1
|
Li Y, Sun C, Yao D, Gao X, Wei X, Qi Y, Liang Y, Ye J. A review of MicroRNAs and flavonoids: New insights into plant secondary metabolism. Int J Biol Macromol 2025; 309:142518. [PMID: 40157676 DOI: 10.1016/j.ijbiomac.2025.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Flavonoids, essential plant secondary metabolites, play crucial roles in growth regulation, stress responses, and applications in medicine, agriculture, and industry. However, the complexity of their biosynthetic pathways and regulatory networks poses challenges for industrial-scale production. MicroRNAs (miRNAs), as pivotal post-transcriptional regulators, play significant roles in fine-tuning flavonoid metabolism by targeting key enzyme genes and transcription factors. This review provides a comprehensive analysis of miRNA biogenesis and their molecular mechanisms, emphasizing miRNA-mediated regulation of flavonoid biosynthesis. We introduce the concept of "miRNA-multifactorial synergistic networks", which elucidates the collaborative interactions between miRNAs, non-coding RNAs, transcription factors, and epigenetic regulators. The review explores emerging strategies, including artificial miRNA design and CRISPR/Cas technologies, to precisely manipulate miRNA activity for enhancing flavonoid production. Additionally, integrating CRISPR/Cas13, synthetic biology, and multi-omics technologies offers new opportunities to construct efficient flavonoid metabolic systems. Artificial intelligence (AI) is proposed as a powerful tool to analyze omics data, identify regulatory nodes, and simulate environmental impacts on miRNA networks, thereby optimizing metabolic pathways. By integrating these multidisciplinary approaches, this review provides a novel theoretical framework and technical roadmap for understanding and improving flavonoid metabolism. The insights presented here aim to facilitate breakthroughs in metabolic engineering, offering significant potential for practical applications in plant breeding, functional food production, and pharmaceutical development.
Collapse
Affiliation(s)
- Yang Li
- College of Agriculture, Yanbian University, Yanji 133000, Jilin, China
| | - Chang Sun
- College of Agriculture, Yanbian University, Yanji 133000, Jilin, China
| | - Danyang Yao
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xinran Gao
- College of Prataculture, Inner Mongolia Minzu University, Tongliao 028043, Inner Mongolia, China
| | - Xueping Wei
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Yaodong Qi
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Yunjiang Liang
- College of Agriculture, Yanbian University, Yanji 133000, Jilin, China.
| | - Jingxue Ye
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Fahad M, Tariq L, Li W, Wu L. MicroRNA gatekeepers: Orchestrating rhizospheric dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:845-876. [PMID: 39981727 PMCID: PMC11951408 DOI: 10.1111/jipb.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| | - Wanchang Li
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Schley TR, Zhu T, Geist B, Crabos A, Dietrich D, Alandes RA, Bennett M, Nacry P, Schäffner AR. The Arabidopsis PIP1;1 Aquaporin Represses Lateral Root Development and Nitrate Uptake Under Low Nitrate Availability. PLANT, CELL & ENVIRONMENT 2025; 48:1500-1513. [PMID: 39462913 PMCID: PMC11695785 DOI: 10.1111/pce.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Nitrate (NO3 -) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO3 - deficiency to systematically approach the impact of PIPs under these conditions. NO3 - deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO3 - is scarce. Indeed, PIP1;1 compromises root and shoot NO3 - accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO3 - deficiency. Thus, LR plasticity and NO3 - uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO3 --deficient conditions.
Collapse
Affiliation(s)
- Thayssa Rabelo Schley
- Department of Environmental SciencesInstitute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Ting Zhu
- Department of Environmental SciencesInstitute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Birgit Geist
- Department of Environmental SciencesInstitute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Amandine Crabos
- IPSiM, CNRS, INRAE, Institut AgroUniversity of MontpellierMontpellierFrance
| | - Daniela Dietrich
- Plant & Crop Sciences, School of BiosciencesUniversity of NottinghamNottinghamUK
| | - Regina A. Alandes
- Plant & Crop Sciences, School of BiosciencesUniversity of NottinghamNottinghamUK
| | - Malcolm Bennett
- Plant & Crop Sciences, School of BiosciencesUniversity of NottinghamNottinghamUK
| | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut AgroUniversity of MontpellierMontpellierFrance
| | - Anton R. Schäffner
- Department of Environmental SciencesInstitute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
4
|
Kong X, Wang R, Jia P, Li H, Khan A, Muhammad A, Fiaz S, Xing Q, Zhang Z. Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.). PLANT MOLECULAR BIOLOGY 2025; 115:19. [PMID: 39821497 DOI: 10.1007/s11103-024-01545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/15/2024] [Indexed: 01/19/2025]
Abstract
Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.1 mM NO3-) and normal (5.0 mM NO3-) effects on the morpho-physiological and molecular attributes of peanut seedlings. Low-N stress significantly decreased peanut plant height, leaf surface area, total root length, and primary root length after 10 days of treatment. Meanwhile, glutamate dehydrogenase, glutamine oxoglutarate aminotransferase activities, chlorophyll, and soluble protein contents were substantially decreased. Impairment in these parameters further suppressed photochemical efficiency (Fv/Fm), and chlorophyll fluorescence parameters (PIABS), under low-N stress. Transcriptome sequencing analysis showed a total of 2139 DEGs were identified between the two treatments. KEGG enrichment annotation analysis of DEGs revealed that 119 DEGs related to 10 pathways, including N assimilation, photosynthesis, starch, and sucrose degradation, which may respond to low-N stress in peanuts. Combined with transcriptome, small RNA, and degradome sequencing, we found that PC-3p-142756_56/A.T13EMM (CML3) and PC-5p-43940_274/A.81NSYN (YTH3) are the main modules contributing to low N stress tolerance in peanut crops. Peanut seedlings exposed to N starvation exhibited suppressed gene expression related to nitrate transport and assimilation, chlorophyll synthesis, and carbon assimilation, while also showing improved gene expression in N compensation/energy supply and carbohydrate consumption. Additionally, low N stress tolerance was strongly associated with the miRNA.
Collapse
Affiliation(s)
- Xiangjun Kong
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Rui Wang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Peipei Jia
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Hengbin Li
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Aziz Khan
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Ali Muhammad
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Sajid Fiaz
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Qunce Xing
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Zhiyong Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Khan RU, Ullah I, Khurshid G, Suboktagin S, Khan AR, Zeb I, Khan ZA, Jamil M, Rha ES, Muhammad Ali H, Ahmad R. Stimulatory effects of smoke solution and biogas digestate slurry application on photosynthesis, growth, and methylation profiling of solanum tuberosum. PLANT SIGNALING & BEHAVIOR 2024; 19:2336724. [PMID: 38600704 PMCID: PMC11017950 DOI: 10.1080/15592324.2024.2336724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.
