1
|
Bradshaw WJ, Harris G, Gileadi O, Katis VL. The mechanism of allosteric activation of SYK kinase derived from multiple phospho-ITAM-bound structures. Structure 2024; 32:2337-2351.e4. [PMID: 39442513 PMCID: PMC11625004 DOI: 10.1016/j.str.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Spleen tyrosine kinase (SYK) is central to adaptive and innate immune signaling. It features a regulatory region containing tandem SH2 (tSH2) domains separated by a helical "hinge" segment keeping SYK inactive by associating with the kinase domain. SYK activation is triggered when the tSH2 domains bind to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) found on receptor tails. Past mutational studies have indicated that ITAM binding disrupts the hinge-kinase interaction, leading to SYK phosphorylation and activation. However, the mechanism of this process is unclear, as the ITAM interaction occurs far from the hinge region. We have determined crystal structures of three phospho-ITAMs in complex with the tSH2 domains, revealing a highly conserved binding mechanism. These structures, together with mutational studies and biophysical analyses, reveal that phospho-ITAM binding restricts SH2 domain movement and causes allosteric changes in the hinge region. These changes are not compatible with the association of the kinase domain, leading to kinase activation.
Collapse
Affiliation(s)
- William J Bradshaw
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Opher Gileadi
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Vittorio L Katis
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
2
|
Feng C, Post CB. Protein-Sequence-Based Search of Nonreceptor ITAM-Like Regions to Identify Cytosolic Syk-Recruiting Proteins. J Phys Chem B 2024; 128:9724-9733. [PMID: 39320068 PMCID: PMC12042798 DOI: 10.1021/acs.jpcb.4c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The recruitment of the protein spleen tyrosine kinase (Syk) to membrane-bound immune receptors is an essential step in initiating an immune response mediated through the activated receptors. Syk recognizes intracellular phosphorylated regions of membrane receptors known as immunoreceptor tyrosine-based activation motifs (ITAMs) defined by a sequence with two tyrosine (Y) amino acids separated by a certain spacing of six to eight residues: YXX(I/L)X6-8YXX(I/L). Syk with doubly phosphorylated ITAM is high-affinity and negatively regulated when Syk itself becomes phosphorylated. While the role of Syk in immune signaling is well characterized, recent information affords new functionality to Syk related to cytoplasmic processes, including the clearance of stress granules and P-bodies, both formed by liquid-liquid phase separation. Little to nothing is known about the molecular interactions involving Syk in these cytoplasmic processes. Given the essential role of receptor ITAMs in recruiting and localizing Syk for immune signaling, we explore here the possibility of a similar localization mechanism occurring for cytoplasmic processes by searching sequences of proteins related to Syk cytoplasmic function for regions that resemble receptor ITAMs. Protein sequence databases were generated from a Syk-dependent phosphoproteome and from genes related to P-bodies. A search of these databases for ITAM-like sequences yielded 102 unique hits, and 33 of these were synthesized and tested experimentally for binding to Syk tandem SH2 domains. The equilibrium dissociation constants were 0.1-50 μM for 28 peptides, and binding was negatively regulated by phosphorylation for many peptides. These results identify cytoplasmic proteins with potential for regulating the localization of Syk in a phosphorylation-dependent manner to nonmembrane cellular regions.
Collapse
Affiliation(s)
- Chao Feng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Markey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 PMCID: PMC11984332 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
4
|
Wang Z, Qu S, Yuan J, Tian W, Xu J, Tao R, Sun S, Lu T, Tang W, Zhu Y. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK). Bioorg Med Chem 2023; 96:117514. [PMID: 37984216 DOI: 10.1016/j.bmc.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase. The dysregulation of SYK is closely related to the occurrence and development of allergic diseases, autoimmune diseases and cancer. SYK has become an attractive target for drug discovery due to its important biological functions. This article reviews the biological function of SYK, the relationship between SYK and disease, and therapies targeting SYK. In addition, inspired by new technologies such as proteolysis targeting chimeras (PROTACs) and phosphatase recruiting chimeras (PHORCs), we propose the development of new therapeutic approaches for targeting SYK, such as SYK PROTACs and SYK PHORCs, which may overcome deficiencies of existing methods.
Collapse
Affiliation(s)
- Zhaozhao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shu Qu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiahao Yuan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Wen Tian
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jinglei Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Rui Tao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Zhao Y, Liu R, Li M, Liu P. The spleen tyrosine kinase (SYK): A crucial therapeutic target for diverse liver diseases. Heliyon 2022; 8:e12130. [PMID: 36568669 PMCID: PMC9768320 DOI: 10.1016/j.heliyon.2022.e12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is an enigmatic protein tyrosine kinase, and involved in signal transduction related with lots of cellular processes. It's highly expressed in the cells of hematopoietic origin and acts as an important therapeutic target in the treatment of autoimmune diseases and allergic disorders. In recent years, more and more evidences indicate that SYK is expressed in non-hematopoietic cells and effectively regulates various non-immune biological responses as well. In this review, we mainly summary the role of SYK in different liver diseases. Robust SYK expression has been discovered in hepatocytes, hepatic stellate cells, as well as Kupffer cells, which participates in the regulation of numerous signal transduction in various liver diseases (e.g. hepatitis, liver fibrosis and hepatocellular carcinoma). In addition, the blockage of SYK activity using small molecule modulators is considered as a significant therapeutic strategy against liver diseases, and both hepatic SYK and non-hepatic SYK could become highly promising therapeutic targets. Totally, even though some critical points about the significance of SYK in liver diseases treatment still need further elaboration, more reliable biotechnical or pharmacological therapy modes will be established based on the better understanding of the relationship between SYK and liver diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China,Corresponding author.
