1
|
Tessier E, Cheutin L, Garnier A, Vigne C, Tournier JN, Rougeaux C. Early Circulating Edema Factor in Inhalational Anthrax Infection: Does It Matter? Microorganisms 2024; 12:308. [PMID: 38399712 PMCID: PMC10891819 DOI: 10.3390/microorganisms12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Anthrax toxins are critical virulence factors of Bacillus anthracis and Bacillus cereus strains that cause anthrax-like disease, composed of a common binding factor, the protective antigen (PA), and two enzymatic proteins, lethal factor (LF) and edema factor (EF). While PA is required for endocytosis and activity of EF and LF, several studies showed that these enzymatic factors disseminate within the body in the absence of PA after intranasal infection. In an effort to understand the impact of EF in the absence of PA, we used a fluorescent EF chimera to facilitate the study of endocytosis in different cell lines. Unexpectedly, EF was found inside cells in the absence of PA and showed a pole-dependent endocytosis. However, looking at enzymatic activity, PA was still required for EF to induce an increase in intracellular cAMP levels. Interestingly, the sequential delivery of EF and then PA rescued the rise in cAMP levels, indicating that PA and EF may functionally associate during intracellular trafficking, as well as it did at the cell surface. Our data shed new light on EF trafficking and the potential location of PA and EF association for optimal cytosolic delivery.
Collapse
Affiliation(s)
- Emilie Tessier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Laurence Cheutin
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Annabelle Garnier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Clarisse Vigne
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Jean-Nicolas Tournier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
- Institut Pasteur, 75015 Paris, France
| | - Clémence Rougeaux
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| |
Collapse
|
2
|
Aghbash PS, Rasizadeh R, Arefi V, Nahand JS, Baghi HB. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 2023; 205:280. [PMID: 37430000 DOI: 10.1007/s00203-023-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Arefi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
3
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Zhou Z, Ren Y, Yang J, Liu M, Shi X, Luo W, Fung KM, Xu C, Bronze MS, Zhang Y, Houchen CW, Li M. Acetyl-Coenzyme A Synthetase 2 Potentiates Macropinocytosis and Muscle Wasting Through Metabolic Reprogramming in Pancreatic Cancer. Gastroenterology 2022; 163:1281-1293.e1. [PMID: 35777482 PMCID: PMC9613512 DOI: 10.1053/j.gastro.2022.06.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Rapid deconditioning, also called cachexia, and metabolic reprogramming are two hallmarks of pancreatic cancer. Acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is an acetyl-enzyme A synthetase that contributes to lipid synthesis and epigenetic reprogramming. However, the role of ACSS2 on the nonselective macropinocytosis and cancer cachexia in pancreatic cancer remains elusive. In this study, we demonstrate that ACSS2 potentiates macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer. METHODS Clinical significance of ACSS2 was analyzed using samples from patients with pancreatic cancer. ACSS2-knockout cells were established using the clustered regularly interspaced short palindromic repeats-associated protein 9 system. Single-cell RNA sequencing data from genetically engineered mouse models was analyzed. The macropinocytotic index was evaluated by dextran uptake assay. Chromatin immunoprecipitation assay was performed to validate transcriptional activation. ACSS2-mediated tumor progression and muscle wasting were examined in orthotopic xenograft models. RESULTS Metabolic stress induced ACSS2 expression, which is associated with worse prognosis in pancreatic cancer. ACSS2 knockout significantly suppressed cell proliferation in 2-dimensional and 3-dimensional models. Macropinocytosis-associated genes are upregulated in tumor tissues and are correlated with worse prognosis. ACSS2 knockout inhibited macropinocytosis. We identified Zrt- and Irt-like protein 4 (ZIP4) as a downstream target of ACSS2, and knockdown of ZIP4 reversed ACSS2-induced macropinocytosis. ACSS2 upregulated ZIP4 through ETV4-mediated transcriptional activation. ZIP4 induces macropinocytosis through cyclic adenosine monophosphate response element-binding protein-activated syndecan 1 (SDC1) and dynamin 2 (DNM2). Meanwhile, ZIP4 drives muscle wasting and cachexia via glycogen synthase kinase-β (GSK3β)-mediated secretion of tumor necrosis factor superfamily member 10 (TRAIL or TNFSF10). ACSS2 knockout attenuated muscle wasting and extended survival in orthotopic mouse models. CONCLUSIONS ACSS2-mediated metabolic reprogramming activates the ZIP4 pathway, and promotes macropinocytosis via SDC1/DNM2 and drives muscle wasting through the GSK3β/TRAIL axis, which potentially provides additional nutrients for macropinocytosis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhijun Zhou
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yu Ren
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mingyang Liu
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiuhui Shi
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael S Bronze
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuqing Zhang
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Courtney W Houchen
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
5
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
6
|
Chen H, Agrawal DK, Thankam FG. Biomaterials-Driven Sterile Inflammation. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:22-34. [PMID: 33213285 PMCID: PMC8892963 DOI: 10.1089/ten.teb.2020.0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Performance of the biomaterials used for regenerative medicine largely depends on biocompatibility; however, the biological mechanisms underlying biocompatibility of a biomaterial within the host system is poorly understood. In addition to the classical immune response against non-self-entities, the sterile inflammatory response could limit the compatibility of biological scaffolds. Whereas the immediate to short-term host response to a biomaterial implant have been characterized, the long-term progression of host-biomaterial relationship has not been described. This article explores the novel concept of biomaterials-driven sterile inflammation (BSI) in long-term biodegradable implants and throws light for possible explanation for the onset of BSI and the associated damage-associated molecular patterns. The understanding of BSI would advance the current strategies to improve biomaterial-host tissue integration and open novel translational avenues in biomaterials-based tissue regeneration. Impact statement Understanding the novel concept of biomaterials-driven sterile inflammation and associated damage-associated molecular patterns in long-term biodegradable implants would determine their success and improves the tissue engineering and regenerative strategies.