Collapse
Affiliation(s)
- Rafi Ullah Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Irfan Ullah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ghazal Khurshid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Sultan Suboktagin
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zahid Ahmad Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University, Kohat, Pakistan
| | - Eui Shik Rha
- Department of Wellbeing Resources, Sunchon National University, Sunchon, South Korea
| | - Hayssam Muhammad Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
6
|
Gouran M, Brady SM. The transcriptional integration of environmental cues with root cell type development. PLANT PHYSIOLOGY 2024; 196:2150-2161. [PMID: 39288006 PMCID: PMC11638006 DOI: 10.1093/plphys/kiae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Plant roots navigate the soil ecosystem with each cell type uniquely responding to environmental stimuli. Below ground, the plant's response to its surroundings is orchestrated at the cellular level, including morphological and molecular adaptations that shape root system architecture as well as tissue and organ functionality. Our understanding of the transcriptional responses at cell type resolution has been profoundly enhanced by studies of the model plant Arabidopsis thaliana. However, both a comprehensive view of the transcriptional basis of these cellular responses to single and combinatorial environmental cues in diverse plant species remains elusive. In this review, we highlight the ability of root cell types to undergo specific anatomical or morphological changes in response to abiotic and biotic stresses or cues and how they collectively contribute to the plant's overall physiology. We further explore interconnections between stress and the temporal nature of developmental pathways and discuss examples of how this transcriptional reprogramming influences cell type identity and function. Finally, we highlight the power of single-cell and spatial transcriptomic approaches to refine our understanding of how environmental factors fine tune root spatiotemporal development. These complex root system responses underscore the importance of spatiotemporal transcriptional mapping, with significant implications for enhanced agricultural resilience.
Collapse
Affiliation(s)
- Mona Gouran
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Li S. Is auxin the key to improve crop nitrogen use efficiency for greener agriculture? THE NEW PHYTOLOGIST 2024; 244:2170-2175. [PMID: 39155785 DOI: 10.1111/nph.20066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
9
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Delgado LD, Nunez-Pascual V, Riveras E, Ruffel S, Gutiérrez RA. Recent advances in local and systemic nitrate signaling in Arabidopsisthaliana. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102605. [PMID: 39033715 DOI: 10.1016/j.pbi.2024.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in Arabidopsis thaliana. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.
Collapse
Affiliation(s)
- Laura D Delgado
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Valentina Nunez-Pascual
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, 34060, France
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology, Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
| |
Collapse
|
11
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Liu X, Lu Z, Yao Q, Xu L, Fu J, Yin X, Bai Q, Liu D, Xing W. MicroRNAs Participate in Morphological Acclimation of Sugar Beet Roots to Nitrogen Deficiency. Int J Mol Sci 2024; 25:9027. [PMID: 39201712 PMCID: PMC11354532 DOI: 10.3390/ijms25169027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Nitrogen (N) is essential for sugar beet (Beta vulgaris L.), a highly N-demanding sugar crop. This study investigated the morphological, subcellular, and microRNA-regulated responses of sugar beet roots to low N (LN) stress (0.5 mmol/L N) to better understand the N perception, uptake, and utilization in this species. The results showed that LN led to decreased dry weight of roots, N accumulation, and N dry matter production efficiency, along with damage to cell walls and membranes and a reduction in organelle numbers (particularly mitochondria). Meanwhile, there was an increase in root length (7.2%) and branch numbers (29.2%) and a decrease in root surface area (6.14%) and root volume (6.23%) in sugar beet after 7 d of LN exposure compared to the control (5 mmol/L N). Transcriptomics analysis was confirmed by qRT-PCR for 6 randomly selected microRNAs, and we identified 22 differentially expressed microRNAs (DEMs) in beet root under LN treatment. They were primarily enriched in functions related to binding (1125), ion binding (641), intracellular (437) and intracellular parts (428), and organelles (350) and associated with starch and sucrose metabolism, tyrosine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, and isoquinoline alkaloid biosynthesis, as indicated by the GO and KEGG analyses. Among them, the upregulated miR156a, with conserved sequences, was identified as a key DEM that potentially targets and regulates squamosa promoter-binding-like proteins (SPLs, 104889216 and 104897537) through the microRNA-mRNA network. Overexpression of miR156a (MIR) promoted root growth in transgenic Arabidopsis, increasing the length, surface area, and volume. In contrast, silencing miR156a (STTM) had the opposite effect. Notably, the fresh root weight decreased by 45.6% in STTM lines, while it increased by 27.4% in MIR lines, compared to the wild type (WT). It can be inferred that microRNAs, especially miR156, play crucial roles in sugar beet root's development and acclimation to LN conditions. They likely facilitate active responses to N deficiency through network regulation, enabling beet roots to take up nutrients from the environment and sustain their vital life processes.
Collapse
Affiliation(s)
- Xinyu Liu
- Province Key Laboratory of Plant Gene and Biological Fermentation in Cold Regions, College of Life Science, Heilongjiang University, Harbin 150080, China; (X.L.); (Z.L.); (Q.Y.)
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
| | - Zhenqiang Lu
- Province Key Laboratory of Plant Gene and Biological Fermentation in Cold Regions, College of Life Science, Heilongjiang University, Harbin 150080, China; (X.L.); (Z.L.); (Q.Y.)
| | - Qi Yao
- Province Key Laboratory of Plant Gene and Biological Fermentation in Cold Regions, College of Life Science, Heilongjiang University, Harbin 150080, China; (X.L.); (Z.L.); (Q.Y.)
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
| | - Lingqing Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jingjing Fu
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Xilong Yin
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Qing Bai
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University; Harbin 150080, China; (L.X.); (J.F.); (X.Y.); (Q.B.)
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
13
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
14
|
da Silva RC, Oliveira HC, Igamberdiev AU, Stasolla C, Gaspar M. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154241. [PMID: 38640547 DOI: 10.1016/j.jplph.2024.154241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.