| |
Collapse
|
6
|
Goyette J, Depoil D, Yang Z, Isaacson SA, Allard J, van der Merwe PA, Gaus K, Dustin ML, Dushek O. Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proc Natl Acad Sci U S A 2022; 119:e2116815119. [PMID: 35197288 PMCID: PMC8892339 DOI: 10.1073/pnas.2116815119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-protein binding domains are critical in signaling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain-containing proteins has tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signaling, which is a critical requirement of noise-filtering mechanisms such as kinetic proofreading. Here, we use modeling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases. Using surface plasmon resonance, we show that the phosphatase CD45 can accelerate the unbinding rate of zeta chain-associated protein kinase 70 (ZAP70), a tandem SH2 domain-containing kinase, from biphosphorylated peptides from the T cell receptor (TCR). An important functional prediction of accelerated unbinding is that the intracellular ZAP70-TCR half-life in T cells will not be fixed but rather, dependent on the extracellular TCR-antigen half-life, and we show that this is the case in both cell lines and primary T cells. The work highlights that tandem SH2 domains can break the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discrimination mediated by kinetic proofreading.
Collapse
Affiliation(s)
- Jesse Goyette
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - David Depoil
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Zhengmin Yang
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Jun Allard
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
| | - P Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom;
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| |
Collapse
|
7
|
Hobbs HT, Shah NH, Badroos JM, Gee CL, Marqusee S, Kuriyan J. Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Sci 2021; 30:2373-2384. [PMID: 34601763 PMCID: PMC8605373 DOI: 10.1002/pro.4199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The catalytic activity of Syk-family tyrosine kinases is regulated by a tandem Src homology 2 module (tSH2 module). In the autoinhibited state, this module adopts a conformation that stabilizes an inactive conformation of the kinase domain. The binding of the tSH2 module to phosphorylated immunoreceptor tyrosine-based activation motifs necessitates a conformational change, thereby relieving kinase inhibition and promoting activation. We determined the crystal structure of the isolated tSH2 module of Syk and find, in contrast to ZAP-70, that its conformation more closely resembles that of the peptide-bound state, rather than the autoinhibited state. Hydrogen-deuterium exchange by mass spectrometry, as well as molecular dynamics simulations, reveal that the dynamics of the tSH2 modules of Syk and ZAP-70 differ, with most of these differences occurring in the C-terminal SH2 domain. Our data suggest that the conformational landscapes of the tSH2 modules in Syk and ZAP-70 have been tuned differently, such that the autoinhibited conformation of the Syk tSH2 module is less stable. This feature of Syk likely contributes to its ability to more readily escape autoinhibition when compared to ZAP-70, consistent with tighter control of downstream signaling pathways in T cells.
Collapse
Affiliation(s)
- Helen T. Hobbs
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Present address:
Department of Biomedical EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | - Neel H. Shah
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Present address:
Department of ChemistryColumbia UniversityNew YorkNew YorkUSA
| | - Jean M. Badroos
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christine L. Gee
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Susan Marqusee
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - John Kuriyan
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
8
|
Shao Y, Zhang S, Zhang Y, Liu Z. Recent advance of spleen tyrosine kinase in diseases and drugs. Int Immunopharmacol 2020; 90:107168. [PMID: 33264719 DOI: 10.1016/j.intimp.2020.107168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, also known as p72Syk. It is important for downstream signaling from cell surface receptors, such as Fc receptors, complement receptors and integrin. Syk plays the critical role in triggering immune and allergic reactions, the signaling pathway of Syk has become the research focus on drugs for allergic disease and human malignancies. This review summarized the characteristics of Syk, its mechanism in related reactions, and mainly discussed the signal transduction pathway mediated by Syk. With the development of industry and the aggravation of environmental pollution, the incidence of allergic diseases is increasing, it has become a global priority disease. In this process, Syk participates in IgE/FcεRI signaling pathway plays a critical role in triggering allergic reactions. This review described the characteristics and the interaction mechanism of Syk and its binding proteins in disease, and summarized the research status of targeted Syk inhibitors.
Collapse
Affiliation(s)
- Yuxin Shao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Su Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
9
|
An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochem J 2020; 477:1287-1308. [PMID: 32203568 DOI: 10.1042/bcj20190879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
T-cell receptor (TCR) signaling is initiated by recruiting ZAP-70 to the cytosolic part of TCR. ZAP-70, a non-receptor tyrosine kinase, is composed of an N-terminal tandem SH2 (tSH2) domain connected to the C-terminal kinase domain. The ZAP-70 is recruited to the membrane through binding of tSH2 domain and the doubly phosphorylated ITAM motifs of CD3 chains in the TCR complex. Our results show that the tSH2 domain undergoes a biphasic structural transition while binding to the doubly phosphorylated ITAM-ζ1 peptide. The C-terminal SH2 domain binds first to the phosphotyrosine residue of ITAM peptide to form an encounter complex leading to subsequent binding of second phosphotyrosine residue to the N-SH2 domain. We decipher a network of noncovalent interactions that allosterically couple the two SH2 domains during binding to doubly phosphorylated ITAMs. Mutation in the allosteric network residues, for example, W165C, uncouples the formation of encounter complex to the subsequent ITAM binding thus explaining the altered recruitment of ZAP-70 to the plasma membrane causing autoimmune arthritis in mice. The proposed mechanism of allosteric coupling is unique to ZAP-70, which is fundamentally different from Syk, a close homolog of ZAP-70 expressed in B-cells.
