1
|
Qingge L, Badal K, Annan R, Sturtz J, Liu X, Zhu B. Generative AI Models for the Protein Scaffold Filling Problem. J Comput Biol 2025; 32:127-142. [PMID: 39441716 DOI: 10.1089/cmb.2024.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
De novo protein sequencing is an important problem in proteomics, playing a crucial role in understanding protein functions, drug discovery, design and evolutionary studies, etc. Top-down and bottom-up tandem mass spectrometry are popular approaches used in the field of mass spectrometry to analyze and sequence proteins. However, these approaches often produce incomplete protein sequences with gaps, namely scaffolds. The protein scaffold filling problem refers to filling the missing amino acids in the gaps of a scaffold to infer the complete protein sequence. In this article, we tackle the protein scaffold filling problem based on generative AI techniques, such as convolutional denoising autoencoder, transformer, and generative pretrained transformer (GPT) models, to complete the protein sequences and compare our results with recently developed convolutional long short-term memory-based sequence model. We evaluate the model performance both on a real dataset and generated datasets. All proposed models show outstanding prediction accuracy. Notably, the GPT-2 model achieves 100% gap-filling accuracy and 100% full sequence accuracy on the MabCampth protein scaffold, which outperforms the other models.
Collapse
Affiliation(s)
- Letu Qingge
- Department of Computer Science, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Kushal Badal
- Department of Computer Science, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Richard Annan
- Department of Computer Science, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Jordan Sturtz
- Department of Computer Science, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Xiaowen Liu
- John W. Deming Department of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Binhai Zhu
- Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Al-Obaidi JR, Lau SE, Liew YJM, Tan BC, Rahmad N. Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications. Protein J 2024; 43:1083-1103. [PMID: 39487361 DOI: 10.1007/s10930-024-10240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Seeds are essential for plant reproduction, ensuring species survival and dispersal while adapting to diverse environments throughout a plant's life. Proteomics has emerged as a powerful tool for deciphering the complexities of seed growth, germination, and stress responses. Advanced proteomic technologies enable the analysis of protein changes during germination, dormancy, and ageing, enhancing our understanding of seed lifespan and vitality. Recent studies have revealed detailed insights into metabolic processes and storage protein profiles across various plant species. This knowledge is crucial for improving seed storage, conserving quality, and maintaining viability. Additionally, it contributes to sustainable agriculture by identifying stress-responsive proteins and signalling pathways that can mitigate stress and enhance farming practices. This review highlights significant advancements in seed proteomics over the past decade, discussing critical discoveries related to storage proteins, protein interactions, and proteome modifications due to stress. It illustrates how these insights transform seed biology, boosting productivity, food security, and environmentally friendly practices. The review also identifies existing knowledge gaps and provides direction for future research, underscoring the need for continued interdisciplinary collaboration in this dynamic field.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, 35900, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yvonne Jing Mei Liew
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
3
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
4
|
Li WQ, Li JY, Zhang YF, Luo WQ, Dou Y, Yu S. Effect of Reactive Oxygen Scavenger N,N'-Dimethylthiourea (DMTU) on Seed Germination and Radicle Elongation of Maize. Int J Mol Sci 2023; 24:15557. [PMID: 37958543 PMCID: PMC10649595 DOI: 10.3390/ijms242115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Reactive oxygen species (ROS) are an important part of adaptation to biotic and abiotic stresses and regulate seed germination through positive or negative signaling. Seed adaptation to abiotic stress may be mediated by hydrogen peroxide (H2O2). The effects of the ROS scavenger N,N'-dimethylthiourea (DMTU) on maize seed germination through endogenous H2O2 regulation is unclear. In this study, we investigated the effects of different doses of DMTU on seed endogenous H2O2 and radicle development parameters using two maize varieties (ZD958 and DMY1). The inhibitory effect of DMTU on the germination rate and radicle growth was dose-dependent. The inhibitory effect of DMTU on radicle growth ceased after transferring maize seeds from DMTU to a water medium. Histochemical analyses showed that DMTU eliminated stable H2O2 accumulation in the radicle sheaths and radicles. The activity of antioxidant enzyme and the expression of antioxidant enzyme-related genes (ZmAPX2 and ZmCAT2) were reduced in maize seeds cultured with DMTU compared with normal culture conditions (0 mmol·dm-3 DMTU). We suggest the use of 200 mmol·dm-3 DMTU as an H2O2 scavenger to study the ROS equilibrium mechanisms during the germination of maize seeds, assisting in the future with the efficient development of plant growth regulators to enhance the seed germination performance of test maize varieties under abiotic stress.
Collapse
Affiliation(s)
- Wei-Qing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Jia-Yu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Yi-Fei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Wen-Qi Luo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
5
|
Pang X, Liu S, Suo J, Yang T, Hasan S, Hassan A, Xu J, Lu S, Mi S, Liu H, Yao J. Proteome Dynamics Analysis Reveals the Potential Mechanisms of Salinity and Drought Response during Seed Germination and Seedling Growth in Tamarix hispida. Genes (Basel) 2023; 14:genes14030656. [PMID: 36980928 PMCID: PMC10048391 DOI: 10.3390/genes14030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Understanding the molecular mechanisms of seed germination and seedling growth is vital for mining functional genes for the improvement of plant drought in a desert. Tamarix hispida is extremely resistant to drought and soil salinity perennial shrubs or trees. This study was the first to investigate the protein abundance profile of the transition process during the processes of T. hispida seed germination and seedling growth using label-free proteomics approaches. Our data suggested that asynchronous regulation of transcriptomics and proteomics occurs upon short-term seed germination and seedling growth of T. hispida. Enrichment analysis revealed that the main differentially abundant proteins had significant enrichment in stimulus response, biosynthesis, and metabolism. Two delta-1-pyrroline-5-carboxylate synthetases (P5CS), one Ycf3-interacting protein (Y3IP), one low-temperature-induced 65 kDa protein-like molecule, and four peroxidases (PRX) were involved in both water deprivation and hyperosmotic salinity responses. Through a comparative analysis of transcriptomics and proteomics, we found that proteomics may be better at studying short-term developmental processes. Our results support the existence of several mechanisms that enhance tolerance to salinity and drought stress during seedling growth in T. hispida.
Collapse
Affiliation(s)
- Xin’an Pang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar 843300, China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiangtao Suo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Samira Hasan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ali Hassan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Sushuangqing Lu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Sisi Mi
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (H.L.); (J.Y.)
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (H.L.); (J.Y.)
| |
Collapse
|
6
|
Rizzo AJ, Palacios MB, Vale EM, Zelada AM, Silveira V, Burrieza HP. Snapshot of four mature quinoa ( Chenopodium quinoa) seeds: a shotgun proteomics analysis with emphasis on seed maturation, reserves and early germination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:319-334. [PMID: 37033760 PMCID: PMC10073371 DOI: 10.1007/s12298-023-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Chenopodium quinoa Willd. is a crop species domesticated over 5000 years ago. This species is highly diverse, with a geographical distribution that covers more than 5000 km from Colombia to Chile, going through a variety of edaphoclimatic conditions. Quinoa grains have great nutritional quality, raising interest at a worldwide level. In this work, by using shotgun proteomics and in silico analysis, we present an overview of mature quinoa seed proteins from a physiological context and considering the process of seed maturation and future seed germination. For this purpose, we selected grains from four contrasting quinoa cultivars (Amarilla de Maranganí, Chadmo, Sajama and Nariño) with different edaphoclimatic and geographical origins. The results give insight on the most important metabolic pathways for mature quinoa seeds including: starch synthesis, protein bodies and lipid bodies composition, reserves and their mobilization, redox homeostasis, and stress related proteins like heat-shock proteins (HSPs) and late embryogenesis abundant proteins (LEAs), as well as evidence for capped and uncapped mRNA translation. LEAs present in our analysis show a specific pattern of expression matching that of other species. Overall, this work presents a complete snapshot of quinoa seeds physiological context, providing a reference point for further studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01295-8.