Collapse
Affiliation(s)
- Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR, 86057-970, Brazil
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marilia Gaspar
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
15
|
Shanks CM, Rothkegel K, Brooks MD, Cheng CY, Alvarez JM, Ruffel S, Krouk G, Gutiérrez RA, Coruzzi GM. Nitrogen sensing and regulatory networks: it's about time and space. THE PLANT CELL 2024; 36:1482-1503. [PMID: 38366121 PMCID: PMC11062454 DOI: 10.1093/plcell/koae038] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Rothkegel
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Chia-Yi Cheng
- Department of Life Science, National Taiwan University, Taipei 10663, Taiwan
| | - José M Alvarez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, 8370035 Santiago, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Gabriel Krouk
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Rodrigo A Gutiérrez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
16
|
Huang Y, Ji Z, Zhang S, Li S. Function of hormone signaling in regulating nitrogen-use efficiency in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154191. [PMID: 38335845 DOI: 10.1016/j.jplph.2024.154191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen (N) is one of the most important nutrients for crop plant performance, however, the excessive application of nitrogenous fertilizers in agriculture significantly increases production costs and causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N-use efficiency (NUE) with the aim of developing new crop varieties that combine high yields with improved NUE is an urgent goal for achieving more sustainable agriculture. Plant NUE is a complex trait that is affected by multiple factors, of which hormones are known to play pivotal roles. In this review, we focus on the interaction between the biosynthesis and signaling pathways of plant hormones with N metabolism, and summarize recent studies on the interplay between hormones and N, including how N regulates multiple hormone biosynthesis, transport and signaling and how hormones modulate root system architecture (RSA) in response to external N sources. Finally, we explore potential strategies for promoting crop NUE by modulating hormone synthesis, transport and signaling. This provides insights for future breeding of N-efficient crop varieties and the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
17
|
Viudes S, Zamar R, Burlat V, Roux F, Dunand C. Genome wide association study of Arabidopsis seed mucilage layers at a regional scale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108375. [PMID: 38364630 DOI: 10.1016/j.plaphy.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/18/2024]
Abstract
The myxospermous species Arabidopsis thaliana extrudes a polysaccharidic mucilage from the seed coat epidermis during imbibition. The whole seed mucilage can be divided into a seed-adherent layer and a fully soluble layer, both layers presenting natural genetic variations. The adherent mucilage is variable in size and composition, while the soluble mucilage is variable in composition and physical properties. Studies reporting both the genetic architecture and the putative selective agents acting on this natural genetic variation are scarce. In this study, we set up a Genome Wide Association study (GWAS) based on 424 natural accessions collected from 166 natural populations of A. thaliana located south-west of France and previously characterized for a very important number of abiotic and biotic factors. We identified an extensive genetic variation for both mucilage layers. The adherent mucilage was mainly related to precipitation and temperature whereas the non-adherent mucilage was unrelated to any environmental factors. By combining a hierarchical Bayesian model with a local score approach, we identified 55 and 28 candidate genes, corresponding to 26 and 10 QTLs for the adherent and non-adherent mucilages, respectively. Putative or characterized function and expression data available in the literature were used to filter the candidate genes. Only one gene among our set of candidate genes was already described as a seed mucilage actor, leaving a large set of new candidates putatively implicated inseed mucilage synthesis or release. The present study lay out foundation to understand the influence of regional ecological factors acting on seed mucilage in A. thaliana.
Collapse
Affiliation(s)
- Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Paul Sabatier Toulouse 3, Toulouse INP, Auzeville-Tolosane, France
| | - Rémy Zamar
- Laboratoire des Interactions Plantes-Microbes-Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Paul Sabatier Toulouse 3, Toulouse INP, Auzeville-Tolosane, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Paul Sabatier Toulouse 3, Toulouse INP, Auzeville-Tolosane, France.
| |
Collapse
|
18
|
Das KK, Mohapatra A, George AP, Chavali S, Witzel K, Ramireddy E. The proteome landscape of the root cap reveals a role for the jacalin-associated lectin JAL10 in the salt-induced endoplasmic reticulum stress pathway. PLANT COMMUNICATIONS 2023; 4:100726. [PMID: 37789617 PMCID: PMC10721516 DOI: 10.1016/j.xplc.2023.100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Rapid climate change has led to enhanced soil salinity, one of the major determinants of land degradation, resulting in low agricultural productivity. This has a strong negative impact on food security and environmental sustainability. Plants display various physiological, developmental, and cellular responses to deal with salt stress. Recent studies have highlighted the root cap as the primary stress sensor and revealed its crucial role in halotropism. The root cap covers the primary root meristem and is the first cell type to sense and respond to soil salinity, relaying the signal to neighboring cell types. However, it remains unclear how root-cap cells perceive salt stress and contribute to the salt-stress response. Here, we performed a root-cap cell-specific proteomics study to identify changes in the proteome caused by salt stress. The study revealed a very specific salt-stress response pattern in root-cap cells compared with non-root-cap cells and identified several novel proteins unique to the root cap. Root-cap-specific protein-protein interaction (PPI) networks derived by superimposing proteomics data onto known global PPI networks revealed that the endoplasmic reticulum (ER) stress pathway is specifically activated in root-cap cells upon salt stress. Importantly, we identified root-cap-specific jacalin-associated lectins (JALs) expressed in response to salt stress. A JAL10-GFP fusion protein was shown to be localized to the ER. Analysis of jal10 mutants indicated a role for JAL10 in regulating the ER stress pathway in response to salt. Taken together, our findings highlight the participation of specific root-cap proteins in salt-stress response pathways. Furthermore, root-cap-specific JAL proteins and their role in the salt-mediated ER stress pathway open a new avenue for exploring tolerance mechanisms and devising better strategies to increase plant salinity tolerance and enhance agricultural productivity.
Collapse
Affiliation(s)
- Krishna Kodappully Das
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ankita Mohapatra
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Abin Panackal George
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
19
|
Dutta TK, Ray S, Phani V. The status of the CRISPR/Cas9 research in plant-nematode interactions. PLANTA 2023; 258:103. [PMID: 37874380 DOI: 10.1007/s00425-023-04259-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
MAIN CONCLUSION As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Soham Ray
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, 733133, India
| |
Collapse
|
20
|
Das S, Sathee L. miRNA mediated regulation of nitrogen response and nitrogen use efficiency of plants: the case of wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1371-1394. [PMID: 38076770 PMCID: PMC10709294 DOI: 10.1007/s12298-023-01336-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 10/04/2024]
Abstract
Nitrogen (N) is needed for plant growth and development and is the major limiting nutrient due to its higher demand in agricultural production globally. The use of N fertilizers has increased considerably in recent years to achieve higher cereal yields. High N inputs coupled with declining N use efficiency (NUE) result in the degradation of the environment. Plants have developed multidimensional strategies in response to changes in N availability in soil. These strategies include N stress-induced responses such as changes in gene expression patterns. Several N stress-induced genes and other regulatory factors, such as microRNAs (miRNAs), have been identified in different plant species, opening a new avenue of research in plant biology. This review presents a general overview of miRNA-mediated regulation of N response and NUE. Further, the in-silico target predictions and the predicted miRNA-gene network for nutrient metabolism/homeostasis in wheat provide novel insights. The information on N-regulated miRNAs and the differentially expressed target transcripts are necessary resources for genetic improvement of NUE by genome editing.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
21
|
Noureddine Y, da Rocha M, An J, Médina C, Mejias J, Mulet K, Quentin M, Abad P, Zouine M, Favery B, Jaubert-Possamai S. AUXIN RESPONSIVE FACTOR8 regulates development of the feeding site induced by root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5752-5766. [PMID: 37310189 DOI: 10.1093/jxb/erad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development. Integrative analyses combining transcriptome and small non-coding RNA datasets with the specific sequencing of cleaved transcripts identified genes targeted by miRNAs in tomato (Solanum lycopersicum) galls. The two auxin-responsive transcription factors ARF8A and ARF8B, and their miRNA167 regulators, were identified as robust gene-miRNA pair candidates to be involved in the tomato response to M. incognita. Spatiotemporal expression analysis using promoter-β-glucuronidase (GUS) fusions showed the up-regulation of ARF8A and ARF8B in RKN-induced feeding cells and surrounding cells. The generation and phenotyping of CRISPR (clustered regularly interspaced palindromic repeats) mutants demonstrated the role of ARF8A and ARF8B in giant cell development and allowed the characterization of their downstream regulated genes.