Collapse
|
10
|
Kurniawan DW, Storm G, Prakash J, Bansal R. Role of spleen tyrosine kinase in liver diseases. World J Gastroenterol 2020; 26:1005-1019. [PMID: 32205992 PMCID: PMC7081001 DOI: 10.3748/wjg.v26.i10.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto 53132, Indonesia
| | - Gert Storm
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmaceutics, University of Utrecht, Utrecht 3454, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Enschede 7500, the Netherlands
| |
Collapse
|
11
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
12
|
Mansueto MS, Reens A, Rakhilina L, Chi A, Pan BS, Miller JR. A reevaluation of the spleen tyrosine kinase (SYK) activation mechanism. J Biol Chem 2019; 294:7658-7668. [PMID: 30923129 DOI: 10.1074/jbc.ra119.008045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a signaling node in many immune pathways and comprises two tandem Src homology (SH) 2 domains, an SH2-kinase linker, and a C-terminal tyrosine kinase domain. Two prevalent models of SYK activation exist. The "OR-gate" model contends that SYK can be fully activated by phosphorylation or binding of its SH2 domains to a dual-phosphorylated immune-receptor tyrosine-based activation motif (ppITAM). An alternative model proposes that SYK activation requires ppITAM binding and phosphorylation of the SH2-kinase linker by a SRC family kinase such as LYN proto-oncogene, SRC family tyrosine kinase (LYN). To evaluate these two models, we generated directly comparable unphosphorylated (upSYK) and phosphorylated (pSYK) proteins with or without an N-terminal glutathione S-transferase (GST) tag, resulting in monomeric or obligatory dimeric SYK, respectively. We assessed the ability of a ppITAM peptide and LYN to activate these SYK proteins. The ppITAM peptide strongly activated GST-SYK but was less effective in activating upSYK untagged with GST. LYN alone activated untagged upSYK to a greater extent than did ppITAM, and inclusion of both proteins rapidly and fully activated upSYK. Using immunoblot and phosphoproteomic approaches, we correlated the kinetics and order of site-specific SYK phosphorylation. Our results are consistent with the alternative model, indicating that ppITAM binding primes SYK for rapid LYN-mediated phosphorylation of Tyr-352 and then Tyr-348 of the SH2-kinase linker, which facilitates activation loop phosphorylation and full SYK activation. This gradual activation mechanism may also explain how SYK maintains ligand-independent tonic signaling, important for B-cell development and survival.
Collapse
Affiliation(s)
| | | | | | - An Chi
- Chemical Biology, Merck & Co., Inc., Boston, Massachusetts 02115
| | | | | |
Collapse
|
13
|
Feng C, Roy A, Post CB. Entropic allostery dominates the phosphorylation-dependent regulation of Syk tyrosine kinase release from immunoreceptor tyrosine-based activation motifs. Protein Sci 2018; 27:1780-1796. [PMID: 30051939 PMCID: PMC6225982 DOI: 10.1002/pro.3489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/15/2023]
Abstract
Spleen tyrosine kinase (Syk) is an essential player in immune signaling through its ability to couple multiple classes of membrane immunoreceptors to intracellular signaling pathways. Ligand binding leads to the recruitment of Syk to a phosphorylated cytoplasmic region of the receptors called ITAM. Syk binds to ITAM with high-affinity (nanomolar Kd ) via its tandem pair of SH2 domains. The affinity between Syk and ITAM is allosterically regulated by phosphorylation at Y130 in a linker connecting the tandem SH2 domains; when Y130 is phosphorylated, the binding affinity decreases (micromolar Kd ). Previous equilibrium binding studies attribute the increase in the binding free energy to an intra-molecular binding (isomerization) step of the tandem SH2 and ITAM, but a physical basis for the increased free energy is unknown. Here, we provide evidence that Y130 phosphorylation imposes an entropy penalty to isomerization, but surprisingly, has negligible effect on the SH2 binding interactions with ITAM and thus on the binding enthalpy. An analysis of NMR chemical shift differences characterized conformational effects of ITAM binding, and binding thermodynamics were measured from isothermal titration calorimetry. Together the data support a previously unknown mechanism for the basis of regulating protein-protein interactions through protein phosphorylation. The decreased affinity for Syk association with immune receptor ITAMs by Y130 phosphorylation is an allosteric mechanism driven by an increased entropy penalty, likely contributed by conformational disorder in the SH2-SH2 inter-domain structure, while SH2-ITAM binding contacts are not affected, and binding enthalpy is unchanged.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAIDNational Institutes of HealthHamilton, Montana, 59840
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| |
Collapse
|
14
|
Westbroek ML, Geahlen RL. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK. Antibodies (Basel) 2017; 6:antib6040023. [PMID: 31548538 PMCID: PMC6698873 DOI: 10.3390/antib6040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 01/14/2023] Open
Abstract
Clustering of the B cell antigen receptor (BCR) by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR), which binds the small molecule trimethoprim (TMP) with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT) without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.