Collapse
Affiliation(s)
- Henry Chen
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
- Address correspondence to: Finosh G. Thankam, PhD, Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
7
|
Rougeaux C, Becher F, Goossens PL, Tournier JN. Very Early Blood Diffusion of the Active Lethal and Edema Factors of Bacillus anthracis After Intranasal Infection. J Infect Dis 2020; 221:660-667. [PMID: 31574153 PMCID: PMC6996859 DOI: 10.1093/infdis/jiz497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 11/22/2022] Open
Abstract
Background Lethal and edema toxins are critical virulence factors of Bacillus anthracis. Few data are available on their presence in the early stage of intranasal infection. Methods To investigate the diffusion of edema factor (EF) and lethal factor (LF), we use sensitive quantitative methods to measure their enzymatic activities in mice intranasally challenged with a wild-type B anthracis strain or with an isogenic mutant deficient for the protective antigen. Results One hour after mouse challenge, although only 7% of mice presented bacteremia, LF and EF were detected in the blood of 100% and 42% of mice, respectively. Protective antigen facilitated the diffusion of LF and EF into the blood compartment. Toxins played a significant role in the systemic dissemination of B anthracis in the blood, spleen, and liver. A mouse model of intoxination further confirmed that LT and ET could diffuse rapidly in the circulation, independently of bacteria. Conclusions In this inhalational model, toxins have disseminated rapidly in the blood, playing a significant and novel role in the early systemic diffusion of bacteria, demonstrating that they may represent a very early target for the diagnosis and the treatment of anthrax.
Collapse
Affiliation(s)
- Clémence Rougeaux
- Unité Biothérapies Anti-Infectieuses et Immunité, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
| | - François Becher
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
| | - Jean-Nicolas Tournier
- Unité Biothérapies Anti-Infectieuses et Immunité, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France.,Ecole du Val-de-Grâce, Paris, France.,Centre National de Référence-Laboratoire Expert Charbon, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Intracranial atherosclerosis (ICAS) is the most common cause of stroke throughout the world. It also increases the risk of recurrent stroke and dementia. As a complex and multifactorial disease, ICAS is influenced by multiple genetic, biological, and environmental factors. This review summarizes the candidate gene and genome-wide studies aimed at discovering genetic risk factors of ICAS. RECENT FINDINGS Numerous studies have focused on the association between single-nucleotide polymorphisms (SNPs) of atherosclerosis-related genes and the risk of ICAS. Variants in adiponectin Q (ADIPOQ), ring finger protein 213 (RNF213), apolipoprotein E (APOE), phosphodiesterase 4D (PDE4D), methylenetetrahydrofolate reductase (MTHFR), lipoprotein lipase (LPL), α-adducin (ADD1) genes, angiotensin-converting enzyme (ACE), and other genes related to renin-angiotensin-aldosterone system have been associated with ICAS. We review the available evidences on the candidate genes and SNPs associated with genetic susceptibility to ICAS, and point out future developments of this field. Genetic discoveries could have clinical implications for intracranial atherosclerotic disease.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th Street, 6th floor, Suite 639, New York, NY, 10032, USA
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th Street, 6th floor, Suite 639, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
10
|
Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry 2019; 58:2996-3004. [PMID: 31243996 DOI: 10.1021/acs.biochem.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.
Collapse
Affiliation(s)
- Mara Farcasanu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrew G Wang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Tomasz Uchański
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiping Yue
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Zhaochun Chen
- National Institute of Allergy and Infection , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiaoyang Wu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wei-Jen Tang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
11
|
Li C, Qu L, Farragher C, Vella A, Zhou B. MicroRNA Regulated Macrophage Activation in Obesity. J Transl Int Med 2019; 7:46-52. [PMID: 31380236 PMCID: PMC6661877 DOI: 10.2478/jtim-2019-0011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Cullen Farragher
- College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, USA
| | - Anthony Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
12
|
Larabee JL, Hauck G, Ballard JD. Unique, Intersecting, and Overlapping Roles of C/EBP β and CREB in Cells of the Innate Immune System. Sci Rep 2018; 8:16931. [PMID: 30446701 PMCID: PMC6240029 DOI: 10.1038/s41598-018-35184-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
CREB and C/EBP β signaling pathways are modulated during inflammation and also targeted by Bacillus anthracis edema toxin (ET), but how these factors individually and jointly contribute to changes in immune cell function is poorly understood. Using CRISPR/Cas9 gene editing, macrophage cell lines lacking CREB and isoforms of C/EBP β were generated and analyzed for changes in responses to LPS, ET, and IL-4. Macrophages lacking C/EBP β suppressed induction of IL-10 and Arg1, while IL-6 was increased in these cells following exposure to LPS. Examination of C/EBP β isoforms indicated the 38 kDa isoform was necessary for the expression of IL-10 and Arg1. ChIP-Seq analysis of CREB and C/EBP β binding to targets on the chromosome of human PBMC identified several regions where both factors overlapped in their binding, suggesting similar gene targeting or cooperative effects. Based on the ChIP-Seq data, a panel of previously unknown targets of CREB and C/EBP β was identified and includes genes such as VNN2, GINS4, CTNNBL1, and SULF2. Isoforms of a transcriptional corepressor, transducin-like enhancer of Split (TLE), were also found to have CREB and C/EBP β binding their promoter and were up regulated by ET. Finally, we explore a possible layer of C/EBP β regulation by a protein complex consisting of adenomatous polyposis coli (APC) and PKA. Collectively, these data provide new insights into the role of CREB and C/EBP β as immunosignaling regulators and targets of an important bacterial virulence factor.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Garrett Hauck
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.