Collapse
Affiliation(s)
- Axel Joel Rizzo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Palacios
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ Brazil
| | - Alicia Mercedes Zelada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ Brazil
| | - Hernán Pablo Burrieza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Shafiq S, Akram NA, Ashraf M, García-Caparrós P, Ali OM, Latef AAHA. Influence of Glycine Betaine (Natural and Synthetic) on Growth, Metabolism and Yield Production of Drought-Stressed Maize ( Zea mays L.) Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2540. [PMID: 34834903 PMCID: PMC8619370 DOI: 10.3390/plants10112540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/10/2023]
Abstract
A study was carried out to evaluate the effectiveness of sugar beet extract (SBE) and glycine betaine (GB) in mitigating the adverse effects of drought stress on two maize cultivars. Seeds (caryopses) of two maize cultivars, Sadaf (drought-tolerant) and Sultan (drought-sensitive) were sown in plastic pots. Plants were subjected to different (100%, 75% and 60% field capacity (FC)) water regimes. Then, different levels of SBE (3% and 4%) and GB (3.65 and 3.84 g/L) were applied as a foliar spray after 30 days of water deficit stress. Drought stress significantly decreased plant growth and yield attributes, chlorophyll pigments, while it increased relative membrane permeability (RMP), levels of osmolytes (GB and proline), malondialdehyde (MDA), total phenolics and ascorbic acid as well as the activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes in both maize cultivars. Exogenous application via foliar spray with SBR or GB improved plant growth and yield attributes, chlorophyll pigments, osmolyte concentration, total phenolics, ascorbic acid and the activities of reactive oxygen species (ROS) scavenging enzymes (SOD, POD and catalase; CAT), but reduced leaf RMP and MDA concentration. The results obtained in this study exhibit the role of foliar-applied biostimulants (natural and synthetic compounds) in enhancing the growth and yield of maize cultivars by upregulating the oxidative defense system and osmoprotectant accumulation under water deficit conditions.
Collapse
Affiliation(s)
- Sidra Shafiq
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Pedro García-Caparrós
- Department of Agronomy, Polytechnic School, University of Almeria, 04120 Almeria, Spain;
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif 21944, Saudi Arabia;
| | | |
Collapse
|
8
|
Song X, Wang X, Song B, Wu Z, Zhao X, Huang W, Riaz M. Transcriptome analysis reveals the molecular mechanism of boron deficiency tolerance in leaves of boron-efficient Beta vulgaris seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:294-304. [PMID: 34670152 DOI: 10.1016/j.plaphy.2021.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Sugar beet (Beta vulgaris L.) has a high demand for B, and B deficiency inhibits normal growth and productivity. However, there is a lack of information on how B deficiency affects the growth of beet at the transcriptome level, and the factors that govern B utilisation efficiency. This study aimed to identify the genes differentially expressed under B deficiency and those that underlie the mechanisms of efficient B use in two sugar beet cultivars. Accordingly, B-efficient (H, KWS1197) and B-inefficient (L, KWS0143) sugar beet cultivars were used, and two levels of boron were employed in the hydroponic experiments: B0.1 (0.1 μM B, deficiency) and B50 (50 μM B, CK). The results showed that B deficiency inhibited leaf growth, significantly reduced B concentration and B transfer coefficient, and increased peroxidase (POD) activity and malondialdehyde and proline content. The transcriptome data showed that the B-efficient variety exhibited more differentially expressed genes than the B-inefficient variety. Metabolic pathways were the most critical pathways involved in the B deficiency response. The expression of POD, bHLH, WRKY transcription factors, and nodulin26-like intrinsic protein (NIP5;1) were upregulated in the KWS1197 variety. In conclusion, the KWS1197 variety had physiological advantages and a highly efficient B utilisation molecular mechanism, contributing to a high B deficiency tolerance. This study provides a theoretical basis for the adaptation mechanism to B deficiency in sugar beets.
Collapse
Affiliation(s)
- Xin Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Xiangling Wang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Baiquan Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Zhenzhen Wu
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Xiaoyu Zhao
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Safety and Quality Institute of Agricultural Products, Harbin, 150086, China.
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
9
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
10
|
Chen H, Liu N, Xu R, Chen X, Zhang Y, Hu R, Lan X, Tang Z, Lin G. Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:517-527. [PMID: 33502082 DOI: 10.1111/plb.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Imbibitional chilling stress inhibits normal seed germination and seedling establishment and leads to large losses in peanut production. This is a major limiting factor when sowing peanut earlier and further north. To reveal the response mechanism of peanut to imbibitional chilling stress, a Tandem Mass Tag (TMT)-based quantitative proteomics analysis was conducted to identify differentially accumulated proteins (DAPs) under imbibitional chilling stress. Hormone profiling and transcriptional analysis were performed to confirm the proteomics data. Further seed priming analysis with exogenous cytokinins was conducted to validate the role of cytokinins in alleviating imbibitional chilling injury. A total of 5029 proteins were identified and quantified in all of the experimental groups. Among these, 104 proteins were DAPs as compared with the control. Enrichment analysis revealed that these DAPs were significant in various molecular functional and biological processes, especially for biosynthesis and metabolism of plant hormones. Hormone profiling and transcription analysis suggested that the reduced abundance of cytokinin oxidase may be caused by down-regulation of gene expression of the corresponding genes and leads to an elevated content of cytokinins under chilling stress. Seed priming analysis suggested that exogenous application of cytokinins may alleviate injury caused by imbibitional chilling. Our study provides a comprehensive proteomics analysis of peanut under imbibitional chilling stress, suggesting the role of plant hormones in the response mechanism. The results provide a better understanding of the imbibitional chilling stress response mechanism in peanut that will aid in peanut production.
Collapse
Affiliation(s)
- H Chen
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - N Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - R Xu
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - X Chen
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - Y Zhang
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - R Hu
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - X Lan
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - Z Tang
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - G Lin
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| |
Collapse
|
11
|
Retzl B, Hellinger R, Muratspahić E, Pinto MEF, Bolzani VS, Gruber CW. Discovery of a Beetroot Protease Inhibitor to Identify and Classify Plant-Derived Cystine Knot Peptides. JOURNAL OF NATURAL PRODUCTS 2020; 83:3305-3314. [PMID: 33118348 PMCID: PMC7705960 DOI: 10.1021/acs.jnatprod.0c00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 05/04/2023]
Abstract
Plant peptide protease inhibitors are important molecules in seed storage metabolism and to fight insect pests. Commonly they contain multiple disulfide bonds and are exceptionally stable molecules. In this study, a novel peptide protease inhibitor from beetroot (Beta vulgaris) termed bevuTI-I was isolated, and its primary structure was determined via mass spectrometry-based amino acid sequencing. By sequence homology analysis a few peptides with high similarity to bevuTI-I, also known as the Mirabilis jalapa trypsin inhibitor subfamily of knottin-type protease inhibitors, were discovered. Hence, we assessed bevuTI-I for inhibitory activity toward trypsin (IC50 = 471 nM) and human prolyl oligopeptidase (IC50 = 11 μM), which is an emerging drug target for neurodegenerative and inflammatory disorders. Interestingly, using a customized bioinformatics approach, bevuTI-I was found to be the missing link to annotate 243 novel sequences of M. jalapa trypsin inhibitor-like peptides. According to their phylogenetic distribution they appear to be common in several plant families. Therefore, the presented approach and our results may help to discover and classify other plant-derived cystine knot peptides, a class of plant molecules that play important functions in plant physiology and are currently being explored as lead molecules and scaffolds in drug development.
