1
|
Flores-Martínez Á, Ramos-Herrero VD, Barroso A, Moreno A, G-García ME, Venegas-Moreno E, Dios E, Martínez-Barberá JP, Luque RM, Soto-Moreno A, Cano DA. Conditional Pten inactivation in pituitary results in sex-specific prolactinoma formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167543. [PMID: 39428000 DOI: 10.1016/j.bbadis.2024.167543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pituitary tumors, including prolactinomas, present significant clinical challenges that require a deeper understanding of their molecular roots for improved diagnostics and therapies. Here, we investigate the role of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K) pathway in pituitary tumorigenesis using a mouse model. Conditional knockout of Pten in all pituitary cell lineages resulted in prolactinoma formation exclusively in female mice, demonstrating the critical role of PTEN in pituitary homeostasis. While Pten inactivation induced Akt activation in all pituitary cells, only prolactin-producing cells exhibited tumorigenic changes, suggesting specific cell-type effects. Histological and molecular analyses of prolactinomas revealed similarities with human pituitary tumors, such as decreased vascularization and cell adhesion proteins and increased accumulation of cell cycle proteins. Notably, prolactinomas displayed diminished levels of phosphorylated extracellular signal-regulated kinase (ERK), implicating downregulation of ERK in tumorigenesis. Finally, we analyzed PTEN/PI3K activation in a collection of human pituitary tumors. Overall, our study delineates the intricate interplay between the PTEN and ERK signaling pathways, providing insights into sex-specific mechanisms of pituitary tumorigenesis and potential therapeutic strategies for prolactinomas.
Collapse
Affiliation(s)
- Álvaro Flores-Martínez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon 1 University, Lyon, France
| | - Víctor Darío Ramos-Herrero
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alexia Barroso
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alicia Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Miguel E G-García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Juan Pedro Martínez-Barberá
- Developmental Biology and Cancer Programme, GOS Institute of Child Health, University College London, London, UK
| | - Raúl M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
2
|
Tousinas G, Emmanuel AO, Tracy M, Arnovitz S, Friedman D, Papamarcaki T, Gounari F. Stabilization of β-Catenin Directs HEB to Limit Thymic Selection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:641-650. [PMID: 38958395 PMCID: PMC11333165 DOI: 10.4049/jimmunol.2400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Activation of β-catenin in CD4+CD8+ double-positive (DP) thymocytes halts development before the thymic selection stage and predisposes to transformation. Leukemogenesis, but not the developmental block, depends on TCF-1, β-catenin's DNA-binding partner. In this study, we show that β-catenin activation directs the DNA-binding protein HEB to block DP thymocyte development. Conditional loss of HEB in DP thymocytes with stabilized β-catenin restores the frequencies of postselection TCRβhi/CCR7+ and TCRβhi/CD69+ DPs and their cell-cycle profile. This recovery is associated with significant reversal of β-catenin-induced expression changes, particularly those related to the CD69+ DP cell signature and to cell-cycle pathways. Stabilizing β-catenin in DP thymocytes directs HEB binding to ≈11,000 novel DNA sites throughout the genome. Novel HEB sites mark most CD69+ DP cell signature genes that change expression upon activation of β-catenin and then revert after loss of HEB. Moreover, many of the novel HEB sites occupy promoter regions of genes enriched in mitotic cell cycle pathways. HEB binding to those regions correlates with downregulation of the associated genes, and HEB inactivation restores expression to physiologic levels. These findings highlight a molecular interplay between HEB and β-catenin that can impair thymic development.
Collapse
Affiliation(s)
- Georgios Tousinas
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | | | - Melissa Tracy
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Stephen Arnovitz
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - David Friedman
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259
| | - Thomais Papamarcaki
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 451 10 Ioannina, Greece
| | - Fotini Gounari
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
3
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
4
|
Blanco DB, Chapman NM, Raynor JL, Xu C, Su W, Kc A, Li W, Lim SA, Schattgen S, Shi H, Risch I, Sun Y, Dhungana Y, Kim Y, Wei J, Rankin S, Neale G, Thomas PG, Yang K, Chi H. PTEN directs developmental and metabolic signaling for innate-like T cell fate and tissue homeostasis. Nat Cell Biol 2022; 24:1642-1654. [PMID: 36302969 PMCID: PMC10080469 DOI: 10.1038/s41556-022-01011-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
Phosphatase and tensin homologue (PTEN) is frequently mutated in human cancer, but its roles in lymphopoiesis and tissue homeostasis remain poorly defined. Here we show that PTEN orchestrates a two-step developmental process linking antigen receptor and IL-23-Stat3 signalling to type-17 innate-like T cell generation. Loss of PTEN leads to pronounced accumulation of mature IL-17-producing innate-like T cells in the thymus. IL-23 is essential for their accumulation, and ablation of IL-23 or IL-17 signalling rectifies the reduced survival of female PTEN-haploinsufficient mice that model human patients with PTEN mutations. Single-cell transcriptome and network analyses revealed the dynamic regulation of PTEN, mTOR and metabolic activities that accompanied type-17 cell programming. Furthermore, deletion of mTORC1 or mTORC2 blocks PTEN loss-driven type-17 cell accumulation, and this is further shaped by the Foxo1 and Stat3 pathways. Collectively, our study establishes developmental and metabolic signalling networks underpinning type-17 cell fate decisions and their functional effects at coordinating PTEN-dependent tissue homeostasis.
