1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Reyes R, Rodriguez-Muñoz R, Nahmad M. Cell recruitment and the origins of Anterior-Posterior asymmetries in the Drosophila wing. PLoS One 2025; 20:e0313067. [PMID: 39752433 PMCID: PMC11698434 DOI: 10.1371/journal.pone.0313067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/17/2024] [Indexed: 01/06/2025] Open
Abstract
The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing. Genetic impairment of cell recruitment in the wing disc results in a significant gain of AP symmetry, which results from a reduction of the region between longitudinal vein 5 and the wing margin (L5-M) in the adult wing. Morphometric analysis confirms that blocking of cell recruitment results in a more symmetric wing with respect to controls, suggesting a contribution of cell recruitment to the establishment of asymmetry in the adult wing. In order to verify if this phenotype is originated during the time in which cell recruitment occurs during larval development, we examined the expression of a reporter for the selector gene vestigial (vg) in the corresponding pro-vein regions of the wing disc, but our findings could not explain our findings in adult wings. However, the circularity of the Vg pattern significantly increases in recruitment-impaired wing discs, suggesting that cell recruitment may contribute to AP asymmetries in the adult wing shape by altering the roundness of the Vg pattern. We conclude that cell recruitment, a widespread mechanism that participates in growth and patterning of several developing systems, may contribute, at least partially, to the asymmetric shape of the Drosophila wing.
Collapse
Affiliation(s)
- Rosalío Reyes
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
- Interdisciplinary Polytechnic Unit of Biotechnology of the National Polytechnic Institute, Mexico City, Mexico
| | - Rafael Rodriguez-Muñoz
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
3
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
4
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Gonzalez V, Grant MG, Suzuki M, Christophers B, Rowland Williams J, Burdine RD. Cooperation between Nodal and FGF signals regulates zebrafish cardiac cell migration and heart morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574380. [PMID: 38260277 PMCID: PMC10802409 DOI: 10.1101/2024.01.05.574380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Asymmetric vertebrate heart development is driven by an intricate sequence of morphogenetic cell movements, the coordination of which requires precise interpretation of signaling cues by heart primordia. Here we show that Nodal functions cooperatively with FGF during heart tube formation and asymmetric placement. Both pathways act as migratory stimuli for cardiac progenitor cells (CPCs), but FGF is dispensable for directing heart tube asymmetry, which is governed by Nodal. We further find that Nodal controls CPC migration by inducing left-right asymmetries in the formation of actin-based protrusions in CPCs. Additionally, we define a developmental window in which FGF signals are required for proper heart looping and show cooperativity between FGF and Nodal in this process. We present evidence FGF may promote heart looping through addition of the secondary heart field. Finally, we demonstrate that loss of FGF signaling affects proper development of the atrioventricular canal (AVC), which likely contributes to abnormal chamber morphologies in FGF-deficient hearts. Together, our data shed insight into how the spatiotemporal dynamics of signaling cues regulate the cellular behaviors underlying organ morphogenesis.
Collapse
Affiliation(s)
- Vanessa Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| | - Meagan G. Grant
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan, 739-8526
| | - Briana Christophers
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| | - Jessica Rowland Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
- Current affiliation: National Institute for Student Success, at Georgia State University, Atlanta, GA 30303
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| |
Collapse
|
6
|
Jeon HJ, Kim C, Kim K, Lee SE. Piperlongumine treatment impacts heart and liver development and causes developmental delay in zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114995. [PMID: 37167734 DOI: 10.1016/j.ecoenv.2023.114995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Piperlongumine (PL) and piperine (PP) are alkaloids presented in long pepper (Piper longum), and they exhibit various biological activities, especially anti-cancer properties. With these regards, they are considered as future medicines with high potential. Even they are exposed to humans such a long time, their potential toxicities in the environment have not been studied. Therefore, their ecological toxicities were assessed using zebrafish embryos. PP showed low mortality and no abnormal phenotype up to 10 µM. However, PL exhibited strong acute toxicity at the concentration of 5-10 µM ranges, and abnormal development were frequently found in the range of 1-2.5 µM with pericardial and yolk sac edemas. In transgenic zebrafish embryos, PL induced an increase in the number of intersegmental vessels and delayed the early-stage development. PL treatment affected heart formation and heart rate. The presence of PL induced the expression of cytokines, inflammatory markers, and inflammasome in the embryos. The PL treatment changed the mRNA levels of the ER stress and apoptosis-related genes. In addition, ROS production was observed during early-stage development of PL-treated zebrafish embryos. These results indicate that developing PL as a medicine would require extremely meticulous strategies to prevent potential toxicity.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeongnam Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Ren Y, Ning X, Li G, Sang N. Environmental exposure to triazole fungicide causes left-right asymmetry defects and contributes to abnormal heart development in zebrafish embryos by activating PPARγ-coupled Wnt/β-catenin signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160286. [PMID: 36403845 DOI: 10.1016/j.scitotenv.2022.160286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Triazole fungicides have been widely used all over the world. However, their potential ecological safety and health risks remain unclear, especially their cardiac developmental toxicity. This study systematically investigated whether and how triazole fungicides could activate peroxisome proliferative activity receptor γ (PPARγ) to cause abnormal heart development. Among ten triazole fungicides, difenoconazole (DIF) exhibited the strongest agonistic activity and caused severe pericardial edema in zebrafish embryos, accompanied by a reduction in heart rate, blood flow and cardiac function. In vitro transcriptomic profile implicated that DIF inhibited the Wnt signaling pathway, and in vivo DIF exposure significantly increased the phosphorylation of β-catenin (p = 0.0002) and altered the expression of related genes in zebrafish embryos. Importantly, exposure to DIF could activate PPARγ and inhibit the Wnt/β-catenin signaling pathway, which changed the size of Kupffer's vesicle (KV) (p = 0.02), altered the expression of left-right (LR) asymmetry-related genes, caused cardiac LR asymmetry defect, and eventually led to abnormal heart development. These findings provide evidence for potential developmental toxicity of triazole fungicides and highlight the necessity of assessing their ecological safety and human health risks.