Collapse
Affiliation(s)
- Yara Noureddine
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martine da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Jing An
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Clémence Médina
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Karine Mulet
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
22
|
Jia Z, Giehl RFH, Hartmann A, Estevez JM, Bennett MJ, von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr Biol 2023; 33:3926-3941.e5. [PMID: 37699396 DOI: 10.1016/j.cub.2023.08.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Jose M Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Malcolm J Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| |
Collapse
|
23
|
Jia Y, Qin D, Zheng Y, Wang Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int J Mol Sci 2023; 24:14406. [PMID: 37833854 PMCID: PMC10572113 DOI: 10.3390/ijms241914406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience.
Collapse
Affiliation(s)
- Yancong Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yulu Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
24
|
Liao R, Wei X, Zhao Y, Xie Z, Nath UK, Yang S, Su H, Wang Z, Li L, Tian B, Wei F, Yuan Y, Zhang X. bra-miR167a Targets ARF8 and Negatively Regulates Arabidopsis thaliana Immunity against Plasmodiophora brassicae. Int J Mol Sci 2023; 24:11850. [PMID: 37511608 PMCID: PMC10380745 DOI: 10.3390/ijms241411850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.
Collapse
Affiliation(s)
- Rujiao Liao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| |
Collapse
|
25
|
Zhang H, Zhang X, Xiao J. Epigenetic Regulation of Nitrogen Signaling and Adaptation in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2725. [PMID: 37514337 PMCID: PMC10386408 DOI: 10.3390/plants12142725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Nitrogen (N) is a crucial nutrient that plays a significant role in enhancing crop yield. Its availability, including both supply and deficiency, serves as a crucial signal for plant development. However, excessive N use in agriculture leads to environmental and economic issues. Enhancing nitrogen use efficiency (NUE) is, therefore, essential to minimize negative impacts. Prior studies have investigated the genetic factors involved in N responses and the process of low-nitrogen (LN) adaptation. In this review, we discuss recent advances in understanding how epigenetic modifications, including DNA methylation, histone modification, and small RNA, participate in the regulation of N response and LN adaptation. We highlight the importance of decoding the epigenome at various levels to accelerate the functional study of how plants respond to N availability. Understanding the epigenetic control of N signaling and adaptation can lead to new strategies to improve NUE and enhance crop productivity sustainably.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China
| |
Collapse
|
26
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
27
|
Upton RN, Correr FH, Lile J, Reynolds GL, Falaschi K, Cook JP, Lachowiec J. Design, execution, and interpretation of plant RNA-seq analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1135455. [PMID: 37457354 PMCID: PMC10348879 DOI: 10.3389/fpls.2023.1135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Genomics has transformed our understanding of the genetic architecture of traits and the genetic variation present in plants. Here, we present a review of how RNA-seq can be performed to tackle research challenges addressed by plant sciences. We discuss the importance of experimental design in RNA-seq, including considerations for sampling and replication, to avoid pitfalls and wasted resources. Approaches for processing RNA-seq data include quality control and counting features, and we describe common approaches and variations. Though differential gene expression analysis is the most common analysis of RNA-seq data, we review multiple methods for assessing gene expression, including detecting allele-specific gene expression and building co-expression networks. With the production of more RNA-seq data, strategies for integrating these data into genetic mapping pipelines is of increased interest. Finally, special considerations for RNA-seq analysis and interpretation in plants are needed, due to the high genome complexity common across plants. By incorporating informed decisions throughout an RNA-seq experiment, we can increase the knowledge gained.
Collapse
|
28
|
Nasrollahi V, Allam G, Kohalmi SE, Hannoufa A. MsSPL9 Modulates Nodulation under Nitrate Sufficiency Condition in Medicago sativa. Int J Mol Sci 2023; 24:ijms24119615. [PMID: 37298564 DOI: 10.3390/ijms24119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nodulation in Leguminous spp. is induced by common environmental cues, such as low nitrogen availability conditions, in the presence of the specific Rhizobium spp. in the rhizosphere. Medicago sativa (alfalfa) is an important nitrogen-fixing forage crop that is widely cultivated around the world and relied upon as a staple source of forage in livestock feed. Although alfalfa's relationship with these bacteria is one of the most efficient between rhizobia and legume plants, breeding for nitrogen-related traits in this crop has received little attention. In this report, we investigate the role of Squamosa-Promoter Binding Protein-Like 9 (SPL9), a target of miR156, in nodulation in alfalfa. Transgenic alfalfa plants with SPL9-silenced (SPL9-RNAi) and overexpressed (35S::SPL9) were compared to wild-type (WT) alfalfa for phenotypic changes in nodulation in the presence and absence of nitrogen. Phenotypic analyses showed that silencing of MsSPL9 in alfalfa caused an increase in the number of nodules. Moreover, the characterization of phenotypic and molecular parameters revealed that MsSPL9 regulates nodulation under a high concentration of nitrate (10 mM KNO3) by regulating the transcription levels of the nitrate-responsive genes Nitrate Reductase1 (NR1), NR2, Nitrate transporter 2.5 (NRT2.5), and a shoot-controlled autoregulation of nodulation (AON) gene, Super numeric nodules (SUNN). While MsSPL9-overexpressing transgenic plants have dramatically increased transcript levels of SUNN, NR1, NR2, and NRT2.5, reducing MsSPL9 caused downregulation of these genes and displayed a nitrogen-starved phenotype, as downregulation of the MsSPL9 transcript levels caused a nitrate-tolerant nodulation phenotype. Taken together, our results suggest that MsSPL9 regulates nodulation in alfalfa in response to nitrate.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
29
|
Zhang Y, Fan X, Wang Y, Kong P, Zhao L, Fan X, Zhang Y. OsNAR2.1 induced endogenous nitrogen concentration variation affects transcriptional expression of miRNAs in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1093676. [PMID: 36909394 PMCID: PMC9998545 DOI: 10.3389/fpls.2023.1093676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The studies of rice nitrogen concentration on the expression of miRNA so far are mostly limited to the exogenous nitrogen, leaving the effect of endogenous nitrogen largely unexplored. OsNAR2.1 is a high-affinity nitrate transporter partner protein which plays a central role in nitrate absorption and translocation in rice. The expression of OsNAR2.1 could influence the concentration of the endogenous nitrogen in rice. We showed that the expression and production of miRNA in rice can be influenced by manipulating the endogenous nitrogen concentration via OsNAR2.1 transgenic lines. The small RNA content, particularly 24 nucleotides small RNA, expressed differently in two transgenic rice lines (nitrogen efficient line with overexpression of OsNAR2.1 (Ov199), nitrogen-inefficient line with knockdown OsNAR2.1 by RNAi (RNAi)) compared to the wild-type (NP). Comparative hierarchical clustering expression pattern analysis revealed that the expression profiles of mature miRNA in both transgenic lines were different from NP. Several previously unidentified miRNAs were identified to be differentially expressed under different nitrogen concentrations, namely miR1874, miR5150, chr3-36147, chr4-27017 and chr5-21745. In conclusion, our findings suggest that the level of endogenous nitrogen concentration variation by overexpression or knockdown OsNAR2.1 could mediate the expression pattern and intensity of miRNA in rice, which is of high potential to be used in molecular breeding to improve the rice responses towards nitrogen utilization.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Yulong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pulin Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| |