Collapse
Affiliation(s)
- Bernhard Retzl
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Roland Hellinger
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Edin Muratspahić
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Meri E. F. Pinto
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
- Institute
of Chemistry, São Paulo State University-UNESP, 14800-060, Araraquara, SP, Brazil
| | - Vanderlan S. Bolzani
- Institute
of Chemistry, São Paulo State University-UNESP, 14800-060, Araraquara, SP, Brazil
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
12
|
Montini L, Crocoll C, Gleadow RM, Motawia MS, Janfelt C, Bjarnholt N. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination. PLANT PHYSIOLOGY 2020; 183:925-942. [PMID: 32350122 PMCID: PMC7333723 DOI: 10.1104/pp.19.01357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Dhurrin is the most abundant cyanogenic glucoside found in sorghum (Sorghum bicolor) where it plays a key role in chemical defense by releasing toxic hydrogen cyanide upon tissue disruption. Besides this well-established function, there is strong evidence that dhurrin plays additional roles, e.g. as a transport and storage form of nitrogen, released via endogenous recycling pathways. However, knowledge about how, when and why dhurrin is endogenously metabolized is limited. We combined targeted metabolite profiling with matrix-assisted laser desorption/ionization-mass spectrometry imaging to investigate accumulation of dhurrin, its recycling products and key general metabolites in four different sorghum lines during 72 h of grain imbibition, germination and early seedling development, as well as the spatial distribution of these metabolites in two of the lines. Little or no dhurrin or recycling products were present in the dry grain, but their de novo biosynthesis started immediately after water uptake. Dhurrin accumulation increased rapidly within the first 24 h in parallel with an increase in free amino acids, a key event in seed germination. The trajectories and final concentrations of dhurrin, the recycling products and free amino acids reached within the experimental period were dependent on genotype. Matrix-assisted laser desorption/ionization-mass spectrometry imaging demonstrated that dhurrin primarily accumulated in the germinating embryo, confirming its function in protecting the emerging tissue against herbivory. The dhurrin recycling products, however, were mainly located in the scutellum and/or pericarp/seed coat region, suggesting unknown key functions in germination.
Collapse
Affiliation(s)
- Lucia Montini
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Mohammed Saddik Motawia
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nanna Bjarnholt
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| |
Collapse
|
13
|
Sugar Beet ( Beta vulgaris) Guard Cells Responses to Salinity Stress: A Proteomic Analysis. Int J Mol Sci 2020; 21:ijms21072331. [PMID: 32230932 PMCID: PMC7212754 DOI: 10.3390/ijms21072331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Soil salinity is a major environmental constraint affecting crop growth and threatening global food security. Plants adapt to salinity by optimizing the performance of stomata. Stomata are formed by two guard cells (GCs) that are morphologically and functionally distinct from the other leaf cells. These microscopic sphincters inserted into the wax-covered epidermis of the shoot balance CO2 intake for photosynthetic carbon gain and concomitant water loss. In order to better understand the molecular mechanisms underlying stomatal function under saline conditions, we used proteomics approach to study isolated GCs from the salt-tolerant sugar beet species. Of the 2088 proteins identified in sugar beet GCs, 82 were differentially regulated by salt treatment. According to bioinformatics analysis (GO enrichment analysis and protein classification), these proteins were involved in lipid metabolism, cell wall modification, ATP biosynthesis, and signaling. Among the significant differentially abundant proteins, several proteins classified as "stress proteins" were upregulated, including non-specific lipid transfer protein, chaperone proteins, heat shock proteins, inorganic pyrophosphatase 2, responsible for energized vacuole membrane for ion transportation. Moreover, several antioxidant enzymes (peroxide, superoxidase dismutase) were highly upregulated. Furthermore, cell wall proteins detected in GCs provided some evidence that GC walls were more flexible in response to salt stress. Proteins such as L-ascorbate oxidase that were constitutively high under both control and high salinity conditions may contribute to the ability of sugar beet GCs to adapt to salinity by mitigating salinity-induced oxidative stress.
Collapse
|
14
|
Xu P, Tang G, Cui W, Chen G, Ma CL, Zhu J, Li P, Shan L, Liu Z, Wan S. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. PLoS One 2020; 15:e0219413. [PMID: 31899920 PMCID: PMC6941926 DOI: 10.1371/journal.pone.0219413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Seed dormancy and germination are the two important traits related to plant survival, reproduction and crop yield. To understand the regulatory mechanisms of these traits, it is crucial to clarify which genes or pathways participate in the regulation of these processes. However, little information is available on seed dormancy and germination in peanut. In this study, seeds of the variety Luhua No.14, which undergoes nondeep dormancy, were selected, and their transcriptional changes at three different developmental stages, the freshly harvested seed (FS), the after-ripening seed (DS) and the newly germinated seed (GS) stages, were investigated by comparative transcriptomic analysis. The results showed that genes with increased transcription in the DS vs FS comparison were overrepresented for oxidative phosphorylation, the glycolysis pathway and the tricarboxylic acid (TCA) cycle, suggesting that after a period of dry storage, the intermediates stored in the dry seeds were rapidly mobilized by glycolysis, the TCA cycle, the glyoxylate cycle, etc.; the electron transport chain accompanied by respiration was reactivated to provide ATP for the mobilization of other reserves and for seed germination. In the GS vs DS pairwise comparison, dozens of the upregulated genes were related to plant hormone biosynthesis and signal transduction, including the majority of components involved in the auxin signal pathway, brassinosteroid biosynthesis and signal transduction as well as some GA and ABA signal transduction genes. During seed germination, the expression of some EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE genes was also significantly enhanced. To investigate the effects of different hormones during seed germination, the contents and differential distribution of ABA, GAs, BRs and IAA in the cotyledons, hypocotyls and radicles, and plumules of three seed sections at different developmental stages were also investigated. Combined with previous data in other species, it was suggested that the coordination of multiple hormone signal transduction nets plays a key role in radicle protrusion and seed germination.
Collapse
Affiliation(s)
- Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Weipei Cui
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | | | - Chang-Le Ma
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jieqiong Zhu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Pengxiang Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| | - Zhanji Liu
- Shandong Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| |
Collapse
|
15
|
Han Z, Wang B, Tian L, Wang S, Zhang J, Guo S, Zhang H, Xu L, Chen Y. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). PHYSIOLOGIA PLANTARUM 2020; 168:205-217. [PMID: 30767243 DOI: 10.1111/ppl.12944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Seed germination, as an integral stage of crop production, directly affects Zea mays (maize) yield and grain quality. However, the molecular mechanisms of seed germination remain unclear in maize. We performed comparative transcriptome analysis of two maize inbred lines, Yu82 and Yu537A, at two stages of seed germination. Expression profile analysis during seed germination revealed that a total of 3381 and 4560 differentially expressed genes (DEGs) were identified in Yu82 and Yu537A at the two stages. Transcription factors were detected from several families, such as the bZIP, ERF, WRKY, MYB and bHLH families, which indicated that these transcription factor families might be involved in driving seed germination in maize. Prominent DEGs were submitted for KEGG enrichment analysis, which included plant hormones, amino acid mechanism, nutrient reservoir, metabolic pathways and ribosome. Of these pathways, genes associated with plant hormones, especially gibberellins, abscisic acid and auxin may be important for early germination in Yu82. In addition, DEGs involved in amino acid mechanism showed significantly higher expression levels in Yu82 than in Yu537A, which indicated that energy supply from soluble sugars and amino acid metabolism may contribute to early germination in Yu82. This results provide novel insights into transcriptional changes and gene interactions in maize during seed germination.
