-phosphorylated AQP2 was greater in DRM than in non-DRM fractions. Vasopressin did not change the DRM-to-non-DRM ratio of most proteins, whether quantified by tandem mass spectrometry (LC-MS/MS, n=22) or immunoblotting (n=6). However, Rab7 and annexin-2 showed small increases in the DRM fraction in response to vasopressin. In accord with the long-term goal of creating a systems-level analysis of transport regulation, this study has identified a large number of membrane-associated proteins expressed in the IMCD that have potential roles in vasopressin action.
Collapse
Affiliation(s)
- Ming-Jiun Yu
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.
Collapse
|
45
|
Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D. The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol 2008; 295:F290-4. [PMID: 18434387 DOI: 10.1152/ajprenal.00072.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of serine 256 (S256) plays a critical role in vasopressin (VP)-mediated membrane accumulation of aquaporin-2 (AQP2). Recently, phosphorylation of serine 261 was also reported, raising the possibility that it has a role in AQP2 trafficking. We addressed this issue using transfected LLC-PK(1) cells that express point mutations of AQP2 S261 and S256, mimicking the phosphorylated (S to D) or dephosphorylated (S to A) states of these residues. Both AQP2 (S261A) and AQP2 (S261D) were located in the perinuclear cytoplasm without stimulation but, like wild-type AQP2, they both accumulated on the plasma membrane after 20-min exposure to VP or forskolin. Following membrane accumulation, S261A, S261D, and wild-type AQP2 reinternalization was complete over a similar time frame, between 30 and 60 min after VP washout. Using various combinations of point mutations, we showed that the phosphorylation state of S256 is dominant with respect to AQP2 behavior; AQP2 membrane accumulation and internalization were not detectably affected by the phosphorylation state of S261. Finally, blocking AQP2 endocytosis by methyl-beta-cyclodextrin caused membrane accumulation of AQP2 in cells expressing either a single S-A mutation or double mutations of S256 and S261, although as previously reported, the S256D mutation was always present at the cell surface. This suggests that constitutive recycling of AQP2 was not modified by the phosphorylation state of S261. Together, our data indicate that the phosphorylation state of AQP2 at S261 does not detectably affect regulated or constitutive trafficking of AQP2. The potential role of S261 phosphorylation/dephosphorylation in vasopressin action remains to be determined.
Collapse
Affiliation(s)
- Hua Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 2008; 456:1005-24. [PMID: 18431594 PMCID: PMC2518081 DOI: 10.1007/s00424-008-0498-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 01/06/2023]
Abstract
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease.
Collapse
Affiliation(s)
- Michelle Boone
- Department of Physiology (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
47
|
Duffield A, Caplan MJ, Muth TR. Chapter 4 Protein Trafficking in Polarized Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:145-79. [DOI: 10.1016/s1937-6448(08)01404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|