1
|
Schnupp JWH, Buchholz S, Buck AN, Budig H, Khurana L, Rosskothen-Kuhl N. Pulse timing dominates binaural hearing with cochlear implants. Proc Natl Acad Sci U S A 2025; 122:e2416697122. [PMID: 40244669 PMCID: PMC12036976 DOI: 10.1073/pnas.2416697122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Although cochlear implants (CIs) provide valuable auditory information to more than one million profoundly deaf patients, these devices remain inadequate in conveying fine timing cues. Early deaf patients in particular struggle to use interaural time differences (ITDs) for spatial hearing and auditory scene analysis. Why CI patients experience these limitations remains controversial. One possible explanation, which we investigate here, is that the stimulation by clinical CIs is inappropriate, as it encodes temporal features of sounds only in the envelope of electrical pulse trains, not the pulse timing. We have recently demonstrated that early deaf, adult implanted rats fitted with bilateral CIs that deliver carefully timed pulses routinely develop sensitivity to very small ITDs. Here we show that, while the early deafened mammalian auditory pathway can innately easily resolve pulse timing ITDs as small as 80 µs, it is many times less sensitive to the ITDs of pulse train envelopes. Our results indicate that the stimulation strategies in current clinical use do not present ITD cues in a manner that the inexperienced auditory pathway is highly sensitive to. This may deprive early deaf CI patients of the opportunity to hone their submillisecond temporal processing skills as they learn to hear through their prosthetic devices.
Collapse
Affiliation(s)
- Jan W. H. Schnupp
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Gerald Choa Neuroscience Institute, Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Sha Tin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Alexa N. Buck
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Henrike Budig
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Lakshay Khurana
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|
2
|
Carlyon RP, Deeks JM, Delgutte B, Chung Y, Vollmer M, Ohl FW, Kral A, Tillein J, Litovsky RY, Schnupp J, Rosskothen-Kuhl N, Goldsworthy RL. Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints. Trends Hear 2025; 29:23312165251317006. [PMID: 40095543 PMCID: PMC12076235 DOI: 10.1177/23312165251317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Cochlear implant (CI) users are usually poor at using timing information to detect changes in either pitch or sound location. This deficit occurs even for listeners with good speech perception and even when the speech processor is bypassed to present simple, idealized stimuli to one or more electrodes. The present article presents seven expert opinion pieces on the likely neural bases for these limitations, the extent to which they are modifiable by sensory experience and training, and the most promising ways to overcome them in future. The article combines insights from physiology and psychophysics in cochlear-implanted humans and animals, highlights areas of agreement and controversy, and proposes new experiments that could resolve areas of disagreement.
Collapse
Affiliation(s)
- Robert P. Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John M. Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Maike Vollmer
- Department of Experimental Audiology, University Clinic of Otolaryngology, Head and Neck Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Andrej Kral
- Institute of Audio-Neuro-Technology & Department of Experimental Otology, Clinics of Otolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Tillein
- Clinics of Otolaryngology, Head and Neck Surgery, J.W.Goethe University, Frankfurt, Germany
- MedEl Company, Hannover, Germany
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Schnupp
- Gerald Choa Neuroscience Institute and Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong (NB Hong Kong is a Special Administrative Region) of China
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raymond L. Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Zirn S, Hemmert W, Roth S, Müller FU, Angermeier J. [Interaural stimulation timing mismatch in listeners provided with a cochlear implant and a hearing aid : A review focusing on quantification and compensation]. HNO 2023:10.1007/s00106-023-01308-8. [PMID: 37219567 DOI: 10.1007/s00106-023-01308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Bimodal provision of patients with asymmetric hearing loss with a hearing aid ipsilaterally and a cochlear implant (CI) contralaterally is probably the most complicated type of CI provision due to a variety of inherent variables. This review article presents all the systematic interaural mismatches between electric and acoustic stimulation that can occur in bimodal listeners. One of these mismatches is the interaural latency offset, i.e., the time difference of activation of the auditory nerve by acoustic and electric stimulation. Methods for quantifying this offset are presented by registering electrically and acoustically evoked potentials and measuring processing delays in the devices. Technical compensation of the interaural latency offset and its positive effect on sound localization ability in bimodal listeners is also described. Finally, most recent findings are discussed which may explain why compensation of the interaural latency offset does not improve speech understanding in noise in bimodal listeners.
Collapse
Affiliation(s)
- Stefan Zirn
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland.
| | - Werner Hemmert
- Bioinspirierte Informationsverarbeitung, Fakultät Elektrotechnik und Informationstechnik, Technische Universität München, München, Deutschland
| | - Sebastian Roth
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland
- Bioinspirierte Informationsverarbeitung, Fakultät Elektrotechnik und Informationstechnik, Technische Universität München, München, Deutschland
| | - Franz-Ullrich Müller
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland
| | - Julian Angermeier
- Fakultät Elektrotechnik, Medizintechnik und Informatik, Peter-Osypka-Institut für Medizintechnik (POIM), Hochschule Offenburg, Badstr. 24, 77652, Offenburg, Deutschland
| |
Collapse
|
4
|
Buck AN, Buchholz S, Schnupp JW, Rosskothen-Kuhl N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci Rep 2023; 13:3785. [PMID: 36882473 PMCID: PMC9992369 DOI: 10.1038/s41598-023-30569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
Collapse
Affiliation(s)
- Alexa N Buck
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Plasticity of Central Auditory Circuits, Institut de l'Audition, Institut Pasteur, Paris, France
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany. .,Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Müller M, Hu H, Dietz M, Beiderbeck B, Ferreiro DN, Pecka M. Temporal hyper-precision of brainstem neurons alters spatial sensitivity of binaural auditory processing with cochlear implants. Front Neurosci 2023; 16:1021541. [PMID: 36685222 PMCID: PMC9846145 DOI: 10.3389/fnins.2022.1021541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The ability to localize a sound source in complex environments is essential for communication and navigation. Spatial hearing relies predominantly on the comparison of differences in the arrival time of sound between the two ears, the interaural time differences (ITDs). Hearing impairments are highly detrimental to sound localization. While cochlear implants (CIs) have been successful in restoring many crucial hearing capabilities, sound localization via ITD detection with bilateral CIs remains poor. The underlying reasons are not well understood. Neuronally, ITD sensitivity is generated by coincidence detection between excitatory and inhibitory inputs from the two ears performed by specialized brainstem neurons. Due to the lack of electrophysiological brainstem recordings during CI stimulation, it is unclear to what extent the apparent deficits are caused by the binaural comparator neurons or arise already on the input level. Here, we use a bottom-up approach to compare response features between electric and acoustic stimulation in an animal model of CI hearing. Conducting extracellular single neuron recordings in gerbils, we find severe hyper-precision and moderate hyper-entrainment of both the excitatory and inhibitory brainstem inputs to the binaural comparator neurons during electrical pulse-train stimulation. This finding establishes conclusively that the binaural processing stage must cope with highly altered input statistics during CI stimulation. To estimate the consequences of these effects on ITD sensitivity, we used a computational model of the auditory brainstem. After tuning the model parameters to match its response properties to our physiological data during either stimulation type, the model predicted that ITD sensitivity to electrical pulses is maintained even for the hyper-precise inputs. However, the model exhibits severely altered spatial sensitivity during electrical stimulation compared to acoustic: while resolution of ITDs near midline was increased, more lateralized adjacent source locations became inseparable. These results directly resemble recent findings in rodent and human CI listeners. Notably, decreasing the phase-locking precision of inputs during electrical stimulation recovered a wider range of separable ITDs. Together, our findings suggest that a central problem underlying the diminished ITD sensitivity in CI users might be the temporal hyper-precision of inputs to the binaural comparator stage induced by electrical stimulation.