Collapse
Affiliation(s)
- Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bin Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lei Tian
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shunxi Wang
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Zhang
- Henan Academy of Agricultural Science/Henan Provincial Key Laboratory of Maize Biology, Cereal Institute, Zhengzhou, 450002, China
| | - ShuLei Guo
- Henan Academy of Agricultural Science/Henan Provincial Key Laboratory of Maize Biology, Cereal Institute, Zhengzhou, 450002, China
| | - Hengchao Zhang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471003, China
| | - Lengrui Xu
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yanhui Chen
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
16
|
Domergue JB, Abadie C, Limami A, Way D, Tcherkez G. Seed quality and carbon primary metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:2776-2788. [PMID: 31323691 DOI: 10.1111/pce.13618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 05/28/2023]
Abstract
Improving seed quality is amongst the most important challenges of contemporary agriculture. In fact, using plant varieties with better germination rates that are more tolerant to stress during seedling establishment may improve crop yield considerably. Therefore, intense efforts are currently being devoted to improve seed quality in many species, mostly using genomics tools. However, despite its considerable importance during seed imbibition and germination processes, primary carbon metabolism in seeds is less studied. Our knowledge of the physiology of seed respiration and energy generation and the impact of these processes on seed performance have made limited progress over the past three decades. In particular, (isotope-assisted) metabolomics of seeds has only been assessed occasionally, and there is limited information on possible quantitative relationships between metabolic fluxes and seed quality. Here, we review the recent literature and provide an overview of potential links between metabolic efficiency, metabolic biomarkers, and seed quality and discuss implications for future research, including a climate change context.
Collapse
Affiliation(s)
- Jean-Baptiste Domergue
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Cyril Abadie
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Anis Limami
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Guillaume Tcherkez
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
17
|
Sugar beet hemoglobins: reactions with nitric oxide and nitrite reveal differential roles for nitrogen metabolism. Biochem J 2019; 476:2111-2125. [PMID: 31285352 PMCID: PMC6668756 DOI: 10.1042/bcj20190154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt 'open and closed forms', would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs' activity.
Collapse
|
18
|
Ma Z, Liu J, Dong J, Yu J, Huang S, Lin H, Hu S, Wang J. Optimized qualitative and quantitative methods for barley viability testing using triphenyl tetrazolium chloride staining. Cereal Chem 2019. [DOI: 10.1002/cche.10141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zengxin Ma
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| | - Jia Liu
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| | - Hong Lin
- Food Safety Laboratory Ocean University of China Qingdao China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| | - Jianfeng Wang
- State Key Laboratory of Biological Fermentation Engineering of Beer Tsingtao Brewery Co., Ltd. Qingdao China
| |
Collapse
|
19
|
He Y, Cheng J, He Y, Yang B, Cheng Y, Yang C, Zhang H, Wang Z. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:322-337. [PMID: 29947463 PMCID: PMC6335077 DOI: 10.1111/pbi.12979] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/24/2018] [Indexed: 05/21/2023]
Abstract
Seed vigour is an imperative trait for the direct seeding of rice. Isopropylmalate synthase (IPMS) catalyses the committed step of leucine (Leu) biosynthesis, but its effect on seed vigour remains unclear. In this study, rice OsIPMS1 and OsIPMS2 was cloned, and the roles of OsIPMS1 in seed vigour were mainly investigated. OsIPMS1 and OsIPMS2 catalyse Leu biosynthesis, and Leu feedback inhibits their IPMS activities. Disruption of OsIPMS1 resulted in low seed vigour under various conditions, which might be tightly associated with the reduction of amino acids in germinating seeds. Eleven amino acids that associated with stress tolerance, GA biosynthesis and tricarboxylic acid (TCA) cycle were significantly reduced in osipms1 mutants compared with those in wide type (WT) during seed germination. Transcriptome analysis indicated that a total of 1209 differentially expressed genes (DEGs) were altered in osipms1a mutant compared with WT at the early germination stage, wherein most of the genes were involved in glycolysis/gluconeogenesis, protein processing, pyruvate, carbon, fructose and mannose metabolism. Further analysis confirmed that the regulation of OsIPMS1 in seed vigour involved in starch hydrolysis, glycolytic activity and energy levels in germinating seeds. The effects of seed priming were tightly associated with the mRNA levels of OsIPMS1 in priming seeds. The OsIPMS1 might be used as a biomarker to determine the best stop time-point of seed priming in rice. This study provides novel insights into the function of OsIPMS1 on seed vigour and should have practical applications in seed priming of rice.
Collapse
Affiliation(s)
- Yongqi He
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jinping Cheng
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ying He
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Bin Yang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yanhao Cheng
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Can Yang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hongsheng Zhang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhoufei Wang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
20
|
Hallahan BF, Fernandez-Tendero E, Fort A, Ryder P, Dupouy G, Deletre M, Curley E, Brychkova G, Schulz B, Spillane C. Hybridity has a greater effect than paternal genome dosage on heterosis in sugar beet (Beta vulgaris). BMC PLANT BIOLOGY 2018; 18:120. [PMID: 29907096 PMCID: PMC6003118 DOI: 10.1186/s12870-018-1338-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND The phenomenon of heterosis is critical to plant breeding and agricultural productivity. Heterosis occurs when F1 hybrid offspring display quantitative improvements in traits to levels that do not occur in the parents. Increasing the genome dosage (i.e. ploidy level) of F1 offspring can contribute to heterosis effects. Sugar beet (Beta vulgaris) provides a model for investigating the relative effects of genetic hybridity and genome dosage on heterosis. Sugar beet lines of different ploidy levels were crossed to generate diploid and triploid F1 offspring to investigate the effect of; (1) paternal genome dosage increase on F1 heterosis, and; (2) homozygous versus heterozygous tetraploid male parents on F1 triploid heterosis. A range of traits of agronomic and commercial importance were analyzed for the extent of heterosis effects observed in the F1 offspring. RESULTS Comparisons of parental lines to diploid (EA, EB) and triploid (EAA, EBB) F1 hybrids for total yield, root yield, and sugar yield indicated that there was no effect of paternal genome dosage increases on heterosis levels, indicating that hybridity is the main contributor to the heterosis levels observed. For all traits measured (apart from seed viability), F1 triploid hybrids derived from heterozygous tetraploid male parents displayed equivalent levels of heterosis as F1 triploid hybrids generated with homozygous tetraploid male parents, suggesting that heterosis gains in F1 triploids do not arise by simply increasing the extent of multi-locus heterozygosity in sugar beet F1 offspring. CONCLUSIONS Overall, our study indicates that; (1) increasing the paternal genome dosage does not enhance heterosis in F1 hybrids, and; (2) increasing multi-locus heterozygosity using highly heterozygous paternal genomes to generate F1 triploid hybrids does not enhance heterosis. Our findings have implications for the design of future F1 hybrid improvement programs for sugar beet.