| |
Collapse
|
13
|
Lai HY, Hsu LW, Tsai HH, Lo YC, Yang SH, Liu PY, Wang JM. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc Res 2018; 113:1376-1388. [PMID: 28859294 DOI: 10.1093/cvr/cvx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Lipid homeostasis is reprogrammed in the presence of inflammation, which results in excessive lipid accumulation in macrophages, and leads to the formation of lipid-laden foam cells. We aimed to link an inflammation-responsive transcription factor CCAAT/enhancer-binding protein delta (CEBPD) with polarized macrophages and dissect its contribution to lipid accumulation. Methods and results We found that CEBPD protein colocalized with macrophages in human and mouse (C57BL/6, Apoe-/-) atherosclerotic plaques and that Cebpd deficiency in bone marrow cells suppressed atherosclerotic lesions in hyperlipidemic Apoe-/- mice. CEBPD was responsive to modified low-density lipoprotein (LDL) via the p38MAPK/CREB pathway, and it promoted lipid accumulation in M1 macrophages but not in M2 macrophages. CEBPD up-regulated pentraxin 3 (PTX3), which promoted the macropinocytosis of LDL, and down-regulated ATP-binding cassette subfamily A member 1 (ABCA1), which impaired the intracellular cholesterol efflux in M1 macrophages. We further found that simvastatin (a HMG-CoA reductase inhibitor) could target CEBPD to block lipid accumulation in a manner not directly related to its cholesterol-lowering effect in M1 macrophages. Conclusion This study underscores how CEBPD functions at the junction of inflammation and lipid accumulation in M1 macrophages. Therefore, CEBPD-mediated lipid accumulation in M1 macrophages could represent a new therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Wei Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Molecular Inflammation Research, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res 2018; 191:29-44. [PMID: 29154757 PMCID: PMC5776711 DOI: 10.1016/j.trsl.2017.10.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
Chronic overnutrition and obesity induces low-grade inflammation throughout the body. Termed "meta-inflammation," this chronic state of inflammation is mediated by macrophages located within the colon, liver, muscle, and adipose tissue. A sentinel orchestrator of immune activity and homeostasis, macrophages adopt variable states of activation as a function of time and environmental cues. Meta-inflammation phenotypically skews these polarization states and has been linked to numerous metabolic disorders. The past decade has revealed several key regulators of macrophage polarization, including the signal transducer and activator of transcription family, the peroxisome proliferator-activated receptor gamma, the CCAAT-enhancer-binding proteins (C/EBP) family, and the interferon regulatory factors. Recent studies have also suggested that microRNAs and long noncoding RNA influence macrophage polarization. The pathogenic alteration of macrophage polarization in meta-inflammation is regulated by both extracellular and intracellular cues, resulting in distinct secretome profiles. Meta-inflammation-altered macrophage polarization has been linked to insulin insensitivity, atherosclerosis, inflammatory bowel disease, cancer, and autoimmunity. Thus, further mechanistic exploration into the skewing of macrophage polarization promises to have profound impacts on improving global health.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Maria M Xu
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Kepeng Wang
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Adam J Adler
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Anthony T Vella
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn.
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn.
| |
Collapse
|
15
|
Chu C, Deng J, Sun X, Qu Y, Man Y. Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:421-435. [PMID: 28372518 DOI: 10.1089/ten.teb.2016.0463] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianchang Sun
- Yantai Zhenghai Bio-Tech, Laboratory of Shandong Province, Yantai, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Han S, Zhuang H, Shumyak S, Wu J, Li H, Yang LJ, Reeves WH. A Novel Subset of Anti-Inflammatory CD138 + Macrophages Is Deficient in Mice with Experimental Lupus. THE JOURNAL OF IMMUNOLOGY 2017; 199:1261-1274. [PMID: 28696256 DOI: 10.4049/jimmunol.1700099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Dead cells accumulating in the tissues may contribute to chronic inflammation. We examined the cause of impaired apoptotic cell clearance in human and murine lupus. Dead cells accumulated in bone marrow from lupus patients but not from nonautoimmune patients undergoing myeloablation, where they were efficiently removed by macrophages (MΦ). Impaired apoptotic cell uptake by MΦ also was seen in mice treated i.p. with pristane (develop lupus) but not mineral oil (MO) (do not develop lupus). The inflammatory response to both pristane and MO rapidly depleted resident (Tim4+) large peritoneal MΦ. The peritoneal exudate of pristane-treated mice contained mainly Ly6Chi inflammatory monocytes; whereas in MO-treated mice, it consisted predominantly of a novel subset of highly phagocytic MΦ resembling small peritoneal MΦ (SPM) that expressed CD138+ and the scavenger receptor Marco. Treatment with anti-Marco-neutralizing Abs and the class A scavenger receptor antagonist polyinosinic acid inhibited phagocytosis of apoptotic cells by CD138+ MΦ. CD138+ MΦ expressed IL-10R, CD206, and CCR2 but little TNF-α or CX3CR1. They also expressed high levels of activated CREB, a transcription factor implicated in generating alternatively activated MΦ. Similar cells were identified in the spleen and lung of MO-treated mice and also were induced by LPS. We conclude that highly phagocytic, CD138+ SPM-like cells with an anti-inflammatory phenotype may promote the resolution of inflammation in lupus and infectious diseases. These SPM-like cells are not restricted to the peritoneum and may help clear apoptotic cells from tissues such as the lung, helping to prevent chronic inflammation.
Collapse
Affiliation(s)
- Shuhong Han
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610; and
| | - Haoyang Zhuang
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610; and
| | - Stepan Shumyak
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610; and
| | - Jingfan Wu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610; and
| | - Hui Li
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Westley H Reeves
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610; and
| |
Collapse
|
17
|
Cheng CS, Behar MS, Suryawanshi GW, Feldman KE, Spreafico R, Hoffmann A. Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms. Cell Syst 2017; 4:330-343.e5. [PMID: 28237795 PMCID: PMC5434763 DOI: 10.1016/j.cels.2017.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/30/2016] [Accepted: 01/13/2017] [Indexed: 02/03/2023]
Abstract
Combinatorial control of gene expression is presumed to be mediated by molecular interactions between coincident transcription factors (TFs). While information on the genome-wide locations of TFs is available, the genes they regulate and whether they function combinatorially often remain open questions. Here, we developed a mechanistic, rather than statistical, modeling approach to elucidate TF control logic from gene expression data. Applying this approach to hundreds of genes in 85 datasets measuring the transcriptional responses of murine fibroblasts and macrophages to cytokines and pathogens, we found that stimulus-responsive TFs generally function sequentially in logical OR gates or singly. Logical AND gates were found between NF-κB-responsive mRNA synthesis and MAPKp38-responsive control of mRNA half-life, but not between temporally coincident TFs. Our analyses identified the functional target genes of each of the pathogen-responsive TFs and prompt a revision of the conceptual underpinnings of combinatorial control of gene expression to include sequentially acting molecular mechanisms that govern mRNA synthesis and decay.