Collapse
Affiliation(s)
- Mark L Westbroek
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation. Sci Rep 2017; 7:15586. [PMID: 29138425 PMCID: PMC5686181 DOI: 10.1038/s41598-017-15568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
The high-affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce an enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.
Collapse
|
16
|
Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 2017; 28:3397-3414. [PMID: 28855374 PMCID: PMC5687039 DOI: 10.1091/mbc.e17-06-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark J Olah
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Peter K Relich
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Genevieve K Phillips
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 .,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
17
|
Katz ZB, Novotná L, Blount A, Lillemeier BF. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 2017; 18:86-95. [PMID: 27869819 PMCID: PMC5490839 DOI: 10.1038/ni.3631] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Cell-surface-receptor pathways amplify weak, rare and local stimuli to induce cellular responses. This task is accomplished despite signaling components that segregate into nanometer-scale membrane domains. Here we describe a 'catch-and-release' mechanism that amplified and dispersed stimuli by releasing activated kinases from receptors lacking intrinsic catalytic activity. Specifically, we discovered a cycle of recruitment, activation and release for Zap70 kinases at phosphorylated T cell antigen receptors (TCRs). This turned the TCR into a 'catalytic unit' that amplified antigenic stimuli. Zap70 released from the TCR remained at the membrane, translocated, and phosphorylated spatially distinct substrates. The mechanisms described here are based on widely used protein domains and post-translational modifications; therefore, many membrane-associated pathways might employ similar mechanisms for signal amplification and dispersion.
Collapse
Affiliation(s)
- Zachary B Katz
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Amy Blount
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
18
|
Reppschläger K, Gosselin J, Dangelmaier CA, Thomas DH, Carpino N, McKenzie SE, Kunapuli SP, Tsygankov AY. TULA-2 Protein Phosphatase Suppresses Activation of Syk through the GPVI Platelet Receptor for Collagen by Dephosphorylating Tyr(P)346, a Regulatory Site of Syk. J Biol Chem 2016; 291:22427-22441. [PMID: 27609517 DOI: 10.1074/jbc.m116.743732] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Protein-tyrosine phosphatase TULA-2 has been shown to regulate receptor signaling in several cell types, including platelets. Platelets are critical for maintaining vascular integrity; this function is mediated by platelet aggregation in response to recognition of the exposed basement membrane collagen by the GPVI receptor, which is non-covalently associated with the signal-transducing FcRγ polypeptide chain. Our previous studies suggested that TULA-2 plays an important role in negatively regulating signaling through GPVI-FcRγ and indicated that the tyrosine-protein kinase Syk is a key target of the regulatory action of TULA-2 in platelets. However, the molecular basis of the down-regulatory effect of TULA-2 on Syk activation via FcRγ remained unclear. In this study, we demonstrate that suppression of Syk activation by TULA-2 is mediated, to a substantial degree, by dephosphorylation of Tyr(P)346, a regulatory site of Syk, which becomes phosphorylated soon after receptor ligation and plays a critical role in initiating the process that yields fully activated Syk. TULA-2 is capable of dephosphorylating Tyr(P)346 with high efficiency, thus controlling the overall activation of Syk, but is less efficient in dephosphorylating other regulatory sites of this kinase. Therefore, dephosphorylation of Tyr(P)346 may be considered an important "checkpoint" in the regulation of Syk activation process. Putative biological functions of TULA-2-mediated dephosphorylation of Tyr(P)346 may include deactivation of receptor-activated Syk or suppression of Syk activation by suboptimal stimulation.