Collapse
Affiliation(s)
- Brendan F. Hallahan
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Eva Fernandez-Tendero
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Peter Ryder
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Gilles Dupouy
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Marc Deletre
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Edna Curley
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| | | | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4 Ireland
| |
Collapse
|
21
|
Ren XX, Xue JQ, Wang SL, Xue YQ, Zhang P, Jiang HD, Zhang XX. Proteomic analysis of tree peony (Paeonia ostii 'Feng Dan') seed germination affected by low temperature. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:56-67. [PMID: 29597068 DOI: 10.1016/j.jplph.2017.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 06/08/2023]
Abstract
Seed germination is a critical process that is influenced by various factors. In the present study, the effect of low temperature (4 °C) on tree peony seed germination was investigated. Compared to seeds maintained at 25 °C, germination was inhibited when seeds were kept at 4 °C. Furthermore, low-temperature exposure of seeds resulted in a delay in water uptake, starch degradation, and soluble sugar consumption and a subsequent increase in soluble protein levels. Two-dimensional gel electrophoresis (2-DE) proteomic analysis identified 100 protein spots. Comparative analysis indicated that low-temperature exposure apparently mainly affected glycolysis and the tricarboxylic acid (TCA) cycle, while also significantly affecting proteometabolism-related factors. Moreover, low-temperature exposure led to the induction of abscisic acid, whereas the gibberellin pathway was not affected. Further comparison of the two temperature conditions showed that low-temperature exposure delays carbohydrate metabolism, adenosine triphosphate (ATP) production, respiration, and proteolysis and increases defense response factors. To further examine the obtained proteomic findings, four genes were evaluated by quantitative polymerase chain reaction (qPCR). The obtained transcriptional results for the GAPC gene coincided with the translational results, thus further suggesting that the delay in glycolysis may play a key role in low-temperature-induced inhibition of seed germination. However, the other three genes examined, which included FPP synthase, PCNT115, and endochitinase, showed non-correlative transcriptional and translational profiles. Our results suggest that the exposure of tree peony seeds to low temperature results in a delay in the degradation of starch and other metabolites, which in turn affects glycolysis and some other processes, thereby ultimately inhibiting seed germination.
Collapse
Affiliation(s)
- Xiu-Xia Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Qi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shun-Li Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Qian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | - Xiu-Xin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
22
|
Saucereau Y, Valiente Moro C, Dieryckx C, Dupuy JW, Tran FH, Girard V, Potier P, Mavingui P. Comprehensive proteome profiling in Aedes albopictus to decipher Wolbachia-arbovirus interference phenomenon. BMC Genomics 2017; 18:635. [PMID: 28821226 PMCID: PMC5563009 DOI: 10.1186/s12864-017-3985-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Aedes albopictus is a vector of arboviruses that cause severe diseases in humans such as Chikungunya, Dengue and Zika fevers. The vector competence of Ae. albopictus varies depending on the mosquito population involved and the virus transmitted. Wolbachia infection status in believed to be among key elements that determine viral transmission efficiency. Little is known about the cellular functions mobilized in Ae. albopictus during co-infection by Wolbachia and a given arbovirus. To decipher this tripartite interaction at the molecular level, we performed a proteome analysis in Ae. albopictus C6/36 cells mono-infected by Wolbachia wAlbB strain or Chikungunya virus (CHIKV), and bi-infected. Results We first confirmed significant inhibition of CHIKV by Wolbachia. Using two-dimensional gel electrophoresis followed by nano liquid chromatography coupled with tandem mass spectrometry, we identified 600 unique differentially expressed proteins mostly related to glycolysis, translation and protein metabolism. Wolbachia infection had greater impact on cellular functions than CHIKV infection, inducing either up or down-regulation of proteins associated with metabolic processes such as glycolysis and ATP metabolism, or structural glycoproteins and capsid proteins in the case of bi-infection with CHIKV. CHIKV infection inhibited expression of proteins linked with the processes of transcription, translation, lipid storage and miRNA pathways. Conclusions The results of our proteome profiling have provided new insights into the molecular pathways involved in tripartite Ae. albopictus-Wolbachia-CHIKV interaction and may help defining targets for the better implementation of Wolbachia-based strategies for disease transmission control. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3985-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoann Saucereau
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Cindy Dieryckx
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, CNRS, Lyon, France
| | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome, Université Bordeaux, F-33000, Bordeaux, France
| | - Florence-Hélène Tran
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Vincent Girard
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, CNRS, Lyon, France
| | - Patrick Potier
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France. .,Université Lyon 1, Villeurbanne, France. .,CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France. .,INRA, UMR1418, Villeurbanne, France. .,CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT). Plateforme Technologique CYROI, Université de La Réunion, 2 rue Maxime Rivière, 97490, Sainte Clotilde, île de La Réunion, France.
| |
Collapse
|
23
|
Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes 2017; 5:E19. [PMID: 28788068 PMCID: PMC5620536 DOI: 10.3390/proteomes5030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Collapse
Affiliation(s)
- Matthieu Villegente
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Philippe Marmey
- Institut de recherche pour le développement (IRD), UMR Diversité, Adaptation et Développement des plantes (DIADE), BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.
| | - Claudette Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
| | - Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Thierry Balliau
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Michel Zivy
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
- Institut Agronomique Néo-Calédonien (IAC), Équipe ARBOREAL, Agriculture Biodiversité et Valorisation, BP 73 Port Laguerre, 98890 Païta, Nouvelle-Calédonie.
| | - Valérie Sarramegna-Burtet
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Dominique Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| |
Collapse
|
24
|
Abstract
De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tandem mass spectra, fragment ions, and sequence patterns of peptides. The networks are further integrated with local dynamic programming to solve the complex optimization task of de novo sequencing. We evaluated the method on a wide variety of species and found that DeepNovo considerably outperformed state of the art methods, achieving 7.7-22.9% higher accuracy at the amino acid level and 38.1-64.0% higher accuracy at the peptide level. We further used DeepNovo to automatically reconstruct the complete sequences of antibody light and heavy chains of mouse, achieving 97.5-100% coverage and 97.2-99.5% accuracy, without assisting databases. Moreover, DeepNovo is retrainable to adapt to any sources of data and provides a complete end-to-end training and prediction solution to the de novo sequencing problem. Not only does our study extend the deep learning revolution to a new field, but it also shows an innovative approach in solving optimization problems by using deep learning and dynamic programming.
Collapse
|
25
|
Wu X, Ning F, Hu X, Wang W. Genetic Modification for Improving Seed Vigor Is Transitioning from Model Plants to Crop Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:8. [PMID: 28149305 PMCID: PMC5241287 DOI: 10.3389/fpls.2017.00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/03/2017] [Indexed: 05/09/2023]
Abstract
Although seed vigor is a complex physiological trait controlled by quantitative trait loci, technological advances in the laboratory are being translated into applications for enhancing seed vigor in crop plants. In this article, we summarize and discuss pioneering work in the genetic modification of seed vigor, especially through the over-expression of protein L-isoaspartyl methyltransferase (PIMT, EC 2.1.1.77) in seeds. The impressive success in improving rice seed vigor through the over-expression of PIMT provides a valuable reference for engineering high-vigor seeds for crop production. In recent decades, numerous genes/proteins associated with seed vigor have been identified. It is hoped that such potential candidates may be used in the development of genetically edited crops for a high and stable yield potential in crop production. This possibility is very valuable in the context of a changing climate and increasing world population.