Collapse
Affiliation(s)
- Yue Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Ying Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
8
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
9
|
Nodal signaling regulates asymmetric cellular behaviors, driving clockwise rotation of the heart tube in zebrafish. Commun Biol 2022; 5:996. [PMID: 36131094 PMCID: PMC9492702 DOI: 10.1038/s42003-022-03826-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clockwise rotation of the primitive heart tube, a process regulated by restricted left-sided Nodal signaling, is the first morphological manifestation of left-right asymmetry. How Nodal regulates cell behaviors to drive asymmetric morphogenesis remains poorly understood. Here, using high-resolution live imaging of zebrafish embryos, we simultaneously visualized cellular dynamics underlying early heart morphogenesis and resulting changes in tissue shape, to identify two key cell behaviors: cell rearrangement and cell shape change, which convert initially flat heart primordia into a tube through convergent extension. Interestingly, left cells were more active in these behaviors than right cells, driving more rapid convergence of the left primordium, and thereby rotating the heart tube. Loss of Nodal signaling abolished the asymmetric cell behaviors as well as the asymmetric convergence of the left and right heart primordia. Collectively, our results demonstrate that Nodal signaling regulates the magnitude of morphological changes by acting on basic cellular behaviors underlying heart tube formation, driving asymmetric deformation and rotation of the heart tube.
Collapse
|
10
|
Derrick CJ, Sánchez-Posada J, Hussein F, Tessadori F, Pollitt EJG, Savage AM, Wilkinson RN, Chico TJ, van Eeden FJ, Bakkers J, Noël ES. Asymmetric Hapln1a drives regionalized cardiac ECM expansion and promotes heart morphogenesis in zebrafish development. Cardiovasc Res 2022; 118:226-240. [PMID: 33616638 PMCID: PMC8752364 DOI: 10.1093/cvr/cvab004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/08/2021] [Indexed: 01/24/2023] Open
Abstract
AIMS Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development. METHODS AND RESULTS Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning. Analysis using an ECM sensor revealed the cardiac ECM is further regionalized along the atrioventricular axis. Spatial transcriptomic analysis of gene expression in the heart tube identified candidate genes that may drive ECM expansion. This approach identified regionalized expression of hapln1a, encoding an ECM cross-linking protein. Validation of transcriptomic data by in situ hybridization confirmed regionalized hapln1a expression in the heart, with highest levels of expression in the future atrium and on the left side of the tube, overlapping with the observed ECM expansion. Analysis of CRISPR-Cas9-generated hapln1a mutants revealed a reduction in atrial size and reduced chamber ballooning. Loss-of-function analysis demonstrated that ECM expansion is dependent upon Hapln1a, together supporting a role for Hapln1a in regionalized ECM modulation and cardiac morphogenesis. Analysis of hapln1a expression in zebrafish mutants with randomized or absent embryonic left-right asymmetry revealed that laterality cues position hapln1a-expressing cells asymmetrically in the left side of the heart tube. CONCLUSION We identify a regionalized ECM expansion in the heart tube which promotes correct heart development, and propose a novel model whereby embryonic laterality cues orient the axis of ECM asymmetry in the heart, suggesting these two pathways interact to promote robust cardiac morphogenesis.
Collapse
Affiliation(s)
- Christopher J Derrick
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Juliana Sánchez-Posada
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Farah Hussein
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Federico Tessadori
- Hubrecht Institute for Developmental and Stem Cell Biology, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - Eric J G Pollitt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Aaron M Savage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Robert N Wilkinson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Fredericus J van Eeden
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jeroen Bakkers
- Hubrecht Institute for Developmental and Stem Cell Biology, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
11
|
Zhou Q, Lei L, Zhang H, Chiu SC, Gao L, Yang R, Wei W, Peng G, Zhu X, Xiong JW. Proprotein convertase furina is required for heart development in zebrafish. J Cell Sci 2021; 134:272418. [PMID: 34622921 DOI: 10.1242/jcs.258432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiac looping and trabeculation are key processes during cardiac chamber maturation. However, the underlying mechanisms remain incompletely understood. Here, we report the isolation, cloning and characterization of the proprotein convertase furina from the cardiovascular mutant loft in zebrafish. loft is an ethylnitrosourea-induced mutant and has evident defects in the cardiac outflow tract, heart looping and trabeculation, the craniofacial region and pharyngeal arch arteries. Positional cloning revealed that furina mRNA was barely detectable in loft mutants, and loft failed to complement the TALEN-induced furina mutant pku338, confirming that furina is responsible for the loft mutant phenotypes. Mechanistic studies demonstrated that Notch reporter Tg(tp1:mCherry) signals were largely eliminated in mutant hearts, and overexpression of the Notch intracellular domain partially rescued the mutant phenotypes, probably due to the lack of Furina-mediated cleavage processing of Notch1b proteins, the only Notch receptor expressed in the heart. Together, our data suggest a potential post-translational modification of Notch1b proteins via the proprotein convertase Furina in the heart, and unveil the function of the Furina-Notch1b axis in cardiac looping and trabeculation in zebrafish, and possibly in other organisms.