Collapse
Affiliation(s)
- Kevin Reppschläger
- From the Departments of Microbiology and Immunology and.,Ernst-Moritz-Arndt-University Greifswald, 17489 Greifswald, Germany
| | - Jeanne Gosselin
- From the Departments of Microbiology and Immunology and.,Polytech Clermont-Ferrand, Ingenieur Genie Biologique, Clermont-Ferrand, Auvergne 63178, France, and
| | - Carol A Dangelmaier
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140
| | - Dafydd H Thomas
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140.,PMV Pharmaceuticals, Cranbury Township, New Jersey 08512
| | - Nick Carpino
- the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Steven E McKenzie
- the Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Satya P Kunapuli
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140.,Physiology and
| | - Alexander Y Tsygankov
- From the Departments of Microbiology and Immunology and .,the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
19
|
Feng C, Post CB. Insights into the allosteric regulation of Syk association with receptor ITAM, a multi-state equilibrium. Phys Chem Chem Phys 2016; 18:5807-18. [PMID: 26468009 PMCID: PMC4758936 DOI: 10.1039/c5cp05417f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphorylation of interdomain A (IA), a linker region between tandem SH2 domains of Syk tyrosine kinase, regulates the binding affinity for association of Syk with doubly-phosphorylated ITAM regions of the B cell receptor. The mechanism of this allosteric regulation has been suggested to be a switch from the high-affinity bifunctional binding, mediated through both SH2 domains binding two phosphotyrosine residues of ITAM, to a substantially lower-affinity binding of only one SH2 domain. IA phosphorylation triggers the switch by inducing disorder in IA and weakening the SH2-SH2 interaction. The postulated switch to a single-SH2-domain binding mode is examined using NMR to monitor site-specific binding to each SH2 domain of Syk variants engineered to have IA regions that differ in conformational flexibility. The combined analysis of titration curves and NMR line-shapes provides sufficient information to determine the energetics of inter-molecular binding at each SH2 site along with an intra-molecular binding or isomerization step. A less favorable isomerization equilibrium associated with the changes in the SH2-SH2 conformational ensemble and IA flexibility accounts for the inhibition of Syk association with membrane ITAM regions when IA is phosphorylated, and refutes the proposed switch to single-SH2-domain binding. Syk localizes in the cell through its SH2 interactions, and this basis for allosteric regulation of ITAM association proposes for the first time a phosphorylation-dependent model to regulate Syk binding to alternate receptors and other signaling proteins that differ either in the number of residues separating ITAM phosphotyrosines or by having only one phosphotyrosine, a half ITAM.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
20
|
Abstract
Proteins with a modular architecture of multiple domains connected by linkers often exhibit diversity in the relative positions of domains, while the domain tertiary structure remains unchanged. The biological function of these modular proteins, or the regulation of their activity, depends on the variation in domain orientation and separation. Accordingly, careful characterization of interdomain motion and correlated fluctuations of multidomain systems is relevant for understanding the functional behavior of modular proteins. Molecular dynamics (MD) simulations provides a powerful approach to study these motions in atomic detail. Nevertheless, the common procedure for analyzing fluctuations from MD simulations after rigid-body alignment fails for multidomain proteins; it greatly overestimates correlated positional fluctuations in the presence of relative domain motion. We show here that expressing the atomic motions of a multidomain protein as a combination of displacement within the domain reference frame and motion of the relative domains correctly separates the internal motions to allow a useful description of correlated fluctuations. We illustrate the methodology of separating the domain fluctuations and local fluctuations by application to the tandem SH2 domains of human Syk protein kinase and by characterizing an effect of phosphorylation on the dynamics. Correlated motions are assessed from a distance covariance rather than the more common vector-coordinate covariance. The approach makes it possible to calculate the proper correlations in fluctuations internal to a domain as well as between domains.
Collapse
Affiliation(s)
- Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health , Hamilton, Montana 59840, United States
| | | | | |
Collapse
|
21
|
Smith KP, Gifford KM, Waitzman JS, Rice SE. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins 2015; 83:25-36. [PMID: 24833420 PMCID: PMC4233198 DOI: 10.1002/prot.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | | | |
Collapse
|
22
|
Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 2014; 5:3397. [PMID: 24584478 PMCID: PMC4465921 DOI: 10.1038/ncomms4397] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/06/2014] [Indexed: 12/18/2022] Open
Abstract
Unregulated activation of Src kinases leads to aberrant signaling, uncontrolled growth, and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modeled in silico via atomistic molecular dynamics simulations, although this is very challenging due to the long activation timescales. Here, we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially utilized for drug design is predicted.
Collapse
|
23
|
Puri KD, Di Paolo JA, Gold MR. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 2014; 32:397-427. [PMID: 23886342 DOI: 10.3109/08830185.2013.818140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.
Collapse
|
24
|
Hussain A, Mohammad DK, Gustafsson MO, Uslu M, Hamasy A, Nore BF, Mohamed AJ, Smith CIE. Signaling of the ITK (interleukin 2-inducible T cell kinase)-SYK (spleen tyrosine kinase) fusion kinase is dependent on adapter SLP-76 and on the adapter function of the kinases SYK and ZAP70. J Biol Chem 2013; 288:7338-50. [PMID: 23293025 DOI: 10.1074/jbc.m112.374967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inducible T cell kinase-spleen tyrosine kinase (ITK-SYK) oncogene consists of the Tec homology-pleckstrin homology domain of ITK and the kinase domain of SYK, and it is believed to be the cause of peripheral T cell lymphoma. We and others have recently demonstrated that this fusion protein is constitutively tyrosine-phosphorylated and is transforming both in vitro and in vivo. To gain a deeper insight into the molecular mechanism(s) underlying its activation and signaling, we mutated a total of eight tyrosines located in the SYK portion of the chimera into either phenylalanine or to the negatively charged glutamic acid. Although mutations in the interdomain-B region affected ITK-SYK kinase activity, they only modestly altered downstream signaling events. In contrast, mutations that were introduced in the kinase domain triggered severe impairment of downstream signaling. Moreover, we show here that SLP-76 is critical for ITK-SYK activation and is particularly required for the ITK-SYK-dependent phosphorylation of SYK activation loop tyrosines. In Jurkat cell lines, we demonstrate that expression of ITK-SYK fusion requires an intact SLP-76 function and significantly induces IL-2 secretion and CD69 expression. Furthermore, the SLP-76-mediated induction of IL-2 and CD69 could be further enhanced by SYK or ZAP-70, but it was independent of their kinase activity. Notably, ITK-SYK expression in SYF cells phosphorylates SLP-76 in the absence of SRC family kinases. Altogether, our data suggest that ITK-SYK exists in the active conformation state and is therefore capable of signaling without SRC family kinases or stimulation of the T cell receptor.