Collapse
Affiliation(s)
- Daniel Bastardo Blanco
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chengxian Xu
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Su
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wei Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefan Schattgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Isabel Risch
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yunjung Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Wei
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Sunaoshi M, Blyth BJ, Shang Y, Tsuruoka C, Morioka T, Shinagawa M, Ogawa M, Shimada Y, Tachibana A, Iizuka D, Kakinuma S. Post-Irradiation Thymic Regeneration in B6C3F1 Mice Is Age Dependent and Modulated by Activation of the PI3K-AKT-mTOR Pathway. BIOLOGY 2022; 11:biology11030449. [PMID: 35336821 PMCID: PMC8945464 DOI: 10.3390/biology11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Because children have a long life expectancy relative to adults and their tissues and organs are growing and developing rapidly, the risk of radiation carcinogenesis for children is considered higher than that for adults. However, the underlying mechanism(s) is unclear. To uncover the mechanism, we previously revealed that principal causative genes in mouse thymic lymphomas arising in irradiated infants or adults as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. Our results demonstrate that the dynamics of thymocytes during the post-irradiation period depends on the age at exposure. For irradiated infants in particular, the number of proliferating cells increase dramatically, and this correlate with activation of the PI3K-AKT-mTOR pathway. Thus, we conclude that the PI3K-AKT-mTOR pathway in infants contributed, at least in part, to thymus-cell dynamics through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma. Abstract The risk of radiation-induced carcinogenesis depends on age at exposure. We previously reported principal causative genes in lymphomas arising after infant or adult exposure to 4-fractionated irradiation as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. The thymocyte number initially decreased, followed by two regeneration phases. During the first regeneration, the proportion of phosphorylated-AKT-positive (p-AKT+) cells in cell-cycle phases S+G2/M of immature CD4−CD8− and CD4+CD8+ thymocytes and in phases G0/G1 of mature CD4+CD8− and CD4−CD8+ thymocytes was significantly greater in irradiated infants than in irradiated adults. During the second regeneration, the proportion of p-AKT+ thymocytes in phases G0/G1 increased in each of the three populations other than CD4−CD8− thymocytes more so than during the first regeneration. Finally, PI3K-AKT-mTOR signaling in infants contributed, at least in part, to biphasic thymic regeneration through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma.
Collapse
Affiliation(s)
- Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan;
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
- Correspondence: ; Tel.: +81-43-206-3160
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| |
Collapse
|
6
|
Torres-Montaner A. The telomere complex and the origin of the cancer stem cell. Biomark Res 2021; 9:81. [PMID: 34736527 PMCID: PMC8567692 DOI: 10.1186/s40364-021-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022] Open
Abstract
Exquisite regulation of telomere length is essential for the preservation of the lifetime function and self-renewal of stem cells. However, multiple oncogenic pathways converge on induction of telomere attrition or telomerase overexpression and these events can by themselves trigger malignant transformation. Activation of NFκB, the outcome of telomere complex damage, is present in leukemia stem cells but absent in normal stem cells and can activate DOT1L which has been linked to MLL-fusion leukemias. Tumors that arise from cells of early and late developmental stages appear to follow two different oncogenic routes in which the role of telomere and telomerase signaling might be differentially involved. In contrast, direct malignant transformation of stem cells appears to be extremely rare. This suggests an inherent resistance of stem cells to cancer transformation which could be linked to a stem cell’specific mechanism of telomere maintenance. However, tumor protection of normal stem cells could also be conferred by cell extrinsic mechanisms.
Collapse
Affiliation(s)
- A Torres-Montaner
- Department of Pathology, Queen's Hospital, Rom Valley Way, London, Romford, RM7 OAG, UK. .,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
7
|
Tottone L, Lancho O, Loh JW, Singh A, Kimura S, Roels J, Kuchmiy A, Strubbe S, Lawlor MA, da Silva-Diz V, Luo S, Gachet S, García-Prieto CA, Hagelaar R, Esteller M, Meijerink JPP, Soulier J, Taghon T, Van Vlierberghe P, Mullighan CG, Khiabanian H, Rocha PP, Herranz D. A Tumor Suppressor Enhancer of PTEN in T-cell development and leukemia. Blood Cancer Discov 2020; 2:92-109. [PMID: 33458694 DOI: 10.1158/2643-3230.bcd-20-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.
Collapse
Affiliation(s)
- Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Jui-Wan Loh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Steven Strubbe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Matthew A Lawlor
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Victoria da Silva-Diz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shirley Luo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Stéphanie Gachet
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Carlos A García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | | | - Jean Soulier
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
8
|
Wu Y, Zhu H, Wu H. PTEN in Regulating Hematopoiesis and Leukemogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036244. [PMID: 31712222 DOI: 10.1101/cshperspect.a036244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. By counteracting the PI3K/AKT/mTOR pathway, PTEN plays an essential role in regulating hematopoietic stem cells (HSCs) self-renewal, migration, lineage commitment, and differentiation. PTEN also plays important roles in suppressing leukemogenesis, especially T-cell acute lymphoblastic leukemia (T-ALL). Herein, we will review the function of PTEN in regulating hematopoiesis and leukemogenesis and discuss potential therapeutic approaches against leukemia with PTEN mutations.