Collapse
Affiliation(s)
- Michaela Müller
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hongmei Hu
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,Cluster of Excellence “Hearing4All”, Universität Oldenburg, Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,Cluster of Excellence “Hearing4All”, Universität Oldenburg, Oldenburg, Germany
| | - Barbara Beiderbeck
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dardo N. Ferreiro
- Section of Neurobiology, Faculty of Biology, LMU Biocenter, Ludwig-Maximilians-Universität, Munich, Germany,Department of General Psychology and Education, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Pecka
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany,Section of Neurobiology, Faculty of Biology, LMU Biocenter, Ludwig-Maximilians-Universität, Munich, Germany,*Correspondence: Michael Pecka,
| |
Collapse
|
6
|
Li K, Auksztulewicz R, Chan CHK, Mishra AP, Schnupp JWH. The precedence effect in spatial hearing manifests in cortical neural population responses. BMC Biol 2022; 20:48. [PMID: 35172815 PMCID: PMC8848659 DOI: 10.1186/s12915-022-01228-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To localize sound sources accurately in a reverberant environment, human binaural hearing strongly favors analyzing the initial wave front of sounds. Behavioral studies of this "precedence effect" have so far largely been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly, physiological studies have mostly looked at neural responses in the inferior colliculus, the main relay point between the inner ear and the auditory cortex, or used modeling of cochlear auditory transduction in an attempt to identify likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral measures of sound localization under the precedence effect are lacking. RESULTS We adapted a "temporal weighting function" paradigm previously developed to quantify the precedence effect in human for use in laboratory rats. The animals learned to lateralize click trains in which each click in the train had a different interaural time difference. Computing the "perceptual weight" of each click in the train revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording experiments revealed that onset weighting of interaural time differences is a robust feature of the cortical population response, but interestingly, it often fails to manifest at individual cortical recording sites. CONCLUSION While previous studies suggested that the precedence effect may be caused by early processing mechanisms in the cochlea or inhibitory circuitry in the brainstem and midbrain, our results indicate that the precedence effect is not fully developed at the level of individual recording sites in the auditory cortex, but robust and consistent precedence effects are observable only in the auditory cortex at the level of cortical population responses. This indicates that the precedence effect emerges at later cortical processing stages and is a significantly "higher order" feature than has hitherto been assumed.
Collapse
Affiliation(s)
- Kongyan Li
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Ryszard Auksztulewicz
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Chloe H K Chan
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Ambika Prasad Mishra
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jan W H Schnupp
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Su Y, Chung Y, Goodman DFM, Hancock KE, Delgutte B. Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits. J Assoc Res Otolaryngol 2021; 22:319-347. [PMID: 33891217 DOI: 10.1007/s10162-021-00792-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Although pitch is closely related to temporal periodicity, stimuli with a degree of temporal irregularity can evoke a pitch sensation in human listeners. However, the neural mechanisms underlying pitch perception for irregular sounds are poorly understood. Here, we recorded responses of single units in the inferior colliculus (IC) of normal hearing (NH) rabbits to acoustic pulse trains with different amounts of random jitter in the inter-pulse intervals and compared with responses to electric pulse trains delivered through a cochlear implant (CI) in a different group of rabbits. In both NH and CI animals, many IC neurons demonstrated tuning of firing rate to the average pulse rate (APR) that was robust against temporal jitter, although jitter tended to increase the firing rates for APRs ≥ 1280 Hz. Strength and limiting frequency of spike synchronization to stimulus pulses were also comparable between periodic and irregular pulse trains, although there was a slight increase in synchronization at high APRs with CI stimulation. There were clear differences between CI and NH animals in both the range of APRs over which firing rate tuning was observed and the prevalence of synchronized responses. These results suggest that the pitches of regular and irregular pulse trains are coded differently by IC neurons depending on the APR, the degree of irregularity, and the mode of stimulation. In particular, the temporal pitch produced by periodic pulse trains lacking spectral cues may be based on a rate code rather than a temporal code at higher APRs.
Collapse
Affiliation(s)
- Yaqing Su
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA. .,Department of Biomedical Engineering, Boston University, Boston, MA, USA. .,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Dan F M Goodman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.,Present Address: Department of Electrical and Electronic Engineering, Imperial College London, London, England
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA. .,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation. J Assoc Res Otolaryngol 2021; 22:289-318. [PMID: 33861395 DOI: 10.1007/s10162-021-00797-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Listeners typically perceive a sound as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural-time-difference (ITD) cue for spatial location. Perceptually, weighting of ITD conveyed during rising sound energy is stronger at 600 Hz than at 200 Hz, consistent with the minimum stimulus rate for binaural adaptation, and with the longer reverberation times at 600 Hz, compared with 200 Hz, in many natural outdoor environments. Here, we computationally explore the combined efficacy of adaptation prior to the binaural encoding of ITD cues, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITDs conveyed in early-arriving sound. With excitatory inputs from adapting, nonlinear model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a nonlinear model MSO neuron with low-threshold potassium channels reproduces the rate-dependent emphasis of rising vs. peak sound energy in ITD encoding; adaptation is equally effective in the model MSO. Maintaining adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, 'left' and 'right' populations of computationally efficient, linear model SBCs and MSO neurons reproduce this stronger weighting of ITD conveyed during rising sound energy at 600 Hz compared to 200 Hz. This hemispheric population model demonstrates a link between strong weighting of spatial information during rising sound energy, and correct unambiguous lateralisation of a speech source in reverberation.
Collapse
|
9
|
Jensen KK, Cosentino S, Bernstein JGW, Stakhovskaya OA, Goupell MJ. A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users. Trends Hear 2021; 25:2331216521997324. [PMID: 34057382 PMCID: PMC8182630 DOI: 10.1177/2331216521997324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode. The comparison electrode (left ear) was chosen from one of three ranges: basal half, full array, or apical half. In Experiment 1 (discrimination), interaural pairs were chosen randomly (method of constant stimuli). In Experiment 2 (ranking), an efficient adaptive procedure rank ordered 3 reference and 6 or 11 comparison electrodes. In Experiment 3 (matching), listeners adjusted the comparison electrode to pitch match the reference. Each experiment was evaluated for testing-range bias (point of subjective equality [PSE] vs. comparison-range midpoint) and reference-electrode slope bias (PSE vs. reference electrode). Discrimination showed large biases for both metrics; matching showed a smaller but significant reference-electrode bias; ranking showed no significant biases in either dimension. Ranking and matching were also evaluated for starting-point bias (PSE vs. adaptive-track starting point), but neither showed significant effects. A response-distribution truncation model explained a nonsignificant bias for ranking but it could not fully explain the observed biases for discrimination or matching. It is concluded that (a) BI-CI interaural pitch comparisons are inconsistent across test methods; (b) biases must be evaluated in more than one dimension before accepting the results as valid; and (c) of the three methods tested, ranking was least susceptible to biases and therefore emerged as the optimal approach.
Collapse
Affiliation(s)
- Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Stefano Cosentino
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Olga A. Stakhovskaya
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| |
Collapse
|
10
|
Kan A, Meng Q. The Temporal Limits Encoder as a Sound Coding Strategy for Bilateral Cochlear Implants. IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2020; 29:265-273. [PMID: 33409339 PMCID: PMC7781292 DOI: 10.1109/taslp.2020.3039601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The difference in binaural benefit between bilateral cochlear implant (CI) users and normal hearing (NH) listeners has typically been attributed to CI sound coding strategies not encoding the acoustic fine structure (FS) interaural time differences (ITD). The Temporal Limits Encoder (TLE) strategy is proposed as a potential way of improving binaural hearing benefits for CI users in noisy situations. TLE works by downward-transposition of mid-frequency band-limited channel information and can theoretically provide FS-ITD cues. In this work, the effect of choice of lower limit of the modulator in TLE was examined by measuring performance on a word recognition task and computing the magnitude of binaural benefit in bilateral CI users. Performance listening with the TLE strategy was compared with the commonly used Advanced Combinational Encoder (ACE) CI sound coding strategy. Results showed that setting the lower limit to ≥200 Hz maintained word recognition performance comparable to that of ACE. While most CI listeners exhibited a large binaural benefit (≥6 dB) in at least one of the conditions tested, there was no systematic relationship between the lower limit of the modulator and performance. These results indicate that the TLE strategy has potential to improve binaural hearing abilities in CI users but further work is needed to understand how binaural benefit can be maximized.