Collapse
Affiliation(s)
- Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Grädler U, Schwarz D, Dresing V, Musil D, Bomke J, Frech M, Greiner H, Jäkel S, Rysiok T, Müller-Pompalla D, Wegener A. Structural and biophysical characterization of the Syk activation switch. J Mol Biol 2012; 425:309-33. [PMID: 23154170 DOI: 10.1016/j.jmb.2012.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
Abstract
Syk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation. The comparison with the crystal structure of the truncated Syk kinase domain in complex with AMP-PNP taken together with ligand binding studies by surface plasmon resonance (SPR) suggests conformational differences in the ATP sites of autoinhibited and activated Syk forms. This hypothesis was corroborated by studying the thermodynamic and kinetic interaction of three published Syk inhibitors with isothermal titration calorimetry and SPR, respectively. We further demonstrate the modulation of inhibitor binding affinities in the presence of pITAM and discuss the observed differences of thermodynamic and kinetic signatures. The functional relevance of pITAM binding to fl-Syk was confirmed by a strong stimulation of in vitro autophosphorylation. A structural feedback mechanism on the kinase domain upon pITAM binding to the tSH2 domain is discussed in analogy of the related family kinase ZAP-70 (Zeta-chain-associated protein kinase 70). Surprisingly, we observed distinct conformations of the tSH2 domain and the activation switch including Tyr348 and Tyr352 in the interdomain linker of Syk in comparison to ZAP-70.
Collapse
Affiliation(s)
- Ulrich Grädler
- Merck KGaA, Merck Serono Research, Small Molecule Platform/MIB, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fargier G, Favard C, Parmeggiani A, Sahuquet A, Mérezègue F, Morel A, Denis M, Molinari N, Mangeat PH, Coopman PJ, Montcourrier P. Centrosomal targeting of Syk kinase is controlled by its catalytic activity and depends on microtubules and the dynein motor. FASEB J 2012; 27:109-22. [DOI: 10.1096/fj.11-202465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Fargier
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Cyril Favard
- Centre d'Etudes d'Agents Pathogénes et Biotechnologies pour la Santé (CPBS), CNRS UMR 5236Universités Montpellier 1 and Montpellier 2MontpellierFrance
| | - Andrea Parmeggiani
- CNRS, UMR 5235, Biological Physics and System BiologyUniversité Montpellier 2MontpellierFrance
| | - Alain Sahuquet
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Fabrice Mérezègue
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Anne Morel
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Marie Denis
- Laboratoire de Biostatistique, d'Epidémiologie et de Santé Publique, Unité Pédagogique MédicaleInstitut Universitaire de Recherche Clinique, Université Montpellier 1MontpellierFrance
| | - Nicolas Molinari
- Laboratoire de Biostatistique, d'Epidémiologie et de Santé Publique, Unité Pédagogique MédicaleInstitut Universitaire de Recherche Clinique, Université Montpellier 1MontpellierFrance
| | - Paul H. Mangeat
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Peter J. Coopman
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896Centre Régional de Lutte contre le Cancer (CRLC) Val d'AurelleUniversité Montpellier 1MontpellierFrance
| | - Philippe Montcourrier
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896Centre Régional de Lutte contre le Cancer (CRLC) Val d'AurelleUniversité Montpellier 1MontpellierFrance
| |
Collapse
|
27
|
Barua D, Hlavacek WS, Lipniacki T. A computational model for early events in B cell antigen receptor signaling: analysis of the roles of Lyn and Fyn. THE JOURNAL OF IMMUNOLOGY 2012; 189:646-58. [PMID: 22711887 DOI: 10.4049/jimmunol.1102003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.
Collapse
Affiliation(s)
- Dipak Barua
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
28
|
Singh R, Masuda ES, Payan DG. Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J Med Chem 2012; 55:3614-43. [PMID: 22257213 DOI: 10.1021/jm201271b] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajinder Singh
- Rigel, Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
29
|
Martin VA, Wang WH, Lipchik AM, Parker LL, He Y, Zhang S, Zhang ZY, Geahlen RL. Akt2 inhibits the activation of NFAT in lymphocytes by modulating calcium release from intracellular stores. Cell Signal 2012; 24:1064-73. [PMID: 22261254 DOI: 10.1016/j.cellsig.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022]
Abstract
The engagement of antigen receptors on lymphocytes leads to the activation of phospholipase C-γ, the mobilization of intracellular calcium and the activation of the NFAT transcription factor. The coupling of antigen receptors to the activation of NFAT is modulated by numerous cellular effectors including phospho-inositide 3-kinase (PI3K), which is activated following receptor cross-linking. The activation of PI3K has both positive and negative effects on the receptor-mediated activation of NFAT. An increase in the level and activity of Akt2, a target of activated PI3K, potently inhibits the subsequent activation of NFAT. In contrast, an elevation in Akt1 has no effect on signaling. Signaling pathways operating both upstream and downstream of inositol 1,4,5-trisphosphate (IP3)-stimulated calcium release from intracellular stores are unaffected by Akt2. An increase in the level of Akt2 has no significant effect on the initial amplitude, but substantially reduces the duration of calcium mobilization. The ability of Akt2 to inhibit prolonged calcium mobilization is abrogated by the administration of a cell permeable peptide that blocks the interaction between Bcl-2 and the IP3 receptor. Thus, Akt2 is a negative regulator of NFAT activation through its ability to inhibit calcium mobilization from the ER.