Collapse
Affiliation(s)
- Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Lei Lei
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Hefei Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shih-Ching Chiu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Lu Gao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ran Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Wensheng Wei
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Honda H. Left-handed cardiac looping by cell chirality is mediated by position-specific convergent extensions. Biophys J 2021; 120:5371-5383. [PMID: 34695385 DOI: 10.1016/j.bpj.2021.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022] Open
Abstract
In the embryonic heart development of mammals and birds, a straight initial heart tube undergoes left-handed helical looping, which is a remarkable and puzzling event. We are interested in the mechanism of this chiral helical looping. Recently, observations were reported that myocardial cells in the embryonic chick heart show intrinsic chirality of rotation. The chirality of myocardial cells, via anisotropic polarization of Golgi inside the cells, leads to a left-right (LR) asymmetry of cell shape. On cell boundaries of LR asymmetric cells, phosphorylated myosin and N-cadherin are enriched. Such LR asymmetric cellular circumstances lead to a large-scale three-dimensional chiral structure, the left-handed helical loop. However, the physical mechanism of this looping is unclear. Computer simulations were performed using a cell-based three-dimensional mathematical model assuming an anterior-rightward-biased contractile force of the cell boundaries on the ventral surface of the heart (orientation of a clock hand pointing to 10 to 11 o'clock). An initially straight heart tube was successfully remodeled to the left-handed helical tube via frequent convergent extension (CE) of collective cells, which corresponds to the previously reported observations of chick heart development. Although we assumed that the biased boundary contractile force was uniform all over the ventral side, orientations of the CEs became position specific on the anterior, posterior, right, and left regions on the ventral tube. Such position-specific CEs produced the left-handed helical loop. In addition, our results suggest the loop formation process consists of two distinct phases of preparation and explicit looping. Intrinsic cell properties of chirality in this investigation were discussed relating to extrinsic factors investigated by other researches. Finally, because CE is generally exerted in the axial developmental process across different animal species, we discussed the contribution of CE to the chiral heart structure across species of chick, mouse, Xenopus, and zebrafish.
Collapse
Affiliation(s)
- Hisao Honda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine Kobe University, Kobe, Hyogo, Japan; Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
13
|
Tessadori F, Tsingos E, Colizzi ES, Kruse F, van den Brink SC, van den Boogaard M, Christoffels VM, Merks RM, Bakkers J. Twisting of the zebrafish heart tube during cardiac looping is a tbx5-dependent and tissue-intrinsic process. eLife 2021; 10:61733. [PMID: 34372968 PMCID: PMC8354640 DOI: 10.7554/elife.61733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands
| | - Fabian Kruse
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Malou van den Boogaard
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Roeland Mh Merks
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands.,Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.,Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Smith KA, Uribe V. Getting to the Heart of Left-Right Asymmetry: Contributions from the Zebrafish Model. J Cardiovasc Dev Dis 2021; 8:64. [PMID: 34199828 PMCID: PMC8230053 DOI: 10.3390/jcdd8060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The heart is laterally asymmetric. Not only is it positioned on the left side of the body but the organ itself is asymmetric. This patterning occurs across scales: at the organism level, through left-right axis patterning; at the organ level, where the heart itself exhibits left-right asymmetry; at the cellular level, where gene expression, deposition of matrix and proteins and cell behaviour are asymmetric; and at the molecular level, with chirality of molecules. Defective left-right patterning has dire consequences on multiple organs; however, mortality and morbidity arising from disrupted laterality is usually attributed to complex cardiac defects, bringing into focus the particulars of left-right patterning of the heart. Laterality defects impact how the heart integrates and connects with neighbouring organs, but the anatomy of the heart is also affected because of its asymmetry. Genetic studies have demonstrated that cardiac asymmetry is influenced by left-right axis patterning and yet the heart also possesses intrinsic laterality, reinforcing the patterning of this organ. These inputs into cardiac patterning are established at the very onset of left-right patterning (formation of the left-right organiser) and continue through propagation of left-right signals across animal axes, asymmetric differentiation of the cardiac fields, lateralised tube formation and asymmetric looping morphogenesis. In this review, we will discuss how left-right asymmetry is established and how that influences subsequent asymmetric development of the early embryonic heart. In keeping with the theme of this issue, we will focus on advancements made through studies using the zebrafish model and describe how its use has contributed considerable knowledge to our understanding of the patterning of the heart.
Collapse
Affiliation(s)
- Kelly A. Smith
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
15
|
Anterior lateral plate mesoderm gives rise to multiple tissues and requires tbx5a function in left-right asymmetry, migration dynamics, and cell specification of late-addition cardiac cells. Dev Biol 2021; 472:52-66. [PMID: 33482174 DOI: 10.1016/j.ydbio.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
In this study, we elucidate a single cell resolution fate map in the zebrafish in a sub-section of the anterior Lateral Plate Mesoderm (aLPM) at 18 hpf. Our results show that this tissue is not organized into segregated regions but gives rise to intermingled pericardial sac, peritoneum, pharyngeal arch and cardiac precursors. We further report upon asymmetrical contributions of lateral aLPM-derived heart precursors-specifically that twice as many heart precursors arise from the right side versus the left side of the embryo. Cell tracking analyses and large-scale cell labeling of the lateral aLPM corroborate these differences and show that the observed asymmetries are dependent upon Tbx5a expression. Previously, it was shown that cardiac looping was affected in Tbx5a knock-down and knock-out zebrafish (Garrity et al., 2002; Parrie et al., 2013); our present data also implicate tbx5a function in cell specification, establishment and maintenance of cardiac left-right asymmetry.