Collapse
Affiliation(s)
- Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
10
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
11
|
Huo X, Li Z, Zhang S, Li C, Guo M, Lu J, Lv J, Du X, Chen Z. Analysis of the expression level and methylation of tumor protein p53, phosphatase and tensin homolog and mutS homolog 2 in N-methyl-N-nitrosourea-induced thymic lymphoma in C57BL/6 mice. Oncol Lett 2017; 14:4339-4348. [PMID: 28943948 PMCID: PMC5592855 DOI: 10.3892/ol.2017.6721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.
Collapse
Affiliation(s)
- Xueyun Huo
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Zhenkun Li
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Shuangyue Zhang
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Changlong Li
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Meng Guo
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Jing Lu
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Jianyi Lv
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaoyan Du
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Zhenwen Chen
- Department of Medical Genetics, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
12
|
Control of amino acid transport coordinates metabolic reprogramming in T-cell malignancy. Leukemia 2017; 31:2771-2779. [PMID: 28546582 PMCID: PMC5729345 DOI: 10.1038/leu.2017.160] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/23/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
This study explores the regulation and importance of System L amino acid transport in a murine model of T-cell acute lymphoblastic leukemia (T-ALL) caused by deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). There has been a strong focus on glucose transport in leukemias but the present data show that primary T-ALL cells have increased transport of multiple nutrients. Specifically, increased leucine transport in T-ALL fuels mammalian target of rapamycin complex 1 (mTORC1) activity which then sustains expression of hypoxia inducible factor-1α (HIF1α) and c-Myc; drivers of glucose metabolism in T cells. A key finding is that PTEN deletion and phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) accumulation is insufficient to initiate leucine uptake, mTORC1 activity, HIF1α or c-Myc expression in T cells and hence cannot drive T-ALL metabolic reprogramming. Instead, a key regulator for leucine transport in T-ALL is identified as NOTCH. Mass spectrometry based proteomics identifies SLC7A5 as the predominant amino acid transporter in primary PTEN−/− T-ALL cells. Importantly, expression of SLC7A5 is critical for the malignant transformation induced by PTEN deletion. These data reveal the importance of regulated amino acid transport for T-cell malignancies, highlighting how a single amino acid transporter can have a key role.
Collapse
|
13
|
Ndrg1b and fam49ab modulate the PTEN pathway to control T-cell lymphopoiesis in the zebrafish. Blood 2016; 128:3052-3060. [PMID: 27827822 DOI: 10.1182/blood-2016-09-742502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
During hematopoiesis, the balance between proliferation, differentiation, and apoptosis is tightly regulated in order to maintain homeostasis. Failure in these processes can ultimately lead to uncontrolled proliferation and leukemia. Phosphatase and tensin homolog (PTEN) is one of the molecular pathways involved in this balance. By opposing PI3-kinases, PTEN inhibits proliferation and promotes differentiation and is thus considered a tumor suppressor. Indeed, PTEN is frequently mutated in many cancers, including leukemias. Loss of PTEN often leads to lymphoid cancers. However, little is known about the molecular events that regulate PTEN signaling during lymphopoiesis. In this study, we used zebrafish to address this. We report that N-myc downstream-regulated gene 1b (ndrg1b) rescues lymphoid differentiation after PTEN inhibition. We also show that a previously uncharacterized gene, fam49ab, inhibits T-cell differentiation, a phenotype that can be rescued by ndrg1b We propose that ndrg1b and fam49ab are 2 new modulators of PTEN signaling that control lymphoid differentiation in the zebrafish thymus.
Collapse
|
14
|
Oncogenic PTEN functions and models in T-cell malignancies. Oncogene 2015; 35:3887-96. [PMID: 26616857 DOI: 10.1038/onc.2015.462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
PTEN is a protein phosphatase that is crucial to prevent the malignant transformation of T-cells. Although a numerous mechanisms regulate its expression and function, they are often altered in T-cell acute lymphoblastic leukaemias and T-cell lymphomas. As such, PTEN inactivation frequently occurs in these malignancies, where it can be associated with chemotherapy resistance and poor prognosis. Different Pten knockout models recapitulated the development of T-cell leukaemia/lymphoma, demonstrating that PTEN loss is at the center of a complex oncogenic network that sustains and drives tumorigenesis via the activation of multiple signalling pathways. These aspects and their therapeutic implications are discussed in this review.
Collapse
|
15
|
Premalignant PTEN-deficient thymocytes activate microRNAs miR-146a and miR-146b as a cellular defense against malignant transformation. Blood 2014; 123:4089-100. [PMID: 24735967 DOI: 10.1182/blood-2013-11-539411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer develops by a multistep process during which cells acquire characteristics that allow them to evade apoptosis and proliferate unchecked. Sequential acquisition of genetic alterations drives this process but also causes cellular stress, frequently prompting cells to enter a premalignant period during which they mount a defense against transformation. T cell-specific deletion of the tumor suppressor PTEN in mice induces premalignancy in the thymus and development of CD4(+) T-cell lymphomas in the periphery. Here we sought to identify factors mediating the cellular defense against transformation during the premalignant period. We identified several microRNAs upregulated specifically in premalignant thymocytes, including miR-146a, miR-146b, and the miR-183/96/182 cluster. CD4-driven T cell-specific transgenic overexpression of mir-146a and mir-146b significantly delayed PTEN-deficient lymphomagenesis and delayed c-myc oncogene induction, a key driver of transformation in PTEN-deficient T-cell malignancies. We found that miR-146a and miR-146b targeting of Traf6 attenuates TCR signaling in the thymus and inhibits downstream NF-κB-dependent induction of c-myc. Additionally, c-myc repression in mature CD4 T cells by miR-146b impaired TCR-mediated proliferation. Hence, we have identified 2 miRNAs that are upregulated as part of the cellular response against transformation that, when overrepresented, can effectively inhibit progression to malignancy in the context of PTEN deficiency.