Collapse
Affiliation(s)
- Christine S Cheng
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marcelo S Behar
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Gajendra W Suryawanshi
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Kristyn E Feldman
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Roberto Spreafico
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA.
| |
Collapse
|
18
|
Angsana J, Chen J, Liu L, Haller CA, Chaikof EL. Efferocytosis as a regulator of macrophage chemokine receptor expression and polarization. Eur J Immunol 2016; 46:1592-9. [PMID: 27139187 DOI: 10.1002/eji.201546262] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/25/2016] [Accepted: 04/28/2016] [Indexed: 01/15/2023]
Abstract
Efferocytosis has been suggested to promote macrophage resolution programs that are dependent on motility and emigration, however, few studies have addressed directed migration in resolving macrophages. In this report, we hypothesized that efferocytosis would induce differential chemokine receptor expression. Polarized macrophage populations, including macrophages actively engaged in efferocytosis, were characterized by PCR array and traditional transwell motility assays. We identified specific up-regulation of chemokine receptor CXCR4 on both mouse and human macrophages and characterized in vivo expression of CXCR4 in a resolving model of murine peritonitis. Using adoptive transfer and AMD3100 blocking, we confirmed a role for CXCR4 in macrophage egress to draining lymphatics. Collectively these data provide an important mechanistic link between efferocytosis and macrophage emigration.
Collapse
Affiliation(s)
- Julianty Angsana
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Liying Liu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Elliot L Chaikof
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
19
|
In vivo dynamics of active edema and lethal factors during anthrax. Sci Rep 2016; 6:23346. [PMID: 26996161 PMCID: PMC4800402 DOI: 10.1038/srep23346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Lethal and edema toxins are critical virulence factors of Bacillus anthracis. However, little is known about their in vivo dynamics of production during anthrax. In this study, we unraveled for the first time the in vivo kinetics of production of the toxin components EF (edema factor) and LF (lethal factor) during cutaneous infection with a wild-type toxinogenic encapsulated strain in immuno-competent mice. We stratified the asynchronous infection process into defined stages through bioluminescence imaging (BLI), while exploiting sensitive quantitative methods by measuring the enzymatic activity of LF and EF. LF was produced in high amounts, while EF amounts steadily increased during the infectious process. This led to high LF/EF ratios throughout the infection, with variations between 50 to a few thousands. In the bloodstream, the early detection of active LF and EF despite the absence of bacteria suggests that they may exert long distance effects. Infection with a strain deficient in the protective antigen toxin component enabled to address its role in the diffusion of LF and EF within the host. Our data provide a picture of the in vivo complexity of the infectious process.
Collapse
|
20
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
21
|
Goossens PL, Tournier JN. Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown. Front Microbiol 2015; 6:1122. [PMID: 26500645 PMCID: PMC4598578 DOI: 10.3389/fmicb.2015.01122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Anthrax, caused by Bacillus anthracis, a Gram-positive spore-forming bacterium, is initiated by the entry of spores into the host body. There are three types of human infection: cutaneous, inhalational, and gastrointestinal. For each form, B. anthracis spores need to cross the cutaneous, respiratory or digestive epithelial barriers, respectively, as a first obligate step to establish infection. Anthrax is a toxi-infection: an association of toxemia and rapidly spreading infection progressing to septicemia. The pathogenicity of Bacillus anthracis mainly depends on two toxins and a capsule. The capsule protects bacilli from the immune system, thus promoting systemic dissemination. The toxins alter host cell signaling, thereby paralyzing the immune response of the host and perturbing the endocrine and endothelial systems. In this review, we will mainly focus on the events and mechanisms leading to crossing of the respiratory epithelial barrier, as the majority of studies have addressed inhalational infection. We will discuss the critical gaps of knowledge that need to be addressed to gain a comprehensive view of the initial steps of inhalational anthrax. We will then discuss the few data available on B. anthracis crossing the cutaneous and digestive epithelia.
Collapse
Affiliation(s)
- Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur , Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur , Paris, France ; Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France ; Ecole du Val-de-Grâce , Paris, France
| |
Collapse
|
22
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
23
|
Micropatterned macrophage analysis reveals global cytoskeleton constraints induced by Bacillus anthracis edema toxin. Infect Immun 2015; 83:3114-25. [PMID: 26015478 DOI: 10.1128/iai.00479-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/16/2015] [Indexed: 12/20/2022] Open
Abstract
Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton.
Collapse
|
24
|
Angsana J, Chen J, Smith S, Xiao J, Wen J, Liu L, Haller CA, Chaikof EL. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler Thromb Vasc Biol 2014; 35:332-40. [PMID: 25550207 DOI: 10.1161/atvbaha.114.304720] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Syndecan-1 (Sdc-1) is a member of a family of cell surface proteoglycans, which has been reported to participate in the regulation of events relevant to tissue repair and chronic injury responses, including cell-substrate interactions, matrix remodeling, and cell migration. In this study, we report the functional significance of Sdc-1 in polarized macrophage populations and its role in adhesion and motility events relevant to resolution of the inflammatory program. APPROACH AND RESULTS Macrophage Sdc-1 expression is associated with differentiated M2 macrophages with high intrinsic motility, and Sdc-1 deficiency is characterized by impaired migration and enhanced adhesion. Leukocyte infiltration and emigration were examined in a thioglycollate-induced model of peritonitis in Sdc-1(+/+) and Sdc-1(-/-) mice. Although the infiltration of inflammatory cells was similar in both cohorts, a significant delay in the lymphatic clearance of Sdc-1(-/-) macrophages was observed. Moreover, we observed enhanced inflammation and greater burden of atherosclerotic plaques in ApoE(-/-)Sdc-1(-/-) mice maintained on a Western diet. CONCLUSIONS These results demonstrate that defective motility in Sdc-1(-/-) macrophages promotes a persistent inflammatory state with relevance to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Julianty Angsana
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Jiaxuan Chen
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Sumona Smith
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Jiantao Xiao
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Jing Wen
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Liying Liu
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Carolyn A Haller
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.).
| | - Elliot L Chaikof
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.).
| |
Collapse
|
25
|
Tournier JN, Ulrich RG, Quesnel-Hellmann A, Mohamadzadeh M, Stiles BG. Anthrax, toxins and vaccines: a 125-year journey targetingBacillus anthracis. Expert Rev Anti Infect Ther 2014; 7:219-36. [DOI: 10.1586/14787210.7.2.219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Abstract
In the healthy gastrointestinal tract, homeostasis is an active process that requires a careful balance of host responses to the enteric luminal contents. Intestinal macrophages and dendritic cells (DCs) comprise a unique group of tissue immune cells that are ideally situated at the interface of the host and the enteric luminal environment to appropriately respond to microbes and ingested stimuli. However, intrinsic defects in macrophage and DC function contribute to the pathogenesis of inflammatory bowel diseases, as highlighted by recent genome-wide association studies. Gastrointestinal macrophages and DCs participate in inflammatory bowel disease development through inappropriate responses to enteric microbial stimuli, inefficient clearance of microbes from host tissues, and impaired transition from appropriate proinflammatory responses to anti-inflammatory responses that promote resolution. By understanding how intestinal macrophages and DCs initiate chronic inflammation, new pathogenesis-based therapeutic strategies to treat human inflammatory bowel diseases will be elucidated.