Collapse
|
16
|
Patterson VL, Burdine RD. Swimming toward solutions: Using fish and frogs as models for understanding RASopathies. Birth Defects Res 2020; 112:749-765. [PMID: 32506834 DOI: 10.1002/bdr2.1707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
The RAS signaling pathway regulates cell growth, survival, and differentiation, and its inappropriate activation is associated with disease in humans. The RASopathies, a set of developmental syndromes, arise when the pathway is overactive during development. Patients share a core set of symptoms, including congenital heart disease, craniofacial anomalies, and neurocognitive delay. Due to the conserved nature of the pathway, animal models are highly informative for understanding disease etiology, and zebrafish and Xenopus are emerging as advantageous model systems. Here we discuss these aquatic models of RASopathies, which recapitulate many of the core symptoms observed in patients. Craniofacial structures become dysmorphic upon expression of disease-associated mutations, resulting in wider heads. Heart defects manifest as delays in cardiac development and changes in heart size, and behavioral deficits are beginning to be explored. Furthermore, early convergence and extension defects cause elongation of developing embryos: this phenotype can be quantitatively assayed as a readout of mutation strength, raising interesting questions regarding the relationship between pathway activation and disease. Additionally, the observation that RAS signaling may be simultaneously hyperactive and attenuated suggests that downregulation of signaling may also contribute to etiology. We propose that models should be characterized using a standardized approach to allow easier comparison between models, and a better understanding of the interplay between mutation and disease presentation.
Collapse
Affiliation(s)
- Victoria L Patterson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
17
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
18
|
Yang F, Qi J. miR-430a regulates the development of left-right asymmetry by targeting sqt in the teleost. Gene 2020; 745:144628. [PMID: 32224271 DOI: 10.1016/j.gene.2020.144628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
microRNAs (miRNAs) are short, endogenous non-coding RNAs that contain approximately 18-22 nucleotides. miRNAs are involved in gene regulation by recognizing and binding the 3'UTR of target gene. In our previous data, miR-430 family showed significant differential expression modes through metamorphosis in Japanese flounder. It was speculated that miR-430a plays a key role in left-right patterning. We predicted the targets of miR-430a and gene ontology (GO) was performed. We speculated miR-430a is involved in the basal molecular function and organ development. In Japanese flounder, sqt as a target of miR-430a was enriched into heart development term. Sqt has been reported to participate in mesendoderm formation and organ development. Cardiac morphogenesis is the first asymmetric development process, which breaks left-right symmetry in bilateria. It was used as a marker to detect L-R asymmetric effects of miR-430a. Overexpression and suppression of miR-430a resulted in abnormal KV (Kupffer's vesicles) development and disordered in nodal-related expression with consequent cardiac laterality. Squint mRNA of Japanese flounder (Posqt) as a target of miR-430a was overexpressed and caused similar phenotype with miR-430a suppression group, such as longer cilia in KV and high range of clmc2 and spaw ectopic expression. Moreover, rescue experiments were performed and suggested that cardiac and KV defections, induced by overexpressing miR-430a, could be rescued by injecting Posqt mRNA. These results suggested that miR-430a regulates the development of left-right asymmetry by targeting sqt in the teleost.
Collapse
Affiliation(s)
- Fan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
19
|
Left-right asymmetric heart jogging increases the robustness of dextral heart looping in zebrafish. Dev Biol 2019; 459:79-86. [PMID: 31758943 DOI: 10.1016/j.ydbio.2019.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022]
Abstract
Building a left-right (L-R) asymmetric organ requires asymmetric information. This comes from various sources, including asymmetries in embryo-scale genetic cascades (including the left-sided Nodal cascade), organ-intrinsic mechanical forces, and cell-level chirality, but the relative influence of these sources and how they collaborate to drive asymmetric morphogenesis is not understood. During zebrafish heart development, the linear heart tube extends to the left of the midline in a process known as jogging. The jogged heart then undergoes dextral (i.e. rightward) looping to correctly position the heart chambers relative to one another. Left lateralized jogging is governed by the left-sided expression of Nodal in mesoderm tissue, while looping laterality is mainly controlled by heart-intrinsic cell-level asymmetries in the actomyosin cytoskeleton. The purpose of lateralized jogging is not known. Moreover, after jogging, the heart tube returns to an almost midline position and so it is not clear whether or how jogging may impact the dextral loop. Here, we characterize a novel loss-of-function mutant in the zebrafish Nodal homolog southpaw (spaw) that appears to be a true null. We then assess the relationship between jogging and looping laterality in embryos lacking asymmetric Spaw signals. We found that the probability of a dextral loop occurring, does not depend on asymmetric Spaw signals per se, but does depend on the laterality of jogging. Thus, we conclude that the role of leftward jogging is to spatially position the heart tube in a manner that promotes robust dextral looping. When jogging laterality is abnormal, the robustness of dextral looping decreases. This establishes a cooperation between embryo-scale Nodal-dependent L-R asymmetries and organ-intrinsic cellular chirality in the control of asymmetric heart morphogenesis and shows that the transient laterality of the early heart tube has consequences for later heart morphogenetic events.
Collapse
|
20
|
Lombardo VA, Heise M, Moghtadaei M, Bornhorst D, Männer J, Abdelilah-Seyfried S. Morphogenetic control of zebrafish cardiac looping by Bmp signaling. Development 2019; 146:dev.180091. [PMID: 31628109 DOI: 10.1242/dev.180091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Cardiac looping is an essential and highly conserved morphogenetic process that places the different regions of the developing vertebrate heart tube into proximity of their final topographical positions. High-resolution 4D live imaging of mosaically labelled cardiomyocytes reveals distinct cardiomyocyte behaviors that contribute to the deformation of the entire heart tube. Cardiomyocytes acquire a conical cell shape, which is most pronounced at the superior wall of the atrioventricular canal and contributes to S-shaped bending. Torsional deformation close to the outflow tract contributes to a torque-like winding of the entire heart tube between its two poles. Anisotropic growth of cardiomyocytes based on their positions reinforces S-shaping of the heart. During cardiac looping, bone morphogenetic protein pathway signaling is strongest at the future superior wall of the atrioventricular canal. Upon pharmacological or genetic inhibition of bone morphogenetic protein signaling, myocardial cells at the superior wall of the atrioventricular canal maintain cuboidal cell shapes and S-shaped bending is impaired. This description of cellular rearrangements and cardiac looping regulation may also be relevant for understanding the etiology of human congenital heart defects.