Collapse
|
16
|
Go R, Hirose S, Katsuragi Y, Obata M, Abe M, Mishima Y, Sakimura K, Kominami R. Cell of origin in radiation-induced premalignant thymocytes with differentiation capability in mice conditionally losing one Bcl11b allele. Cancer Sci 2013; 104:1009-16. [PMID: 23663453 DOI: 10.1111/cas.12193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 12/29/2022] Open
Abstract
Bcl11b is a haploinsufficient tumor suppressor, mutations or deletion of which has been found in 10-16% of T-cell acute lymphoblastic leukemias. Bcl11b(KO) (/+) heterozygous mice are susceptible to thymic lymphomas, a model of T-cell acute lymphoblastic leukemia, when γ-irradiated, and irradiated Bcl11b(KO) (/+) mice generate clonally expanding or premalignant thymocytes before thymic lymphoma development. Cells with radiation-induced DNA damages are assumed to be the cells of origin in tumors; however, which thymocyte is the tumor cell origin remains obscure. In this study we generated Bcl11b(flox/+) ;Lck-Cre and Bcl11b(flox/+) ;CD4-Cre mice; in the former, loss of one Bcl11b allele occurs in thymocytes at the immature CD4(-) CD8(-) stage, whereas in the latter the loss occurs in the more differentiated CD4(+) CD8(+) double-positive stage. We examined clonal expansion and differentiation of thymocytes in mice 60 days after 3 Gy γ-irradiation. Half (9/18) of the thymuses in the Bcl11b(flox/+) ;Lck-Cre group showed limited rearrangement sites at the T-cell receptor-β (TCRβ) locus, indicating clonal cell expansion, but none in the Bcl11b(flox/+) ;CD4-Cre group did. This indicates that the origin of the premalignant thymocytes is not in double-positive cells but immature thymocytes. Interestingly, those premalignant thymocytes underwent rearrangement at various different sites of the TCRα locus and the majority showed a higher expression of TCRβ and CD8, and more differentiated phenotypes. This suggests the existence of a subpopulation of immature cells within the premalignant cells that is capable of proliferating and continuously producing differentiated thymocytes.
Collapse
Affiliation(s)
- Rieka Go
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Goo CK, Lim HY, Ho QS, Too HP, Clement MV, Wong KP. PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PLoS One 2012; 7:e45806. [PMID: 23049865 PMCID: PMC3458951 DOI: 10.1371/journal.pone.0045806] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022] Open
Abstract
Akt, a serine/threonine kinase has been shown to stimulate glycolysis in cancer cells but its role in mitochondrial respiration is unknown. Using PTEN-knockout mouse embryonic fibroblasts (MEFPTEN−/−) with hyper-activated Akt as a cell model, we observed a higher respiratory capacity in MEFPTEN−/− compared to the wildtype (MEFWT). The respiratory phenotype observed in MEFPTEN−/− was reproduced in MEFWT by gene silencing of PTEN which substantiated its role in regulating mitochondrial function. The increased activities of the respiratory complexes (RCs) I, III and IV were retained in the same relative proportions as those present in MEFWT, alluding to a possible co-ordinated regulation by PTEN/Akt. Using LY294002 (a PI3K inhibitor) and Akt inhibitor IV, we showed that the regulation of enzyme activities and protein expressions of the RCs was dependent on PI3K/Akt. There was insignificant difference in the protein expressions of mitochondrial transcription factor: peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and its downstream targets, the nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA) between MEFPTEN−/− and MEFWT. Similarly, mRNA levels of the same subunits of the RCs detected in Western blots were not significantly different between MEFPTEN−/− and MEFWT suggesting that the regulation by Akt on mitochondrial function was probably not via gene transcription. On the other hand, a decrease of total 4E-BP1 with a higher expression of its phosphorylated form relative to total 4E-BP1 was found in MEFPTEN−/−, which inferred that the regulation of mitochondrial respiratory activities by Akt was in part through this protein translation pathway. Notably, gene silencing of 4E-BP1 up-regulated the protein expressions of all RCs and the action of 4E-BP1 appeared to be specific to these mitochondrial proteins. In conclusion, PTEN inactivation bestowed a bioenergetic advantage to the cells by up-regulating mitochondrial respiratory capacity through the 4E-BP1-mediated protein translation pathway.