Collapse
|
27
|
Larabee JL, Shakir SM, Barua S, Ballard JD. Increased cAMP in monocytes augments Notch signaling mechanisms by elevating RBP-J and transducin-like enhancer of Split (TLE). J Biol Chem 2013; 288:21526-36. [PMID: 23775085 DOI: 10.1074/jbc.m113.465120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In cells of the innate immune system, pathological increases in intracellular cAMP attenuate immune responses and contribute to infections by bacteria such as Bacillus anthracis. In this work, cAMP from B. anthracis edema toxin (ET) is found to activate the Notch signaling pathway in both mouse macrophages and human monocytes. ET as well as a cell-permeable activator of PKA induce Notch target genes (HES1, HEY1, IL2RA, and IL7R) and are able to significantly enhance the induction of these Notch target genes by a Toll-like receptor ligand. Elevated cAMP also resulted in increased levels of Groucho/transducin-like enhancer of Split (TLE) and led to increased amounts of a transcriptional repressor complex consisting of TLE and the Notch target Hes1. To address the mechanism used by ET to activate Notch signaling, components of Notch signaling were examined, and results revealed that ET increased levels of recombinant recognition sequence binding protein at the Jκ site (RBP-J), a DNA binding protein and principal transcriptional regulator of Notch signaling. Overexpression studies indicated that RBP-J was sufficient to activate Notch signaling and potentiate LPS-induced Notch signaling. Further examination of the mechanism used by ET to activate Notch signaling revealed that C/EBP β, a transcription factor activated by cAMP, helped activate Notch signaling and up-regulated RBP-J. These studies demonstrate that cAMP activates Notch signaling and increases the expression of TLE, which could be an important mechanism utilized by cAMP to suppress immune responses.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
28
|
Mones L, Tang WJ, Florián J. Empirical valence bond simulations of the chemical mechanism of ATP to cAMP conversion by anthrax edema factor. Biochemistry 2013; 52:2672-82. [PMID: 23480863 DOI: 10.1021/bi400088y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two-metal catalysis by the adenylyl cyclase domain of the anthrax edema factor toxin was simulated using the empirical valence bond (EVB) quantum mechanical/molecular mechanical approach. These calculations considered the energetics of the nucleophile deprotonation and the formation of a new P-O bond in aqueous solution and in the enzyme-substrate complex present in the crystal structure models of the reactant and product states of the reaction. Our calculations support a reaction pathway that involves metal-assisted transfer of a proton from the nucleophile to the bulk aqueous solution followed by subsequent formation of an unstable pentavalent intermediate that decomposes into cAMP and pyrophosphate (PPi). This pathway involves ligand exchange in the first solvation sphere of the catalytic metal. At 12.9 kcal/mol, the barrier for the last step of the reaction, the cleavage of the P-O bond to PPi, corresponds to the highest point on the free energy profile for this reaction pathway. However, this energy is too close to the value of 11.4 kcal/mol calculated for the barrier of the nucleophilic attack step to reach a definitive conclusion about the rate-limiting step. The calculated reaction mechanism is supported by reasonable agreement between the experimental and calculated catalytic rate constant decrease caused by the mutation of the active site lysine 346 to arginine.
Collapse
Affiliation(s)
- Letif Mones
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois 60660, USA
| | | | | |
Collapse
|
29
|
Lemichez E, Barbieri JT. General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med 2013; 3:a013573. [PMID: 23378599 DOI: 10.1101/cshperspect.a013573] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens produce protein toxins to influence host-pathogen interactions and tip the outcome of these encounters toward the benefit of the pathogen. Protein toxins modify host-specific targets through posttranslational modifications (PTMs) or noncovalent interactions that may inhibit or activate host cell physiology to benefit the pathogen. Recent advances have identified new PTMs and host targets for toxin action. Understanding the mechanisms of toxin action provides a basis to develop vaccines and therapies to combat bacterial pathogens and to develop new strategies to use toxin derivatives for the treatment of human disease.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Microbial Toxins in Host-Pathogen Interactions, C3M, Université de Nice-Sophia-Antipolis, UFR Médecine, 06204 Nice, France.
| | | |
Collapse
|
30
|
Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm 2013; 2013:491497. [PMID: 23509419 PMCID: PMC3572642 DOI: 10.1155/2013/491497] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair.
Collapse
|
31
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
32
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
33
|
Perdiguero E, Kharraz Y, Serrano AL, Muñoz-Cánoves P. MKP-1 coordinates ordered macrophage-phenotype transitions essential for stem cell-dependent tissue repair. Cell Cycle 2012; 11:877-86. [PMID: 22361726 DOI: 10.4161/cc.11.5.19374] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Re-establishing tissue homoeostasis in response to injury requires infiltration of inflammatory cells and activation of resident stem cells. However, full tissue recovery also requires that the inflammation is resolved. While it is known that disturbing the interactions between inflammatory cells and tissue resident cells prevents successful healing, the molecular mechanisms underlying the paracrine interactions between these cell types are practically unknown. Here, and in a recent study, we provide mechanistic evidence that macrophages control stem cell-dependent tissue repair. In particular, we found that the temporal spacing of the pro- to anti-inflammatory macrophage polarization switch is controlled by the balance of p38 MAPK (termed here p38) and the MAPK phosphatase MKP-1 during the muscle healing process. Moreover, we demonstrate a new function for MKP-1-regulated p38 signaling in deactivating macrophages during inflammation resolution after injury. Specifically, at advanced stages of regeneration, MKP-1 loss caused an unscheduled "exhaustion-like" state in muscle macrophages, in which neither pro- nor anti-inflammatory cytokines are expressed despite persistent tissue damage, leading to dysregulated reparation by the tissue stem cells. Mechanistically, we demonstrate that p38 and MKP-1 control the AKT pathway through a miR-21-dependent PTEN regulation. Importantly, both genetic and pharmacological interference with the individual components of this pathway restored inflammation-dependent tissue homeostasis in MKP-1-deficient mice and delayed inflammation resolution and tissue repair dysregulation in wild-type mice. Because the process of tolerance to bacterial infection involves a progressive attenuation of pro-inflammatory gene expression, we discuss here the potential similarities between the mechanisms underlying inflammation resolution during tissue repair and those controlling endotoxin tolerance.