Collapse
Affiliation(s)
- Verónica A Lombardo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Melina Heise
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Motahareh Moghtadaei
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Jörg Männer
- Institute of Anatomy and Embryology, UMG, Göttingen University, D-37075 Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany .,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| |
Collapse
|
21
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
22
|
Sempou E, Lakhani OA, Amalraj S, Khokha MK. Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left-Right Organizer in Xenopus. Front Physiol 2018; 9:1705. [PMID: 30564136 PMCID: PMC6288790 DOI: 10.3389/fphys.2018.01705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, yet its genetic causes continue to be obscure. Fibroblast growth factor receptor 4 (FGFR4) recently emerged in a large patient exome sequencing study as a candidate disease gene for CHD and specifically heterotaxy. In heterotaxy, patterning of the left-right (LR) body axis is compromised, frequently leading to defects in the heart's LR architecture and severe CHD. FGF ligands like FGF8 and FGF4 have been previously implicated in LR development with roles ranging from formation of the laterality organ [LR organizer (LRO)] to the transfer of asymmetry from the embryonic midline to the lateral plate mesoderm (LPM). However, much less is known about which FGF receptors (FGFRs) play a role in laterality. Here, we show that the candidate heterotaxy gene FGFR4 is essential for proper organ situs in Xenopus and that frogs depleted of fgfr4 display inverted cardiac and gut looping. Fgfr4 knockdown causes mispatterning of the LRO even before cilia on its surface initiate symmetry-breaking fluid flow, indicating a role in the earliest stages of LR development. Specifically, fgfr4 acts during gastrulation to pattern the paraxial mesoderm, which gives rise to the lateral pre-somitic portion of the LRO. Upon fgfr4 knockdown, the paraxial mesoderm is mispatterned in the gastrula and LRO, and crucial genes for symmetry breakage, like coco, xnr1, and gdf3 are subsequently absent from the lateral portions of the organizer. In summary, our data indicate that FGF signaling in mesodermal LRO progenitors defines cell fates essential for subsequent LR patterning.
Collapse
Affiliation(s)
- Emily Sempou
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | | | | | | |
Collapse
|
23
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
24
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
25
|
Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohun TJ, Meilhac SM. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 2017; 6:28951. [PMID: 29179813 PMCID: PMC5705212 DOI: 10.7554/elife.28951] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/15/2017] [Indexed: 01/14/2023] Open
Abstract
How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, CU Las Lagunillas, Jaén, Spain
| | - Audrey Desgrange
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Kenzo D Ivanovitch
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Etienne Raphaël
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sigolène M Meilhac
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| |
Collapse
|
26
|
Pelliccia JL, Jindal GA, Burdine RD. Gdf3 is required for robust Nodal signaling during germ layer formation and left-right patterning. eLife 2017; 6:28635. [PMID: 29140250 PMCID: PMC5745080 DOI: 10.7554/elife.28635] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Vertebrate embryonic patterning depends on signaling from Nodal, a TGFβ superfamily member. There are three Nodal orthologs in zebrafish; southpaw directs left-right asymmetries, while squint and cyclops function earlier to pattern mesendoderm. TGFβ member Vg1 is implicated in mesoderm formation but the role of the zebrafish ortholog, Growth differentiation factor 3 (Gdf3), has not been fully explored. We show that zygotic expression of gdf3 is dispensable for embryonic development, while maternally deposited gdf3 is required for mesendoderm formation and dorsal-ventral patterning. We further show that Gdf3 can affect left-right patterning at multiple stages, including proper development of regional cell morphology in Kupffer’s vesicle and the establishment of southpaw expression in the lateral plate mesoderm. Collectively, our data indicate that gdf3 is critical for robust Nodal signaling at multiple stages in zebrafish embryonic development.
Collapse
Affiliation(s)
- Jose L Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Granton A Jindal
- Department of Molecular Biology, Princeton University, Princeton, United States.,Department of Chemical and Biological Engineering, Princeton University, Princeton, United States.,The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
27
|
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality. PLoS One 2017; 12:e0182047. [PMID: 28771527 PMCID: PMC5542556 DOI: 10.1371/journal.pone.0182047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.
Collapse
|
28
|
Grimes DT, Burdine RD. Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet 2017; 33:616-628. [PMID: 28720483 DOI: 10.1016/j.tig.2017.06.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Vertebrates exhibit striking left-right (L-R) asymmetries in the structure and position of the internal organs. Symmetry is broken by motile cilia-generated asymmetric fluid flow, resulting in a signaling cascade - the Nodal-Pitx2 pathway - being robustly established within mesodermal tissue on the left side only. This pathway impinges upon various organ primordia to instruct their side-specific development. Recently, progress has been made in understanding both the breaking of embryonic L-R symmetry and how the Nodal-Pitx2 pathway controls lateralized cell differentiation, migration, and other aspects of cell behavior, as well as tissue-level mechanisms, that drive asymmetries in organ formation. Proper execution of asymmetric organogenesis is critical to health, making furthering our understanding of L-R development an important concern.