Collapse
Affiliation(s)
- Chong Kiat Goo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Hwee Ying Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Qin Shi Ho
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Marie-Veronique Clement
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Kent Ridge, Singapore, Singapore
| | - Kim Ping Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
- * E-mail:
| |
Collapse
|
18
|
Newton RH, Turka LA. Regulation of T cell homeostasis and responses by pten. Front Immunol 2012; 3:151. [PMID: 22715338 PMCID: PMC3375464 DOI: 10.3389/fimmu.2012.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/22/2012] [Indexed: 11/13/2022] Open
Abstract
The generation of lipid products catalyzed by PI3K is critical for normal T cell homeostasis and a productive immune response. PI3K can be activated in response to antigen receptor, co-stimulatory, cytokine, and chemokine signals. Moreover, dysregulation of this pathway frequently occurs in T cell lymphomas and is implicated in lymphoproliferative autoimmune disease. Akt acts as a central mediator of PI3K signals, downstream of which is the mTOR pathway, controlling cell growth and metabolism. Members of the Foxo family of transcription factors are also regulated by Akt, thus linking control over homing and migration of T cells, as well cell cycle entry, apoptosis, and DNA damage and oxidative stress responses, to PI3K signaling. PTEN, first identified as a tumor suppressor gene, encodes a lipid phosphatase that, by catalyzing the reverse of the PI3K “reaction,” directly opposes PI3K signaling. However, PTEN may have other functions as well, and recent reports have suggested roles for PTEN as a tumor suppressor independent of its effects on PI3K signaling. Through the use of models in which Pten is deleted specifically in T cells, it is becoming increasingly clear that control over autoimmunity and lymphomagenesis by PTEN involves multi-faceted functions of this molecule at multiple stages within the T cell compartment.
Collapse
Affiliation(s)
- Ryan H Newton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
Impairment in differentiation and cell cycle of thymocytes by loss of a Bcl11b tumor suppressor allele that contributes to leukemogenesis. Leuk Res 2012; 36:1035-40. [PMID: 22640496 DOI: 10.1016/j.leukres.2012.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/28/2012] [Accepted: 04/28/2012] [Indexed: 02/03/2023]
Abstract
Genetic changes in T-ALL are classified into type A abnormalities leading to arrest at a specific stage of T-cell differentiation and type B abnormalities that target cellular processes including cell cycle regulation. Mutations and deletion of a BCL11B haploinsuffiecient tumor suppressor allele have been found in 10-16% of T-ALL subgroups. Analysis of Bcl11b(KO/+) mice revealed impaired T-cell differentiation at two different stages and attenuation of γ-ray induced cell-cycle arrest at S/G2/M phase in immature CD8 single positive cells. Hence, those phenotypes provided by loss of a Bcl11b allele favor that Bcl11b mutation belongs to type B abnormalities.
Collapse
|
20
|
Soond DR, Garçon F, Patton DT, Rolf J, Turner M, Scudamore C, Garden OA, Okkenhaug K. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. THE JOURNAL OF IMMUNOLOGY 2012; 188:5935-43. [PMID: 22611241 DOI: 10.4049/jimmunol.1102116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PTEN, one of the most commonly mutated or lost tumor suppressors in human cancers, antagonizes signaling by the PI3K pathway. Mice with thymocyte-specific deletion of Pten rapidly develop peripheral lymphomas and autoimmunity, which may be caused by failed negative selection of thymocytes or from dysregulation of postthymic T cells. We induced conditional deletion of Pten from CD4 Th cells using a Cre knocked into the Tnfrsf4 (OX40) locus to generate OX40(Cre)Pten(f) mice. Pten-deficient Th cells proliferated more and produced greater concentrations of cytokines. The OX40(Cre)Pten(f) mice had a general increase in the number of lymphocytes in the lymph nodes, but not in the spleen. When transferred into wild-type (WT) mice, Pten-deficient Th cells enhanced anti-Listeria responses and the clearance of tumors under conditions in which WT T cells had no effect. Moreover, inflammatory responses were exaggerated and resolved later in OX40(Cre)Pten(f) mice than in WT mice. However, in contrast with models of thymocyte-specific Pten deletion, lymphomas and autoimmunity were not observed, even in older OX40(Cre)Pten(f) mice. Hence loss of Pten enhances Th cell function without obvious deleterious effects.
Collapse
Affiliation(s)
- Dalya R Soond
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 2012; 12:325-38. [PMID: 22517423 DOI: 10.1038/nri3198] [Citation(s) in RCA: 785] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved kinase mTOR (mammalian target of rapamycin) couples cell growth and metabolism to environmental inputs in eukaryotes. T cells depend on mTOR signalling to integrate immune signals and metabolic cues for their proper maintenance and activation. Under steady-state conditions, mTOR is actively controlled by multiple inhibitory mechanisms, and this enforces normal T cell homeostasis. Antigen recognition by naive CD4(+) and CD8(+) T cells triggers mTOR activation, which in turn programmes the differentiation of these cells into functionally distinct lineages. This Review focuses on the signalling mechanisms of mTOR in T cell homeostatic and functional fates, and discusses the therapeutic implications of targeting mTOR in T cells.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
22
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
23
|
Petruzzella V, Sardanelli AM, Scacco S, Panelli D, Papa F, Trentadue R, Papa S. Dysfunction of mitochondrial respiratory chain complex I in neurological disorders: genetics and pathogenetic mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:371-84. [PMID: 22399432 DOI: 10.1007/978-94-007-2869-1_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers genetic and biochemical aspects of mitochondrial bioenergetics dysfunction in neurological disorders associated with complex I defects. Complex I formation and functionality in mammalian cells depends on coordinated expression of nuclear and mitochondrial genes, post-translational subunit modifications, mitochondrial import/maturation of nuclear encoded subunits, subunits interaction and stepwise assembly, and on proteolytic processing. Examples of complex I dysfunction are herein presented: homozygous mutations in the nuclear NDUFS1 and NDUFS4 genes for structural components of complex I; an autosomic recessive form of encephalopathy associated with enhanced proteolytic degradation of complex I; familial cases of Parkinson associated to mutations in the PINK1 and Parkin genes, in particular, homoplasmic mutations in the ND5 and ND6 mitochondrial genes of the complex I, coexistent with mutation in the PINK1 gene. This knowledge, besides clarifying molecular aspects of the pathogenesis of hereditary diseases, can also provide hints for understanding the involvement of complex I in neurological disorders, as well as for developing therapeutical strategies.