Collapse
|
30
|
Valmas MI, Sexauer M, Markmann K, Tsikou D. Plants Recruit Peptides and Micro RNAs to Regulate Nutrient Acquisition from Soil and Symbiosis. PLANTS (BASEL, SWITZERLAND) 2023; 12:187. [PMID: 36616316 PMCID: PMC9824779 DOI: 10.3390/plants12010187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plants engage in symbiotic relationships with soil microorganisms to overcome nutrient limitations in their environment. Among the best studied endosymbiotic interactions in plants are those with arbuscular mycorrhizal (AM) fungi and N-fixing bacteria called rhizobia. The mechanisms regulating plant nutrient homeostasis and acquisition involve small mobile molecules such as peptides and micro RNAs (miRNAs). A large number of CLE (CLAVATA3/EMBRYO SURROUNDING REGION-RELATED) and CEP (C-TERMINALLY ENCODED PEPTIDE) peptide hormones as well as certain miRNAs have been reported to differentially respond to the availability of essential nutrients such as nitrogen (N) and phosphorus (P). Interestingly, a partially overlapping pool of these molecules is involved in plant responses to root colonization by rhizobia and AM fungi, as well as mineral nutrition. The crosstalk between root endosymbiosis and nutrient availability has been subject of intense investigations, and new insights in locally or systemically mobile molecules in nutrient- as well as symbiosis-related signaling continue to arise. Focusing on the key roles of peptides and miRNAs, we review the mechanisms that shape plant responses to nutrient limitation and regulate the establishment of symbiotic associations with beneficial soil microorganisms.
Collapse
Affiliation(s)
- Marios I. Valmas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Moritz Sexauer
- Julius-von-Sachs-Institute for Biosciences, Würzburg University, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Katharina Markmann
- Julius-von-Sachs-Institute for Biosciences, Würzburg University, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
31
|
Ren S, Wang Y. Protoplast Isolation for Plant Single-Cell RNA-seq. Methods Mol Biol 2023; 2686:301-305. [PMID: 37540365 DOI: 10.1007/978-1-0716-3299-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The growth and development of plants depends on diversified gene expression in different cell types. Compared to traditional bulk RNA sequencing, droplet-based single-cell RNA sequencing (scRNA-seq) allows for transcriptome profiling of individual cells within heterogeneous tissues. scRNA-seq provides a high-resolution atlas of cellular characterization and vastly improves our understandings of the interactions between individual cells and the microenvironment. However, the difficulty in protoplast isolation has limited the application of single-cell sequencing technology in plant research. Here we describe a high-efficiency protoplast isolation protocol for scRNA-seq.
Collapse
Affiliation(s)
- Shulin Ren
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Song G, Lu Y, Wang Y, Nie C, Xu M, Wang L, Bai Y. Analysis of metabolic differences in maize in different growth stages under nitrogen stress based on UPLC-QTOF-MS. FRONTIERS IN PLANT SCIENCE 2023; 14:1141232. [PMID: 37077647 PMCID: PMC10106645 DOI: 10.3389/fpls.2023.1141232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction Maize has a high demand for nitrogen during the growth period. The study of metabolic changes in maize can provide a theoretical basis for rational nitrogen nutrition regulation. Methods In order to investigate the changes of different metabolites and their metabolic pathways in maize leaves under nitrogen stress, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) for metabolomic analysis of maize leaves under different nitrogen treatments at three critical growth stages (V4, V12 and R1) in a pot experiment under natural conditions. Results and discussion The results showed that nitrogen stress significantly affected sugar metabolism and nitrogen metabolism, and affected carbon and nitrogen balance, and the effects of stress on maize leaves metabolism increased with the growth process. Metabolic pathways such as the TCA cycle and starch and sucrose metabolism were mainly affected at the seeding stage (V4). The stress response to nitrogen deficiency also showed significant upregulation of flavonoids such as luteolin and astragalin during the booting stage (V12) and anthesis-silking stage (R1). During R1 stage, the synthesis of tryptophan and phenylalanine and the degradation of lysine were significantly affected. Compared with nitrogen stress, the metabolic synthesis of key amino acids and jasmonic acid were intensified and the TCA cycle was promoted under nitrogen sufficiency conditions. This study initially revealed that the response mechanism of maize to nitrogen stress at the metabolic level.
Collapse
|
33
|
Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PTK, Maity A, Halli HM, G. K. S, Vadivel R, T. K. D, Raj R, Pooniya V, Babu S, Rathore SS, L. M, Tiwari G. Nitrogen use efficiency-a key to enhance crop productivity under a changing climate. FRONTIERS IN PLANT SCIENCE 2023; 14:1121073. [PMID: 37143873 PMCID: PMC10151540 DOI: 10.3389/fpls.2023.1121073] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) is an essential element required for the growth and development of all plants. On a global scale, N is agriculture's most widely used fertilizer nutrient. Studies have shown that crops use only 50% of the applied N effectively, while the rest is lost through various pathways to the surrounding environment. Furthermore, lost N negatively impacts the farmer's return on investment and pollutes the water, soil, and air. Therefore, enhancing nitrogen use efficiency (NUE) is critical in crop improvement programs and agronomic management systems. The major processes responsible for low N use are the volatilization, surface runoff, leaching, and denitrification of N. Improving NUE through agronomic management practices and high-throughput technologies would reduce the need for intensive N application and minimize the negative impact of N on the environment. The harmonization of agronomic, genetic, and biotechnological tools will improve the efficiency of N assimilation in crops and align agricultural systems with global needs to protect environmental functions and resources. Therefore, this review summarizes the literature on nitrogen loss, factors affecting NUE, and agronomic and genetic approaches for improving NUE in various crops and proposes a pathway to bring together agronomic and environmental needs.
Collapse
Affiliation(s)
- Prabhu Govindasamy
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Senthilkumar K. Muthusamy
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - Muthukumar Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Jake Mowrer
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Aniruddha Maity
- Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hanamant M. Halli
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Sujayananad G. K.
- Crop Protection, Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulse Research, Kanpur, India
| | - Rajagopal Vadivel
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Das T. K.
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rishi Raj
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Pooniya
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Subhash Babu
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjay Singh Rathore
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Muralikrishnan L.