Collapse
Affiliation(s)
- Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
29
|
Grant MG, Patterson VL, Grimes DT, Burdine RD. Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol 2017; 124:1-40. [DOI: 10.1016/bs.ctdb.2016.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Current Perspectives in Cardiac Laterality. J Cardiovasc Dev Dis 2016; 3:jcdd3040034. [PMID: 29367577 PMCID: PMC5715725 DOI: 10.3390/jcdd3040034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The heart is the first organ to break symmetry in the developing embryo and onset of dextral looping is the first indication of this event. Looping is a complex process that progresses concomitantly to cardiac chamber differentiation and ultimately leads to the alignment of the cardiac regions in their final topology. Generation of cardiac asymmetry is crucial to ensuring proper form and consequent functionality of the heart, and therefore it is a highly regulated process. It has long been known that molecular left/right signals originate far before morphological asymmetry and therefore can direct it. The use of several animal models has led to the characterization of a complex regulatory network, which invariably converges on the Tgf-β signaling molecule Nodal and its downstream target, the homeobox transcription factor Pitx2. Here, we review current data on the cellular and molecular bases of cardiac looping and laterality, and discuss the contribution of Nodal and Pitx2 to these processes. A special emphasis will be given to the morphogenetic role of Pitx2 and to its modulation of transcriptional and functional properties, which have also linked laterality to atrial fibrillation.
Collapse
|
31
|
Midgett M, Chivukula VK, Dorn C, Wallace S, Rugonyi S. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos. J R Soc Interface 2016; 12:20150652. [PMID: 26468069 DOI: 10.1098/rsif.2015.0652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blood flow is inherently linked to embryonic cardiac development, as haemodynamic forces exerted by flow stimulate mechanotransduction mechanisms that modulate cardiac growth and remodelling. This study evaluated blood flow in the embryonic heart outflow tract (OFT) during normal development at each stage between HH13 and HH18 in chicken embryos, in order to characterize changes in haemodynamic conditions during critical cardiac looping transformations. Two-dimensional optical coherence tomography was used to simultaneously acquire both structural and Doppler flow images, in order to extract blood flow velocity and structural information and estimate haemodynamic measures. From HH13 to HH18, peak blood flow rate increased by 2.4-fold and stroke volume increased by 2.1-fold. Wall shear rate (WSR) and lumen diameter data suggest that changes in blood flow during HH13-HH18 may induce a shear-mediated vasodilation response in the OFT. Embryo-specific four-dimensional computational fluid dynamics modelling at HH13 and HH18 complemented experimental observations and indicated heterogeneous WSR distributions over the OFT. Characterizing changes in haemodynamics during cardiac looping will help us better understand the way normal blood flow impacts proper cardiac development.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Calder Dorn
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Samantha Wallace
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
32
|
Brown DR, Samsa LA, Qian L, Liu J. Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis 2016; 3. [PMID: 27335817 PMCID: PMC4913704 DOI: 10.3390/jcdd3020013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.
Collapse
Affiliation(s)
- Daniel R. Brown
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leigh Ann Samsa
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-962-0326; Fax: +1-919- 843-2063
| |
Collapse
|
33
|
Abstract
The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- A R Houk
- University of California, San Diego, CA, United States
| | - D Yelon
- University of California, San Diego, CA, United States
| |
Collapse
|
34
|
Niu J, Liu C, Yang F, Wang Z, Wang B, Zhang Q, He Y, Qi J. Characterization and genomic structure of Dnah9, and its roles in nodal signaling pathways in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:167-178. [PMID: 26377939 DOI: 10.1007/s10695-015-0127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The nodal signaling pathway has been shown to play crucial roles in inducing and patterning the mesoderm and endoderm, as well as in regulating neurogenesis and left-right axis asymmetry. Here, we present the first complete cDNA and genomic sequences as well as the promoter predication of the Dnah9 gene in the Japanese flounder. The 15,558-bp-long cDNA is divided into 96 exons and spread over 138 kb of genomic DNA. Protein sequence comparison showed that it shares higher identity with other vertebrate orthologs, with an ATP binding dynein motor, AAA domain and microtubule binding stalk of dynein motor. Dnah9 exhibited maternal and ubiquitous expression in all cells of the early development stages, but became concentrated in the head at 1 DAH, as identified by qRT-PCR and in situ hybridization methods. Furthermore, after nodal signaling was inhibited, the level of Southpaw did not change significantly at early development stage (50 % epiboly) but increased significantly at late stages (27-somite stages and 1 DAH), as well as the expression of Lefty, an inhibitor of nodal signaling, increased continuously. On the other hand, the expression level of Dnah9 decreased. The transcription factor binding site of FAST-1 (SMAD interacting protein) was identified in the transcription region of Dnah9 by the promoter analysis, which might format the complexes of SMADs, FAST-1 and the transcription region of Dnah9 served as a bridge of Dnah9 and nodal signaling. All evidences indicated that Dnah9 might be downstream of nodal during the early development stages, and an indirect function through SMADs for nodal signaling pathway.
Collapse
Affiliation(s)
- Jingjing Niu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Conghui Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Fang Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhenwei Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Bo Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Quanqi Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Jie Qi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
35
|
Zhang J, Wu Q, Wang L, Li X, Ma Y, Yao L. Association of GDF1 rs4808863 with fetal congenital heart defects: a case-control study. BMJ Open 2015; 5:e009352. [PMID: 26656983 PMCID: PMC4679941 DOI: 10.1136/bmjopen-2015-009352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Congenital heart defects (CHDs) are the most common fetal defects and the most important cause of child mortality and morbidity. OBJECTIVE To investigate the association between growth/differentiation factor 1 (GDF1) polymorphisms and fetal CHDs, by evaluating the association of GDF1 rs4808863 with fetal CHDs. DESIGN A case-control study. SETTING Beijing, China. PARTICIPANTS We selected 124 fetuses with a CHD and a normal karyotype and normal array-based comparative genomic hybridisation analysis and compared them with 124 normal fetuses matched for gestational age and sex. Fetuses with a CHD, from 20 to 32 weeks of gestation were included. Fetuses with any chromosomal abnormalities, and fetuses from multiple pregnancies and those carried by pregnant women with chronic diseases, were excluded from this research. DNA extraction and genotyping were carried out for all cases to investigate the genotype distributions of GDF1 rs4808863. RESULTS A significant difference was noted for the CT phenotype of GDF1 rs4808863 between the controls and the fetuses with CHDs using homozygote and heterozygote comparisons. The minor allele (T allele) of GDF1 rs4808863 was associated with an increased risk of CHD (p<0.05). A statistically significant difference between controls and fetuses with CHDs was noted in a comparison with the mutation genotype CT+TT and wild-type genotype CC (p<0.05) using dominant modal analysis. After stratification analysis, the CT phenotype, the minor allele (T allele) and the mutation genotype CT+TT of the rs4808863 polymorphism were associated with atrioventricular septal defect (AVSD), left ventricular outflow tract obstruction (LVOTO) and left-right laterality defects (p<0.05). CONCLUSIONS Our results suggest that the GDF1 rs4808863 polymorphism contributes to an increased risk of fetal CHDs, especially the subtypes of AVSD, LVOTO and left-right laterality defects.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Li Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Li
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuqing Ma
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ling Yao
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
37
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 PMCID: PMC4117980 DOI: 10.3389/fphys.2014.00287] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
38
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 DOI: 10.3389/fphys.2014.00287/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
39
|
Qi H, Huang G, Han YL, Lin W, Li X, Wang S, Lu TJ, Xu F. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates. Crit Rev Biotechnol 2014; 36:20-31. [PMID: 25025275 DOI: 10.3109/07388551.2014.922917] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.