Collapse
Affiliation(s)
- Alan Kan
- Waisman Center, University of Wisconsin-Madison at the time this work was conducted. He is now with the School of Engineering, Macquarie University, NSW, Australia, 2109
| | - Qinglin Meng
- Acoustics Laboratory, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China, 510641
| |
Collapse
|
11
|
Dieudonné B, Van Wilderode M, Francart T. Temporal quantization deteriorates the discrimination of interaural time differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:815. [PMID: 32873012 DOI: 10.1121/10.0001759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Cochlear implants (CIs) often replace acoustic temporal fine structure by a fixed-rate pulse train. If the pulse timing is arbitrary (that is, not based on the phase information of the acoustic signal), temporal information is quantized by the pulse period. This temporal quantization is probably imperceptible with current clinical devices. However, it could result in large temporal jitter for strategies that aim to improve bilateral and bimodal CI users' perception of interaural time differences (ITDs), such as envelope enhancement. In an experiment with 16 normal-hearing listeners, it is shown that such jitter could deteriorate ITD perception for temporal quantization that corresponds to the often-used stimulation rate of 900 pulses per second (pps): the just-noticeable difference in ITD with quantization was 177 μs as compared to 129 μs without quantization. For smaller quantization step sizes, no significant deterioration of ITD perception was found. In conclusion, the binaural system can only average out the effect of temporal quantization to some extent, such that pulse timing should be well-considered. As this psychophysical procedure was somewhat unconventional, different procedural parameters were compared by simulating a number of commonly used two-down one-up adaptive procedures in Appendix B.
Collapse
Affiliation(s)
- Benjamin Dieudonné
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Katholieke Universiteit (KU) Leuven-University of Leuven, Herestraat 49 bus 721, Leuven, 3000, Belgium
| | - Mira Van Wilderode
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Katholieke Universiteit (KU) Leuven-University of Leuven, Herestraat 49 bus 721, Leuven, 3000, Belgium
| | - Tom Francart
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Katholieke Universiteit (KU) Leuven-University of Leuven, Herestraat 49 bus 721, Leuven, 3000, Belgium
| |
Collapse
|
12
|
Improving Interaural Time Difference Sensitivity Using Short Inter-pulse Intervals with Amplitude-Modulated Pulse Trains in Bilateral Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:105-120. [PMID: 32040655 DOI: 10.1007/s10162-020-00743-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022] Open
Abstract
Interaural time differences (ITDs) at low frequencies are important for sound localization and spatial speech unmasking. These ITD cues are not encoded in commonly used envelope-based stimulation strategies for cochlear implants (CIs) using high pulse rates. However, ITD sensitivity can be improved by adding extra pulses with short inter-pulse intervals (SIPIs) in unmodulated high-rate trains. Here, we investigated whether this improvement also applies to amplitude-modulated (AM) high-rate pulse trains. To this end, we systematically varied the temporal position of SIPI pulses within the envelope cycle (SIPI phase), the fundamental frequency (F0) of AM (125 Hz and 250 Hz), and AM depth (from 0.1 to 0.9). Stimuli were presented at an interaurally place-matched electrode pair at a reference pulse rate of 1000 pulses/s. Participants performed an ITD-based left/right discrimination task. SIPI insertion resulted in improved ITD sensitivity throughout the range of modulation depths and for both male and female F0s. The improvements were largest for insertion at and around the envelope peak. These results are promising for conveying salient ITD cues at high pulse rates commonly used to encode speech information.
Collapse
|
13
|
Lindenbeck MJ, Laback B, Majdak P, Srinivasan S. Temporal-pitch sensitivity in electric hearing with amplitude modulation and inserted pulses with short inter-pulse intervals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:777. [PMID: 32113255 PMCID: PMC7002171 DOI: 10.1121/10.0000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Listeners with cochlear implants (CIs) typically show poor sensitivity to the temporal-envelope pitch of high-rate pulse trains. Sensitivity to interaural time differences improves when adding pulses with short inter-pulse intervals (SIPIs) to high-rate pulse trains. In the current study, monaural temporal-pitch sensitivity with SIPI pulses was investigated for six CI listeners. Amplitude-modulated single-electrode stimuli, representing the coding of the fundamental frequency (F0) in the envelope of a high-rate carrier, were used. Two SIPI-insertion approaches, five modulation depths, two typical speech-F0s, and two carrier rates were tested. SIPI pulses were inserted either in every amplitude-modulation period (full-rate SIPI) to support the F0 cue or in every other amplitude-modulation period (half-rate SIPI) to circumvent a potential rate limitation at higher F0s. The results demonstrate that full-rate SIPI pulses improve temporal-pitch sensitivity across F0s and particularly at low modulation depths where envelope-pitch cues are weak. The half-rate SIPI pulses did not circumvent the limitation and further increased variability across listeners. Further, no effect of the carrier rate was found. Thus, the SIPI approach appears to be a promising approach to enhance CI listeners' access to temporal-envelope pitch cues at pulse rates used clinically.
Collapse
Affiliation(s)
- Martin J Lindenbeck
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040 Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040 Vienna, Austria
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040 Vienna, Austria
| | - Sridhar Srinivasan
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040 Vienna, Austria
| |
Collapse
|
14
|
Pieper SH, Bahmer A. Rate pitch discrimination in cochlear implant users with the use of double pulses and different interpulse intervals. Cochlear Implants Int 2019; 20:312-323. [PMID: 31448701 DOI: 10.1080/14670100.2019.1656847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rate pitch discrimination ability of cochlear implant (CI) users is poor compared to normal-hearing (NH) listeners. At low pulse rates, the just noticeable difference (JND) is on average 20% of the base rate, while NH listeners can discriminate small frequency differences of 0.2% at 1 kHz. Recent investigations suggest that double pulses with short interpulse intervals (IPIs) may have a beneficial effect on rate pitch discrimination in CI users. In a first experiment psychophysical tests were carried out to establish whether rate pitch in CI users could be improved by applying double pulses with equal amplitude and short IPIs. Pulse trains with base rates of 200 and 400 pps, composed of either single pulses or double pulses with IPIs of 15, 50, and 150 μs were presented. In a second experiment pairwise comparisons were carried out between pitch of a pulse train composed of alternating double and single pulses with pitch of pulse trains composed of single pulses. The alternating pulse train had a base rate of 400 pps, the pulse trains with solely single pulses had base rates of 200, 300, and 400 pps. The loudness and pitch perception of the different stimulus types were evaluated and compared. A significant loudness difference was found between single and double pulses for both pulse rates. The JND for pitch discrimination between double-pulse IPIs had a high inter-subject variability, and no significant group effect was found. No subject reported a pitch change between double pulse and single pulse stimulation. In contrast, most of the subjects recognized a change in pitch between single-pulse trains and pulse trains with alternating double and single pulses. The latter was lower in pitch than the single-pulse train stimulation. To conclude, using (equal amplitude) double pulses instead of single pulses in a pulse train does not effect pitch perception. Instead, loudness differs between double pulses and single pulses with the same amplitude.
Collapse
Affiliation(s)
- Sabrina H Pieper
- Clinic for Otolaryngology, Comprehensive Hearing Center, University of Würzburg , Würzburg 97080 , Germany
| | - Andreas Bahmer
- Clinic for Otolaryngology, Comprehensive Hearing Center, University of Würzburg , Würzburg 97080 , Germany
| |
Collapse
|
15
|
Moua K, Kan A, Jones HG, Misurelli SM, Litovsky RY. Auditory motion tracking ability of adults with normal hearing and with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2498. [PMID: 31046310 PMCID: PMC6491347 DOI: 10.1121/1.5094775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Adults with bilateral cochlear implants (BiCIs) receive benefits in localizing stationary sounds when listening with two implants compared with one; however, sound localization ability is significantly poorer when compared to normal hearing (NH) listeners. Little is known about localizing sound sources in motion, which occurs in typical everyday listening situations. The authors considered the possibility that sound motion may improve sound localization in BiCI users by providing multiple places of information. Alternatively, the ability to compare multiple spatial locations may be compromised in BiCI users due to degradation of binaural cues, and thus result in poorer performance relative to NH adults. In this study, the authors assessed listeners' abilities to distinguish between sounds that appear to be moving vs stationary, and track the angular range and direction of moving sounds. Stimuli were bandpass-filtered (150-6000 Hz) noise bursts of different durations, panned over an array of loudspeakers. Overall, the results showed that BiCI users were poorer than NH adults in (i) distinguishing between a moving vs stationary sound, (ii) correctly identifying the direction of movement, and (iii) tracking the range of movement. These findings suggest that conventional cochlear implant processors are not able to fully provide the cues necessary for perceiving auditory motion correctly.