Collapse
|
26
|
Xu HH, Liu SJ, Song SH, Wang RX, Wang WQ, Song SQ. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:219-42. [PMID: 27035683 DOI: 10.1016/j.plaphy.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 05/09/2023]
Abstract
Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQ synthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Rui-Xia Wang
- College of Life Science, Linyi University, Linyi 276005, China
| | - Wei-Qing Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
27
|
Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:66. [PMID: 26870076 PMCID: PMC4740362 DOI: 10.3389/fpls.2016.00066] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | | | | | | |
Collapse
|
28
|
Lu XJ, Zhang XL, Mei M, Liu GL, Ma BB. Proteomic analysis of Magnolia sieboldii K. Koch seed germination. J Proteomics 2016; 133:76-85. [DOI: 10.1016/j.jprot.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022]
|
29
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
30
|
Zhang YX, Xu HH, Liu SJ, Li N, Wang WQ, Møller IM, Song SQ. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:1394. [PMID: 27708655 PMCID: PMC5031166 DOI: 10.3389/fpls.2016.01394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.
Collapse
Affiliation(s)
- Ying-Xue Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ni Li
- Hunan Hybrid Rice Research Center/State Key Laboratory of Hybrid RiceChangsha, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ian M. Møller
- Department of Molecular Biology and Genetics, Aarhus UniversityFlakkebjerg, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Song-Quan Song
| |
Collapse
|
31
|
Ma B. Novor: real-time peptide de novo sequencing software. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1885-94. [PMID: 26122521 PMCID: PMC4604512 DOI: 10.1007/s13361-015-1204-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 05/09/2023]
Abstract
De novo sequencing software has been widely used in proteomics to sequence new peptides from tandem mass spectrometry data. This study presents a new software tool, Novor, to greatly improve both the speed and accuracy of today's peptide de novo sequencing analyses. To improve the accuracy, Novor's scoring functions are based on two large decision trees built from a peptide spectral library with more than 300,000 spectra with machine learning. Important knowledge about peptide fragmentation is extracted automatically from the library and incorporated into the scoring functions. The decision tree model also enables efficient score calculation and contributes to the speed improvement. To further improve the speed, a two-stage algorithmic approach, namely dynamic programming and refinement, is used. The software program was also carefully optimized. On the testing datasets, Novor sequenced 7%-37% more correct residues than the state-of-the-art de novo sequencing tool, PEAKS, while being an order of magnitude faster. Novor can de novo sequence more than 300 MS/MS spectra per second on a laptop computer. The speed surpasses the acquisition speed of today's mass spectrometer and, therefore, opens a new possibility to de novo sequence in real time while the spectrometer is acquiring the spectral data. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bin Ma
- School of Computer Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L3G1, Canada.
| |
Collapse
|
32
|
Dieryckx C, Gaudin V, Dupuy JW, Bonneu M, Girard V, Job D. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2015; 6:859. [PMID: 26528317 PMCID: PMC4607878 DOI: 10.3389/fpls.2015.00859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 05/27/2023]
Abstract
Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873.
Collapse
Affiliation(s)
- Cindy Dieryckx
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Vanessa Gaudin
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Marc Bonneu
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Vincent Girard
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Dominique Job
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| |
Collapse
|
33
|
Moro CF, Fukao Y, Shibato J, Rakwal R, Agrawal GK, Shioda S, Kouzuma Y, Yonekura M. Immature Seed Endosperm and Embryo Proteomics of the Lotus ( Nelumbo Nucifera Gaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome. Proteomes 2015; 3:184-235. [PMID: 28248268 PMCID: PMC5217381 DOI: 10.3390/proteomes3030184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022] Open
Abstract
Lotus (Nelumbo nucifera Gaertn.) seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed's development. One-dimensional gel electrophoresis (SDS-PAGE) linked with tandem mass spectrometry provided a protein inventory of the immature endosperm (122 non-redundant proteins) and embryo (141 non-redundant proteins) tissues. Comparing with the previous mature endosperm dataset (66 non-redundant proteins), a total of 206 non-redundant proteins were identified across all three tissues of the lotus seed. Results revealed some significant differences in proteome composition between the three lotus seed tissues, most notably between the mature endosperm and its immature developmental stage shifting the proteins from nutrient production to nutrient storage.
Collapse
Affiliation(s)
- Carlo F Moro
- Laboratory of Molecular Food Functionality, College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| | - Yoichiro Fukao
- Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Junko Shibato
- Global Research Center for Innovative Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan.
| | - Randeep Rakwal
- Global Research Center for Innovative Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan.
- Faculty of Health and Sport Sciences & Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan.
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal.
- GRADE (Global Research Arch for Developing Education) Academy Pvt., Ltd., Adarsh Nagar-13, Birgunj 44300, Nepal.
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal.
- GRADE (Global Research Arch for Developing Education) Academy Pvt., Ltd., Adarsh Nagar-13, Birgunj 44300, Nepal.
| | - Seiji Shioda
- Global Research Center for Innovative Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan.
| | - Yoshiaki Kouzuma
- Laboratory of Molecular Food Functionality, College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| | - Masami Yonekura
- Laboratory of Molecular Food Functionality, College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| |
Collapse
|
34
|
Moliterni VMC, Paris R, Onofri C, Orrù L, Cattivelli L, Pacifico D, Avanzato C, Ferrarini A, Delledonne M, Mandolino G. Early transcriptional changes in Beta vulgaris in response to low temperature. PLANTA 2015; 242:187-201. [PMID: 25893871 DOI: 10.1007/s00425-015-2299-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 05/07/2023]
Abstract
Major metabolic pathways and genes affected by low-temperature treatment were identified and a thorough picture of the early transcriptional changes in sugar beet plantlets upon cold stress was given. Sugar beet (Beta vulgaris L.) is an important source of sugar and bioethanol production in temperate areas worldwide. In these areas, plantlet survival and sucrose yield of mature plants can be seriously limited by low temperatures, especially when plantlets are exposed to freezing temperatures (below 0 °C) at the early developmental stages. This frequently occurs when the crop is sown in early spring or even in autumn (autumn sowing) to escape drought at maturity and pathogen outbreaks. The knowledge of molecular responses induced in plantlets early upon exposure to low temperature is necessary to understand mechanisms that allow the plant to survive and to identify reactions that can influence other late-appearing traits. In this work, a wide study of sugar beet transcriptome modulation after a short exposure to a cold stress, mimicking what is experienced in vivo by young plantlets when temperature drops in the early spring nights, was carried out by high-throughput sequencing of leaves and root RNAs (RNA-Seq). A significant picture of the earliest events of temperature sensing was achieved for the first time for sugar beet: the retrieval of a great amount of transcription factors and the intensity of modulation of a large number of genes involved in several metabolic pathways suggest a fast and deep rearrangement of sugar beet plantlets metabolism as early response to cold stress, with both similarities and specificities between the two organs.
Collapse
Affiliation(s)
- Vita Maria Cristiana Moliterni
- Consiglio per la ricerca e la sperimentazione in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la genomica vegetale, via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC PLANT BIOLOGY 2015; 15:97. [PMID: 25888100 PMCID: PMC4407426 DOI: 10.1186/s12870-015-0471-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. RESULTS The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. CONCLUSION Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and proteomic changes. The first process is a rapid water uptake, in which the seed coat becomes softer and the physical state of storage materials change gradually. Then the germinated seed enters the second process (a plateau phase) and the third process (the embryonic axes elongation). Seed embryo and endosperm display distinct differentially expressed proteins, and their synergistic expression mechanisms provide a basis for the normal germination of wheat seeds.
Collapse
Affiliation(s)
- Miao He
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Kun Dong
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Ting Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Zhiwei Cheng
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
36
|
Errouane K, Doulbeau S, Vaissayre V, Leblanc O, Collin M, Kaid-Harche M, Dussert S. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil. Food Chem 2015; 181:270-6. [PMID: 25794750 DOI: 10.1016/j.foodchem.2015.02.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions.