Collapse
Affiliation(s)
- Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
| | | | | | | |
Collapse
|
34
|
Weiner ZP, Boyer AE, Gallegos-Candela M, Cardani AN, Barr JR, Glomski IJ. Debridement increases survival in a mouse model of subcutaneous anthrax. PLoS One 2012; 7:e30201. [PMID: 22393351 PMCID: PMC3290625 DOI: 10.1371/journal.pone.0030201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
Anthrax is caused by infection with Bacillus anthracis, a spore-forming gram-positive bacterium. A major virulence factor for B. anthracis is an immunomodulatory tripartite exotoxin that has been reported to alter immune cell chemotaxis and activation. It has been proposed that B. anthracis infections initiate through entry of spores into the regional draining lymph nodes where they germinate, grow, and disseminate systemically via the efferent lymphatics. If this model holds true, it would be predicted that surgical removal of infected tissues, debridement, would have little effect on the systemic dissemination of bacteria. This model was tested through the development of a mouse debridement model. It was found that removal of the site of subcutaneous infection in the ear increased the likelihood of survival and reduced the quantity of spores in the draining cervical lymph nodes (cLN). At the time of debridement 12 hours post-injection measurable levels of exotoxins were present in the ear, cLN, and serum, yet leukocytes within the cLN were activated; countering the concept that exotoxins inhibit the early inflammatory response to promote bacterial growth. We conclude that the initial entry of spores into the draining lymph node of cutaneous infections alone is not sufficient to cause systemic disease and that debridement should be considered as an adjunct to antibiotic therapy.
Collapse
Affiliation(s)
- Zachary P. Weiner
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anne E. Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Maribel Gallegos-Candela
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amber N. Cardani
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ian J. Glomski
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
35
|
Trescos Y, Tournier JN. Cytoskeleton as an emerging target of anthrax toxins. Toxins (Basel) 2012; 4:83-97. [PMID: 22474568 PMCID: PMC3317109 DOI: 10.3390/toxins4020083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/21/2012] [Accepted: 01/26/2012] [Indexed: 01/29/2023] Open
Abstract
Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT) and edema toxin (ET). So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.
Collapse
Affiliation(s)
- Yannick Trescos
- Unité Interactions Hôte-Agents pathogènes, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, BP 87, 24 avenue des Maquis du Grésivaudan 38702 La Tronche Cedex, France;
- Ecole du Val-de-Grâce, 1 place Alphonse Lavéran, 75005 Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents pathogènes, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, BP 87, 24 avenue des Maquis du Grésivaudan 38702 La Tronche Cedex, France;
- Ecole du Val-de-Grâce, 1 place Alphonse Lavéran, 75005 Paris, France
- Author to whom correspondence should be addressed; ; Tel.: +33-4-76636850; Fax: +33-4-76636917
| |
Collapse
|
36
|
Selwa E, Laine E, Malliavin TE. Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 2012; 80:1028-40. [DOI: 10.1002/prot.24005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
|
37
|
Xiao J, Angsana J, Wen J, Smith SV, Park PW, Ford ML, Haller CA, Chaikof EL. Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses. Arterioscler Thromb Vasc Biol 2011; 32:386-96. [PMID: 22173227 DOI: 10.1161/atvbaha.111.242198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Chronic inflammation drives progressive and pathological remodeling inherent to formation of abdominal aortic aneurysm (AAA). Syndecan-1 (Sdc-1) is a cell surface heparan sulfate proteoglycan that displays the capacity to modulate inflammatory processes within the vascular wall. In the current investigation, the role of Sdc-1 in AAA formation was examined using 2 models of experimental aneurysm induction, angiotensin II infusion and elastase perfusion. METHODS AND RESULTS Sdc-1 deficiency exacerbated AAA formation in both experimental models and was associated with increased degradation of elastin, greater protease activity, and enhanced inflammatory cell recruitment into the aortic wall. Bone marrow transplantation studies indicated that deficiency of Sdc-1 in marrow-derived cells significantly contributed to AAA severity. Immunostaining revealed augmented Sdc-1 expression in a subset of AAA localized macrophages. We specifically characterized a higher percentage of CD4(+) T cells in Sdc-1-deficient AAA, and antibody depletion studies established the active role of T cells in aneurysmal dilatation. Finally, we confirmed the ability of Sdc-1 macrophage to modulate the inflammatory chemokine environment. CONCLUSIONS These investigations identify cross-talk between Sdc-1-expressing macrophages and AAA-localized CD4(+) T cells, with Sdc-1 providing an important counterbalance to T-cell-driven inflammation in the vascular wall.
Collapse
Affiliation(s)
- Jiantao Xiao
- BIDMC, 110 Francis St, Suite 9F, Boston, MA 02215 or Carolyn A. Haller, PhD, BIDMC, 110 Francis St, Suite 9F, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 2011; 10:27-38. [PMID: 22080930 DOI: 10.1038/nrmicro2688] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All organisms must sense and respond to their external environments, and this signal transduction often involves second messengers such as cyclic nucleotides. One such nucleotide is cyclic AMP, a universal second messenger that is used by diverse forms of life, including mammals, fungi, protozoa and bacteria. In this review, we discuss the many roles of cAMP in bacterial, fungal and protozoan pathogens and its contributions to microbial pathogenesis. These roles include the coordination of intracellular processes, such as virulence gene expression, with extracellular signals from the environment, and the manipulation of host immunity by increasing cAMP levels in host cells during infection.
Collapse
Affiliation(s)
- Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, New York, New York 12201-2002, USA. kathleen.mcdonough@ wadsworth.org
| | | |
Collapse
|
39
|
Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011; 11:750-61. [PMID: 22025054 DOI: 10.1038/nri3088] [Citation(s) in RCA: 1691] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In terms of both phenotype and function, macrophages have remarkable heterogeneity, which reflects the specialization of tissue-resident macrophages in microenvironments as different as liver, brain and bone. Also, marked changes in the activity and gene expression programmes of macrophages can occur when they come into contact with invading microorganisms or injured tissues. Therefore, the macrophage lineage includes a remarkable diversity of cells with different functions and functional states that are specified by a complex interplay between microenvironmental signals and a hardwired differentiation programme that determines macrophage identity. In this Review, we summarize the current knowledge of transcriptional and chromatin-mediated control of macrophage polarization in physiology and disease.