Collapse
Affiliation(s)
- Keng Moua
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53706, USA
| | - Alan Kan
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53706, USA
| | - Heath G Jones
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53706, USA
| | - Sara M Misurelli
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53706, USA
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
16
|
Improved Neural Coding of ITD with Bilateral Cochlear Implants by Introducing Short Inter-pulse Intervals. J Assoc Res Otolaryngol 2018; 19:681-702. [PMID: 30191423 DOI: 10.1007/s10162-018-00693-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/17/2018] [Indexed: 10/28/2022] Open
Abstract
Bilateral cochlear implant (CI) users have poor perceptual sensitivity to interaural time differences (ITDs), which limits their ability to localize sounds and understand speech in noisy environments. This is especially true for high-rate (> 300 pps) periodic pulse trains, which are used as carriers in CI processors. Here, we investigate a novel stimulation strategy in which extra pulses are added to high-rate periodic pulse trains to introduce short inter-pulse intervals (SIPIs). We hypothesized that SIPIs can improve neural ITD sensitivity similarly to the effect observed by randomly jittering IPIs (Hancock et al., J. Neurophysiol. 108:714-28, 2012). To test this hypothesis, we measured ITD sensitivity of single units in the inferior colliculus (IC) of unanesthetized rabbits with bilateral CIs. Introducing SIPIs into high-rate pulse trains significantly increased firing rates for ~ 60 % of IC neurons, and the extra spikes tended to be synchronized to the SIPIs. The additional firings produced by SIPIs uncovered latent ITD sensitivity that was comparable to that observed with low-rate pulse trains. In some neurons, high spontaneous firing rates masked the ITD sensitivity introduced by SIPIs. ITD sensitivity in these neurons could be revealed by emphasizing stimulus-synchronized spikes with a coincidence detection analysis. Overall, these results with SIPIs are consistent with the effects observed previously with jittered pulse trains, with the added benefit of retaining control over the timing and number of SIPIs. A novel CI processing strategy could incorporate SIPIs by inserting them at selected times to high-rate pulse train carriers. Such a strategy could potentially improve ITD perception without degrading speech intelligibility and thereby improve outcomes for bilateral CI users.
Collapse
|
17
|
Toth PG, Marsalek P, Pokora O. Ergodicity and parameter estimates in auditory neural circuits. BIOLOGICAL CYBERNETICS 2018; 112:41-55. [PMID: 29082437 PMCID: PMC5908860 DOI: 10.1007/s00422-017-0739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.
Collapse
Affiliation(s)
- Peter G. Toth
- Institute of Pathological Physiology, First Medical Faculty, Charles University, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Petr Marsalek
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany
- Czech Technical University in Prague, Zikova 1903/4, 16636 Prague 6, Czech Republic
| | - Ondrej Pokora
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| |
Collapse
|
18
|
Srinivasan S, Laback B, Majdak P, Delgutte B. Introducing Short Interpulse Intervals in High-Rate Pulse Trains Enhances Binaural Timing Sensitivity in Electric Hearing. J Assoc Res Otolaryngol 2018; 19:301-315. [PMID: 29549593 DOI: 10.1007/s10162-018-0659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/12/2018] [Indexed: 10/17/2022] Open
Abstract
Common envelope-based stimulation strategies for cochlear implants (CIs) use relatively high carrier rates in order to properly encode the speech envelope. For such rates, CI listeners show poor sensitivity to interaural time differences (ITDs), which are important for horizontal-plane sound localization and spatial unmasking of speech. Based on the findings from previous studies, we predicted that ITD sensitivity can be enhanced by including pulses with short interpulse intervals (SIPIs), to a 1000-pulses-per-second (pps) reference pulse train. We measured the sensitivity of eight bilateral CI listeners to ITD while systematically varying both the rate at which SIPIs are introduced ("SIPI rate") and the time interval between the two pulses forming a SIPI ("SIPI fraction"). Results showed largely enhanced ITD sensitivity relative to the reference condition, with the size of the improvement increasing with decreasing SIPI rate and decreasing SIPI fraction. For the lowest SIPI fraction, insertion of extra pulses brought ITD sensitivity to the level measured for low-rate pulse trains with rates matching the SIPI rates. The results appear promising for the goal of enhancing ITD sensitivity with envelope-based CI strategies by inserting SIPI pulses at strategic times in speech stimuli.
Collapse
Affiliation(s)
- Sridhar Srinivasan
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
| |
Collapse
|
19
|
Davis TJ, Gifford RH. Spatial Release From Masking in Adults With Bilateral Cochlear Implants: Effects of Distracter Azimuth and Microphone Location. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2018; 61:752-761. [PMID: 29450488 PMCID: PMC5963045 DOI: 10.1044/2017_jslhr-h-16-0441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/20/2017] [Accepted: 10/04/2017] [Indexed: 06/01/2023]
Abstract
PURPOSE The primary purpose of this study was to derive spatial release from masking (SRM) performance-azimuth functions for bilateral cochlear implant (CI) users to provide a thorough description of SRM as a function of target/distracter spatial configuration. The secondary purpose of this study was to investigate the effect of the microphone location for SRM in a within-subject study design. METHOD Speech recognition was measured in 12 adults with bilateral CIs for 11 spatial separations ranging from -90° to +90° in 20° steps using an adaptive block design. Five of the 12 participants were tested with both the behind-the-ear microphones and a T-mic configuration to further investigate the effect of mic location on SRM. RESULTS SRM can be significantly affected by the hemifield origin of the distracter stimulus-particularly for listeners with interaural asymmetry in speech understanding. The greatest SRM was observed with a distracter positioned 50° away from the target. There was no effect of mic location on SRM for the current experimental design. CONCLUSION Our results demonstrate that the traditional assessment of SRM with a distracter positioned at 90° azimuth may underestimate maximum performance for individuals with bilateral CIs.
Collapse
Affiliation(s)
- Timothy J. Davis
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| | - René H. Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
20
|
Thakkar T, Kan A, Jones HG, Litovsky RY. Mixed stimulation rates to improve sensitivity of interaural timing differences in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:1428. [PMID: 29604701 PMCID: PMC5851783 DOI: 10.1121/1.5026618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 05/29/2023]
Abstract
Normal hearing listeners extract small interaural time differences (ITDs) and interaural level differences (ILDs) to locate sounds and segregate targets from noise. Bilateral cochlear implant listeners show poor sensitivity to ITDs when using clinical processors. This is because common clinical stimulation approaches use high rates [∼1000 pulses per-second (pps)] for each electrode in order to provide good speech representation, but sensitivity to ITDs is best at low rates of stimulation (∼100-300 pps). Mixing rates of stimulation across the array is a potential solution. Here, ITD sensitivity for a number of mixed-rate configurations that were designed to preserve speech envelope cues using high-rate stimulation and spatial hearing using low rate stimulation was examined. Results showed that ITD sensitivity in mixed-rate configurations when only one low rate electrode was included generally yielded ITD thresholds comparable to a configuration with low rates only. Low rate stimulation at basal or middle regions on the electrode array yielded the best sensitivity to ITDs. This work provides critical evidence that supports the use of mixed-rate strategies for improving ITD sensitivity in bilateral cochlear implant users.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Heath G Jones
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
21
|
Stecker GC. Temporal weighting functions for interaural time and level differences. V. Modulated noise carriers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:686. [PMID: 29495689 PMCID: PMC5800884 DOI: 10.1121/1.5022785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 05/29/2023]
Abstract
Sound onsets dominate spatial judgments of many types of periodic sound. Conversely, ongoing cues often dominate in spatial judgments of aperiodic noise. This study quantified onset dominance as a function of both the bandwidth and the temporal regularity of stimuli by measuring temporal weighting functions (TWF) from Stecker, Ostreicher, and Brown [(2013) J. Acoust. Soc. Am. 134, 1242-1252] for lateralization of periodic and aperiodic noise-burst trains. Stimuli consisted of 16 noise bursts (1 ms each) repeating at an interval of 2 or 5 ms. TWFs were calculated by multiple regression of lateralization judgments onto interaural time and level differences, which varied independently ( ±100 μs, ±2 dB) across bursts. Noise tokens were either refreshed on each burst (aperiodic) or repeated across sets of 2, 4, 8, or 16 bursts. TWFs revealed strong onset dominance for periodic noise-burst trains (16 repeats per token), which was markedly reduced in aperiodic trains. A second experiment measured TWFs for periodic but sinusoidally amplitude-modulated noise burst trains, revealing greater weight on the earliest and least intense bursts of the rising envelope slope. The results support the view that envelope fluctuations drive access to binaural information in both periodic and aperiodic sounds.