Collapse
Affiliation(s)
- Vittoria Petruzzella
- Department of Basic Medical Sciences, University of Bari, Policlinico, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:72-87. [PMID: 22450536 PMCID: PMC3365246 DOI: 10.2183/pjab.88.72] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Bcl11b is a lineage-specific transcription factor expressed in various cell types and its expression is important for development of T cells, neurons and others. On the other hand, Bcl11b is a haploinsufficient tumor suppressor and loss of a Bcl11b allele provides susceptibility to mouse thymic lymphoma and human T-cell acute lymphoblastic leukemia. Although there are many transcription factors affecting both cell differentiation and cancer development, Bcl11b has several unique properties. This review describes phenotypes given by loss of Bcl11b and roles of Bcl11b in cell proliferation, differentiation and apoptosis, taking tissue development and lymphomagenesis into consideration.
Collapse
Affiliation(s)
- Ryo Kominami
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
25
|
Zhang J, Xiao Y, Guo Y, Breslin P, Zhang S, Wei W, Zhang Z, Zhang J. Differential requirements for c-Myc in chronic hematopoietic hyperplasia and acute hematopoietic malignancies in Pten-null mice. Leukemia 2011; 25:1857-68. [PMID: 21926961 DOI: 10.1038/leu.2011.220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten (phosphatase and tensin homolog, deleted on chromosome ten)-knockout mice (Pten(-/-)). The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten(-/-) mice, we generated inducible Pten/Myc double-knockout mice (Pten(-/-)/Myc(-/-)). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten(-/-) mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs that developed in Pten(-/-) mice, which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten(-/-)/Myc(-/-) mice. Our study suggests that the deregulation of phosphoinositide 3-kinase/Akt signaling in Pten(-/-) hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. However, owing to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten(-/-) MPDs from granulocyte- to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies.
Collapse
Affiliation(s)
- J Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen L, Xue L, Giacomini KM, Casida JE. GABAA receptor open-state conformation determines non-competitive antagonist binding. Toxicol Appl Pharmacol 2011; 250:221-8. [PMID: 21111751 PMCID: PMC3056339 DOI: 10.1016/j.taap.2010.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
The γ-aminobutyric acid (GABA) type A receptor (GABA(A)R) is one of the most important targets for insecticide action. The human recombinant β3 homomer is the best available model for this binding site and 4-n-[(3)H]propyl-4'-ethynylbicycloorthobenzoate ([(3)H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the β3 homomer relative to the much-less-active but structurally very-similar β1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The β1 and β3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the α1 subunit and modulators. Chimera β3/β1 with the β3 subunit extracellular domain and the β1 subunit transmembrane helices retained the high [(3)H]EBOB binding level of the β3 homomer while chimera β1/β3 with the β1 subunit extracellular domain and the β3 subunit transmembrane helices had low binding activity similar to the β1 homomer. GABA at 3μM stimulated heteromers α1β1 and α1β3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the α1 subunit rescued the inactive β1/β3 chimera close to wildtype α1β1 activity. EBOB binding was significantly altered by mutations β1S15'N and β3N15'S compared with wildtype β1 and β3, respectively. However, the binding activity of α1β1S15'N was insensitive to GABA and α1β3N15'S was stimulated much less than wildtype α1β3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation β3N15'S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABA(A) receptor sensitivity.
Collapse
Affiliation(s)
- Ligong Chen
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA
| | - Ling Xue
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA
| | - John E. Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-kinase signaling in thymocytes: the need for stringent control. Sci Signal 2010; 3:re5. [PMID: 20716765 DOI: 10.1126/scisignal.3135re5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The thymus serves as the primary site for the lifelong formation of new T lymphocytes; hence, it is essential for the maintenance of an effective immune system. Although thymocyte development has been widely studied, the mechanisms involved are incompletely defined. A comprehensive understanding of the molecular events that control regular thymocyte development will not only shed light on the physiological control of T cell differentiation but also probably provide insight into the pathophysiology of T cell immunodeficiencies, the molecular basis that underpins autoimmunity, and the mechanisms that instigate the formation of T cell lymphomas. Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in thymocyte development, although not all of their downstream mediators have yet been identified. Here, we discuss experimental evidence that argues for a critical role of the PI3K-phosphoinositide-dependent protein kinase (PDK1)-protein kinase B (PKB) signaling pathway in the development of both normal and malignant thymocytes, and we highlight molecules that can potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Elisabeth Fayard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
28
|
Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 2010; 107:13984-90. [PMID: 20679220 DOI: 10.1073/pnas.1008136107] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) are protein-serine/threonine kinases that are activated by ERK or p38 and phosphorylate eIF4E, which is involved in cap-dependent translation initiation. However, Mnk1/2 double knockout (Mnk-DKO) mice show normal cell growth and development despite an absence of eIF4E phosphorylation. Here we show that the tumorigenesis occurring in the Lck-Pten mouse model (referred to here as tPten(-/-) mice) can be suppressed by the loss of Mnk1/2. Phosphorylation of eIF4E was greatly enhanced in lymphomas of parental tPten(-/-) mice compared with lymphoid tissues of wild-type mice, but was totally absent in lymphomas of tPten(-/-); Mnk-DKO mice. Notably, stable knockdown of Mnk1 in the human glioma cell line U87MG resulted in dramatically decreased tumor formation when these cells were injected into athymic nude mice. Our data demonstrate an oncogenic role for Mnk1/2 in tumor development, and highlight these molecules as potential anticancer drug targets that could be inactivated with minimal side effects.