- Division of Agricultural Extension, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gopal Tiwari
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
34
|
Thibivilliers S, Farmer A, Schroeder S, Libault M. Plant Single-Cell/Nucleus RNA-seq Workflow. Methods Mol Biol 2022; 2584:165-181. [PMID: 36495448 DOI: 10.1007/978-1-0716-2756-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell transcriptomics technologies allow researchers to investigate how individual cells, in complex multicellular organisms, differentially use their common genomic DNA. In plant biology, these technologies were recently applied to reveal the transcriptomes of various plant cells isolated from different organs and different species and in response to environmental stresses. These first studies support the potential of single-cell transcriptomics technology to decipher the biological function of plant cells, their developmental programs, cell-type-specific gene networks, programs controlling plant cell response to environmental stresses, etc. In this chapter, we provide information regarding the critical steps and important information to consider when developing an experimental design in plant single-cell biology. We also describe the current status of bioinformatics tools used to analyze single-cell RNA-seq datasets and how additional emerging technologies such as spatial transcriptomics and long-read sequencing technologies will provide additional information on the differential use of the genome by plant cells.
Collapse
Affiliation(s)
- Sandra Thibivilliers
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Susan Schroeder
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK, USA
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Marc Libault
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, USA.
| |
Collapse
|
35
|
Schmidt L, Nagel KA, Galinski A, Sannemann W, Pillen K, Maurer A. Unraveling Genomic Regions Controlling Root Traits as a Function of Nitrogen Availability in the MAGIC Wheat Population WM-800. PLANTS (BASEL, SWITZERLAND) 2022; 11:3520. [PMID: 36559632 PMCID: PMC9785272 DOI: 10.3390/plants11243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
An ever-growing world population demands to be fed in the future and environmental protection and climate change need to be taken into account. An important factor here is nitrogen uptake efficiency (NUpE), which is influenced by the root system (the interface between plant and soil). To understand the natural variation of root system architecture (RSA) as a function of nitrogen (N) availability, a subset of the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting N treatments in a high-throughput phenotyping system at the seedling stage. Fourteen root and shoot traits were measured. Subsequently, these traits were genetically analyzed using 13,060 polymorphic haplotypes and SNPs in a genome-wide association study (GWAS). In total, 64 quantitative trait loci (QTL) were detected; 60 of them were N treatment specific. Candidate genes for the detected QTL included NRT1.1 and genes involved in stress signaling under N-, whereas candidate genes under N+ were more associated with general growth, such as mei2 and TaWOX11b. This finding may indicate (i) a disparity of the genetic control of root development under low and high N supply and, furthermore, (ii) the need for an N specific selection of genes and genotypes in breeding new wheat cultivars with improved NUpE.
Collapse
Affiliation(s)
- Laura Schmidt
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Kerstin A. Nagel
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Anna Galinski
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Wiebke Sannemann
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| |
Collapse
|
36
|
Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Dev Cell 2022; 57:2638-2651.e6. [PMID: 36473460 DOI: 10.1016/j.devcel.2022.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Plant root architecture flexibly adapts to changing nitrate (NO3-) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3--mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3- in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3- availability. Under low-NO3- availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.
Collapse
|
37
|
Sinsirimongkol K, Buasong A, Teppabut Y, Pholmanee N, Chen Y, Miller AJ, Punyasuk N. EgNRT2.3 and EgNAR2 expression are controlled by nitrogen deprivation and encode proteins that function as a two-component nitrate uptake system in oil palm. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153833. [PMID: 36257088 DOI: 10.1016/j.jplph.2022.153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is an important crop for oil and biodiesel production. Oil palm plantations require extensive fertilizer additions to achieve a high yield. Fertilizer application decisions and management for oil palm farming rely on leaf tissue and soil nutrient analyses with little information available to describe the key players for nutrient uptake. A molecular understanding of how nutrients, especially nitrogen (N), are taken up in oil palm is very important to improve fertilizer use and formulation practice in oil palm plantations. In this work, two nitrate uptake genes in oil palm, EgNRT2.3 and EgNAR2, were cloned and characterized. Spatial expression analysis showed high expression of these two genes was mainly found in un-lignified young roots. Interestingly, EgNRT2.3 and EgNAR2 were up-regulated by N deprivation, but their expression pattern depended on the form of N source. Promoter analysis of these two genes confirmed the presence of regulatory elements that support these expression patterns. The Xenopus oocyte assay showed that EgNRT2.3 and EgNAR2 had to act together to take up nitrate. The results suggest that EgNRT2.3 and EgNAR2 act as a two-component nitrate uptake system in oil palm.
Collapse
Affiliation(s)
| | - Atcharaporn Buasong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yada Teppabut
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nutthida Pholmanee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yi Chen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anthony J Miller
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Napassorn Punyasuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
38
|
Katz E, Knapp A, Lensink M, Keller CK, Stefani J, Li JJ, Shane E, Tuermer-Lee K, Bloom AJ, Kliebenstein DJ. Genetic variation underlying differential ammonium and nitrate responses in Arabidopsis thaliana. THE PLANT CELL 2022; 34:4696-4713. [PMID: 36130068 PMCID: PMC9709984 DOI: 10.1093/plcell/koac279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen is an essential element required for plant growth and productivity. Understanding the mechanisms and natural genetic variation underlying nitrogen use in plants will facilitate the engineering of plant nitrogen use to maximize crop productivity while minimizing environmental costs. To understand the scope of natural variation that may influence nitrogen use, we grew 1,135 Arabidopsis thaliana natural genotypes on two nitrogen sources, nitrate and ammonium, and measured both developmental and defense metabolite traits. By using different environments and focusing on multiple traits, we identified a wide array of different nitrogen responses. These responses are associated with numerous genes, most of which were not previously associated with nitrogen responses. Only a small portion of these genes appear to be shared between environments or traits, while most are predominantly specific to a developmental or defense trait under a specific nitrogen source. Finally, by using a large population, we were able to identify unique nitrogen responses, such as preferring ammonium or nitrate, which appear to be generated by combinations of loci rather than a few large-effect loci. This suggests that it may be possible to obtain novel phenotypes in complex nitrogen responses by manipulating sets of genes with small effects rather than solely focusing on large-effect single gene manipulations.
Collapse
Affiliation(s)
- Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Anna Knapp
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, California 95616, USA
| | - Caroline Kaley Keller
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, California 95616, USA
| | - Jordan Stefani
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Jia-Jie Li
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Emily Shane
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Kaelyn Tuermer-Lee
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Arnold J Bloom
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
39
|
Xing J, Cao X, Zhang M, Wei X, Zhang J, Wan X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36435985 DOI: 10.1111/pbi.13971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiaocong Cao
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Juan Zhang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| |
Collapse
|
40
|
Transcriptome analysis reveals the regulatory mode by which NAA promotes the growth of Armillaria gallica. PLoS One 2022; 17:e0277701. [PMID: 36409681 PMCID: PMC9678268 DOI: 10.1371/journal.pone.0277701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
A symbiotic relationship is observed between Armillaria and the Chinese herbal medicine Gastrodia elata (G. elata). Armillaria is a nutrient source for the growth of G. elata, and its nutrient metabolism efficiency affects the growth and development of G. elata. Auxin has been reported to stimulate Armillaria species, but the molecular mechanism remains unknown. We found that naphthalene acetic acid (NAA) can also promote the growth of A. gallica. Moreover, we identified a total of 2071 differentially expressed genes (DEGs) by analyzing the transcriptome sequencing data of A. gallica at 5 and 10 hour of NAA treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these unigenes were significantly enriched in the metabolism pathways of arginine, proline, propanoate, phenylalanine and tryptophan. The expression levels of the general amino acid permease (Gap), ammonium transporter (AMT), glutamate dehydrogenase (GDH), glutamine synthetase (GS), Zn(II) 2Cys6 and C2H2 transcription factor genes were upregulated. Our transcriptome analysis showed that the amino acid and nitrogen metabolism pathways in Armillaria were rapidly induced within hours after NAA treatment. These results provide valuable insights into the molecular mechanisms by which NAA promotes the growth of Armillaria species.