Collapse
Affiliation(s)
- G Christopher Stecker
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| |
Collapse
|
22
|
Gaudrain E, Deeks JM, Carlyon RP. Temporal Regularity Detection and Rate Discrimination in Cochlear-Implant Listeners. J Assoc Res Otolaryngol 2017; 18:387-397. [PMID: 27687041 PMCID: PMC5352605 DOI: 10.1007/s10162-016-0586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
Abstract
Cochlear implants (CIs) convey fundamental-frequency information using primarily temporal cues. However, temporal pitch perception in CI users is weak and, when measured using rate discrimination tasks, deteriorates markedly as the rate increases beyond 300 pulses-per-second. Rate pitch may be weak because the electrical stimulation of the surviving neural population of the implant recipient may not allow accurate coding of inter-pulse time intervals. If so, this phenomenon should prevent listeners from detecting when a pulse train is physically temporally jittered. Performance in a jitter detection task was compared to that in a rate-pitch discrimination task. Stimuli were delivered using direct stimulation in cochlear implants, on a mid-array and an apical electrode, and at two different rates (100 and 300 pps). Average performance on both tasks was worse at the higher pulse rate and did not depend on electrode. However, there was a large variability across and within listeners that did not correlate between the two tasks, suggesting that rate-pitch judgement and regularity detection are to some extent limited by task-specific processes. Simulations with filtered pulse trains presented to NH listeners yielded broadly similar results, except that, for the rate discrimination task, the difference between performance with 100- and 300-pps base rates was smaller than observed for CI users.
Collapse
Affiliation(s)
- Etienne Gaudrain
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF Cambridge, UK
- CNRS UMR 5292, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics, Université Lyon 1, 50 av. Tony Garnier, 69366 Lyon Cedex 7, France
- Department of Otorhinolaryngology, University Medical Center Groningen-University of Groningen, Huispostcode BB20, PO Box 30.001, 9700 RB Groningen, Netherlands
| | - John M. Deeks
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF Cambridge, UK
| | - Robert P. Carlyon
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF Cambridge, UK
| |
Collapse
|
23
|
Hu H, Ewert SD, McAlpine D, Dietz M. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1862. [PMID: 28372072 DOI: 10.1121/1.4977014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that normal-hearing (NH) listeners' spatial perception of non-stationary interaural time differences (ITDs) is dominated by the carrier ITD during rising amplitude segments. Here, ITD sensitivity throughout the amplitude-modulation cycle in NH listeners and bilateral cochlear implant (CI) subjects is compared, the latter by means of direct stimulation of a single electrode pair. The data indicate that, while NH listeners are most sensitive to ITDs applied toward the beginning of a modulation cycle at 600 Hz, NH listeners at 200 Hz and especially bilateral CI subjects at 200 pulses per second (pps) are more sensitive to ITDs applied to the modulation maximum. This has implications for spatial-hearing in complex environments: NH listeners' dominant 600-Hz ITD information from the rising amplitude segments comprises direct sound information. The 200-pps low rate required to get ITD sensitivity in CI users results in a higher weight of pulses later in the modulation cycle where the source ITDs are more likely corrupted by reflections. This indirectly indicates that even if future binaural CI processors are able to provide perceptually exploitable ITD information, CI users will likely not get the full benefit from such pulse-based ITD cues in reverberant and other complex environments.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Stephan D Ewert
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| | - David McAlpine
- Department of Linguistics, Australian Hearing Hub, Macquarie University, New South Wales 2109, Australia
| | - Mathias Dietz
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
24
|
Monaghan JJM, Bleeck S, McAlpine D. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates. Trends Hear 2015; 19:2331216515619331. [PMID: 26721926 PMCID: PMC4871209 DOI: 10.1177/2331216515619331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor-to the point of discrimination thresholds being unattainable-compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners' sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered.
Collapse
Affiliation(s)
| | - Stefan Bleeck
- Institute of Sound and Vibration Research, University of Southampton, UK
| | | |
Collapse
|
25
|
Kan A, Jones HG, Litovsky RY. Effect of multi-electrode configuration on sensitivity to interaural timing differences in bilateral cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3826-33. [PMID: 26723337 PMCID: PMC4691256 DOI: 10.1121/1.4937754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent psychophysical studies in bilateral cochlear implant users have shown that interaural timing difference (ITD) sensitivity with electrical stimulation varies depending on the place of stimulation along the cochlear array. While these studies have measured ITD sensitivity at single electrode places separately, it is important to understand how ITD sensitivity is affected when multiple electrodes are stimulated together because multi-electrode stimulation is required for representation of complex sounds. Multi-electrode stimulation may lead to poorer overall performance due to interference from places with poor ITD sensitivity, or from channel interaction due to electrical current spread. Alternatively, multi-electrode stimulation might result in overall good sensitivity if listeners can extract the most reliable ITD cues available. ITD just noticeable differences (JNDs) were measured for different multi-electrode configurations. Results showed that multi-electrode ITD JNDs were poorer than ITD JNDs for the best single-electrode pair. However, presenting ITD information along the whole array appeared to produce better sensitivity compared with restricting stimulation to the ends of the array, where ITD JNDs were comparable to the poorest single-electrode pair. These findings suggest that presenting ITDs in one cochlear region only may not be optimal for maximizing ITD sensitivity in multi-electrode stimulation.
Collapse
Affiliation(s)
- Alan Kan
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Heath G Jones
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- Binaural Hearing and Speech Laboratory, Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
26
|
Limitations on Monaural and Binaural Temporal Processing in Bilateral Cochlear Implant Listeners. J Assoc Res Otolaryngol 2015; 16:641-52. [PMID: 26105749 PMCID: PMC4569611 DOI: 10.1007/s10162-015-0527-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Monaural rate discrimination and binaural interaural time difference (ITD) discrimination were studied as functions of pulse rate in a group of bilaterally implanted cochlear implant users. Stimuli for the rate discrimination task were pulse trains presented to one electrode, which could be in the apical, middle, or basal part of the array, and in either the left or the right ear. In each two-interval trial, the standard stimulus had a rate of 100, 200, 300, or 500 pulses per second and the signal stimulus had a rate 35 % higher. ITD discrimination between pitch-matched electrode pairs was measured for the same standard rates as in the rate discrimination task and with an ITD of +/− 500 μs. Sensitivity (d′) on both tasks decreased with increasing rate, as has been reported previously. This study tested the hypothesis that deterioration in performance at high rates occurs for the two tasks due to a common neural basis, specific to the stimulation of each electrode. Results show that ITD scores for different pairs of electrodes correlated with the lower rate discrimination scores for those two electrodes. Statistical analysis, which partialed out overall differences between listeners, electrodes, and rates, supports the hypothesis that monaural and binaural temporal processing limitations are at least partly due to a common mechanism.
Collapse
|
27
|
Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 2015; 322:138-50. [DOI: 10.1016/j.heares.2014.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/21/2022]
|
28
|
Goupell MJ, Litovsky RY. Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:335-49. [PMID: 25618064 PMCID: PMC4304956 DOI: 10.1121/1.4904491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Provision of bilateral cochlear implants (CIs) to people who are deaf is partially justified by improved abilities to understand speech in noise when comparing bilateral vs unilateral listening conditions. However, bilateral CI listeners generally show only monaural head shadow with little improvement in speech understanding due to binaural unmasking. Sensitivity to change in interaural envelope correlation, which is related to binaural speech unmasking, was investigated. Bilateral CI users were tested with bilaterally synchronized processors at single, pitch-matched electrode pairs. First, binaural masking level differences (BMLDs) were measured using 1000 pulse-per-second (pps) carriers, yielding BMLDs of 11.1 ± 6.5 and 8.5 ± 4.2 dB for 10- and 50-Hz bandwidth masking noises, respectively. Second, envelope correlation change just-noticeable differences (JNDs) were measured. Stimuli presented at 1000 pps yielded lower JNDs than those presented at 100 pps. Furthermore, perfectly correlated reference stimuli produced lower JNDs than uncorrelated references, and uncorrelated references generally produced immeasurable JNDs. About 25% of JNDs measured in the CI listeners were in the range of JNDs observed in normal-hearing listeners presented CI simulations. In conclusion, CI listeners can perceive changes in interaural envelope correlation, but the poor performance may be a major limiting factor in binaural unmasking tested to date in realistic listening environments.