Collapse
|
29
|
Liu X, Karnell JL, Yin B, Zhang R, Zhang J, Li P, Choi Y, Maltzman JS, Pear WS, Bassing CH, Turka LA. Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest 2010; 120:2497-507. [PMID: 20516645 DOI: 10.1172/jci42382] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/01/2010] [Indexed: 01/28/2023] Open
Abstract
Mutations in the tumor-suppressor gene phosphatase and tensin homolog deleted on chromosome 10 (Pten) are associated with multiple cancers in humans, including T cell malignancies. Targeted deletion of Pten in T cells induces both a disseminated "mature phenotype" lymphoma and a lymphoproliferative autoimmune syndrome in mice. Here, we have shown that these two diseases are separable and mediated by T lineage cells of distinct developmental stages. Loss of PTEN was found to be a powerful driver of lymphomagenesis within the thymus characterized by overexpression of the c-myc oncogene. In an otherwise normal thymic environment, PTEN-deficient T cell lymphomas invariably harbored RAG-dependent reciprocal t(14:15) chromosomal translocations involving the T cell receptor alpha/delta locus and c-myc, and their survival and growth was TCR dependent, but Notch independent. However, lymphomas occurred even if TCR recombination was prevented, although these lymphomas were less mature, arose later in life, and, importantly, were dependent upon Notch pathways to upregulate c-myc expression. In contrast, using the complementary methods of early thymectomy and adoptive transfers, we found that PTEN-deficient mature T cells were unable to undergo malignant transformation but were sufficient for the development of autoimmunity. These data suggest multiple and distinct regulatory roles for PTEN in the molecular pathogenesis of lymphoma and autoimmunity.
Collapse
Affiliation(s)
- Xiaohe Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yamamoto T, Morita SI, Go R, Obata M, Katsuragi Y, Fujita Y, Maeda Y, Yokoyama M, Aoyagi Y, Ichikawa H, Mishima Y, Kominami R. Clonally Expanding Thymocytes Having Lineage Capability in Gamma-Ray–Induced Mouse Atrophic Thymus. Int J Radiat Oncol Biol Phys 2010; 77:235-43. [DOI: 10.1016/j.ijrobp.2009.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 01/06/2023]
|
31
|
Xue L, Chiang L, He B, Zhao YY, Winoto A. FoxM1, a forkhead transcription factor is a master cell cycle regulator for mouse mature T cells but not double positive thymocytes. PLoS One 2010; 5:e9229. [PMID: 20169079 PMCID: PMC2821927 DOI: 10.1371/journal.pone.0009229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/27/2010] [Indexed: 12/21/2022] Open
Abstract
FoxM1 is a forkhead box transcription factor and a known master regulator required for different phases of the cell cycle. In cell lines, FoxM1 deficient cells exhibit delayed S phase entry, aneuploidy, polyploidy and can't complete mitosis. In vivo, FoxM1 is expressed mostly in proliferating cells but is surprisingly also found in non-proliferating CD4(+)CD8(+) double positive thymocytes. Here, we addressed the role of FoxM1 in T cell development by generating and analyzing two different lines of T-cell specific FoxM1 deficient mice. As expected, FoxM1 is required for proliferation of early thymocytes and activated mature T cells. Defective expression of many cell cycle proteins was detected, including cyclin A, cyclin B1, cdc2, cdk2, p27 and the Rb family members p107 and p130 but surprisingly not survivin. Unexpectedly, loss of FoxM1 only affects a few cell cycle proteins in CD4(+)CD8(+) thymocytes and has little effect on their sensitivity to apoptosis and the subsequent steps of T cell differentiation. Thus, regulation of cell cycle genes by FoxM1 is stage- and context-dependent.
Collapse
Affiliation(s)
- Ling Xue
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California, United States of America
| | - Leslie Chiang
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California, United States of America
| | - Bo He
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California, United States of America
| | - You-Yang Zhao
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
32
|
Xue L, Sun Y, Chiang L, He B, Kang C, Nolla H, Winoto A. Coupling of the cell cycle and apoptotic machineries in developing T cells. J Biol Chem 2010; 285:7556-65. [PMID: 20068041 DOI: 10.1074/jbc.m109.035535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation and apoptosis are diametrically opposite processes. Expression of certain genes like c-Myc, however, can induce both, pointing to a possible linkage between them. Developing CD4(+)CD8(+) thymocytes are intrinsically sensitive to apoptosis, but the molecular basis is not known. We have found that these noncycling cells surprisingly express many cell cycle proteins. We generated transgenic mice expressing a CDK2 kinase-dead (CDK2-DN) protein in the T cell compartment. Analysis of these mice showed that the CDK2-DN protein acts as a dominant negative mutant in mature T cells as expected, but surprisingly, it acts as a dominant active protein in CD4(+)CD8(+) thymocytes. The levels of CDK2 kinase activity, cyclin E, cyclin A, and other cell cycle proteins in transgenic CD4(+)CD8(+) thymocytes are increased. Concurrently, caspase levels are elevated, and apoptosis is significantly enhanced in vitro and in vivo. E2F-1, the unique E2F member capable of inducing apoptosis when overexpressed, is specifically up-regulated in transgenic CD4(+)CD8(+) thymocytes but not in other T cell populations. These results demonstrate that the cell cycle and apoptotic machineries are normally linked, and expression of cell cycle proteins in developing T cells contributes to their inherent 1sensitivity to apoptosis.