Collapse
Affiliation(s)
- Hao Qi
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China .,c Department of Medical Genome Sciences , Graduate School of Frontier Sciences, University of Tokyo , Kashiwa , Chiba , Japan
| | - Guoyou Huang
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Yu Long Han
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Wang Lin
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Xiujun Li
- d Department of Chemistry , University of Texas at EI Paso , EI Paso , TX , USA , and
| | - Shuqi Wang
- e Brigham Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Tian Jian Lu
- b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Feng Xu
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
40
|
Noël ES, Verhoeven M, Lagendijk AK, Tessadori F, Smith K, Choorapoikayil S, den Hertog J, Bakkers J. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat Commun 2014; 4:2754. [PMID: 24212328 DOI: 10.1038/ncomms3754] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022] Open
Abstract
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
Collapse
Affiliation(s)
- Emily S Noël
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Many aspects of heart development are determined by the left right axis and as a result several congenital diseases have their origins in aberrant left-right patterning. Establishment of this axis occurs early in embryogenesis before formation of the linear heart tube yet impacts upon much later morphogenetic events. In this review I discuss the differing mechanisms by which left-right polarity is achieved in the mouse and chick embryos and comment on the evolution of this system. I then discus three major classes of cardiovascular defect associated with aberrant left-right patterning seen in mouse mutants and human disease. I describe phenotypes associated with the determination of atrial identity and venous connections, looping morphogenesis of the heart tube and finally the asymmetric remodelling of the embryonic branchial arch arterial system to form the leftward looped arch of aorta and associated great arteries. Where appropriate, I consider left right patterning defects from an evolutionary perspective, demonstrating how developmental processes have been modified in species over time and illustrating how comparative embryology can aide in our understanding of congenital heart disease.
Collapse
Affiliation(s)
- Iain M Dykes
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| |
Collapse
|
42
|
Khodiyar VK, Howe D, Talmud PJ, Breckenridge R, Lovering RC. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. F1000Res 2013; 2:242. [PMID: 24627794 DOI: 10.12688/f1000research.2-242.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 12/17/2022] Open
Abstract
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'. 'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Doug Howe
- The Zebrafish Model Organism Database, University of Oregon, Eugene, OR, 97403-5291, USA
| | - Philippa J Talmud
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Ross Breckenridge
- Centre for Metabolism and Experimental Therapeutics, University College London, London, WC1E 6JF, UK
| | - Ruth C Lovering
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| |
Collapse
|
43
|
Khodiyar VK, Howe D, Talmud PJ, Breckenridge R, Lovering RC. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. F1000Res 2013; 2:242. [PMID: 24627794 PMCID: PMC3931453 DOI: 10.12688/f1000research.2-242.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 01/15/2023] Open
Abstract
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’. ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Doug Howe
- The Zebrafish Model Organism Database, University of Oregon, Eugene, OR, 97403-5291, USA
| | - Philippa J Talmud
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - Ross Breckenridge
- Centre for Metabolism and Experimental Therapeutics, University College London, London, WC1E 6JF, UK
| | - Ruth C Lovering
- Cardiovascular GO Annotation Initiative, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| |
Collapse
|
44
|
Schumacher JA, Bloomekatz J, Garavito-Aguilar ZV, Yelon D. tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol 2013; 383:214-26. [PMID: 24075907 DOI: 10.1016/j.ydbio.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Abstract
The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
45
|
Osterfield M, Du X, Schüpbach T, Wieschaus E, Shvartsman SY. Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 2013; 24:400-10. [PMID: 23449472 DOI: 10.1016/j.devcel.2013.01.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Morphogenesis of the respiratory appendages on eggshells of Drosophila species provides a powerful experimental system for studying how cell sheets give rise to complex three-dimensional structures. In Drosophila melanogaster, each of the two tubular eggshell appendages is derived from a primordium comprising two distinct cell types. Using live imaging and three-dimensional image reconstruction, we demonstrate that the transformation of this two-dimensional primordium into a tube involves out-of-plane bending followed by a sequence of spatially ordered cell intercalations. These morphological transformations correlate with the appearance of complementary distributions of myosin and Bazooka in the primordium. These distributions suggest that a two-dimensional pattern of line tensions along cell-cell edges on the apical side of the epithelium is sufficient to produce the observed changes in morphology. Computational modeling shows that this mechanism could explain the main features of tissue deformation and cell rearrangements observed during three-dimensional morphogenesis.