Collapse
Affiliation(s)
- Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, Wisconsin 53705
| |
Collapse
|
29
|
Kan A, Litovsky RY. Binaural hearing with electrical stimulation. Hear Res 2014; 322:127-37. [PMID: 25193553 DOI: 10.1016/j.heares.2014.08.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022]
Abstract
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Alan Kan
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| | - Ruth Y Litovsky
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| |
Collapse
|
30
|
Churchill TH, Kan A, Goupell MJ, Litovsky RY. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1246. [PMID: 25190398 PMCID: PMC4165227 DOI: 10.1121/1.4892764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Collapse
Affiliation(s)
- Tyler H Churchill
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland-College Park, College Park, Maryland 20742
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| |
Collapse
|
31
|
Bahmer A, Baumann U. Psychometric function of jittered rate pitch discrimination. Hear Res 2014; 313:47-54. [PMID: 24821551 DOI: 10.1016/j.heares.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The impact of jitter on rate pitch discrimination (JRPD) is still a matter of debate. Previous studies have used adaptive procedures to assess pitch discrimination abilities of jittered rate pulses (Dobie and Dillier, 1985; Chen et al., 2005) or have used jitter detection thresholds (Fearn, 2001). Previous studies were conducted in a relatively small number of subjects using either a single-electrode cochlear implant (Dobie and Dillier, 1985, n = 2) or the Nucleus multi-channel devices (Fearn, 2001, n = 3; Chen et al., 2005, n = 5). The successful application of an adaptive procedure requires a monotone psychometric function to achieve asymptotic results. The underlying psychometric function of rate jitter has not been investigated so far. In order to close this knowledge gap, the present study determines psychometric functions by measuring of JRPD with a fixed stimulus paradigm. A rather large range of temporal, Gaussian distributed jitter standard deviation 0, 1, 2, 3, 4 ms was applied to electrical pulse patterns. Since the shape of the underlying probability density function (PDF) may also effect JRPD, a uniform PDF was alternatively applied. 7 CI users (8 ears, high-level performers with open-speech perception, MED-EL Pulsar/Sonata devices, Innsbruck, Austria) served as subjects for the experiment. JRPD was assessed with a two-stage forced choice procedure. Gross results showed decreasing JRPD with increasing amounts of jitter independent of the applied jitter distribution. In conclusion, pulse rate jitter affects JRPD and therefore should be considered in current coding strategies.
Collapse
Affiliation(s)
- Andreas Bahmer
- University of Frankfurt Main, Clinic for Otolaryngology, Audiological Acoustics, 60590 Frankfurt, Germany.
| | - Uwe Baumann
- University of Frankfurt Main, Clinic for Otolaryngology, Audiological Acoustics, 60590 Frankfurt, Germany.
| |
Collapse
|
32
|
Vonderschen K, Wagner H. Detecting interaural time differences and remodeling their representation. Trends Neurosci 2014; 37:289-300. [DOI: 10.1016/j.tins.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
33
|
Ihlefeld A, Kan A, Litovsky RY. Across-frequency combination of interaural time difference in bilateral cochlear implant listeners. Front Syst Neurosci 2014; 8:22. [PMID: 24653681 PMCID: PMC3949319 DOI: 10.3389/fnsys.2014.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/29/2014] [Indexed: 11/13/2022] Open
Abstract
The current study examined how cochlear implant (CI) listeners combine temporally interleaved envelope-ITD information across two sites of stimulation. When two cochlear sites jointly transmit ITD information, one possibility is that CI listeners can extract the most reliable ITD cues available. As a result, ITD sensitivity would be sustained or enhanced compared to single-site stimulation. Alternatively, mutual interference across multiple sites of ITD stimulation could worsen dual-site performance compared to listening to the better of two electrode pairs. Two experiments used direct stimulation to examine how CI users can integrate ITDs across two pairs of electrodes. Experiment 1 tested ITD discrimination for two stimulation sites using 100-Hz sinusoidally modulated 1000-pps-carrier pulse trains. Experiment 2 used the same stimuli ramped with 100 ms windows, as a control condition with minimized onset cues. For all stimuli, performance improved monotonically with increasing modulation depth. Results show that when CI listeners are stimulated with electrode pairs at two cochlear sites, sensitivity to ITDs was similar to that seen when only the electrode pair with better sensitivity was activated. None of the listeners showed a decrement in performance from the worse electrode pair. This could be achieved either by listening to the better electrode pair or by truly integrating the information across cochlear sites.
Collapse
Affiliation(s)
- Antje Ihlefeld
- Waisman Center, University of Wisconsin Madison, WI, USA ; Center for Neural Science, New York University New York, NY, USA
| | - Alan Kan
- Waisman Center, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
34
|
Senkowski D, Pomper U, Fitzner I, Engel AK, Kral A. Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users. Hum Brain Mapp 2013; 35:3107-21. [PMID: 24123535 DOI: 10.1002/hbm.22388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 11/07/2022] Open
Abstract
In normal-hearing listeners, localization of auditory speech involves stimulus processing in the postero-dorsal pathway of the auditory system. In quiet environments, bilateral cochlear implant (CI) users show high speech recognition performance, but localization of auditory speech is poor, especially when discriminating stimuli from the same hemifield. Whether this difficulty relates to the inability of the auditory system to translate binaural electrical cues into neural signals, or to a functional reorganization of auditory cortical pathways following long periods of binaural deprivation is unknown. In this electroencephalography study, we examined the processing of auditory syllables in postlingually deaf adults with bilateral CIs and in normal-hearing adults. Participants were instructed to either recognize ("recognition" task) or localize ("localization" task) the syllables. The analysis focused on event-related potentials and oscillatory brain responses. N1 amplitudes in CI users were larger in the localization compared with recognition task, suggesting an enhanced stimulus processing effort in the localization task. Linear beamforming of oscillatory activity in CI users revealed stronger suppression of beta-band activity after 200 ms in the postero-dorsal auditory pathway for the localization compared with the recognition task. In normal-hearing adults, effects for longer latency event-related potentials were found, but no effects were observed for N1 amplitudes or beta-band responses. Our study suggests that difficulties in speech localization in bilateral CI users are not reflected in a functional reorganization of cortical auditory pathways. New signal processing strategies of cochlear devices preserving unambiguous binaural cues may improve auditory localization performance in bilateral CI users.
Collapse
Affiliation(s)
- Daniel Senkowski
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany; Department of Psychiatry and Psychotherapy Charité-Universitätsmedizin, Berlin, St. Hedwig Hospital, Große Hamburger Str. 5-11, Berlin, Germany
| | | | | | | | | |
Collapse
|
35
|
Harczos T, Chilian A, Husar P. Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: the SAM coding strategy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:414-425. [PMID: 23893201 DOI: 10.1109/tbcas.2012.2219530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mimicking the human ear on the basis of auditory models has become a viable approach in many applications by now. However, only a few attempts have been made to extend the scope of physiological ear models to be employed in cochlear implants (CI). Contemporary CI systems rely on much simpler filter banks and simulate the natural signal processing of a healthy cochlea to only a very limited extent. When looking at rehabilitation outcomes, current systems seem to have reached their peak potential, which signals the need for better algorithms and/or technologies. In this paper, we present a novel sound processing strategy, SAM (Stimulation based on Auditory Modeling), that is based on neurophysiological models of the human ear and can be employed in auditory prostheses. It incorporates active cochlear filtering (basilar membrane and outer hair cells) along with the mechanoelectrical transduction of the inner hair cells, so that several psychoacoustic phenomena are accounted for inherently. Although possible, current implementation does not make use of parallel stimulation of the electrodes, which matches state-of-the-art CI hardware. This paper elaborates on SAM's signal processing and provides a computational evaluation of the strategy. Results show that aspects of normal cochlear processing that are missing in common strategies can be replicated by SAM. This is supposed to improve overall CI user performance, which we have at least partly proven in a pilot study with implantees.