Collapse
Affiliation(s)
- Kheira Errouane
- Laboratoire des Productions, Valorisations Végétales et Microbiennes, Département de Biotechnologie, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, B.P. 1505, El M'Naouar, Oran 31000, Algeria; IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | - Sylvie Doulbeau
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | | | - Olivier Leblanc
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France; ERL IRD-CNRS 5300, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | - Myriam Collin
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | - Meriem Kaid-Harche
- Laboratoire des Productions, Valorisations Végétales et Microbiennes, Département de Biotechnologie, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, B.P. 1505, El M'Naouar, Oran 31000, Algeria
| | - Stéphane Dussert
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France.
| |
Collapse
|
37
|
Galland M, Rajjou L. Regulation of mRNA translation controls seed germination and is critical for seedling vigor. FRONTIERS IN PLANT SCIENCE 2015; 6:284. [PMID: 25972883 PMCID: PMC4411979 DOI: 10.3389/fpls.2015.00284] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/09/2015] [Indexed: 05/10/2023]
Affiliation(s)
- Marc Galland
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA/AgroParisTech, ERL Centre National de la Recherche Scientifique 3559, Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS)Versailles, France
- Chair of Plant Physiology, AgroParisTechParis, France
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA/AgroParisTech, ERL Centre National de la Recherche Scientifique 3559, Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS)Versailles, France
- Chair of Plant Physiology, AgroParisTechParis, France
- *Correspondence: Loïc Rajjou,
| |
Collapse
|
38
|
Kaur H, Petla BP, Kamble NU, Singh A, Rao V, Salvi P, Ghosh S, Majee M. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. FRONTIERS IN PLANT SCIENCE 2015; 6:713. [PMID: 26442027 PMCID: PMC4568394 DOI: 10.3389/fpls.2015.00713] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/25/2015] [Indexed: 05/20/2023]
Abstract
Small heat shock proteins (sHSPs) are a diverse group of proteins and are highly abundant in plant species. Although majority of these sHSPs were shown to express specifically in seed, their potential function in seed physiology remains to be fully explored. Our proteomic analysis revealed that OsHSP18.2, a class II cytosolic HSP is an aging responsive protein as its abundance significantly increased after artificial aging in rice seeds. OsHSP18.2 transcript was found to markedly increase at the late maturation stage being highly abundant in dry seeds and sharply decreased after germination. Our biochemical study clearly demonstrated that OsHSP18.2 forms homooligomeric complex and is dodecameric in nature and functions as a molecular chaperone. OsHSP18.2 displayed chaperone activity as it was effective in preventing thermal inactivation of Citrate Synthase. Further, to analyze the function of this protein in seed physiology, seed specific Arabidopsis overexpression lines for OsHSP18.2 were generated. Our subsequent functional analysis clearly demonstrated that OsHSP18.2 has ability to improve seed vigor and longevity by reducing deleterious ROS accumulation in seeds. In addition, transformed Arabidopsis seeds also displayed better performance in germination and cotyledon emergence under adverse conditions. Collectively, our work demonstrates that OsHSP18.2 is an aging responsive protein which functions as a molecular chaperone and possibly protect and stabilize the cellular proteins from irreversible damage particularly during maturation drying, desiccation and aging in seeds by restricting ROS accumulation and thereby improves seed vigor, longevity and seedling establishment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manoj Majee
- *Correspondence: Manoj Majee, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India,
| |
Collapse
|
39
|
Withers PJA, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ. Feed the crop not the soil: rethinking phosphorus management in the food chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6523-30. [PMID: 24840064 DOI: 10.1021/es501670j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Society relies heavily on inorganic phosphorus (P) compounds throughout its food chain. This dependency is not only very inefficient and increasingly costly but is depleting finite global reserves of rock phosphate. It has also left a legacy of P accumulation in soils, sediments and wastes that is leaking into our surface waters and contributing to widespread eutrophication. We argue for a new, more precise but more challenging paradigm in P fertilizer management that seeks to develop more sustainable food chains that maintain P availability to crops and livestock but with reduced amounts of imported mineral P and improved soil function. This new strategy requires greater public awareness of the environmental consequences of dietary choice, better understanding of soil-plant-animal P dynamics, increased recovery of both used P and unutilized legacy soil P, and new innovative technologies to improve fertilizer P recovery. In combination, they are expected to deliver significant economic, environmental, and resource-protection gains, and contribute to future global P stewardship.
Collapse
Affiliation(s)
- Paul J A Withers
- School of Environment, Natural Resources & Geography, Bangor University , Bangor, Gwynedd LL57 2UW, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Webb KM, Broccardo CJ, Prenni JE, Wintermantel WM. Proteomic Profiling of Sugar Beet ( Beta vulgaris) Leaves during Rhizomania Compatible Interactions. Proteomes 2014; 2:208-223. [PMID: 28250378 PMCID: PMC5302737 DOI: 10.3390/proteomes2020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/15/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022] Open
Abstract
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.
Collapse
Affiliation(s)
- Kimberly M Webb
- USDA-ARS-SBRU, Crops Research Laboratory, 1701 Centre Ave., Fort Collins, CO 80526, USA.
| | - Carolyn J Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
41
|
Amoako-Andoh FO, Daniëls B, Keulemans W, Davey MW. A systematic evaluation of protocols for a proteomics analysis of (lyophilized) fruit tissues. Electrophoresis 2014; 35:1395-1405. [DOI: 10.1002/elps.201300443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francis O. Amoako-Andoh
- Laboratory of Fruit Breeding and Biotechnology; Department of Biosystems; Katholieke Universiteit Leuven; Belgium
| | - Bruno Daniëls
- Laboratory of Fruit Breeding and Biotechnology; Department of Biosystems; Katholieke Universiteit Leuven; Belgium
| | - Wannes Keulemans
- Laboratory of Fruit Breeding and Biotechnology; Department of Biosystems; Katholieke Universiteit Leuven; Belgium
| | - Mark W. Davey
- Laboratory of Fruit Breeding and Biotechnology; Department of Biosystems; Katholieke Universiteit Leuven; Belgium
| |
Collapse
|
42
|
Yu Y, Guo G, Lv D, Hu Y, Li J, Li X, Yan Y. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC PLANT BIOLOGY 2014; 14:20. [PMID: 24410729 PMCID: PMC3923396 DOI: 10.1186/1471-2229-14-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/09/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array. RESULTS A total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0-12 hours after imbibition [HAI]), a plateau phase (12-24 HAI), and a further water uptake phase (24-48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co-expression network with a k-core algorithm to determine which play pivotal roles in germination. Twenty-three meaningful genes were found, and quantitative RT-PCR analysis validated the expression patterns of 12 significant genes. CONCLUSIONS Wheat seed germination comprises three distinct phases and includes complicated regulation networks involving a large number of genes. These genes belong to many functional groups, and their co-regulations guarantee regular germination. Our results provide new insight into metabolic changes during seed germination and interactions between some significant genes.
Collapse
Affiliation(s)
- Yonglong Yu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Guangfang Guo
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Dongwen Lv
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan KS 66506, USA
| | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
43
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, de Dios Alché J, Rodríguez-García MI, Van Dorsselaer A, Castro AJ. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5695-705. [PMID: 24151302 PMCID: PMC3871823 DOI: 10.1093/jxb/ert345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma.