Collapse
Affiliation(s)
- Miriam Osterfield
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
46
|
Veerkamp J, Rudolph F, Cseresnyes Z, Priller F, Otten C, Renz M, Schaefer L, Abdelilah-Seyfried S. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry. Dev Cell 2013; 24:660-7. [PMID: 23499359 DOI: 10.1016/j.devcel.2013.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 11/19/2012] [Accepted: 01/30/2013] [Indexed: 12/29/2022]
Abstract
Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity.
Collapse
Affiliation(s)
- Justus Veerkamp
- Cardiovascular Department, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Park CY, Wong AK, Greene CS, Rowland J, Guan Y, Bongo LA, Burdine RD, Troyanskaya OG. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS Comput Biol 2013; 9:e1002957. [PMID: 23516347 PMCID: PMC3597527 DOI: 10.1371/journal.pcbi.1002957] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning) that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST) have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT) dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics techniques and will help biologists systematically integrate prior knowledge from diverse systems to direct targeted experiments in their organism of study. Due to technical and ethical challenges many human diseases or biological processes are studied in model organisms. Discoveries in these organisms are then transferred back to human or other model organisms. Traditional methods for transferring novel gene function annotations have relied on finding genes with high sequence similarity believed to share evolutionary ancestry. However, sequence similarity does not guarantee a shared functional role in molecular pathways. In this study, we show that functional genomics can complement traditional sequence similarity measures to improve the transfer of gene annotations between organisms. We coupled our knowledge transfer method with current state-of-the-art machine learning algorithms and predicted gene function for 11,000 biological processes across six organisms. We experimentally validated our prediction of wnt5b's involvement in the determination of left-right heart asymmetry in zebrafish. Our results show that functional knowledge transfer can improve the coverage and accuracy of machine learning methods used for gene function prediction in a diverse set of organisms. Such an approach can be applied to additional organisms, and will be especially beneficial in organisms that have high-throughput genomic data with sparse annotations.
Collapse
Affiliation(s)
- Christopher Y. Park
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron K. Wong
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - Casey S. Greene
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jessica Rowland
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lars A. Bongo
- Department of Computer Science, University of Tromsø, Tromsø, Norway
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
48
|
Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry. PLoS Genet 2013; 9:e1003109. [PMID: 23358434 PMCID: PMC3554567 DOI: 10.1371/journal.pgen.1003109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/05/2012] [Indexed: 12/18/2022] Open
Abstract
Failure to properly establish the left–right (L/R) axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans. Defects in left–right (L/R) patterning can lead to severe defects in the formation of the heart. In fact, three of the most common forms of congenital heart disease, transposition of the great arteries, chamber septation defects, and chamber isomerisms, can be caused by earlier defects in L/R asymmetry. The Nodal and Bmp signaling pathways influence the development of cardiac asymmetry, but how these signals function in this process is not well understood. In this report, we have clarified the specific roles for the Nodal versus Bmp pathways in the heart. We find that Nodal signals increase the rate of cardiac cell migration, while Bmp signals decrease cardiac cell velocities. We demonstrate that asymmetric Nodal signaling plays a critical role in directing asymmetry in the heart in contrast to reports suggesting that signaling via Bmp4 is the more critical pathway. In fact, we find that Bmp4 signaling is dispensable for correct asymmetry in the heart in the presence of asymmetric Nodal signals. In addition, we have identified a novel integration between these two pathways at the level of the transcription factor FoxH1, which is required for cardiac cell responsiveness to both Nodal and Bmp signals. Taken together, this work significantly increases our understanding of how the signals regulating cardiac asymmetry function and integrate to consistently establish cardiac laterality. These results also suggest that human congenital heart defects that have not been found to result from single mutations within individual genes may develop due to combinations of mutations within components of these two separate pathways.
Collapse
|
49
|
Singleman C, Holtzman NG. Analysis of postembryonic heart development and maturation in the zebrafish, Danio rerio. Dev Dyn 2012; 241:1993-2004. [PMID: 23074141 DOI: 10.1002/dvdy.23882] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cardiac maturation is vital for animal survival and must occur throughout the animal's life. Zebrafish are increasingly used to model cardiac disease; however, little is known about how the cardiovascular system matures. We conducted a systematic analysis of cardiac maturation from larvae through to adulthood and assessed cardiac features influenced by genetic and environmental factors. RESULTS We identified a novel step in cardiac maturation, termed cardiac rotation, where the larval heart rotates into its final orientation within the thoracic cavity with the atrium placed behind the ventricle. This rotation is followed by linear ventricle growth and an increase in the angle between bulbous arteriosus and the ventricle. The ventricle transitions from a rectangle, to a triangle and ultimately a sphere that is significantly enveloped by the atrium. In addition, trabeculae are similarly patterned in the zebrafish and humans, both with muscular fingerlike projections and muscle bands that span the cardiac chamber. Of interest, partial loss of atrial contraction in myosin heavy chain 6 (myh6/wea(hu423/+)) mutants result in the adult maintaining a larval cardiac form. CONCLUSIONS These findings serve as a foundation for the study of defects in cardiovascular development from both genetic and environmental factors.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Flushing New York and The Graduate Center, City University of New York, New York, New York, USA
| | | |
Collapse
|
50
|
Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012; 139:3257-62. [PMID: 22912409 DOI: 10.1242/dev.061606] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The left-right (LR) asymmetry of visceral organs is fundamental to their function and position within the body. Over the past decade or so, the molecular mechanisms underlying the establishment of such LR asymmetry have been revealed in many vertebrate and invertebrate model organisms. These studies have identified a gene network that contributes to this process and is highly conserved from sea urchin to mouse. By contrast, some specific steps of the process, such as the symmetry-breaking event and situs-specific organogenesis, appear to have diverged during evolution. Here, we summarize the common and divergent mechanisms by which LR asymmetry is established in vertebrates.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|