Collapse
Affiliation(s)
- Tamas Harczos
- Faculty of Electrical Engineering and Information Technology, Institute for Media Technology, Ilmenau University of Technology, 98693 Ilmenau, Germany.
| | | | | |
Collapse
|
36
|
Litovsky RY, Goupell MJ, Godar S, Grieco-Calub T, Jones GL, Garadat SN, Agrawal S, Kan A, Todd A, Hess C, Misurelli S. Studies on bilateral cochlear implants at the University of Wisconsin's Binaural Hearing and Speech Laboratory. J Am Acad Audiol 2012; 23:476-94. [PMID: 22668767 DOI: 10.3766/jaaa.23.6.9] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report highlights research projects relevant to binaural and spatial hearing in adults and children. In the past decade we have made progress in understanding the impact of bilateral cochlear implants (BiCIs) on performance in adults and children. However, BiCI users typically do not perform as well as normal hearing (NH) listeners. In this article we describe the benefits from BiCIs compared with a single cochlear implant (CI), focusing on measures of spatial hearing and speech understanding in noise. We highlight the fact that in BiCI listening the devices in the two ears are not coordinated; thus binaural spatial cues that are available to NH listeners are not available to BiCI users. Through the use of research processors that carefully control the stimulus delivered to each electrode in each ear, we are able to preserve binaural cues and deliver them with fidelity to BiCI users. Results from those studies are discussed as well, with a focus on the effect of age at onset of deafness and plasticity of binaural sensitivity. Our work with children has expanded both in number of subjects tested and age range included. We have now tested dozens of children ranging in age from 2 to 14 yr. Our findings suggest that spatial hearing abilities emerge with bilateral experience. While we originally focused on studying performance in free field, where real world listening experiments are conducted, more recently we have begun to conduct studies under carefully controlled binaural stimulation conditions with children as well. We have also studied language acquisition and speech perception and production in young CI users. Finally, a running theme of this research program is the systematic investigation of the numerous factors that contribute to spatial and binaural hearing in BiCI users. By using CI simulations (with vocoders) and studying NH listeners under degraded listening conditions, we are able to tease apart limitations due to the hardware/software of the CI systems from limitations due to neural pathology.
Collapse
Affiliation(s)
- Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Goupell MJ. The role of envelope statistics in detecting changes in interaural correlation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:1561-72. [PMID: 22978885 PMCID: PMC3460981 DOI: 10.1121/1.4740498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/05/2012] [Accepted: 07/10/2012] [Indexed: 05/16/2023]
Abstract
The role of envelope statistics in binaural masking-level differences (BMLDs) and correlation change detection was investigated in normal-hearing listeners. Thresholds and just-noticeable differences (JNDs) were measured for different bandwidths and center frequencies (500, 2000, 4000, and 8000 Hz) using Gaussian noises (GNs) and low-fluctuation noises (LFNs). At a 500-Hz center frequency, GN NoSo thresholds were higher than, NoSπ thresholds were lower than, and correlation change detection JNDs were the same as LFN thresholds and JNDs. At higher center frequencies, GN NoSπ thresholds were the same or higher than LFN thresholds and GN correlation change detection JNDs were much smaller than LFN JNDs. Using a pulsed sine vocoder, a second experiment was performed to investigate if binaural adaptation might contribute to the difference in GN and LFN detection. There was no effect of pulse rate, thus providing no clear evidence that binaural adaptation plays a role in these tasks. Both a cross-correlation model and a model that utilized the fluctuations in the interaural differences could explain a majority of the variance in the LFN correlation change JNDs.
Collapse
Affiliation(s)
- Matthew J Goupell
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, Wisconsin 53705, USA.
| |
Collapse
|
38
|
Laback B. Neural basis of improved ITD sensitivity with jitter. J Neurophysiol 2012; 108:712-3. [DOI: 10.1152/jn.00422.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
van Hoesel RJ. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 2012; 288:100-13. [DOI: 10.1016/j.heares.2011.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
40
|
Hancock KE, Chung Y, Delgutte B. Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 2012; 108:714-28. [PMID: 22592306 DOI: 10.1152/jn.00269.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poor sensitivity to the interaural time difference (ITD) constrains the ability of human bilateral cochlear implant users to listen in everyday noisy acoustic environments. ITD sensitivity to periodic pulse trains degrades sharply with increasing pulse rate but can be restored at high pulse rates by jittering the interpulse intervals in a binaurally coherent manner (Laback and Majdak. Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci USA 105: 814-817, 2008). We investigated the neural basis of the jitter effect by recording from single inferior colliculus (IC) neurons in bilaterally implanted, anesthetized cats. Neural responses to trains of biphasic pulses were measured as a function of pulse rate, jitter, and ITD. An effect of jitter on neural responses was most prominent for pulse rates above 300 pulses/s. High-rate periodic trains evoked only an onset response in most IC neurons, but introducing jitter increased ongoing firing rates in about half of these neurons. Neurons that had sustained responses to jittered high-rate pulse trains showed ITD tuning comparable with that produced by low-rate periodic pulse trains. Thus, jitter appears to improve neural ITD sensitivity by restoring sustained firing in many IC neurons. The effect of jitter on IC responses is qualitatively consistent with human psychophysics. Action potentials tended to occur reproducibly at sparse, preferred times across repeated presentations of high-rate jittered pulse trains. Spike triggered averaging of responses to jittered pulse trains revealed that firing was triggered by very short interpulse intervals. This suggests it may be possible to restore ITD sensitivity to periodic carriers by simply inserting short interpulse intervals at select times.
Collapse
Affiliation(s)
- Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | | | |
Collapse
|
41
|
Ewert SD, Kaiser K, Kernschmidt L, Wiegrebe L. Perceptual sensitivity to high-frequency interaural time differences created by rustling sounds. J Assoc Res Otolaryngol 2011; 13:131-43. [PMID: 22124890 DOI: 10.1007/s10162-011-0303-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/03/2011] [Indexed: 10/15/2022] Open
Abstract
Interaural time differences (ITDs) can be used to localize sounds in the horizontal plane. ITDs can be extracted from either the fine structure of low-frequency sounds or from the envelopes of high-frequency sounds. Studies of the latter have included stimuli with periodic envelopes like amplitude-modulated tones or transposed stimuli, and high-pass filtered Gaussian noises. Here, four experiments are presented investigating the perceptual relevance of ITD cues in synthetic and recorded "rustling" sounds. Both share the broad long-term power spectrum with Gaussian noise but provide more pronounced envelope fluctuations than Gaussian noise, quantified by an increased waveform fourth moment, W. The current data show that the JNDs in ITD for band-pass rustling sounds tended to improve with increasing W and with increasing bandwidth when the sounds were band limited. In contrast, no influence of W on JND was observed for broadband sounds, apparently because of listeners' sensitivity to ITD in low-frequency fine structure, present in the broadband sounds. Second, it is shown that for high-frequency rustling sounds ITD JNDs can be as low as 30 μs. The third result was that the amount of dominance for ITD extraction of low frequencies decreases systematically with increasing amount of envelope fluctuations. Finally, it is shown that despite the exceptionally good envelope ITD sensitivity evident with high-frequency rustling sounds, minimum audible angles of both synthetic and recorded high-frequency rustling sounds in virtual acoustic space are still best when the angular information is mediated by interaural level differences.
Collapse
Affiliation(s)
- Stephan D Ewert
- Medizinische Physik, Fakultät V, Universität Oldenburg, 26111, Oldenburg, Germany
| | | | | | | |
Collapse
|
42
|
Best V, Laback B, Majdak P. Binaural interference in bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2939-50. [PMID: 22087922 DOI: 10.1121/1.3641400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This work was aimed at determining whether binaural interference occurs in electric hearing, and if so, whether it occurs as a consequence of perceptual grouping (central explanation) or if it is related to the spread of excitation in the cochlea (peripheral explanation). Six bilateral cochlear-implant listeners completed a series of experiments in which they judged the lateral position of a target pulse train, lateralized via interaural time or level differences, in the presence of an interfering diotic pulse train. The target and interferer were presented at widely separated electrode pairs (one basal and one apical). The results are broadly similar to those reported for acoustic hearing. All listeners but one showed significant binaural interference in at least one of the stimulus conditions. In all cases of interference, a robust recovery was observed when the interferer was presented as part of an ongoing stream of identical pulse trains, suggesting that the interference was at least partly centrally mediated. Overall, the results suggest that both simultaneous and sequential grouping mechanisms operate in electric hearing, at least for stimuli with a wide tonotopic separation.
Collapse
Affiliation(s)
- Virginia Best
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
43
|
Laback B, Zimmermann I, Majdak P, Baumgartner WD, Pok SM. Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:1515-29. [PMID: 21895091 DOI: 10.1121/1.3613704] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The envelope shape is important for the perception of interaural time difference (ITD) in the envelope as supported by the improved sensitivity for transposed tones compared to sinusoidally amplitude-modulated (SAM) tones. The present study investigated the effects of specific envelope parameters in nine normal-hearing (NH) and seven cochlear-implant (CI) listeners, using high-rate carriers with 27-Hz trapezoidal modulation. In NH listeners, increasing the off time (the silent interval in each modulation cycle) up to 12 ms, increasing the envelope slope from 6 to 8 dB/ms, and increasing the peak level improved ITD sensitivity. The combined effect of the off time and slope accounts for the gain in sensitivity for transposed tones relative to SAM tones. In CI listeners, increasing the off time up to 20 ms improved sensitivity, but increasing the slope showed no systematic effect. A 27-pulses/s electric pulse train, representing a special case of modulation with infinitely steep slopes and maximum possible off time, yielded considerably higher sensitivity compared to the best condition with trapezoidal modulation. Overall, the results of this study indicate that envelope-ITD sensitivity could be improved by using CI processing schemes that simultaneously increase the off time and the peak level of the signal envelope.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria.
| | | | | | | | | |
Collapse
|
44
|
Lu T, Litovsky R, Zeng FG. Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3934-45. [PMID: 21682415 PMCID: PMC3135149 DOI: 10.1121/1.3570948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing.