Collapse
|
40
|
Dumetz F, Jouvion G, Khun H, Glomski IJ, Corre JP, Rougeaux C, Tang WJ, Mock M, Huerre M, Goossens PL. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2523-35. [PMID: 21641378 DOI: 10.1016/j.ajpath.2011.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 12/27/2022]
Abstract
Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection.
Collapse
Affiliation(s)
- Fabien Dumetz
- Pathogenesis of Bacterial Toxi-Infections Laboratory, Pasteur Institute (Institut Pasteur), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Guichard A, Nizet V, Bier E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2011; 14:97-118. [PMID: 21930233 DOI: 10.1016/j.micinf.2011.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
42
|
Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages. Infect Immun 2011; 79:3302-8. [PMID: 21576335 DOI: 10.1128/iai.05070-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anthrax edema toxin (ET) is one of two binary toxins produced by Bacillus anthracis that contributes to the virulence of this pathogen. ET is an adenylate cyclase that generates high levels of cyclic AMP (cAMP), causing alterations in multiple host cell signaling pathways. We previously demonstrated that ET increases cell surface expression of the anthrax toxin receptors (ANTXR) in monocyte-derived cells and promotes dendritic cell (DC) migration toward the lymph node-homing chemokine MIP-3β. In this work, we sought to determine if glycogen synthase kinase 3 (GSK-3) is important for ET-induced modulation of macrophage and DC function. We demonstrate that inhibition of GSK-3 dampens ET-induced maturation and migration processes of monocyte-derived dendritic cells (MDDCs). Additional studies reveal that the ET-induced expression of ANTXR in macrophages was decreased when GSK-3 activity was disrupted with chemical inhibitors or with small interfering RNA (siRNA) targeting GSK-3. Further examination of the ET induction of ANTXR revealed that a dominant negative form of CREB could block the ET induction of ANTXR, suggesting that CREB or a related family member was involved in the upregulation of ANTXR. Because CREB and GSK-3 activity appeared to be important for ET-induced ANTXR expression, the impact of GSK-3 on ET-induced CREB activity was examined in RAW 264.7 cells possessing a CRE-luciferase reporter. As with ANTXR expression, the ET induction of the CRE reporter was decreased by reducing GSK-3 activity. These studies not only provide insight into host pathways targeted by ET but also shed light on interactions between GSK-3 and CREB pathways in host immune cells.
Collapse
|
43
|
Larabee JL, Shakir SM, Hightower L, Ballard JD. Adenomatous polyposis coli protein associates with C/EBP beta and increases Bacillus anthracis edema toxin-stimulated gene expression in macrophages. J Biol Chem 2011; 286:19364-72. [PMID: 21487015 DOI: 10.1074/jbc.m111.224543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of cAMP from Bacillus anthracis edema toxin (ET) activates gene expression in macrophages through a complex array of signaling pathways, most of which remain poorly defined. In this study, the tumor suppressor protein adenomatous polyposis coli (APC) was found to be important for the up-regulation of previously defined ET-stimulated genes (Vegfa, Ptgs2, Arg2, Cxcl2, Sdc1, and Cebpb). A reduction in the expression of these genes after ET exposure was observed when APC was disrupted in macrophages using siRNA or in bone marrow-derived macrophages obtained from C57BL/6J-Apc(Min) mice, which are heterozygous for a truncated form of APC. In line with this observation, ET increased the expression of APC at the transcriptional level, leading to increased amounts of APC in the nucleus. The mechanism utilized by APC to increase ET-induced gene expression was determined to depend on the ability of APC to interact with C/EBP β, which is a transcription factor activated by cAMP. Coimmunoprecipitation experiments found that APC associated with C/EBP β and that levels of this complex increase after ET exposure. A further connection was uncovered when silencing APC was determined to reduce the ET-induced phosphorylation of C/EBP β at Thr-188. This ET-mediated phosphorylation of C/EBP β was blocked by glycogen synthase kinase 3 (GSK-3) inhibitors, suggesting that GSK-3 is involved in the activation of C/EBP β and supporting the idea of APC helping direct interactions between GSK-3 and C/EBP β. These results indicate that ET stimulates gene expression by promoting the formation of an inducible protein complex consisting of APC and C/EBP β.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
44
|
Gnade BT, Moen ST, Chopra AK, Peterson JW, Yeager LA. Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Toxins (Basel) 2010; 2:1881-97. [PMID: 22069663 PMCID: PMC3153274 DOI: 10.3390/toxins2071881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022] Open
Abstract
Anthrax edema toxin (ET), a powerful adenylyl cyclase, is an important virulence factor of Bacillus anthracis. Until recently, only a modest amount of research was performed to understand the role this toxin plays in the organism's immune evasion strategy. A new wave of studies have begun to elucidate the effects this toxin has on a variety of host cells. While efforts have been made to illuminate the effect ET has on cells of the adaptive immune system, such as T cells, the greatest focus has been on cells of the innate immune system, particularly the macrophage. Here we discuss the immunoevasive activities that ET exerts on macrophages, as well as new research on the effects of this toxin on B cells.
Collapse
Affiliation(s)
- Bryan T. Gnade
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| | - Scott T. Moen
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| | - Ashok K. Chopra
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
- Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.K.C.); (J.W.P.)
| | - Johnny W. Peterson
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
- Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.K.C.); (J.W.P.)
| | - Linsey A. Yeager
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| |
Collapse
|
45
|
Tang WJ, Guo Q. The adenylyl cyclase activity of anthrax edema factor. Mol Aspects Med 2009; 30:423-30. [PMID: 19560485 DOI: 10.1016/j.mam.2009.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 02/08/2023]
Abstract
Bacillus anthracis, the etiologic agent for anthrax, secretes edema factor (EF) to disrupt intracellular signaling pathways. Upon translocation into host cells and association with a calcium sensor, calmodulin (CaM), EF becomes a highly active adenylyl cyclase (AC) that raises the intracellular concentration of cyclic AMP (cAMP). Growing evidence shows that EF plays a key role in anthrax pathogenesis by affecting cellular functions vital for host defense. This strategy is also used by Bordetella pertussis, a bacterium that causes whooping cough. Pertussis bacteria secrete the bifunctional toxin CyaA which raises the intracellular cAMP. Here, we discuss recent advances from structural analyses that reveal the molecular basis of the conserved mechanism of activation and catalysis of EF and CyaA by CaM even though these two toxins use the completely different sequences to bind CaM. Comparison of the biochemical and structural characteristics of these two AC toxins with host ACs reveal that they have diverse strategies of catalytic activation, yet use the same two-metal-ion catalytic mechanism.