Collapse
|
41
|
Li J, Li Y, Wang R, Fu J, Zhou X, Fang Y, Wang Y, Liu Y. Multiple Functions of MiRNAs in Brassica napus L. Life (Basel) 2022; 12:1811. [PMID: 36362967 PMCID: PMC9694376 DOI: 10.3390/life12111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 09/05/2023] Open
Abstract
The worldwide climate changes every year due to global warming, waterlogging, drought, salinity, pests, and pathogens, impeding crop productivity. Brassica napus is one of the most important oil crops in the world, and rapeseed oil is considered one of the most health-beneficial edible vegetable oils. Recently, miRNAs have been found and confirmed to control the expression of targets under disruptive environmental conditions. The mechanism is through the formation of the silencing complex that mediates post-transcriptional gene silencing, which pairs the target mRNA and target cleavage and/or translation inhibition. However, the functional role of miRNAs and targets in B. napus is still not clarified. This review focuses on the current knowledge of miRNAs concerning development regulation and biotic and abiotic stress responses in B. napus. Moreover, more strategies for miRNA manipulation in plants are discussed, along with future perspectives, and the enormous amount of transcriptome data available provides cues for miRNA functions in B. napus. Finally, the construction of the miRNA regulatory network can lead to the significant development of climate change-tolerant B. napus through miRNA manipulation.
Collapse
Affiliation(s)
- Jian Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yangyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Rongyuan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Jiangyan Fu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Xinxing Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| |
Collapse
|
42
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
43
|
Chai S, Chen J, Yue X, Li C, Zhang Q, de Dios VR, Yao Y, Tan W. Interaction of BES1 and LBD37 transcription factors modulates brassinosteroid-regulated root forging response under low nitrogen in arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998961. [PMID: 36247555 PMCID: PMC9555238 DOI: 10.3389/fpls.2022.998961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteriod (BR) plays important roles in regulation of plant growth, development and environmental responses. BR signaling regulates multiple biological processes through controlling the activity of BES1/BZR1 regulators. Apart from the roles in the promotion of plant growth, BR is also involved in regulation of the root foraging response under low nitrogen, however how BR signaling regulate this process remains unclear. Here we show that BES1 and LBD37 antagonistically regulate root foraging response under low nitrogen conditions. Both the transcriptional level and dephosphorylated level of BES1, is significant induced by low nitrogen, predominantly in root. Phenotypic analysis showed that BES1 gain-of-function mutant or BES1 overexpression transgenic plants exhibits progressive outgrowth of lateral root in response to low nitrogen and BES1 negatively regulates repressors of nitrate signaling pathway and positively regulates several key genes required for NO3 - uptake and signaling. In contrast, BES1 knock-down mutant BES1-RNAi exhibited a dramatical reduction of lateral root elongation in response to low N. Furthermore, we identified a BES1 interacting protein, LBD37, which is a negative repressor of N availability signals. Our results showed that BES1 can inhibit LBD37 transcriptional repression on N-responsive genes. Our results thus demonstrated that BES1-LBD37 module acts critical nodes to integrate BR signaling and nitrogen signaling to modulate the root forging response at LN condition.
Collapse
Affiliation(s)
- Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenlin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
44
|
Santos CA, Moro CF, Salgado I, Braga MR, Gaspar M. Noncoding RNAs responsive to nitric oxide and their protein-coding gene targets shed light on root hair formation in Arabidopsis thaliana. Front Genet 2022; 13:958641. [PMID: 36238154 PMCID: PMC9551039 DOI: 10.3389/fgene.2022.958641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
An overview of the total Arabidopsis thaliana transcriptome, described previously by our research group, pointed some noncoding RNA (ncRNA) as participants in the restoration of hair-root phenotype in A. thaliana rhd6 mutants, leading us to a deeper investigation. A transcriptional gene expression profiling of seedling roots was performed aiming to identify ncRNA responsive to nitric oxide (GSNO) and auxin (IAA), and their involvement in root hair formation in the rhd6 null mutant. We identified 3,631 ncRNAs, including new ones, in A. thaliana and differential expression (DE) analysis between the following: 1) GSNO-treated rhd6 vs. untreated rhd6, 2) IAA-treated rhd6 vs. untreated rhd6, 3) GSNO-treated rhd6 vs. IAA-treated rhd6, and 4) WS-2 vs. untreated rhd6 detected the greatest number of DE genes in GSNO-treated rhd6. We detected hundreds of in silico interactions among ncRNA and protein-coding genes (PCGs), highlighting MIR5658 and MIR171 precursors highly upregulated in GSNO-treated rhd6 and wild type, respectively. Those ncRNA interact with many DE PCGs involved in hormone signaling, cell wall development, transcription factors, and root hair formation, becoming candidate genes in cell wall modulation and restoration of root hair phenotype by GSNO treatment. Our data shed light on how GSNO modulates ncRNA and their PCG targets in A. thaliana root hair formation.
Collapse
Affiliation(s)
- Camilla Alves Santos
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
- *Correspondence: Camilla Alves Santos, ; Marília Gaspar,
| | - Camila Fernandes Moro
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Ione Salgado
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
| | - Márcia Regina Braga
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
| | - Marília Gaspar
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
- *Correspondence: Camilla Alves Santos, ; Marília Gaspar,
| |
Collapse
|
45
|
Zhou J, Yang LY, Jia CL, Shi WG, Deng SR, Luo ZB. Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. FRONTIERS IN PLANT SCIENCE 2022; 13:941380. [PMID: 35874008 PMCID: PMC9305699 DOI: 10.3389/fpls.2022.941380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules with ring structures formed by covalent bonds and are commonly present in organisms, playing an important regulatory role in plant growth and development. However, the mechanism of circRNAs in poplar root responses to different forms of nitrogen (N) is still unclear. In this study, high-throughput sequencing was used to identify and predict the function of circRNAs in the roots of poplar exposed to three N forms [1 mM NO3 - (T1), 0.5 mM NH4NO3 (T2, control) and 1 mM NH4 + (T3)]. A total of 2,193 circRNAs were identified, and 37, 24 and 45 differentially expressed circRNAs (DECs) were screened in the T1-T2, T3-T2 and T1-T3 comparisons, respectively. In addition, 30 DECs could act as miRNA sponges, and several of them could bind miRNA family members that play key roles in response to different N forms, indicating their important functions in response to N and plant growth and development. Furthermore, we generated a competing endogenous RNA (ceRNA) regulatory network in poplar roots treated with three N forms. DECs could participate in responses to N in poplar roots through the ceRNA regulatory network, which mainly included N metabolism, amino acid metabolism and synthesis, response to NO3 - or NH4 + and remobilization of N. Together, these results provide new insights into the potential role of circRNAs in poplar root responses to different N forms.