Collapse
Affiliation(s)
- Ling Xue
- Cancer Research Laboratory and Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ, Spits H, Cantrell DA. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. ACTA ACUST UNITED AC 2009; 206:2441-54. [PMID: 19808258 PMCID: PMC2768858 DOI: 10.1084/jem.20090219] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In normal T cell progenitors, phosphoinositide-dependent kinase l (PDK1)–mediated phosphorylation and activation of protein kinase B (PKB) is essential for the phosphorylation and inactivation of Foxo family transcription factors, and also controls T cell growth and proliferation. The current study has characterized the role of PDK1 in the pathology caused by deletion of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN). PDK1 is shown to be essential for lymphomagenesis caused by deletion of PTEN in T cell progenitors. However, PTEN deletion bypasses the normal PDK1-controlled signaling pathways that determine thymocyte growth and proliferation. PDK1 does have important functions in PTEN-null thymocytes, notably to control the PKB–Foxo signaling axis and to direct the repertoire of adhesion and chemokine receptors expressed by PTEN-null T cells. The results thus provide two novel insights concerning pathological signaling caused by PTEN loss in lymphocytes. First, PTEN deletion bypasses the normal PDK1-controlled metabolic checkpoints that determine cell growth and proliferation. Second, PDK1 determines the cohort of chemokine and adhesion receptors expressed by PTEN-null cells, thereby controlling their migratory capacity.
Collapse
Affiliation(s)
- David K Finlay
- Division of Immunology and Cell Biology, University of Dundee, Dundee DD15EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Hawkins ED, Russell SM. Upsides and downsides to polarity and asymmetric cell division in leukemia. Oncogene 2009; 27:7003-17. [PMID: 19029941 DOI: 10.1038/onc.2008.350] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The notion that polarity regulators can act as tumor suppressors in epithelial cells is now well accepted. The function of these proteins in lymphocytes is less well explored, and their possible function as suppressors of leukemia has had little attention so far. We review the literature on lymphocyte polarity and the growing recognition that polarity proteins have an important function in lymphocyte function. We then describe molecular relationships between the polarity network and signaling pathways that have been implicated in leukemogenesis, which suggest mechanisms by which the polarity network might impact on leukemogenesis. We particularly focus on the possibility that disruption of polarity might alter asymmetric cell division (ACD), and that this might be a leukemia-initiating event. We also explore the converse possibility that leukemic stem cells might be produced or maintained by ACD, and therefore that Dlg, Scribble and Lgl might be important regulators of this process.
Collapse
Affiliation(s)
- E D Hawkins
- Immune Signalling Laboratory, Cancer Immunology, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | |
Collapse
|
35
|
Xue L, Chiang L, Kang C, Winoto A. The role of the PI3K-AKT kinase pathway in T-cell development beyond the beta checkpoint. Eur J Immunol 2008; 38:3200-7. [PMID: 18991293 PMCID: PMC2614442 DOI: 10.1002/eji.200838614] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The PI3K-AKT pathway can mediate diverse biological responses and is crucial for optimal immune responses and lymphocyte development. Deletion of PI3K subunits or AKT leads to blockage of T-cell development at the TCR-beta checkpoint. Studies with over-expression of constitutively activated AKT have implicated this pathway in anti-apoptosis of developing thymocytes and in development of regulatory T cells. However, the role of endogenous PI3K-AKT in T-cell development beyond the TCR-beta checkpoint remains unclear. Here, we inhibited the endogenous PI3K-AKT pathway in thymocytes after double negative stages by expressing the negative regulator, PTEN. These mice exhibit normal early T-cell development, but the transition from intermediate single positive to double positive (DP) thymocytes is inhibited, leading to a significantly decreased number of DP, single positive thymocytes and peripheral T cells. Proliferation of peripheral T cells is reduced but apoptosis of DP cells and subsequent T-cell maturation, including regulatory T cells, are normal. AKT phosphorylation can be readily observed in most WT T-cell compartments but not DP thymocytes in response to TCR activation. Thus, the PI3K-AKT pathway is crucial for the transition of intermediate single positive to DP thymocytes but is dispensable for apoptosis and maturation of developing thymocytes.
Collapse
Affiliation(s)
- Ling Xue
- Cancer Research Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
36
|
The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 2008; 27:5398-415. [PMID: 18794876 DOI: 10.1038/onc.2008.238] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In 1997, PTEN (phosphatase and tensin homologue deleted on chromosome 10, 10q23.3) was identified as an important tumor suppressor gene that is inactivated in a wide variety of human cancers. Ever since, PTEN's function has been extensively studied, and huge progress has been made in understanding PTEN's role in normal physiology and disease. In this review, we will systematically summarize the important data that have been gained from gene inactivation studies in mice and will put these data into physiological context using a tissue-by-tissue approach. We will cover mice exhibiting complete and constitutive inactivation of Pten as well as a large number of strains in which Pten has been conditionally deleted in specific tissues. We hope to highlight not only the tumor suppressive function of Pten but also its roles in embryogenesis and in the maintenance of the normal physiological functions of many organ systems.
Collapse
|