Collapse
Affiliation(s)
- Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W434, Chicago, IL 60637, USA.
| | | |
Collapse
|
46
|
Tournier JN, Rossi Paccani S, Quesnel-Hellmann A, Baldari CT. Anthrax toxins: a weapon to systematically dismantle the host immune defenses. Mol Aspects Med 2009; 30:456-66. [PMID: 19560486 DOI: 10.1016/j.mam.2009.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 11/24/2022]
Abstract
Successful colonization of the host by bacterial pathogens relies on their capacity to evade the complex and powerful defenses opposed by the host immune system, at least in the initial phases of infection. The two toxins of Bacillus anthracis, lethal toxin and edema toxin, appear to have been shaped by evolution to assist the microorganism in this crucial function, in addition to act as general toxins acting on almost all cell types. Edema toxin causes a consistent elevation of cAMP, an important second messenger the production of which is normally strictly controlled in mammalian cells, whereas lethal toxin cleaves most isoforms of mitogen-activated protein kinase kinases. By disrupting or subverting central modules common to all the principal signaling networks which control immune cell activation, effector function and migration, the anthrax toxins effectively and systematically dismantle both the innate and the adaptive immune defenses of the host. Here, we review the specific effects of the lethal and edema toxins of B. anthracis on the activation and function of phagocytes, dendritic cells and lymphocytes. We also discuss some open issues which should be addressed to gain a comprehensive insight into the complex relationship that B. anthracis establishes with the host.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Unité Interactions Hôte-Pathogène, Département de Biologie des Agents Transmissibles, Centre de Recherches du Service de Santé des Armées, 24 Avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | |
Collapse
|
47
|
Maldonado-Arocho FJ, Bradley KA. Anthrax edema toxin induces maturation of dendritic cells and enhances chemotaxis towards macrophage inflammatory protein 3beta. Infect Immun 2009; 77:2036-42. [PMID: 19273556 PMCID: PMC2681763 DOI: 10.1128/iai.01329-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/03/2008] [Accepted: 03/02/2009] [Indexed: 01/25/2023] Open
Abstract
Bacillus anthracis secretes two bipartite toxins, edema toxin (ET) and lethal toxin (LT), which impair immune responses and contribute directly to the pathology associated with the disease anthrax. Edema factor, the catalytic subunit of ET, is an adenylate cyclase that impairs host defenses by raising cellular cyclic AMP (cAMP) levels. Synthetic cAMP analogues and compounds that raise intracellular cAMP levels lead to phenotypic and functional changes in dendritic cells (DCs). Here, we demonstrate that ET induces a maturation state in human monocyte-derived DCs (MDDCs) similar to that induced by lipopolysaccharide (LPS). ET treatment results in downregulation of DC-SIGN, a marker of immature DCs, and upregulation of DC maturation markers CD83 and CD86. Maturation of DCs by ET is accompanied by an increased ability to migrate toward the lymph node-homing chemokine macrophage inflammatory protein 3beta, like LPS-matured DCs. Interestingly, cotreating with LT differentially affects the ET-induced maturation of MDDCs while not inhibiting ET-induced migration. These findings reveal a mechanism by which ET impairs normal innate immune function and may explain the reported adjuvant effect of ET.
Collapse
Affiliation(s)
- Francisco J Maldonado-Arocho
- Department of Microbiology, Immunology, & Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | |
Collapse
|
48
|
Abstract
Inhalation anthrax results in high-grade bacteremia and is accompanied by a delay in the rise of the peripheral polymorphonuclear neutrophil (PMN) count and a paucity of PMNs in the infected pleural fluid and mediastinum. Edema toxin (ET) is one of the major Bacillus anthracis virulence factors and consists of the adenylate cyclase edema factor (EF) and protective antigen (PA). Relatively low concentrations of ET (100 to 500 ng/ml of PA and EF) significantly impair human PMN chemokinesis, chemotaxis, and ability to polarize. These changes are accompanied by a reduction in chemoattractant-stimulated PMN actin assembly. ET also causes a significant decrease in Listeria monocytogenes intracellular actin-based motility within HeLa cells. These defects in actin assembly are accompanied by a >50-fold increase in intracellular cyclic AMP and a >4-fold increase in the phosphorylation of protein kinase A. We have previously shown that anthrax lethal toxin (LT) also impairs neutrophil actin-based motility (R. L. During, W. Li, B. Hao, J. M. Koenig, D. S. Stephens, C. P. Quinn, and F. S. Southwick, J. Infect. Dis. 192:837-845, 2005), and we now find that LT combined with ET causes an additive inhibition of PMN chemokinesis, polarization, chemotaxis, and FMLP (N-formyl-met-leu-phe)-induced actin assembly. We conclude that ET alone or combined with LT impairs PMN actin assembly, resulting in paralysis of PMN chemotaxis.
Collapse
|
49
|
Abstract
Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
Collapse
Affiliation(s)
- David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
50
|
Richter S, Anderson VJ, Garufi G, Lu L, Budzik JM, Joachimiak A, He C, Schneewind O, Missiakas D. Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol Microbiol 2008; 71:404-20. [PMID: 19017271 DOI: 10.1111/j.1365-2958.2008.06533.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax, is a dangerous biological weapon, as spores derived from drug-resistant strains cause infections for which antibiotic therapy is no longer effective. We sought to develop an anti-infective therapy for anthrax and targeted CapD, an enzyme that cleaves poly-gamma-D-glutamate capsule and generates amide bonds with peptidoglycan cross-bridges to deposit capsular material into the envelope of B. anthracis. In agreement with the model that capsule confers protection from phagocytic clearance, B. anthracis capD variants failed to deposit capsule into the envelope and displayed defects in anthrax pathogenesis. By screening chemical libraries, we identified the CapD inhibitor capsidin, 4-[(4-bromophenyl)thio]-3-(diacetylamino)benzoic acid), which covalently modifies the active-site threonine of the transpeptidase. Capsidin treatment blocked capsular assembly by B. anthracis and enabled phagocytic killing of non-encapsulated vegetative forms.
Collapse
Affiliation(s)
- Stefan Richter
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|