Collapse
Affiliation(s)
- Thomas Lu
- Department of Otolaryngology - Head and Neck Surgery, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
45
|
Drapal M, Marsalek P. Stochastic model explains the role of excitation and inhibition in binaural sound localization in mammals. Physiol Res 2011; 60:573-83. [PMID: 21401305 DOI: 10.33549/physiolres.931954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interaural time differences (ITDs), the differences of arrival time of the sound at the two ears, provide a major cue for low-frequency sound localization in the horizontal plane. The first nucleus involved in the computation of ITDs is the medial superior olive (MSO). We have modeled the neural circuit of the MSO using a stochastic description of spike timing. The inputs to the circuit are stochastic spike trains with a spike timing distribution described by a given probability density function (beta density). The outputs of the circuit reproduce the empirical firing rates found in experiment in response to the varying ITD. The outputs of the computational model are calculated numerically and these numerical simulations are also supported by analytical calculations. We formulate a simple hypothesis concerning how sound localization works in mammals. According to this hypothesis, there is no array of delay lines as in the Jeffress' model, but the inhibitory input is shifted in time as a whole. This is consistent with experimental observations in mammals.
Collapse
Affiliation(s)
- M Drapal
- Department of Pathological Physiology, First Medical Faculty, Charles University of Prague, Czech Republic
| | | |
Collapse
|
46
|
|
47
|
Brown AD, Stecker GC. Temporal weighting functions for interaural time and level differences. II. The effect of binaurally synchronous temporal jitter. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:293-300. [PMID: 21303010 PMCID: PMC3055287 DOI: 10.1121/1.3514422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/06/2010] [Accepted: 10/11/2010] [Indexed: 05/28/2023]
Abstract
Recent work has demonstrated that sensitivity to interaural time differences (ITD) carried by high-rate cochlear implant pulse trains or analogous acoustic signals can be enhanced by imposing random temporal variation on the stimulus rate [see Goupell et al. (2009). J. Acoust. Soc. Am. 126, 2511-2521]. The present study characterized the effect of such "temporal jitter" on normal-hearing listeners' weighting of ITD and interaural level differences (ILD) applied to brief trains of Gabor clicks (4 kHz center frequency) presented at nominal interclick intervals (ICI) of 1.25 and 2.5 ms. Lateral discrimination judgments were evaluated on the basis of the ITD or ILD carried by individual clicks in each train. Random perturbation of the ICI significantly reduced listeners' weighting of onset cues for both ITD and ILD discrimination compared to corresponding isochronous conditions, consistent with enhanced sensitivity to post-onset binaural cues in jittered stimuli, although the reduction of onset weighting was not statistically significant at 1.25 ms ICI. An additional analysis suggested greater weighting of ITD or ILD presented following lengthened versus shortened ICI, although weights for such "gaps" and "squeezes" were comparable to other post-onset weights. Results are discussed in terms of binaural information available in jittered versus isochronous stimuli.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Seattle, Washington 98105, USA
| | | |
Collapse
|
48
|
Lu T, Litovsky R, Zeng FG. Binaural masking level differences in actual and simulated bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:1479-90. [PMID: 20329848 PMCID: PMC2856512 DOI: 10.1121/1.3290994] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
At present commercially available bilateral cochlear implants (CIs) improve their users' speech understanding in noise but they employ two independent speech processors that cannot provide accurate and appropriate interaural level and time differences as seen binaurally in normal hearing (NH) listeners. Previous work suggests that binaural cues are accessible to bilateral CI users when presented to single pairs of pitch-matched electrodes, but the scope was limited and the mechanisms remained unclear. In this study, binaural masking level differences (BMLDs) were measured in five bilateral Nucleus-24 CI users over multiple pairs of pitch-matched electrodes. Average BMLD was 4.6+/-4.9 dB, but large individual variability prevented significance (p=0.09). Considering just the 125 Hz condition, as in previous work, phase (N0S0 vs N0Spi) and electrode effects were significant. Compared with simulated bilateral CI users, actual bilateral CI users had proportionally higher thresholds for N0Spi than N0S0. Together the present results suggest that the performance gap in BMLDs between CI and NH listeners is not due to a lack of sufficient acoustic cues in the temporal envelope domain but to a true binaural deficit related to a central mechanism in deprived binaural processing.
Collapse
Affiliation(s)
- Thomas Lu
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
49
|
Goupell MJ, Majdak P, Laback B. Median-plane sound localization as a function of the number of spectral channels using a channel vocoder. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:990-1001. [PMID: 20136221 PMCID: PMC3061453 DOI: 10.1121/1.3283014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 05/16/2023]
Abstract
Using a vocoder, median-plane sound localization performance was measured in eight normal-hearing listeners as a function of the number of spectral channels. The channels were contiguous and logarithmically spaced in the range from 0.3 to 16 kHz. Acutely testing vocoded stimuli showed significantly worse localization compared to noises and 100 pulses click trains, both of which were tested after feedback training. However, localization for the vocoded stimuli was better than chance. A second experiment was performed using two different 12-channel spacings for the vocoded stimuli, now including feedback training. One spacing was from experiment 1. The second spacing (called the speech-localization spacing) assigned more channels to the frequency range associated with speech. There was no significant difference in localization between the two spacings. However, even with training, localizing 12-channel vocoded stimuli remained worse than localizing virtual wideband noises by 4.8 degrees in local root-mean-square error and 5.2% in quadrant error rate. Speech understanding for the speech-localization spacing was not significantly different from that for a typical spacing used by cochlear-implant users. These experiments suggest that current cochlear implants have a sufficient number of spectral channels for some vertical-plane sound localization capabilities, albeit worse than normal-hearing listeners, without loss of speech understanding.
Collapse
Affiliation(s)
- Matthew J Goupell
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria.
| | | | | |
Collapse
|
50
|
van Hoesel RJM, Jones GL, Litovsky RY. Interaural time-delay sensitivity in bilateral cochlear implant users: effects of pulse rate, modulation rate, and place of stimulation. J Assoc Res Otolaryngol 2009; 10:557-67. [PMID: 19513792 PMCID: PMC2774408 DOI: 10.1007/s10162-009-0175-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
Abstract
Electrical interaural time delay (ITD) discrimination was measured using 300-ms bursts applied to binaural pitch matched electrodes at basal, mid, and apical locations in each ear. Six bilateral implant users, who had previously shown good ITD sensitivity at a pulse rate of 100 pulses per second (pps), were assessed. Thresholds were measured as a function of pulse rate between 100 and 1,000 Hz, as well as modulation rate over that same range for high-rate pulse trains at 6,000 pps. Results were similar for all three places of stimulation and showed decreasing ITD sensitivity as either pulse rate or modulation rate increased, although the extent of that effect varied across subjects. The results support a model comprising a common ITD mechanism for high- and low-frequency places of stimulation, which, for electrical stimulation, is rate-limited in the same way across electrodes because peripheral temporal responses are largely place invariant. Overall, ITD sensitivity was somewhat better with unmodulated pulse trains than with high-rate pulse trains modulated at matched rates, although comparisons at individual rates showed that difference to be significant only at 300 Hz. Electrodes presenting with the lowest thresholds at 600 Hz were further assessed using bursts with a ramped onset of 10 ms. The slower rise time resulted in decreased performance in four of the listeners, but not in the two best performers, indicating that those two could use ongoing cues at 600 Hz. Performance at each place was also measured using single-pulse stimuli. Comparison of those data with the unmodulated 300-ms burst thresholds showed that on average, the addition of ongoing cues beyond the onset enhanced overall ITD sensitivity at 100 and 300 Hz, but not at 600 Hz. At 1,000 Hz, the added ongoing cues actually decreased performance. That result is attributed to the introduction of ambiguous cues within the physiologically relevant range and increased dichotic firing.
Collapse
|