Collapse
Affiliation(s)
- Victoria A Martin
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yuwen T, Post CB, Skrynnikov N. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? JOURNAL OF BIOMOLECULAR NMR 2011; 51:131-50. [PMID: 21947922 PMCID: PMC4721247 DOI: 10.1007/s10858-011-9548-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/07/2011] [Indexed: 05/13/2023]
Abstract
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain-domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a measure of domain-domain cooperativity, thus identifying the situations where two domains transiently interact with each other or become coupled through a partially structured linker.
Collapse
Affiliation(s)
- Tairan Yuwen
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907, USA
| | - Nikolai Skrynnikov
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
31
|
Bohnenberger H, Oellerich T, Engelke M, Hsiao HH, Urlaub H, Wienands J. Complex phosphorylation dynamics control the composition of the Syk interactome in B cells. Eur J Immunol 2011; 41:1550-62. [PMID: 21469132 DOI: 10.1002/eji.201041326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/14/2011] [Accepted: 03/25/2011] [Indexed: 11/08/2022]
Abstract
Spleen tyrosine kinase Syk provides critical transducer functions for a number of immune cell receptors and has been implicated in the generation of several forms of leukemias. Catalytic activity and the ability of Syk to interact with other signaling elements depend on the phosphorylation status of Syk. We have now identified and quantified the full spectrum of phosphoacceptor sites in human Syk as well as the interactome of Syk in resting and activated B cells by high-resolution mass spectrometry. While the majority of inducible phosphorylations occurred on tyrosine residues, one of the most frequently detected phosphosites encompassed serine 297 located within the linker insert distinguishing the long and short isoforms of Syk. Full-length Syk can associate with more than 25 distinct ligands including the 14-3-3γ adaptor protein, which binds directly to phosphoserine 297. The latter complex attenuates inducible plasma membrane recruitment of Syk, thereby limiting antigen receptor-proximal signaling pathways. Collectively, the established ligand library provides a basis to understand the complexity of the Syk signaling network.
Collapse
Affiliation(s)
- Hanibal Bohnenberger
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Bond PJ, Faraldo-Gómez JD. Molecular mechanism of selective recruitment of Syk kinases by the membrane antigen-receptor complex. J Biol Chem 2011; 286:25872-81. [PMID: 21602568 DOI: 10.1074/jbc.m111.223321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZAP-70 and Syk are essential tyrosine kinases in intracellular immunological signaling. Both contain an inhibitory SH2 domain tandem, which assembles onto the catalytic domain. Upon binding to doubly phosphorylated ITAM motifs on activated antigen receptors, the arrangement of the SH2 domains changes. From available structures, this event is not obviously conducive to dissociation of the autoinhibited complex, yet it ultimately translates into kinase activation through a mechanism not yet understood. We present a comprehensive theoretical study of this molecular mechanism, using atomic resolution simulations and free-energy calculations, totaling >10 μs of simulation time. Through these, we dissect the microscopic mechanism coupling stepwise ITAM engagement and SH2 tandem structural change and reveal key differences between ZAP-70 and Syk. Importantly, we show that a subtle conformational bias in the inter-SH2 connector causes ITAM to bind preferentially to kinase-dissociated tandems. We thus propose that phosphorylated antigen receptors selectively recruit kinases that are uninhibited and that the resulting population shift in the membrane vicinity sustains signal transduction.
Collapse
Affiliation(s)
- Peter J Bond
- Max Planck Institute of Biophysics and the Cluster of Excellence Macromolecular Complexes, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
33
|
Regulation and function of syk tyrosine kinase in mast cell signaling and beyond. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:507291. [PMID: 21776385 PMCID: PMC3135164 DOI: 10.1155/2011/507291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/23/2011] [Indexed: 01/16/2023]
Abstract
The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk−/− cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.
Collapse
|
34
|
Sanderson MP, Wex E, Kono T, Uto K, Schnapp A. Syk and Lyn mediate distinct Syk phosphorylation events in FcɛRI-signal transduction: Implications for regulation of IgE-mediated degranulation. Mol Immunol 2010; 48:171-8. [DOI: 10.1016/j.molimm.2010.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
|
35
|
Siraganian RP, de Castro RO, Barbu EA, Zhang J. Mast cell signaling: the role of protein tyrosine kinase Syk, its activation and screening methods for new pathway participants. FEBS Lett 2010; 584:4933-40. [PMID: 20696166 DOI: 10.1016/j.febslet.2010.08.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
The aggregation by antigen of the IgE bound to its high affinity receptor on mast cells initiates a complex series of biochemical events that result in the release of inflammatory mediators. The essential role of the protein tyrosine kinase Syk has been appreciated for some time, and newer results have defined the mechanism of its activation. The use of siRNA has defined the relative contribution of Syk, Fyn and Gab2 to signaling and has made possible a screening study to identify previously unrecognized molecules that are involved in these pathways.