Collapse
|
46
|
Zhou T, Wu P, Yue C, Huang J, Zhang Z, Hua Y. Transcriptomic Dissection of Allotetraploid Rapeseed (Brassica napus L.) in Responses to Nitrate and Ammonium Regimes and Functional Analysis of BnaA2.Gln1;4 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:755-769. [PMID: 35325216 DOI: 10.1093/pcp/pcac037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Plant roots acquire nitrogen predominantly as two inorganic forms, nitrate (NO3-) and ammonium (NH4+), to which plants respond differentially. Rapeseed (Brassica napus L.) is an important oil-crop species with very low nitrogen-use efficiency (NUE), the regulatory mechanism of which was elusive due to the vastness and complexity of the rapeseed genome. In this study, a comparative transcriptomic analysis was performed to investigate the differential signatures of nitrogen-starved rapeseed in responses to NO3- and NH4+ treatments and to identify the key genes regulating rapeseed NUE. The two nitrogen sources differentially affected the shoot and root transcriptome profiles, including those of genome-wide nitrogen transporter and transcription factor (TF)-related genes. Differential expression profiling showed that BnaA6.NRT2;1 and BnaA7.AMT1;3 might be the core transporters responsible for efficient NO3- and NH4+ uptake, respectively; the TF genes responsive to inorganic nitrogen, specifically responding to NO3-, and specifically responsive to NH4+ were also identified. The genes which were commonly and most significantly affected by both NO3- and NH4+ treatments were related to glutamine metabolism. Among the glutamine synthetase (GS) family genes, we found BnaA2.Gln1;4, significantly responsive to low-nitrogen conditions and showed higher transcription abundance and GS activity in the leaf veins, flower sepals, root cortex and stele, silique petiole and stem tissues. These characters were significantly different from those of AtGln1;4. The heterologous overexpression of BnaA2.Gln1;4 in Arabidopsis increased plant biomass, NUE, GS activity and total amino acid concentrations under both sufficient- and low-nitrogen conditions. Overall, this study provided novel information about the genes involved in the adaptation to different nitrogen regimes and identified some promising candidate genes for enhancing NUE in rapeseed.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pengjia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 430128, PR China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
47
|
Zhou S, Huang K, Zhou Y, Hu Y, Xiao Y, Chen T, Yin M, Liu Y, Xu M, Jiang X. Degradome sequencing reveals an integrative miRNA-mediated gene interaction network regulating rice seed vigor. BMC PLANT BIOLOGY 2022; 22:269. [PMID: 35650544 PMCID: PMC9158300 DOI: 10.1186/s12870-022-03645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/11/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND It is well known that seed vigor is essential for agricultural production and rice (Oryza sativa L.) is one of the most important crops in the world. Though we previously reported that miR164c regulates rice seed vigor, but whether and how other miRNAs cooperate with miR164c to regulate seed vigor is still unknown. RESULTS Based on degradome data of six RNA samples isolated from seeds of the wild-type (WT) indica rice cultivar 'Kasalath' as well as two modified lines in 'Kasalath' background (miR164c-silenced line [MIM164c] and miR164c overexpression line [OE164c]), which were subjected to either no aging treatment or an 8-day artificial aging treatment, 1247 different target transcripts potentially cleaved by 421 miRNAs were identified. The miRNA target genes were functionally annotated via GO and KEGG enrichment analyses. By STRING database assay, a miRNA-mediated gene interaction network regulating seed vigor in rice was revealed, which comprised at least four interconnected pathways: the miR5075-mediated oxidoreductase related pathway, the plant hormone related pathway, the miR164e related pathway, and the previously reported RPS27AA related pathway. Knockout and overexpression of the target gene Os02g0817500 of miR5075 decreased and enhanced seed vigor, respectively. By Y2H assay, the proteins encoded by five seed vigor-related genes, Os08g0295100, Os07g0633100, REFA1, OsPER1 and OsGAPC3, were identified to interact with Os02g0817500. CONCLUSIONS miRNAs cooperate to regulate seed vigor in rice via an integrative gene interaction network comprising miRNA target genes and other functional genes. The result provided a basis for fully understanding the molecular mechanisms of seed vigor regulation.
Collapse
Affiliation(s)
- Shiqi Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kerui Huang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Changsha, 410081, China
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Yan Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yingqian Hu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuchao Xiao
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ting Chen
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengqi Yin
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Liu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengliang Xu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Changsha, 410081, China
| | - Xiaocheng Jiang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Changsha, 410081, China.
| |
Collapse
|
48
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
49
|
Zhou J, Wu JT. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus × canescens. BMC PLANT BIOLOGY 2022; 22:96. [PMID: 35246022 PMCID: PMC8895855 DOI: 10.1186/s12870-022-03482-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) taken up by plant roots, and a lack of these N sources commonly limits plant growth. To better understand how NO3- and NH4+ differentially affect root system architecture, we analyzed the expression profiles of microRNAs and their targets in poplar roots treated with three forms of nitrogen S1 (NO3-), S2 (NH4NO3, normal), and S3 (NH4+) via RNA sequencing. RESULTS The results revealed a total of 709 miRNAs. Among them, 57 significantly differentially expressed miRNAs and 28 differentially expressed miRNA-target pairs showed correlated expression profiles in S1 vs. S2. Thirty-six significantly differentially expressed miRNAs and 12 differentially expressed miRNA-target pairs showed correlated expression profiles in S3 vs. S2. In particular, NFYA3, a target of upregulated ptc-miR169i and ptc-miR169b, was downregulated in S1 vs. S2, while NFYA1, a target of upregulated ptc-miR169b, was downregulated in S3 vs. S2 and probably played an important role in the changes in root morphology observed when the poplar plants were treated with different N forms. Furthermore, the miRNA-target pairs ptc-miR169i/b-D6PKL2, ptc-miR393a-5p-AFB2, ptc-miR6445a-NAC14, ptc-miR172d-AP2, csi-miR396a-5p_R + 1_1ss21GA-EBP1, ath-miR396b-5p_R + 1-TPR4, and ptc-miR166a/b/c-ATHB-8 probably contributed to the changes in root morphology observed when poplar plants were treated with different N forms. CONCLUSIONS These results demonstrate that differentially expressed miRNAs and their targets play an important role in the regulation of the poplar root system architecture by different N forms.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang-Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
50
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|