Collapse
Affiliation(s)
- Juan David Rejón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
- These authors contributed equally to this work
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
- These authors contributed equally to this work
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Krzysztof Zienkiewicz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gargarina 9, 87–100 Toruń, Poland
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
| | - María Isabel Rodríguez-García
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Antonio Jesús Castro
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Shinano T, Yoshimura T, Watanabe T, Unno Y, Osaki M, Nanjo Y, Komatsu S. Effect of Phosphorus Levels on the Protein Profiles of Secreted Protein and Root Surface Protein of Rice. J Proteome Res 2013; 12:4748-56. [DOI: 10.1021/pr400614n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Takuro Shinano
- Agricultural
Radiation Research Center, NARO Tohoku Agricultural Research Center, 50,
Harajyukuminami, Arai, Fukushima 960-2156, Japan
| | - Tomoko Yoshimura
- Graduate
School of Agriculture, Hokkaido University, N9W9, Kitaku, Sapporo, 060-8589, Japan
| | - Toshihiro Watanabe
- Graduate
School of Agriculture, Hokkaido University, N9W9, Kitaku, Sapporo, 060-8589, Japan
| | - Yusuke Unno
- NARO Hokkaido Agricultural Research Center, 1-Hitsujigaoka, Toyohiraku, Sapporo, 062-8555, Japan
| | - Mitsuru Osaki
- Graduate
School of Agriculture, Hokkaido University, N9W9, Kitaku, Sapporo, 060-8589, Japan
| | - Yohei Nanjo
- NARO Institute of Crop Science, 2-1-18, Kannondai, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- NARO Institute of Crop Science, 2-1-18, Kannondai, Tsukuba, 305-8518, Japan
| |
Collapse
|
45
|
Arc E, Galland M, Godin B, Cueff G, Rajjou L. Nitric oxide implication in the control of seed dormancy and germination. FRONTIERS IN PLANT SCIENCE 2013; 4:346. [PMID: 24065970 PMCID: PMC3777103 DOI: 10.3389/fpls.2013.00346] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/16/2013] [Indexed: 05/20/2023]
Abstract
Germination ability is regulated by a combination of environmental and endogenous signals with both synergistic and antagonistic effects. Nitric oxide (NO) is a potent dormancy-releasing agent in many species, including Arabidopsis, and has been suggested to behave as an endogenous regulator of this physiological blockage. Distinct reports have also highlighted a positive impact of NO on seed germination under sub-optimal conditions. However, its molecular mode of action in the context of seed biology remains poorly documented. This review aims to focus on the implications of this radical in the control of seed dormancy and germination. The consequences of NO chemistry on the investigations on both its signaling and its targets in seeds are discussed. NO-dependent protein post-translational modifications are proposed as a key mechanism underlying NO signaling during early seed germination.
Collapse
Affiliation(s)
- Erwann Arc
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
- University of Innsbruck, Institute of BotanyInnsbruck, Austria
- *Correspondence: Erwann Arc and Loïc Rajjou, INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, Route de Saint Cyr (RD10) - Bât 2, F-78026 Versailles Cedex, France e-mail: ;
| | - Marc Galland
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Béatrice Godin
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Gwendal Cueff
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, VersaillesFrance
- AgroParisTech, UFR de Physiologie végétaleParis, France
- *Correspondence: Erwann Arc and Loïc Rajjou, INRA, Institut Jean-Pierre Bourgin (UMR1318 Institut National de la Recherche Agronomique – AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences”, Route de Saint Cyr (RD10) - Bât 2, F-78026 Versailles Cedex, France e-mail: ;
| |
Collapse
|
46
|
Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S, Shiraiwa Y, Agrawal GK, Rakwal R. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Proteomics 2013; 93:234-44. [PMID: 23792822 DOI: 10.1016/j.jprot.2013.05.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/28/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Bongani Kaiser Ndimba
- Proteomics Research and Services Unit, Biotechnology Platform, Agricultural Research Council, Infruitec-Nietvoorbij Campus, Stellenbosch, South Africa; Proteomics Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gomez-Garay A, Lopez JA, Camafeita E, Bueno MA, Pintos B. Proteomic perspective of Quercus suber somatic embryogenesis. J Proteomics 2013; 93:314-25. [PMID: 23770300 DOI: 10.1016/j.jprot.2013.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023]
Abstract
UNLABELLED Quercus suber L. is a forest tree with remarkable ecological, social and economic value in the southern Europe ecosystems. To circumvent the difficulties of breeding such long-lived species like Q. suber in a conventional fashion, clonal propagation of Q. suber elite trees can be carried out, although this process is sometimes unsuccessful. To help decipher the complex program underlying the development of Q. suber somatic embryos from the first early stage until maturity, a proteomic approach based on DIGE and MALDI-MS has been envisaged. Results highlighted several key processes involved in the three developmental stages (proliferative, cotyledonary and mature) of Q. suber somatic embryogenesis studied. Results show that the proliferation stage is characterized by fermentation as an alternative energy source at the first steps of somatic embryo development, as well as by up-regulation of proteins involved in cell division. In this stage reactive oxygen species play a role in proliferation, while other proteins like CAD and PR5 seem to be implied in embryonic competence. In the transition to the cotyledonary stage diverse ROS detoxification enzymes are activated and reserve products (mainly carbohydrates and proteins) are accumulated, whereas energy production is increased probably to participate in the synthesis of primary metabolites such as amino acids and fatty acids. Finally, in the mature stage ethylene accumulation regulates embryo development. BIOLOGICAL SIGNIFICANCE Quercus suber L. is a forest tree with remarkable ecological, social and economic value in the southern Europe ecosystems. To circumvent the difficulties of breeding such long-lived species like Q. suber in a conventional fashion, clonal propagation of Q. suber elite trees can be carried out, although this process is sometimes unsuccessful. To help decipher the complex program underlying the development of Q. suber somatic embryos from the first early stage until maturity, in deep studies become necessary. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Aranzazu Gomez-Garay
- Departamento de Biologia Vegetal I. Facultad de CC Biologicas, UCM, Madrid, Spain.
| | | | | | | | | |
Collapse
|
48
|
Pedreschi R, Lurie S, Hertog M, Nicolaï B, Mes J, Woltering E. Post-harvest proteomics and food security. Proteomics 2013; 13:1772-83. [PMID: 23483703 DOI: 10.1002/pmic.201200387] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/11/2012] [Indexed: 12/12/2022]
Abstract
To guarantee sufficient food supply for a growing world population, efforts towards improving crop yield and plant resistance should be complemented with efforts to reduce post-harvest losses. Post-harvest losses are substantial and occur at different stages of the food chain in developed and developing countries. In recent years, a substantially increasing interest can be seen in the application of proteomics to understand post-harvest events. In the near future post-harvest proteomics will be poised to move from fundamental research to aiding the reduction of food losses. Proteomics research can help in reducing food losses through (i) identification and validation of gene products associated to specific quality traits supporting marker-assisted crop improvement programmes, (ii) delivering markers of initial quality that allow optimisation of distribution conditions and prediction of remaining shelf-life for decision support systems and (iii) delivering early detection tools of physiological or pathogen-related post-harvest problems. In this manuscript, recent proteomics studies on post-harvest and stress physiology are reviewed and discussed. Perspectives on future directions of post-harvest proteomics studies aiming to reduce food losses are presented.
Collapse
Affiliation(s)
- Romina Pedreschi
- Food & Biobased Research Centre, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Ray P, Girard V, Gault M, Job C, Bonneu M, Mandrand-Berthelot MA, Singh SS, Job D, Rodrigue A. Pseudomonas putida KT2440 response to nickel or cobalt induced stress by quantitative proteomics. Metallomics 2013; 5:68-79. [DOI: 10.1039/c2mt20147j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Debez A, Braun HP, Pich A, Taamalli W, Koyro HW, Abdelly C, Huchzermeyer B. Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages. J Proteomics 2012; 75:5667-94. [DOI: 10.1016/j.jprot.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 01/29/2023]
|