Collapse
Affiliation(s)
- Reuben P Siraganian
- Receptors and Signal Transduction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Development, survival, and activation of B lymphocytes are controlled by signals emanating from the B-cell antigen receptor (BCR). The BCR has an autonomous signaling function also known as tonic signaling that allows for long-term survival of B cells in the immune system. Upon binding of antigen to the BCR, the tonic signal is amplified and diversified, leading to alteration in gene expression and B-cell activation. The spleen tyrosine kinase (Syk) intimately cooperates with the signaling subunits of the BCR and plays a central role in the amplification and diversification of BCR signals. In this review, we discuss the molecular mechanisms by which Syk activity is inhibited and activated at the BCR. Importantly, Syk acts not only as a kinase that phosphorylates downstream substrates but also as an adapter that can bind to a diverse set of signaling proteins. Depending on its interactions and localization, Syk can signal opposing cell fate decisions such as proliferation or differentiation of B cells.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Centre for Biological Signaling Studies (Bioss) and Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max-Planck Institute for Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
37
|
de Castro RO, Zhang J, Jamur MC, Oliver C, Siraganian RP. Tyrosines in the carboxyl terminus regulate Syk kinase activity and function. J Biol Chem 2010; 285:26674-84. [PMID: 20554527 DOI: 10.1074/jbc.m110.134262] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcepsilonRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcepsilonRI-induced degranulation, nuclear factor for T cell activation and NFkappaB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Collapse
Affiliation(s)
- Rodrigo O de Castro
- Receptors and Signal Transduction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10:387-402. [PMID: 20467426 PMCID: PMC4782221 DOI: 10.1038/nri2765] [Citation(s) in RCA: 1027] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spleen tyrosine kinase (SYK) is known to have a crucial role in adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions, including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates new targets, including the CARD9-BCL-10-MALT1 pathway and the NLRP3 inflammasome. Studies using Drosophila melanogaster suggest that there is an evolutionarily ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of the diverse functions of SYK and how this is being translated for therapeutic purposes.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| | | | | |
Collapse
|
39
|
Filippakopoulos P, Müller S, Knapp S. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Curr Opin Struct Biol 2009; 19:643-9. [PMID: 19926274 PMCID: PMC2791838 DOI: 10.1016/j.sbi.2009.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/02/2009] [Indexed: 12/15/2022]
Abstract
The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2–kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix αC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
40
|
Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Proc Natl Acad Sci U S A 2009; 106:20699-704. [PMID: 19920178 DOI: 10.1073/pnas.0911512106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The delivery of signals from the activated T cell antigen receptor (TCR) inside the cell relies on the protein tyrosine kinase ZAP-70 (zeta-associated protein of 70 kDa). A recent crystal structure of inactive full-length ZAP-70 suggests that a central interface formed by the docking of the two SH2 domains of ZAP-70 onto the kinase domain is crucial for suppressing catalytic activity. Here we validate the significance of this autoinhibitory interface for the regulation of ZAP-70 catalytic activity and the T cell response. For this purpose, we perform in vitro catalytic activity assays and binding experiments using ZAP-70 proteins purified from insect cells to examine activation of ZAP-70. Furthermore, we use cell lines stably expressing wild-type or mutant ZAP-70 to monitor proximal events in T cell signaling, including TCR-induced phosphorylation of ZAP-70 substrates, activation of the MAP kinase pathway, and intracellular Ca(2+) levels. Taken together, our results directly correlate the stability of the autoinhibitory interface with the activation of these key events in the T cell response.
Collapse
|
41
|
Bae SH, Dyson HJ, Wright PE. Prediction of the rotational tumbling time for proteins with disordered segments. J Am Chem Soc 2009; 131:6814-21. [PMID: 19391622 DOI: 10.1021/ja809687r] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For well-structured, rigid proteins, the prediction of rotational tumbling time (tau(c)) using atomic coordinates is reasonably accurate, but is inaccurate for proteins with long unstructured sequences. Under physiological conditions, many proteins contain long disordered segments that play important regulatory roles in fundamental biological events including signal transduction and molecular recognition. Here we describe an ensemble approach to the boundary element method that accurately predicts tau(c) for such proteins by introducing two layers of molecular surfaces whose correlated velocities decay exponentially with distance. Reliable prediction of tau(c) will help to detect intra- and intermolecular interactions and conformational switches between more ordered and less ordered states of the disordered segments. The method has been extensively validated using 12 reference proteins with 14 to 103 disordered residues at the N- and/or C-terminus and has been successfully employed to explain a set of published results on a system that incorporates a conformational switch.
Collapse
Affiliation(s)
- Sung-Hun Bae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
42
|
Geahlen RL. Syk and pTyr'd: Signaling through the B cell antigen receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1115-27. [PMID: 19306898 DOI: 10.1016/j.bbamcr.2009.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022]
Abstract
The B cell receptor (BCR) transduces antigen binding into alterations in the activity of intracellular signaling pathways through its ability to recruit and activate the cytoplasmic protein-tyrosine kinase Syk. The recruitment of Syk to the receptor, its activation and its subsequent interactions with downstream effectors are all regulated by its phosphorylation on tyrosine. This review discusses our current understanding of how this phosphorylation regulates the activity of Syk and its participation in signaling through the BCR.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
43
|
|